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IRREDUCIBILITY OF RANDOM POLYNOMIALS OF
LARGE DEGREE

EMMANUEL BREUILLARD AND PETER P. VARJU

ABSTRACT. We consider random polynomials with independent
identically distributed coefficients with a fixed law. Assuming the
Riemann hypothesis for Dedekind zeta functions, we prove that
such polynomials are irreducible and their Galois groups contain
the alternating group with high probability as the degree goes to
infinity. This settles a conjecture of Odlyzko and Poonen condi-
tionally on RH for Dedekind zeta functions.

1. INTRODUCTION

Let
P(x)=a2%+ Ag_ 2%+ .+ Az + 1 e Z[x] (1.1)

be a random polynomial with independent coefficients A;,..., Ay_1
taking values in 0 and 1 with equal probability. Odlyzko and Poo-
nen [31] conjectured that the probability that P is irreducible in Z[z]
converges to 1 as d — 0.

The best known lower bound in this problem is due to Konyagin [26]
who proved that

P(P is irreducible) >

c
log d
for an absolute constant ¢ > 0.

A strongly related problem was studied by Bary-Soroker and Kozma
[3], who proved that

lP(a:d + Ag 1z 4+ A+ Ay s irreducible) — 1,

where Ay, ..., Aq 1 are independent random integers uniformly dis-
tributed in 1,..., L for a fixed integer L that has at least 4 distinct
prime divisors.

In another paper, Bary-Soroker and Kozma [4] studied the problem
for bivariate polynomials. See also [32] for a study of the probability
that a random polynomial has low degree factors, and [6] for compu-
tational experiments on related problems.
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In this paper we prove the following result.

Theorem 1. Let P be a random polynomial as in (1.1). Suppose that
the Riemann hypothesis holds for the Dedekind zeta function (i for all
number fields of the form K = Q(a), where a is a root of a polynomial
with 0,1 coefficients.
Then
P(P is irreducible in Z[x]) — 1

as d — 0.

See Section 1.2 for more precise results, where we discuss the follow-
ing finer aspects of the problem

e random polynomials with arbitrary i.i.d. coefficients,
e the rate at which the probability converges to 1,

e relaxation of the assumption of RH,

e Galois groups.

1.1. Motivation. Beyond its intrinsic interest, the problem of irre-
ducibility of random polynomials of high degree is motivated by some
other problems, which we now briefly discuss.

It is believed to be computationally difficult to determine the prime
factorization of integers. On the other hand, polynomial time algo-
rithms are known for computing the factorization of polynomials in
Z|z]. Given an integer N € Z.,, we can write it as N = P(2) for a
unique polynomial P with 0, 1-coefficients. By computing the factor-
ization of P in Z[z] and evaluating the factors at 2, we can obtain a
factorization of N.

The only weakness of this approach is that the polynomial P may be
irreducible and thus the factorization of N obtained may be trivial. The
problem we study in this paper thus asks for the probability that this
procedure returns only a trivial factorization. Therefore, it is desirable
to have results, such as those of this paper, proving that this probability
converges to 1 very fast.

We will discuss our method in Section 1.3. The method links the
problem of irreducibility of random polynomials with mixing times of
certain Markov chains, which are mod p analogues of the Bernoulli
convolutions we had studied in earlier work (see e.g. [8,9,35]). In this
paper, we use results available for the Markov chains to study random
polynomials, but this can be reversed. In particular, in a forthcoming
paper, we will use the results of this paper to obtain new results about
the Markov chains.

Our results on irreducibility assume the Riemann hypothesis for
Dedekind zeta functions, or at least some information on the zeros.
In our last theorem, Theorem 7, we show that conversely irreducibility
of random polynomials has (modest) implications about the zeros of
Dedekind zeta functions.
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1.2. Results. Under the full force of the Riemann hypothesis, our best
result is the following.

Theorem 2. Let P = Agz? + ... + Ajx + Ay € Z[x] be a random
polynomial with independent coefficients. Assume that Ay, ..., Ag_1
are identically distributed with common law . Assume further that all
coefficients are bounded by exp(d'/') almost surely. Let T > 0 be a
number such that |ul3 =Y, ,p@)* <1—7.

There are absolute (and effective) constants ¢,C' > 0 such that if
d = C/7*, then with probability at least 1 — exp(—crd"/?/logd) the
following holds for P.

(1) If RH holds for (i for K = Q and for all number fields of the
form K = Q(a), where a is a root of P, then P = ®P, where

P is irreducible, and ® has deg ® < g d and s a product of
cyclotomic polynomials and x™ for some m € Z~y.

Moreover with probability at least 1—exp(—crd"/?/(log d)?) the following
additional property holds for P.

(2) If RH holds for Cx for all number fields of the form K =
Q(ay,...,am), where ay,...,an, are any number of roots of P,

then Gal(P) > Alt(deg P).

Here Alt(n) denotes the alternating group on n elements, Gal(P) the
Galois group of the splitting field of the polynomial P.

There are several remarks in order regarding this theorem. It is nat-
ural to allow that the probability laws of A; and Aq differ from those
of the other coefficients, for example to include the original problem
discussed in the beginning of the paper. The exponent % has no par-
ticular significance and the upper bound exp(d"/'°) on the coefficients
could be relaxed at the expense of some technical complications in the
proof, but we do not pursue this. Nevertheless, the method of proof
definitely requires some upper bound in terms of d; it would be inter-
esting to know if this is also necessary for the theorem to hold.

Our method is based on studying higher order transitivity of the Ga-
lois group acting on the roots, and hence it cannot distinguish between
the Galois group being Sym(d) or Alt(d). Deciding whether or not the
Galois group is Sym(d) with probability tending to 1 appears to be a
hard problem.

There are certain obstructions to the irreducibility of P that occur
with probability higher than the estimate 2 exp(—cd'/?/logd) given in
the theorem. In particular, if P(Ay = 0) is positive, then z|P with
positive probability. Moreover, if w is a root of unity, then one may
think of P(w) as the end point of a random walk on Z[w] whose steps
are given by Ajw’ for j = 0,...,d. If we fix w # 1 and p, then for
large values of d, P(P(w) = 0) is proportional to d~"/? (say by the
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lattice local limit theorem [18, §49, Chap. 9]), where r is the rank of
the lattice Z[w].

In summary, the factor ® may be non-trivial with probability higher
than 2 exp(—cd'/?/log d), and its precise behavior can be described by
a detailed analysis of random walks on lattices, which we do not pursue
here, except for the:

Corollary 3. Let o be a probability measure on Z with finite second
moment, which is not supported on a singleton. Let N be a positive
integer and Uy be the finite subset of C consisting of 0 and all of roots
unity w with [Q(w) : Q] < N. Let (A;)i=0 be a sequence of i.i.d. random
variables with common law p and set Py = Agz®+.. +Ajx+ Ay € Z[x].
Then, assuming the Riemann hypothesis for Dedekind zeta functions of
number fields, as d — +o0

P(Py is irreducible in Q[z]) = 1~P(w € Uy, Palw) = 0) + Oy n(d™%).

In a similar flavor we answer the original problem posed at the be-
ginning of the paper.

Corollary 4. Let P(z) = 2%+ Ag_12¥ '+ ...+ Az + 1 € Z[z] be
a random polynomial with independent coefficients Ay, ..., Aq_1 taking
values in 0 and 1 with equal probability. Suppose that the Riemann
hypothesis holds for the Dedekind zeta function Cx for all number fields
of the form K = Q(a), where a is a root of a polynomial with 0,1
coefficients.

Then

2
P(P is irreducible in Z[x]) = 1 — 4| T o(d™1),
T
where the implied constant is absolute.

Polynomials of small Mahler measure can also contribute to the error
term. In this respect it is also worth pointing out that an exponential
bound in the error term in Theorem 2, say of the form exp(—cd) for
some ¢ > 0 would easily imply the Lehmer conjecture (arguing, say, as
in [8, Lemma 16]).

In the proof of part (2) of Theorem 2, we will show that the Galois
group of P acts k-transitively on its roots with & > (logd)?. By a well-
known fact going back to Bochert and Jordan in the 19-th century,
this implies that the Galois group contains the alternating group. In
fact, now there are even better results available, which we will discuss
in more details in Section 9.1. Using the classification of finite simple
groups, it has been proved that all 6-transitive permutation groups
contain Alt(d). However, if we were to rely on this, it would lead
only to a very minor improvement in Theorem 2, so we opted for a
proof avoiding the classification. Unfortunately, our method cannot
distinguish between the symmetric and alternating groups.
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Bary-Soroker and Kozma proved that if p is the uniform distribution
on an interval, then with probability tending to 1, the Galois group of P
contains Alt(d) provided P is irreducible. However, our result applies
in greater generality and provides a better bound for the probability of
exceptions conditionally on the Riemann hypothesis.

Next, we state two results, where the reliance on the Riemann hy-
pothesis is relaxed at the expense of a weakening of the bound.

Theorem 5. For any numbers 7 > 0 and o > [ > 3, there is ¢ > 0
such that the following holds. Let P = Aqx® + ... + Ayxz + Ay € Z[x]
be a random polynomial with independent coefficients. Assume that
Ay, ..., Ag_1 are identically distributed with common law p. Assume
further that all coefficients are bounded by d"/™ almost surely and |u|2 <
1—7.

Then with probability at least 1 — 2 exp(—c(logd)®=2) the following
holds for P. Suppose (i has no roots p with |1 — p| < (logd)®/d for all
K = Q(a) for any roots a of P. Then P = ®P, where P is irreducible,
deg ® < ev/d and ® is a product of cyclotomic polynomials and =™ for
some m € /.

We recall the state of the art in our knowledge about the zeros
of Dedekind zeta functions near 1 to motivate the next result. The
Dedekind zeta function (x has at most one zero p with |1 — p| <
4/log Ak, where Ak is the discriminant of the number field K, see
[33, Lemma 3]. If such a zero exists, it must be real, and we call it the
exceptional zero of (x. The constant 4 has been improved, see [24] for
the latest results. We note that in the setting of Theorems 5 and 6,
log A < Cdlogd for a constant C' depending only on 7.

The bounds available for the exceptional zero are much weaker. We
know that (i has no zeros p with

c
L= ol < AT (1.2)
where d is the degree of K and ¢ is an absolute constant, see [33, proof of
Theorem 1’]. However, conditionally on Artin’s holomorphy conjecture
for Artin L-functions, we know by [33, Theorem 4] that (i has no zeros
p with
c

&
1—pl < + .
R T NG

In the next result, we formulate our hypothesis on the zeros of
Dedekind functions allowing for an exceptional zero.

Theorem 6. For any numbers 7 > 0, a > 4 and v > 1 such that
a > 29 + 2, there is ¢ > 0 such that the following holds. Let P =
Agr?+ .. 4+ Aix + Ag € Z|x] be a random polynomial with independent
coefficients. Assume that Ay, ..., Ag_1 are identically distributed with
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common law p. Assume further that all coefficients are bounded by d'/™
almost surely and ||p)% <1 — 7.

Then with probability at least 1 — 2 exp(—c(log d)*=2) the following
holds for P. Suppose (x has at most one root p with |1—p| < (logd)®/d
and none with |1 — p| < exp(—c(logd)?) for all K = Q(a) for any roots
a of P. Then P = @15, where P is wrreducible, deg ® < ev/d and P is
a product of cyclotomic polynomials and x™ for some m € Z~,.

Most of the interest in our final result is when we know uncondition-
ally that the random polynomial P is irreducible with high probability,
e.g. in the setting of the work of Bary-Soroker and Kozma [3] men-
tioned above. Then we obtain as a direct consequence of the following
theorem an unconditional improvement on the bound (1.2) for the ex-
ceptional zero of the Dedekind zeta function (i that holds for most
number fields K, where K is the sampled by setting K = Q(a) for a
root a of the random irreducible polynomial P.

Theorem 7. For every 7 > 0 and o > [ > 3, there is ¢ > 0 such that
the following holds. Let P = Aqx®+...+ Ajz+ Ag € Z[z] be a random
polynomial with independent coefficients. Assume that Ay, ..., Ag_1
are identically distributed with common law . Assume further that all
coefficients are bounded by d/™ almost surely and |ul|? <1 — 7.

Then with probability at least 1 — 2 exp(—c(logd)®=2) the following
holds for P. There is a root a of P that is not a root of unity, such
that (qea) has no zeros p with |1 — p| < exp(—(logd)***).

1.3. An outline of the proof. Our strategy for proving the results
stated above aims at finding information about the distribution of the
degree sequence in the factorization of the random polynomial P in
F,[z], and then uses this information to study irreducibility of P in
Z| x| and the Galois group of its splitting field.

Bary-Soroker and Kozma [3] approximated (in a certain sense) the
degree sequence in the factorization of a polynomial chosen uniformly at
random from degree d monic polynomials in F,[x]. It is very plausible
that such an approximation holds in greater generality not only for the
uniform distribution, but we do not know how to prove this. However,
we are able to approximate the statistics of the number of low degree
factors and this allows us to gain information about the Galois groups
using special cases of the Chebotarev density theorem.

The most relevant density theorem for our purposes is the prime
ideal theorem, which has the following consequence.

Theorem 8. Let Py € Z[x] be a fixed polynomial and let p be a random

prime chosen uniformly in a dyadic range |y,2y). Then

E[number of roots of Py in F,] — {number of distinct irred. factors of Py}
(1.3)

as y — 0.
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This observation was suggested as a basis for an algorithm to com-
pute the number of irreducible factors of a polynomial by Weinberger
36].

If the Riemann hypothesis holds for (x for all K = Q(a), where
a is a root of Py, then the approximation (1.3) is valid once y >
C(e)(log Ap,)*™¢. A more precise discussion of these ideas including
proofs will be given in Sections 2-4. We note that if we wish to approx-
imate the distribution of the full degree sequence of the factorization of
Fy in [, using the Chebotarev density theorem, then we need to take
a much larger value for y even if we assume the Riemann hypothesis
for all relevant Dedekind zeta functions. Indeed, that would require us
to replace the discriminant of Py with the discriminant of its splitting
field in the above bound, which is potentially much larger, and that
would not be sufficient for our purposes.

The next aim of our strategy is to show that

E[number of roots of P in F, | ~ 1, (1.4)

where P is a random polynomial in the setting of the above theorems
and po is a fixed prime in the range [y, 2y), which is suitably large for
the approximation in (1.3) to hold.

If we achieve this goal, then we can randomize the polynomial in (1.3)
and the prime in (1.4) and compare the right hand sides to obtain

E[number of distinct irred. factors of P] ~ 1.

Since the number of irreducible factors is always a positive integer,
Markov’s inequality implies that P has only one irreducible factor with
high probability. When we will give the details of the argument, we
will choose a slightly different route by estimating the second moments
and applying Chebyshev’s inequality. Although this is not necessary
for Theorems 2, 5 and 6, it does help in that it is enough to make the
assumption on the Dedekind zeta functions only for those polynomials
for which the conclusion holds. On the other hand, the second moment
estimates are necessary for Theorem 7.

To establish (1.4), we fix an element a € F,,, and consider an additive
random walk on [, whose j-th increment is A;a’. The endpoint of this
walk is P(a). If we can show that the walk mixes rapidly, then we can

conclude that .
P(P(a) =0) ~ —. (1.5)
Do
Summing up the probabilities for each a € ), we arrive at (1.4).

The study of random walks of this kind goes back at least to Chung,
Diaconis and Graham [12], who considered the case a = 2. Their
work has been extended in several directions by Hildebrand (see [21]),
however he mostly focused on the case in which a is a fixed integer
independent of py. In the setting when a may vary with pg, the diameter

of the underlying graph was considered by Bukh, Harper and Helfgott
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in an unpublished work, see also [20, footnote 4 on page 372], that is,
they considered how large d needs to be taken so that the walk reaches
every element of [,,) with positive probability. Their approach relies on
certain estimates of Konyagin [25] pertaining to the Waring problem
on finite fields and we will apply the same method. See also [10], where
the connection between these random walks and Lehmer’s conjecture
is explored.

It turns out that the random walk does not mix fast enough for
certain choices of the parameter a. Indeed, if a = 0, then the walk
does not mix at all. Moreover, if a = 1, then the mixing time (i.e. how
large d needs to be taken for (1.5) to hold) will be ~ pZ, as can be
seen by the central limit theorem. A similar issue arises if a has low
multiplicative order. Therefore, it is useful to exclude certain elements
of [, from the count. We say that an element a € [, is admissible if it
is not the root of a cyclotomic polynomial of degree at most log pg. We
can then modify (1.3) by counting admissible primes on the left hand
side and non-cyclotomic factors on the right. When we give the details
of the argument we will exclude from the admissible elements not only
the roots of cyclotomic polynomials but also the roots of polynomials of
very small Mahler measure. This allows us to obtain improved bounds.

We are able to show that the mixing time is at most log p(log log p)3*¢
for most of the parameters a € [, in a sufficiently strong sense re-
quired by our application.! This allows us to set y = exp(d/(logd)>*¢)
when we apply (1.3). Even if we disregard the effect of the exceptional
zero, our current knowledge about the zeros of Dedekind zeta functions
would require the larger range y = exp(Cdlogd). Unfortunately, an
argument based on the analysis of the random walks for a fixed pa-
rameter a € [, cannot yield a mixing time better than clogp, since
the number of points that the random walk can reach grows exponen-
tially with the number of steps. To overcome this barrier, one would
need to consider the average distribution of the random walk over the
parameters a € [,. This however seems to be exceedingly difficult to
study.

There is one last issue that we need to consider. The above argument
cannot distinguish between irreducible polynomials and proper powers.
Indeed, we are able count distinct irreducible factors only. To show that
P is not a proper power with high probability, we show that P(2) is
not a proper power. To that end, we will use the large sieve together
with the classical a = 2 case of the above discussed random walks.

Using the above method, we can also obtain information about the
Galois group of P. What we discussed so far amounted to showing that
the Galois group acts transitively on the complex roots of P. A more

We can get better results for typical parameters in a weaker sense, which is not
suitable for the purposes of this paper. These results will appear in a forthcoming

paper.
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general version of this argument can be used to show that the action is
k-transitive for large values of k, large enough that it forces the Galois
group to contain the alternating group.

Finally, we comment on the proof of Theorem 7. If the Dedekind
zeta function has an exceptional zero, then all other zeros are repelled
away from 1 by what is known as the Deuring-Heilbronn phenomenon.
In the context of Theorem 8, this implies that the left hand side of (1.3)
is close to zero for a certain range of primes. This can be contradicted
by (1.4).

1.4. Organization of the paper. In Sections 2-4 we discuss the
prime ideal theorem and use it to obtain estimates for the average num-
ber of roots of a polynomial in finite fields related to (1.3). In Sections
5 and 6, we study equidistribution of random walks, we revisit Konya-
gin’s estimates in [25] and the argument suggested by Bukh, Harper
and Helfgott. In Section 7, we give an upper bound on the probability
that the random polynomial P has a factor of small Mahler measure
utilizing some ideas of Konyagin [26]. In Section 8 we use the large
sieve to show that P is not the product of a proper power and cyclo-
tomic factors with high probability. In Section 9 we combine the above
ingredients to prove the results stated in Section 1.2.

1.5. Notation. If K is a number field, we write dy for its degree and
Ay for its discriminant. If P € Z[x] is a polynomial, we write dp for
its degree, Ap for its discriminant and

M(P)y=as [] Il

zj:|zj|>1

for its Mahler measure, where a4 is the leading coefficient of P and z;
runs through the complex roots of P taking multiplicities into account.
We recall the estimates

1+ c<w)3 < M(P)< (a2 +...+a)"2 (1.6)
log dp

where the upper bound holds for all P # 0 € Z[z] and the lower bound

holds if in addition P is not the product of cyclotomic polynomials and

x™ for some m € Z~(. Here ¢ > 0 is an absolute constant ay, ..., a4 are

the coefficients of P. See [16] for the inequality on the left hand side

and [5, Lemma 1.6.7] for the right hand side.

We write Zp for summation over rational primes.

Throughout the paper we use the letters ¢ and C' to denote positive
numbers whose values may vary at each occurrence. These values are
effective and numerical: they could, in principle, be determined by
following the arguments. We will use upper case C' when the number
is best thought to be large, and lower case ¢ when it is best thought to
be small. In addition we will use Landau’s O(X) notation to denote
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a quantity that is bounded in absolute value by a constant multiple of

X.

1.6. Acknowledgments. The authors are grateful to Boris Bukh, Mo-
hammad Bardestani and Peter Sarnak for helpful discussions on various
aspects of this work. We thank the referees for their careful reading of
our paper and for useful comments and suggestions.

2. THE PRIME IDEAL THEOREM

Let K be a number field of degree d = dy with discriminant A = Ak
and denote by Of its ring of integers. Write (i for the Dedekind zeta
function of K. Write A(n) = Ag(n) for the number of prime ideals
pC OK with NK/Q(]J) =n.

The purpose of this section is to compute the average value of A(p)
with respect to suitably chosen weights supported on primes. We first
consider this question under the assumption that RH holds for (k. In
what follows, Zp indicates summation over all positive primes in Z.

Proposition 9. Let X > 1 be a number and let

i (1) = {Qexp(—X) if ue (X —log2, X/,

0 otherwise.
If RH holds for (x, then
ZA )log(p)hx(logp) = 1+ O(X?log(A) exp(—X/2)),

where the implied constant is absolute.

Proof. We write
bc@ = Y A(n)logn.
n,meZ-gnmM<x
There is an absolute constant C' > 0 such that if RH holds for (x, then
for all x > 1,

i (2) — x| < Cv/x(logzlog A + d(log z)?)

See for example [19, Corollary 1.2]. Applying this for z = exp(X) and
xr = exp(X)/Q we find that

Z n)log(n)hx (logn™) =2 exp(—X)(¥x (exp(X)) — ¢k (exp(X)/2))

n=1m=1

=1+ O(X?log(A) exp(—X/2)).

Here we used that dx < C(logAg) by Minkowski’s lower bound on
the discriminant.
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We estimate the contribution of the summands for which n™ is not
a prime. First we note that for each of these terms, n" is a proper
power, and there are at most

exp(X/2) + exp(X/3) + ... + exp(X/[X]) < Cexp(X/2)

such numbers between exp(X) and exp(X)/2. Each such number can
be written in the form n” in at most X different ways, and A(n)logn <
dr X. Therefore

Z A(n)log(n)hx(logn™) < CX?log(A) exp(—X /2).

™ is not prime

n,m: n

U

The purpose of the rest of this section is to formulate a variant of
this proposition with a milder assumption on the zeros of (x. Readers
only interested in the proof of Theorem 2 may skip to the next sec-
tion. Everything that follows is well known and classical. We begin by
recalling the smooth version of the explicit formula.

Theorem 10. Let g € C*(R) be a function supported in a compact
interval contained in Req. Write

9(s) = L exp(isu)g(u)du.

Then
Z Z n) log(n)g(mlog(n)) = §(—i) — > 4(~ip),

where the summation over p is taken over all zeros of (i (including the
trivial ones) taking multiplicities into account.

This result is well known but it does not seem to be readily available
in this form in standard text books, therefore we give the very short
proof for the reader’s convenience.

Proof. We note that

, 0 ®
Z Z lOg n_ms
for Re(s) > 1
Since g is compactly supported and C?, g is holomorphic and [g(is)| =
O(]Im(s)|™?) with an implied constant (continuously) depending only
on Re(s). By the Fourier inversion formula, we have

f n *g(—is)ds = f n*g(—is)ds
Re(s)=2

Re(s)=0

Q0
zif exp(—itlogn)g(t)dt = 2mig(logn).

—0
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for each n e Z-,.
Therefore, we have

! CK( —is)ds = i i n) log( 1
= 2 g(n)g(mlogn).

27TZ Re(s) 2CK

Shifting the contour integration to Re(s) = —o we can recover the
claimed formula from the residue theorem. We note that supp(g) <
R-o, g(—is) decays exponentially as Re(—is) — oo and leave the veri-
fication of the rest of the details to the interested reader. t

In the next lemma, we introduce the weight functions that we will use
and establish some of their properties. The aim is to find compactly
supported weights ¢ such that its Laplace transform G(s) = g(—is)
decays fast when Re(s) < 1 and s is moving away from 1. To achieve
the optimal decay, it is useful to choose g depending on the distance
of s from 1 where we wish to make G(s) small. The construction was
inspired by Ingham [22].

Lemma 11. Let X € Rog and let k € Z~q. For r € Ry, write

I(u) = {; ifue[—r/2,r/2]

0 otherwise.

Let
gX,k(u) = exp(—u) {X/Qk; koK IX/zlj(u — 3X/4), (21)
k-};ld
Guxals) <Txal—i3) = | explsulgludn 2.2
R

Suppose k = 4 and X = 2k. Then gxi € C*(R) and it is supported
in [X/2,X] and we have gx(u) < exp(—u) for all u € R. We have
G(1) = 1 and the following bounds hold for all s € C with Re(s) < 1
and for all o € (0,1) and X; > X,

0<1-Gxplo) <X(1-o0),

4k k
il <(|1 —le) ’
|Gx.k(s)] <exp((Re(s) —1)X/2),
Gx, k(o)
0 oxpl (1= )X, - X)),

Proof. The claim supp gx, < [X/2,X] and g(u) < exp(—u) follows
immediately from its definition and the assumption X > 2k.
Note
exp(isX /4k) — exp(—isX /4k)
isX /2k '

fX/zk(S) =
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Then |gx (o) < Clo|7* for o € R, where C is a number that depends
only on X and k, and it follows that gx € C* if k > 4.
We also have

G (s) = exp(3i(s+i) X /4)

exp(i(s + 1) X /4k) — exp(—i(s + z)X/4k)>k
i(s+ 1) X /2k '

We can write

Gxals) = exp(3(3—1)X/4)<

exp((s — 1) X /4k) — exp(—(s — 1)X/4k;))k
(s —1)X/2k '
(2.3)
Taking the limit s — 1, we get Gx (1) = 1. Using the bound

)exp(z) — exp(—2)
2z
with z = (s — 1) X /4k, which is valid for Re(z) < 0, we get

|Gxr(s)| < exp((Re(s) — 1) X/2)

| < exp(~ Re(2))

if Re(s) < 1.
Next, we use

exp(z) — exp(=2)| _ exp(— Re(2))
2z h |2]

with z = (s — 1) X /4k, which is valid for Re(z) < 0, and we get
exp((Re(s) —1)X/2)

xS =X
if Re(s) < 1. Using exp((Re(s) — 1)X/2) < 1, we get the claim.
To show G
Oxal0)  p(~(1— ) (X1~ Xa)4)
Gxok(0)

it is enough to prove that F{(Y)/Fi(Y) < —1 for Y > 0, where
(Y /1)~ oY)
2Y /k '
(We use the substitution Y = (1 — 0)X /4 and (2.3)).

This follows at once, if we show that Fy(Z)/Fy(Z) < 1 for Z > 0,
where

Fy(Y) = exp(-3)(

exp(2) — exp(—2)
27 )

Fy(Z) =
To that end, we calculate
Fy(Z)  exp(Z)+exp(—Z) 1

Fy(Z) ~ exp(Z)—exp(—Z) Z
and observe that Fj(Z)/Fy(Z) < 1 is equivalent to
exp(Z) — exp(~2)

7 :

2exp(—27) <
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We note that the left hand side is always less than 2 and the right hand
side is greater than 2 for Z > 0. The latter can be seen, for example
by computing the power series expansion of the right hand side. O

We record some well known estimates for the number of roots of (x
near s = 1. These go back at least to Stark [33].

Lemma 12. For every 0 < r < 1, we have

3
[{p: Crlp) = 0,1 = pl <7} < 5 + 3rlog|[Ax].

There 1s an absolute constant C' > 0, such that for every r > 1, we
have

{p: Cr(p) = 0,[1 = p| < r}| < Clog|Ak| + Cdgrlogr.
We count the zeros with multiplicities and include the trivial ones.

Proof. As in the proof of [33, Lemma 3], we have

ro 1 1 1
< + —log |Ak|,
Zpa—p oc—1 20g| |

where 1 < ¢ < 2 is arbitrary and le indicates summation over an
arbitrary subset of non-trivial zeros of (i (taking multiplicities into
account) closed under conjugation. If r < 1/2, we take 0 = 1 + 2r and
consider the zeros p that satisfy |1 — p| < r. For each such p, we have

1 1
HEE
ea—p 3r

which can be seen easily by finding the image of the disk {z : [1—z| < r}
under the inversion through 1 + 2r. This gives us

1= pl <}l < o+ 5 lo Ak,
which yields
1o 11— pl <7} < 5 + Sriog |Ax]
Taking 0 = 1 + r for 1/2 < r < 1, the same argument gives
Hp: 1= pl <7}l <2+rlog|Akl,

which is stronger than our claim since 2rlog |Ag| > 1/2.
We note that the trivial zeros are among the non-positive integers,
and each have multiplicity at most dx. Moreover, we have

{p:0<Re(p) < 1,]Im(p) —t| < 1}| < Clog(Ak) + Cdg log(|t| + 2)

for any ¢t € R (see e.g. [28, Lemma 5.4]). These two facts easily imply
the second claim. (l

Now we formulate a variant of Proposition 9 under a milder assump-
tion on the zeros.
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Proposition 13. Let o > 3,7 € Reg. Let X = d(logd)™® or X =
2d(logd)=® and k = |(logd)*=?/10|. Let K be a number field of degree
at most d and discriminant at most exp(t~*dlogd) in absolute value.
Suppose that (x has at most one zero py such that |1—pg| < d~*(log d)*
Then

Z A(p)log(p)gx 1 (log(p)) = 1 — Gx k(po) + O(exp(—c(log d)*~7)).

When the exceptional zero py does mot exist the corresponding term
should be removed from the formula. The implied constant and ¢ may
depend only on «, 8 and T.

Proof. In what follows, we will assume that d is sufficiently large de-
pending on «, # and 7. Otherwise, the claim may be made trivial by
a sufficient choice of the constants.

The proof is based on the explicit formula in Theorem 10, which
gives us

Z Z n)log(n)g(mlog(n Z G(p (2.4)

where g = gx; and G = Gx.

First, we focus on the left hand side of (2.4) and show that the terms
for which n™ is not a prime do not have a significant contribution. We
write

0 o0 o0 0
2 Z A(n)log(n)g(mlog(n ZZ g(log(p")),
n=1m=1 p I=1

where

Aph =D Am)log(n) = D> A(p)log(p).

n,m:nm=pl jigll

We note that A(p) = A(p)logp for all primes p and that
o0
Z ') log(p) < dg log(p).

(The last inequality is an equality if p is unramified in K.) Therefore,
we can write

‘Z Z A(n)log(n)g(mlog(n ZA ) log(p)g(log(p))

<) diclog(p)g(log(p')). (2.5)

Since the support of ¢ = gy is contained in [exp(X/2),exp(X)]
only those terms contribute in (2.5) for which p' € [exp(X/2), exp(X)].
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This means in particular that log(p) < X for all such terms and we

can write
5) < dxX )] > p,
P

1:1>2,
plefexp(X/2),exp(X)]

where we also used g(log(z)) < 27!, Therefore,

exp(X/2) exp(X/3) exp(X/4)

(2.5) <dKX< Z n2+ Z n+ Z Z n_l).

n=exp(X/4) n=exp(X/6) n=2  [inle[exp(X/2),exp(X)]

We note that

> n~t < 2exp(—X/2)

lintelexp(X/2),exp(X)]
for any n, hence
(2.5) < dgX(Cexp(—X/4)+ Cexp(—X/3) + 2exp(X/4) exp(—X/2)),
so we can conclude

‘Z Z A(n)log(n)g(mlog(n ZA ) log(p)g(log(p))

n=1m=1

<Cdg X exp(—X/4).

Now we turn to the right hand side of (2.4) and estimate the contri-
bution of the zeros p that satisfy |1 — p| > d~!(logd)®. We write

Rj:={p: Cx(p) = 0,27d  (logd)* < |1 — p| < 27*1d"*(log d)*}

for each j € Z-o. We think about this as a multiset with each zero
contained in it with its multiplicity.
By Lemma 12, we have

|R;| < C27(logd)**!

for each j such that 277'd~*(logd)® < 1. Here we use that log A <
7 !dlogd. To consider the case 2/*1d~!(logd)* > 1, we note

log(27t1d " (log d)*) < C1,
and the second part of the same lemma implies that
IR;| < C(j + 1)2(log d)*™! < C2% (log d)**.

So this last estimate holds for all j.
By Lemma 11 we know that

IG(p)| < <2jd—1(;lokg d)aX>k < exp(—c(j + 1)(log d)*?)
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for each p € R;. We combine this with the bounds on |R;| and obtain

the following estimates provided d is sufficiently large (depending on
a, B and 7)

Z Z |G (p) Z I(log d)*** - exp(—c(j + 1)(logd)*™#)

J=0 peR;

Z Cexp(—c(j + 1)(logd)*")

<C exp(—c(log d)*™7).
We recall that G(1) =
(p

G(1) -G

p

= 1 and using the above estimate, we write

) = (1= G(po))| < Cexp(—c(logd)*™),

where py is the unique zero of (x with |1 — po| < d~*(log d)® if it exists
and the term G(pg) should be omitted from the formula if there is no
such zero. Combining this with the estimate we gave above for the left
hand side, we get the claim of the proposition. O

3. SPLITTING OF PRIME IDEALS AND ROOTS IN FINITE FIELDS

In this section, we record some facts about the connection between
the number of roots a polynomial has in finite fields and the way prime
ideals split when we extend Q by adjoining roots of the polynomial.

We fix two numbers x € (0,1/100) and X € R~ 1.

Definition 14 (admissible polynomial). We say that an irreducible
polynomial R € Z[x] is (X, k)-admissible if M(R) > exp(k) or deg R >
10X. Otherwise it is called (X, k)-exceptional.

By abuse of language and ease of notation in this section we will sim-
ply speak of admissible or exceptional polynomials without reference
to X and k, which we assume fixed.

Lehmer’s conjecture implies that all exceptional irreducible polyno-
mials are either cyclotomic or equal to x. It follows from a result of
Dubickas and Konyagin [17, Theorem 1] that the number of excep-
tional polynomials of degree d is at most exp(rd) if d is larger than an
absolute constant independent of X.

The reason for excluding polynomials of small Mahler measure is
that this will allow us to obtain slightly better results in Sections 5
and 6. We will set the value of x depending on the common law of the
coefficients of the random polynomials so that the probability of a ran-
dom polynomial having an exceptional and non-cyclotomic factor will
be very small. This is proved in Section 7 using the above mentioned
estimate for the number of exceptional polynomials. We could opt to
make only the low degree cyclotomic polynomials exceptional, but this
would not lead to a significant simplification of our arguments.
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Definition 15 (admissible residue). Let p be a prime such that logp €
[X/2,X]. A residue a € [, is said to be (X, rk)-admissible if it is not
the root of an (X, k)-exceptional irreducible polynomial mod p.

Again if X and & are fixed, as we assume in this section, we will drop
the prefix (X, k) and speak about admissible residues.

Let P € Z|x] be a polynomial, F'its splitting field and p be a prime.
We write Bp(p) for the number of distinct admissible roots of P in
,. Write P for the product of the admissible irreducible factors of P.

Note that P is square free. Write €) for the set of complex roots of P.

Let m € Z-, and consider the diagonal action of G = Gal(F|Q) on
Q™. We may decompose 2™ into distinct G-orbits and for each orbit
O € Q"/G pick one representative w := (z1,...,z,) € O and consider
the subfield Ko = Q(xi,...,2,). The isomorphism class of Ky is
independent of the choice of the representative w in €.

Recall that Ax(p) denotes the number of prime ideals p € Ok with
norm p.

The purpose of this section is to prove the following.

Proposition 16. Let P € Z|x], let p be a prime such that p{ Ay and
and p t Res(P, R) for any exceptional polynomials R. Let m € Z~y.

Then
Bp(p)" = Y. Ax,(p).
OeQm /G

Let F' be a finite Galois extension of  and let p € Z be a prime that
is unramified in F'. Then we write Frobg(p) for the (conjugacy class)
of the Frobenius element in Gal(F|Q) at p.

We begin by recalling two standard facts.

Lemma 17 ([13, Theorem 4.8.13]). Let P € Z|z] be a polynomial and
let F' be a finite Galois extension of Q containing the roots of P. Let p
be a prime such that pt Ap. Then there is a bijective correspondence
between the cycles of Frobp(p) acting on the complex roots of P and
the irreducible factors of P in [, such that the length of a cycle equals
the degree of the corresponding irreducible factor.

Lemma 18 ([30, Chapter 4, Theorem 33|). Let F' be a finite Galois
extension of Q with Galois group G = Gal(F|Q) and let H < G be a
subgroup. Let p € Z be a prime, which is unramified in the extension
F|Q. Then the number of fized points of Frobg(p) acting on G/H is
Ak (p), that is the number of prime ideals in Ok of norm p, where K
1s the subfield of F' pointwise fixed by H.

Proof of Proposition 16. Recall that F' is the splitting field of P and
) < C the set of roots of P. We apply Lemma 17 for P, and see that
the number of fixed points of Frobg(p) acting on Q is Bp(p). Here

we used that all roots of P in [, are distinct and admissible, because
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p{Apand p{ Res(P, R) for any exceptional R. Therefore, Bp(p)™ is
the number of fixed points of Frobg(p) acting diagonally on Q™.
Consider an orbit O of Gal(F|Q) in Q™ and let Ko = Q(x1,..., %)
for some representative w := (x1,...,z,,) of O. Let H be the stabiliser
of win G. By the Galois correspondence Ky is the subfield of F' fixed
by H. Hence the number of fixed points of Frobg(p) in O is Ak, (p)
by Lemma 18. The claim follows. U

4. EXPECTED NUMBER OF ROOTS OF A POLYNOMIAL IN A RANDOM
FINITE FIELD

We combine the results of the previous two sections and deduce the
following two results. Below we have kept the notation of Section 3.
Recall that the function hx was defined in Proposition 9, that €2 is
the set of roots of P, F' the splitting field of P and G = Gal(F|Q)
its Galois group. Given m € Z.o, k € (0,755) and X > 10 we will
denote by Bp(p) is the set of (&, mX)-admissible roots of P in [, (see
Definition 15).

Proposition 19. Let d,m € Z~,. Let P € Z|z] be a polynomial with
coefficients in [— exp(d/1?), exp(d'/')] of degree at most d. Suppose
that for every G-orbit O on Q™ the Dedekind zeta function (i, of the
subfield Ko < F satisfies RH. Let X = md"/". Then

> Br(p)" log(p)hx (logp) = [2™/G| + O(exp(—X/10)).

p

The implied constant is absolute.

Proposition 20. Let a > 3,7 € Reg. Let X = d(logd)™ or X =
2d(logd)=" and k = |(logd)*#/10|. Let P € Z[z] be a polynomial
with coefficients in [—d"™,d""] of degree at most d. Suppose that for
every G-orbit O < ) the Dedekind zeta function (k. of the subfield
Ko < F has at most one root pg,, o such that |1 —px, ol < d ' (logd)®.
Then

EBP )log(p)gxi(logp) = . (1-Gxr(prpn))+O0(exp(—c(logd)®
0eN/G

If the exceptional zero pr, o does not exist for some O, then the term
Gx.k(pro0) should be omitted from the formula. The implied constant
and ¢ may depend only on «, B and 7.

We will use the next lemma to estimate the number of primes for
which the result of the previous section does not hold.

Lemma 21. Let P € Z[z] be a polynomial of degree at most d with
coefficients in [—H, H|. Let Q be a polynomial that divides P. Then

Aql < (Hd)™.

).
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For any irreducible R € Z[z] of degree at most d with M(R) < 2, we
have

|Res(P, R)| < (4Hd)*".

Let K be a number field obtained by adjoining at most m roots of P to
Q. Then

|Ag| < (Hd)*™"".

Proof. Recall Mahler’s bound on the discriminant of a polynomial @) €
C|[z] of degree n ([29, Theorem 1])

|Ag| < n"M(Q)™" 2. (4.1)
If Q divides P, M(Q) < M(P) < H(d + 1)"? by (1.6) hence Mahler’s

bound gives:
[Aql < d(H(d+ 1)12)*2 < (Hd)*

Now recall that |[Apsp| = [ApAg]| Res(P, R)?. Since R is irreducible and
P is s square free, |AsApg| > 1 and thus Res(P, R)? < |A rp|- Moreover
M(PR) = M(P)M(R) < 2M(P). So by (4.1) and (1.6) we conclude
Res(P, R)? < (2d)*4(2H (d + 1)V/?)*~2 < (4Hd)*
Let ay,...,q, be roots of P and K = Q(a,...,q,). For any two
number fields L, L, we have

|AL1L2| < |AL1|[L1L2:Ll]|AL2|[L1L2:L2] < |AL1|degL2|AL2|dengv
see e.g. [34]. Using this inductively, we can write
m—1 m—1 m m—1
(Al <A™ 1At ™ < AR
which proves the claim by the first part. O

Proof of Proposition 19. We apply Proposition 9 for each Kp.

Z ZAKO )log(p)hx (log p) =|Q™/G| + O(d™X? - 2md™ /' exp(— X /2))
0eQm /G p
=|Q™ /G| + O(exp(—X/10)).
Here we used the estimate for Ak, from Lemma 21, and the bound

d™ = O(exp(X/10)), which follows from our assumption X > md"/1°.
We proceed to estimate

)ZBP "log(p)hx(log(p) — Y Y Ax, (p) log(p)hx (log(p))|.
0eQm /G p
(4.2)
By Proposition 16, a prime p may contribute to (4.2) only if p|Aj
or p|Res(P, R) for some (X, mX)-exceptional irreducible R. As we
already noted, [17, Theorem 1] implies that the number of exceptional
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polynomials is at most exp(10xX) < exp(X/10). Therefore, the num-
ber of primes p contributing to (4.2) is at most
d® exp(X /10).

Here we used again the bounds from Lemma 21.
Since for any p we always have 0 < Bp(p)™ < d™ and

D Ak,(p) <)) degKo= ) 0] =|Q" <d™,
0eQm™ /G 0eqm /G 0eQ™ /G

the contribution of a prime to (4.2) is at most d” X -2 exp(—X). There-
fore,

(4.2) < d™ X exp(X/10 — X) < Cexp(—X/10),
and the claim follows. U
Proof of Proposition 20. The proof is similar to the previous one. By

Lemma 21, we have |Ag,| < d?/7+14 for each orbit O in 2. Hence
Proposition 13 applies to each Ky and we obtain

ZZAKO )log(p)gx.x(log p)

= Y, (1= Gxxlpxo)) + Oexp(—c(log d)*7)).
0eQ/G
Since Mahler measure is multiplicative using Dobrowolski’s lower bound
(1.6) the number |Q/G| of irreducible factors of P is at most [Q/G| <
C(logd)*. Hence |[2/G| can be absorbed into exp(—c(logd)*~#). We
proceed to estimate

)ZBP ) log(p)gx .k (log(p) Z ZAKO ) log(p)gx.x(log(p))|.

0eQ/G p
(4.3)
We estimate the number of primes p contributing to (4.3) just as we
did in the previous proof and find that there are at most

2(771 + 1)dlog(4d) exp(X/10)

such primes.
Since gxx(p) < p~', each such prime contributes to (4.3) at most
dX exp(—X/2). Therefore,

1

(4.3) < 2(A+1)dlog(4d) exp(X /10)-dX exp(—X/2) < O(exp(—c(logd)*"

and the claim follows. O

5. EQUIDISTRIBUTION OF RANDOM WALKS

We study equidistribution of certain random walks in this section.
The basic example of these is the walk on [, started at 0 whose steps
are given by z — ax + 1, where o € [, is a fixed parameter and the
signs + are chosen independently at random with equal probabilities
at each step. The study of related random walks goes back to [12,21],

),
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but those studies are mostly concerned with the case, when « is a fixed
integer independent of p. Much less is known if « is allowed to vary
with p.

We will also need to consider direct products of such walks. Before
introducing our notation for the general case, we first outline the ar-
guments in the basic setup mentioned above. We write U for the
probability measure on [, that is the distribution of the random walk
after d + 1 steps. It is easily seen that v is the law of the random
variable Sy(a) 1= Z;l:o X;al € F,, where X; € {—1, 1} are independent
unbiased random variables, and we can write its Fourier transform as

2m5l0) )y _ T cos(2radt /).

§=0

DD (€) = E(exp(

Our first aim is to bound |ﬁ((1d) (&)| away from 1. Expanding cos
in power series at 0, we see that we need to give a lower bound for
D([a?€]™)?, where [-]™~ denotes the unique lift of an element in F, to
(—p/2,p/2) n Z. We will use some bounds of Konyagin [25] for this
purpose. We note that Bukh, Harper and Helfgott have used similar
ideas in unpublished work (see [20, footnote 4 on page 372]) in order

to bound the diameter of the graph underlying the random walk.

Once we have bounded away |1?éd) (&)| from 1, we can exploit the

fact that ¥ is a convolution product of the form yobdn) o ldkd)

where 0 < d; < ...dj < d are some integers and v\ is the law
of Z?idlﬂ X;ad € F,. We can also bound |1')C(ydj’dj“)(§)| away from 1
in a similar manner. Multiplying these bounds together we can get

)

sufficiently strong bounds for |1')éd) (€)| so that we can deduce that the
random walk is equidistributed using Parseval’s formula.

Since we do not need an equidistribution result for each individual
parameter «, we can improve the above argument by giving an initial
estimate for the sum of the L? norms:

1
Z HV((xd)Hg = Z WH(ZL‘Q,...,I};),(I‘{), : ,ZL‘&) € {il}d-‘rl :

aclp, acl,

d

To+ ...+ x90t =)+ ..+ 2t}

Such an initial bound can be given by exploiting the fact that the
polynomial equation

To+ ...+ agat =)+ ..+ 2al
may have at most d roots in F, unless x; = ’; for all j.

The rest of the section is organized as follows. We set out our gen-
eral framework in the next section and state the equidistribution result
we will use later. In Section 5.2, we give a generalized exposition of
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Konyagin’s argument in our setup with some slight quantitative im-
provements. Then we use it to deduce an estimate for the Fourier coef-
ficients of u&d). We prove our main equidistribution result (Proposition
23) in Section 5.3. Finally, in Section 5.4 we prove another equidis-
tribution statement that we need exclusively to bound the probability
that a random polynomial is a proper power.

In this paper, we focus only on those equidistribution results that
we need in our applications. We believe that these random walks are
of independent interest and we will study them further in a subsequent

paper.

5.1. The general setting and results. We use the following notation
throughout this section. Let M € Z.y. Let pi,...,py be distinct

primes (say each > 5) and let my, ..., my € Z~o be numbers. Let

M

V=D,
i=1

D = max m;,
i:17"'7

Q =p1- pwm,

For a = (aq,...,an) € V we write o 1= (a1, .., Qi) € F0 and

for another § € V' we write a8 = (o ;0 )i, so for instance if n € Z,
we have a” = (a7;)i ;-

We have a canonical isomorphism of additive groups between @M[ ,
and Z/QZ given by

M
(A (1'17 c. 7.’17M) = Z’l/}z(xZ%
=1

where v; denotes the additive homomorphism F,, — Z/QZ, v — Q.

Dpi
Moreover we have the trace map tr: V — @MF,, given by

mi mar
tr(a) = (Z OzLj, N Z OZMJ‘).
j=1 j=1
Let Xy, X1,..., X be a sequence of independent Z valued random

variables. We assume that X, ..., X;_1 are identically distributed and
write p for their common law. We will study the random walk in the
additive group (V; +) whose n-th step is 3'_; X;a’ and denote by )
the law of this random element.

Our decision to exempt Xy and X, from having the same distribution
as the other steps of the walk is motivated by our intention to permit
families of random polynomials whose leading and constant terms have
a distribution that differs from the rest. Our method would allow us to
relax the requirement of identical distribution further by allowing small
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perturbations of the same law and a small number of exceptional steps.
We leave it to the interested reader to formulate such a statement.

Definition 22. We say that o € V' is generic if for each i € [1, M] the
coordinates (o ;)1<j<m; are non-zero and pairwise distinct.

For k € (0, 155), we write A, < V for the set of generic a € V such
that none of the coordinates «;; is a root of a polynomial P € Z[x]
with deg P < 31log(QP) and Mahler measure M(P) < exp(k).

The aim of this section is to prove the following result, which asserts
under suitable conditions that the probability that the random walk
is at 0 after d steps is approximately |V|~ on average for parameters

aec A,..

Proposition 23. There are absolute constants c¢,C' > 0 such that the
following holds. Let d e Z~qy, 0 <1 < 1. Suppose that

d =C(k7) "M Dlog Q" (loglog Q)?,
1
log(Q") = max (=, 77),
ull3 = Y, pla)* <1 -7,
hiy4

Suppose further that supp p < (—p;/2,pi/2) for eachi=1,..., M.
Then

A
> vk(0) - ]

acA

for any A < A,.

Thd )

<ew (- “log QP (log log QP)?

Remark. This proposition will be used in Section 6 twice. Once with
M =1 and a large prime p and fixed power m. And another time with
M = 2 and m; = msy. For the theorems of the introduction, except
part (2) of Theorem 2 about the generic Galois group, it is enough to
consider the case m = 1.

5.2. Estimates for the Fourier coefficients of the random walk.
The aim of this section is to revisit an argument of Konyagin from [25]
to obtain Proposition 24 below. Then we will use it in Proposition 25
to deduce a bound for the Fourier coefficients of the random walk.
For each a € Z/QZ, we write a for the unique lift of a in Z n

Proposition 24. Let notation be as in Section 5.1. Let o, € V.
Assume that o is generic and 3, ; # 0 for all ,5. Write

S, =Votr(fa") e Z/QZ.
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Let L = 2001log QP loglog QP be an integer and suppose that

2

Z Si < 810g Slog(4L)’ (5:1)

Then for eachi=1,....M and j = 1,...,m;, there is P,; € Z|x] of
degree at most 31og(QP) with Mahler measure at most (log(QP))30(osQ”)/L
such that P; j(a; ;) = 0.

Write eg(y) = exp(—2miy/Q) for y € Z/QZ. Given € V the
function xg: V — C*

X5 x— eq <\II o tr(ﬁx)) (5.2)

is a complex character of the additive group (V, +) and every character
is of this form. Given a measure v on V', we use the following notation
for its Fourier transform:

p(8) = Y, xs()v(x)

zeV

We write v{"* for the law of the random element in V given by
(d) (=1.d)

p 1,41 Xn@". In this notation va’ = va
Proposition 25. Let notation be as in the beginning of the section. Let
a,B € V. Assume that « is generic and B;; # 0 for all i,j. Suppose
further that supp p < (—pi/2,pi/2) for eachi=1,..., M.

Let L = 2001og QP log(log Q) be an integer and suppose that there
are i, j such that a; j is not a root of an integer polynomial of degree at

most 3log QP with Mahler measure at most (log QP)301s@")/L

Then
) 1—|pl3
(I1,02) < <_ 2>
|VC“ (/8)| X €Xp 810g(4L)

for all 0 <1y <ly < d such that ly — 1y > L.

First, we focus on the proof of Proposition 24, which closely follows
Konyagin [25]. Using a pigeon hole argument, it is easy to find non-
zero polynomials Py, P, € Z[x] of degree at most log QP with +1,0
coefficients such that Pi(c;;) = Paaf;) = 0 for all i,j. Here ¢ is
a carefully chosen prime number. The heart of the argument is the
idea that when (5.1) holds, it is possible to find P; and P, in such a
way that for each 7,7, there is P ; € Z[x]\{0} such that P, («a;;) =
0 and P, j(x)| GCD(Py(z), Po(2?)). From this, we will conclude that
deg(P,,) < deg(P;) and M(P,;) < M(P,)V1.

We begin to implement this strategy. Given a monic irreducible
polynomial P € Z[z], the next lemma allows us to find a prime ¢ of
controlled size such that whenever P(z)|Q(z?) for another polynomial

Q € Z[z], we have M(P) < M(Q)Y1.
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Lemma 26. (See also [25, Lemma 2|) Let ay,...,a, be the roots of
an irreducible polynomial P € Z[x|. Let s = 4logn be a number. If n
is larger than some absolute constant, then there is a prime q € (s,2s]
such that o;/a; is not a g-th root of unity for any i # j.

Proof. Denote by P the set of primes between s and 2s. Write R for
the collection of integers r such that there is a root of unity of order
r among the numbers «;/a;. Suppose by way of contradiction that
Ps < R.

We begin with the observation that if r € R, then thereis 1 < j < n
such that a;/c; is a root of unity of order r. Indeed, let i, j be such
that o;/c; is a root of unity of order r and let o be an automorphism
of @ such that o(;) = ;. Then o(a;/a;) = a;1/o(a;) is a root of unity
of order r and this proves the claim.

Suppose 11,79 € R are coprime integers. We prove riry € R. Let ¢
and j be such that a1/, and oy /a; are roots of unity of order r; and
o respectively. Then «;/a; = (ay/a;) ' (ay/a ) is a root of unity of
order r17, which proves the claim.

Therefore, each divisor r of HpE'PS p belongs to R. Since the set of
roots ayq,...,q, is invariant under the action of the Galois group, it
follows that for any such r all roots of unity of order r appear among
the a;/a;’s. Hence

n* > H p= eXp(E log p).

pePs pePs

By the prime number theorem, we have
n? = exp(s/2)

if n and hence s is sufficiently large. (In fact, we could put here any
constant less than 1 in place of 1/2.) This proves the lemma. U

Let N = e = 0 be integers and X = (x¢,...,2y) a sequence of
integers. Following Konyagin [25], we write A.(X) for the set of poly-
nomials P(z) = ag + a1z + ... + a.2® € Z[z] of degree at most e € Z5
such that

apTj + ...+ aeTjye =0

holds forall j = 0,..., N—e. We denote by A(X) the set of polynomials
P of degree at most N such that P € Agegp(X). We note that P e
Ac(zo,...,xy) if and only if P e A(zo,...,TN—ctdegP)-

If X were an infinite sequence, then A would give rise to a principal
ideal in Z[z]. We need a weaker form of this fact that is valid for finite
sequences. To this end, we recall the following result.

Lemma 27 (Konyagin [25, Lemma 5|). Let X = (zg,...,zxN) be a
sequence of integers and let Py, Py € A(X). If deg P, + deg P, < N,
then we have ged(Py, Py) € A(X).
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Corollary 28. Let X = (xq,...,xy) be a sequence of integers and
suppose that A(X) contains a non-zero polynomial of degree at most
N/2. Then there is a unique (up to multiplication by +1) non-zero
polynomial Py € A(X) of minimal degree and with relatively prime
coefficients. Furthermore, a polynomial P € Z|x| of degree at most
N — deg Py is contained in A(X) if and only if Py|P.

In the proof of Proposition 24 below, we will use the above results for
the sequence z, = S,. Under the hypothesis (5.1), we will show that
there are many polynomials P(x) = ag + ... + a.z® such that |a0§j +
st ae§e+j| < @ for all j in a certain range. Using the pigeonhole
principle, we will find a polynomial that in addition satisfies

GJQSj + ...+ aeSe+j =0 (53)

in the same range for j’s. These two properties imply that P € A(X)
for X = (5,,). The next lemma shows that it is enough to satisfy (5.3)
for a smaller range of j’s.

Lemma 29. Let m € Z~q and let p be a prime. For each 1 < j < m,
let o, 8 € Fp. Write

Tn = 2 Bj&?
j=1

for each i€ Z=y. Let P(x) = ap + ...+ a.x® € Fp[x] be a polynomial.
Suppose that the elements «; are pairwise distinct and B; # 0 for all
J. Suppose further that

aOTn + alTnJrl +.oo+ aeTnJre =0

foralln=20,...,m—1.
Then P(a;) =0 for all1 < j <m and

aOTn + alTnJrl +.oo+ aeTnJre =0
for alln e Z-y.

Proof. The hypothesis of the lemma implies that

> BiajPlaj) =0, (5.4)
j=1
foreachn =0,...,m — 1.
We note that the vectors (f1af, ..., Bpat) forn =0,...,m—1 are

linearly independent, as can be seen using Vandermonde determinants.
Hence the system of linear equations (5.4) in P(«;) as variables has
only the trivial solution, that is P(«;) = 0 for each j, which proves the
first claim. In addition,

aoTn + alTn+1 + ...+ a/eTn-i-e = Z /BJOZ?P(QJ) =0

J=1

for each n € Z-( and this establishes the second claim. U
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Proof of Proposition 24. Set E = 3|logQ”|. Note that 1 < F < L/3
and 28 > QP > 3 and |L/6F]| > 4log E. Our first aim is to show
that there is a polynomial P, # 0 of degree at most £ such that
P e Au({3a1Eo).

Let &,...,&r be a sequence of independent, unbiased +1 valued
random variables. For any n =0,..., L — F, we have
E
5 Q (Q/2)? 1
[P()Z@Sﬂn = —) < 2€Xp<— T) < —
7=0 2 2 ZO S]2+n 2L

by Hoeffding’s inequality and our assumption (5.1).
Therefore the set

E
Q= {:c = (wo,...,zp) € {—1,1}7*! 3) ij§j+n < %
j=0

forallnz(),...,L—E}

has cardinality more than 2571/2 > QP.
By the pigeonhole principle, it follows that there are x # y € €2 such

that
E E
Z TjSjyn = 2 YiSj+n
im0 i=0

foralln =0,...,D—1. Weset a; = (z; —y;)/2 € {—1,0,1}. It follows
from Lemma 29 applied M times to each T} := Z;nzl Bijai; with the
polynomial P = ag + ... + apz® € Z|x] that

E
> a8 =0€2/QZ

7=0

for all n € Z>y. Since z,y € Q and a; = (x; — y;)/2, we know that

E
‘ Z aj§j+n < Q/2
j=0

and hence
E
2 aij+n = 0
Jj=0

for any n =0,...,L — E. This means that
Pi(2) == ape® + ...+ anx + ag € Ap({Suin) < AUS ),

because F < L/3.
Since [2L/3| = 2F, by Corollary 28 there is a unique (up to mul-

tiplication by +1) polynomial Py € A({S,}?/*1) with relatively prime
coefficients and of minimal degree. By Lemma 29, Py(a; ;) = 0 for all
¢ and j. Then for each 7 and j there is an irreducible factor P, ; of Fy

over Z such that P ;(c; ;) = 0.
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Fix ¢ and j. We already know that deg P, ; < F, and we set out to

prove M(P;;) < (DlogQ)**P1sQ/L Write {Bk}:e:glplj for the roots of
P, ;. We set s = |L/6E|. Since L = 200D log Q log(Dlog @), we have
s = 4log E. By Lemma 26, there is a prime ¢ € (s, 2s]| such that £,/
is not a ¢-th root of unity for any k& # [. This means that the numbers
(81193 are all distinct. Note that ¢ < 2s < L/3E.

We now employ the same argument as above and find a non-zero
polynomial P, of the form P(x) = Q2(x9) for some Q(z) = by + ... +
bpa? € Z|x] with b; € {—1,0,1} for j =1,..., F and

E ~
Z biSkqen =0
k=0

for any n = 0,...,L — Eq. Hence P, € AEq({gn}£=0) c A({gn}fjég]),
because Fq < L/3.
Since [2L/3] = 2Eq, we have Py|P, by Corollary 28. This means

that {5] Ze:gle are all roots of the polynomial ()5, and since they are
all distinct we get:

M(Piy)" < M(Q2) < (E +1)"2,

where the right hand side follows from (1.6). Since ¢ > s = |L/6E],
2q = L/3E, we get

M(P,y) < (B + 1) < (E + 1) < (Dlog QP = ¥/%
[

Remark 30. Let uy, ..., u, € R" be a sequence of vectors with |u;| <
1. A conjecture of Komlés asserts that there is an absolute constant
C such that for each such sequence of vectors, there is a sequence of
signs w; = £1 such that |wiu; + ... + Wptn|e < C. In this remark,
we point out that if this conjecture holds, then assumption (5.1) in
Proposition 24, may be relaxed to an upper bound of the form cQ?,
where ¢ is an absolute constant. Unfortunately, the best known result
towards Komlds’s conjecture in [2] yields no improvement.

We take a sequence y = (yo, - . ., yr) € {0, 1}P*! and we will apply the
conjecture to the vectors u; = (ngj, e ,ngL,Eﬂ-) for j =0,...,E.
Under the weakened hypothesis )| §T2L < ¢@?, Komlés’s conjecture im-
plies that for each choice of y, there is w(y) = (wo(y),...,we(y)) €
{£1}*! such that

E
) D wiW)y;Sivi < Q)2
=0
foralli =0,...,L — E. Now we see that the collection of sequences of

the form (wo(y)yo, - - -, we(y)yr) € {—1,0, 1}¥ may be used in the place
of € in the proof of Proposition 24 to obtain the same result under the
weaker hypothesis.
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Now we turn to the proof of Proposition 25.
Given a measure y on Z and x € V' we write p.d, for the measure on

V' defined by
> n(a)s

acZ
With this notation, we can write

V&ll’l?) = ,LL.5a11+1 *ook ,U-(Socl2

forany 0 < [y <y < d.

Recall the notation @, which is the unique integer representative of
a € Z/QZ in the interval (—Q/2,Q/2]. For typographical convenience
we will also use the notation [a]™ with the same meaning.

Lemma 31. Let i be a measure on Z and let x,5€ V. Then

—

@ <exp (= 3 nlanntan) ([Wo (- w)n)] ) Q7).

ay,a2€Z

Proof. By definition, we have

o (B = D plar)plaz)xs((ar — az))

ay,a2€Z

Since |1.0,(8)|? € R and Re(eq(a)) < 1—2a2/Q? if a € Z/QZ, via (5.2)
we get:

PP <1=2 3 plarptan)[Wo (o - a)pe)] ) /@

On the other hand 1—1¢ < exp(—t) if t € [0, 1], so the claim follows. [

Proof of Proposition 25. For v € V', write as earlier

Sn(7) = Yotr(va™) e Z/QZ.
Using

— lo
@) = | TT #oan(8)

n=[1+1

Lemma 31 implies

@ <ow(~ 3 nleuad Gl - w)s) ).

n=Il1+1 aj,a2€Z
Using [, — [y = L and then Proposition 24, we can write
l2 - L - QQ
2 Li+1\)2
X Guller=ai))*> RS - el > 5oy

for all pairs a; # ay. Since supp u < (—p;/2,p;/2) for all i, we know
that a; — as is non zero in [, for all ¢ whenever a; # as in Z.
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We note
Z plar)plag) = 1 — |ul3.
a1 #az
Therefore
_ 2
(l1,l2) < < —(1— 2 762 . i)
as claimed. O

5.3. Proof of Proposition 23. We note that v(0) = > 5., V(8)/|V|
for any measure v on V. Hence, for any A < A,:

IUCR D WD WML 55)

acA acA BeV\{0}

We begin by finding a preliminary estimate for
DI < Y s,
acA aeV

and then use the Cauchy-Schwarz inequality to convert it into an esti-
mate on the right hand side of (5.5). Let (A, )n=0.. 4 and (A)n—o. .4
be sequences of independent random variables with the same law as
(Xn)n=o..a- We observe that

.....

> Hy;dhdﬂug = Y P(Ag 10 4+ Aga® = Ay a4+ A a™)

acV acV
:[E(#{Oz eV: Ad1+1adl+1 + ...+ Ad2ad2 = A:11+1ad1+1 + . / dQ}).

If Aj # A for at least one j € (dy, dy], then the polynomial
(Agyo1 — A )™+ o+ (Ag, — Al )a™

has at most dy — d; roots in any given field. This means that for such

Aj and A
#laeV Ay o™+ 445,07 = A L aP T 4+ A a®) < (dy—d))MP
and
Z [w{%2)|3 < (do— dl)MD+|V|ZM 2270 L (dy—dy)MP+|V|(1—7) B,
aeV aeZ

We set dy = [—log(|V|)/log(1 — 7)], and obtain

Z Z |A(dd+d0 _ Z Hy(derdo H2 < 2dMD

aeV BeV acgV
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for all d. We note that 1/ (2do) _ ((1 0) V((lo’do) s V((ldO’ZdO). Therefore for
each o € V\{0}, we have, since |5 )(6)| <1,

77 3 PR B <7 3 B(8) 2400 (5)

pev BeV
[ Z 0 ( ] [ Z [pdo:2d0) ]1/ 2
V] £ V] £

This gives us by another application of Cauchy-Schwarz

O;U;'A(Zdo
71 5 5] [ 5 T ]

aeA BeV ozEA BeV
<2d3” D (5.6)

Now we set di = [221og(Q”)loglog(QP)]. If « € A © A,, then
@;j is not a root of a polynomial of degree at most 3log QP with

Mahler measure at most (log QP)301e@”)/d and we also have d; >
200log QP log(log Q). Therefore, we can apply Proposition 25 with
L = d; and get

[P (B)] < exp ( = Sloa(dd) log?éldl)) (5.7)

for all d, « € A, and g € V\{0}. (If 5 has some 0 coordinates, then
V splits as a direct sum V' =V, @ V;, with # € V; having no non-zero
coordinate in V;, and we need to apply the proposition to V; and the
projected random walk on V; modulo V4. )

Now suppose that d > 2dy + Kd; for some K € Z-, and write

|A(d)( )| < |I//\(2do)(6)| . |D(2do,2do+d1)(6)| . |I’)(2do+(K—1)d172do+Kd1)(6)|.

We combine (5.6) with (5.7) and obtain
-
D) ZdMDeXp(—Ki).
I SR < (K

By the assumption on d in the proposition, we can take K > d/2d;
and a simple calculation yields that

24MP (Ke)
0 = PR 16 10g(4dy)

and hence we obtain the claim of the proposition. In the interest of
these calculations, it is useful to note that the lower bounds on log Q"
in terms of xk and 7 that we assumed in the proposition implies that

max(log do, log d;) < C'loglog Q7.
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5.4. The case a = 2. In this section, we consider the special case
V =F, ®. (—D F,, and a;; = 2 for all i. We write I/(dl’d2) for
the measure 1/& %) with the above choice of V and a. We will use
this case later to estimate the probability that P(2) is a proper power
for a random polynomial, which, in turn, yields an estimate for the
probability that P is a proper power of a polynomial.

Our main result is the following.

Proposition 32. Let 7 > 0 and assume ||pu|3 < 1—7. Suppose further
that supp i < (—p;/2,pi/2) for each i =1,..., M.

There 1s an absolute constant C' > 0 such that for all x € V' and
d = 1(Clog(Q))?, we have

@) - Q7 <@

The study of this case goes back to Chung, Diaconis and Graham
[12], who obtained very precise estimates for the mixing time, which
are much better than the bound log(Q)? implied by the above result.
However, our application requires strong bounds for the distance be-
tween uéd) and the uniform distribution, which was not considered in
[12]. Nevertheless, our proof draws on the ideas of [12] heavily.

We begin with a lemma on the Fourier coefficients of Véd). Its proof
relies on Lemma 31 and on the elementary fact that a sequence of the

form 3, 5\/'27 ...[B - 2lle2@l]~ cannot stay below Q/4.

Lemma 33. Let g = [logy(Q)|. Then for any l € [0,d — q) and (5 €
V\{0}, we have

1 — 2
|I;\2(l,l+q)(6)| < exp < . 1|6:u|2)

Proof. By Lemma 31, we have
q

B @B)] =] [ 13T ()

Jj=1
l+q

<exp< Z Z )R(ay, as, )2/Q2>,

n=Il+1 a1,a2€Z
where N
R(ai,as,n) = [\Il((al - a2)2”ﬁ)]

We note that R(aj,as,n+ 1) = 2R(ay,az,n) mod Q. Therefore, if
|R(a1,a2,n)| < Q/4, then |R(ay,az,n + 1)| = 2|R(ay, as,n)|. Now, it
is easy to see that for any a; # ag, there is n € [l 4+ 1,1 + ¢] such that
|R(ay,a2,n)| = @Q/4, and the claim follows. O

Proof of Proposition 32. We note that

@) - = = Y 5 (B,
|Q| BeV\{0}
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hence it is enough to prove that for all 5 € V\{0},

~(d _

257(8)] < @

To that end, we choose an integer L < d/q and write

D 10 00, (EDala)  (Led)

and note that Lemma 33 implies
257 (8)| < exp(~7L/16).

This yields the desired estimate, if we set L = [1601log(Q)/7|, which is
permitted if the constant C' is taken sufficiently large. U

6. EXPECTED NUMBER OF ROOTS OF A RANDOM POLYNOMIAL

In this section, we use the results of the previous section to calculate
the expected number of roots of a typical polynomial in [, for a random
prime. In the proofs of our main result, we will compare these with the
formulae in Section 4.

Let m,d > 1, k € (0, ﬁ) and X > 10. For a random polynomial
P € Z|z] of degree at most d, we will now estimate the number Bp(p) of
admissible roots of P in [, on average over the prime p. Here and below
a residue modulo p will be called admissible if it is (£, m.X )-admissible
in the notation of Definition 15. For the irreducibility results it will
be sufficient to set m = 1, but for information on the Galois groups,
we will need to consider larger values of m. Nevertheless m will not
exceed a fixed power of log d.

We suppose that the coefficients of P, except for the leading coef-
ficient and the constant term, are identically distributed and write p
for their common law. The notation Ep is used to denote expectation
with respect to the law of the random polynomial P. Our purpose in
this section is the prove the following result.

Proposition 34. There are absolute constants cq,Cy > 0 such that
the following holds. Let T,k > 0, d,m € Z~y and let pu be a probability
measure on 7 supported on [— exp(d/1?), exp(d*/1)]. Assume |ul? <
1 —7. Let X be a number such that
d
100m> —1 ot gthie X S 6.1

m”max{k ", T -, <X < Co T Tog(m) (6.1)
and let g : R — Rxq be a function such that supp g < [X /2, X], g(x) <
2exp(—x) for all x. Then setting

7= Bp(p)"log(p)g(log p) — Buw,
p
we have
coTkd

Er(27) < (exp(—%) - eXp(_mX(log(mal))?)>

N
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where B, stands for the m-th Bell number and w = Zp log(p)g(logp).

Recall that the Bell number B,, is the number of equivalence classes
on a set with m elements.

Corollary 35. Under the assumption of the previous proposition, with
probability at least

coTRd

mX (log(md))? )

X
1— exp(—g) — exp(—

the following holds for P:

1

| 2. Br(p)" log(p)g(logp) — Brw| < 5.

Proof. This is immediate from the last proposition after applying Cheby
shev’s inequality

Pr(|Z] = =) < 4Ep(Z?).

DO | —

t

We now pass to the proof of Proposition 34 and begin by recording
the following consequence of Proposition 23.

Lemma 36. There are absolute constants cy, Cy > 0 such that the
following holds. Let T,k > 0 and m,d € Z~q. Suppose that the prob-
ability measure p on Z is supported on [—exp(d/1?), exp(d'/'*)] and
that |p|3 < 1 —7. Let X be such that

d
10 ~1 _—1 41/10 X KT
max{k ", T , <X < Co mlog(md)

and let p,py # pa € [exp(X/2),exp(X)] be primes. Then
|IEP[BP<p>m] - Bm| <Bm ’ EI'I'(X, d7 m)7
[Ep[Bp(p1)™ Bp(p2)™] — Byl <Bj, - Err(X,d,m),

where Err(X, d, m) = 40m? exp(—%) + exp(—#’(‘id))g).

Proof. We write A, for the set of (£, mX)-admissible elements of [F,.

m’

In the notation of Section 5 we take M =1 and V = [le. Then

E[Bp(p)"] = >, v<(0).
a€g(Ap)™

m

We decompose (A,)™ as a disjoint union of subsets (A,)"(e) for
which Proposition 23 applies. To this end, we write &,, for the set of
equivalence relations on the set {1,...,m}. For each ¢ € &, we let
V (e) be the subgroup of V formed by the equations o; = a; whenever
(i,7) € €, and write (A,)™(e) for the subset of (A4,)™ n V() made of
those m-tuples « such that «; = o if and only if (4, j) € €.
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Given ¢ € £,, we may apply Proposition 23 to the group V() ~ ',
where m, is the number of equivalence classes in € and obtain

Sy (W)@l e d
ae(%’"(e) -0 P P 'mX (log(md))Q). (6.2)

As we have already noted, the number of polynomials of degree
at most 10mX and Mahler measure at most exp(k/m) is at most
exp(X/10) by [17, Theorem 1]. Therefore, |F,\A,| < 10mX exp(X/10)
and

[(Ap)" ()]

0<1~
pme

< 10m2X exp(X/10)/p < 20m? exp(—X /5).

Now summing up (6.2) for € € &,,, we arrive at the first claim.

The proof of the second claim is entirely similar using Proposition
23 for the random walk on V' = [ng &) [F;”Q. We leave the details to the
reader. g

Lemma 37. Let X > 10 and let g : R — Rso be a function such that
supp g < [X/2, X], g(x) < 2exp(—x) for all x. Then

wy = Y (log(p)g(logp))* < 8X” exp(—X /2)

p
w —Zlog g(logp) < 4X7.

Proof. A simple calculation yields

Sogplatosn)’ < Y 418 g xp)

p exp(X/2)<n<exp(X)

Zlog g(logp) < Z 210ﬂ <4X2

exp(X/2)<n<exp(X)

Proof of Proposition 34. Recall that

7 = ZBP "™ log(p)g(logp) — Bnw.

Setting h(x) = log(x)g(logx) we compute:

7 = Z (Be(p1)™ = Bn)(Bp(p2)™ — Bm)h(p1)h(p2)

p1,p2
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SO

Ep(Z%) = ), Ep((Bp(p)™ = Bu)(Bp(p2)™ — Bu))h(p1)h(p2)

p1,p2

= 2 Ep(Bp(p1)™ Bp(p2)™)h(p1)h(p2)

p1,p2

2B Y Iy, 3 Ep(Be(p2)" i) + B (Y h(0))

P p2 p

2

= > Ep(Be(p1)" Bp(p2)™ — B2)h(p:)h(p2)

p1,p2

— 2By Y h(p1) Y JEp(Bp(p2)™ — Bu)h(p2)

p1 p2

= 3 Ep(Bp(p))"Br(p2)™ — B2)h(p1)h(p2)

pP1#P2
— 2Bw Y. Ep(Bp(p)™ = Bu)h(p) + > Ep(Bp(p)*™ — B2)h(p)*.
p p
We use Lemma 36 to bound the first two terms and the crude bound
Bp(p) < d for the third:
Ep(Z%) < 3B2 Err(X, d, m)w® + d*™w,.

We recall that 100m2d"'° < X, so that d*™ < eX/°°. We plug in the
bounds for w and ws from Lemma 37 and the definition Err(X,d, m)
from Lemma 36 and obtain

X coTkd
Ep(2%) <48B2,X* (40m? exp(~= 0 )
P( ) m m eXp( 5 ) + GXp( mX(log(md))Q)
X X
8X? -+ ).
- exp( 5 + 50)

The constraints on X in the statement of the proposition imply that

coTkd

mX (log(md))

where C' is an arbitrarily large number provided we set Cj sufficiently
large (depending on ¢p). This means that we can absorb the factor
48 B2 X? into the constant cy. Similarly, the lower bound on X implies
that we can also absorb the factor 48B2 X* - 40m? at the expense of
replacing exp(—X/5) by exp(—X/6). O

5 > Cmlog(md),

7. POLYNOMIALS OF SMALL MAHLER MEASURE

In this section, we estimate the probability that the random poly-
nomial P is divisible by a non-cyclotomic polynomial of small Mahler
measure. The following result and the ideas in its proof are inspired
by Konyagin’s paper [26].
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Proposition 38. Let P = Agz? + ... + Az + Ag € Z[x] be a random
polynomial with independent coefficients, and write p; for the law of
Aj. Let 7 > 0 be a number. We assume

supp pj < [— exp(d”/?), exp(d"/'?)]

for all j and |p;|3 <1 —7 forall j # 0,d.

Then the probability that there is a non-cyclotomic polynomial Q) with
log M(Q) < 7/10 dividing P is at most 2 exp(—crd*®), where ¢ > 0 is
an absolute constant.

The exponent 4/5 is not optimal and there is a trade-off between it
and the bound imposed on the coefficients of P. Since any improvement
of this bound would have no effect on our theorems, we leave it to the
interested reader to find the optimal bound that can be derived from
the proof.

We give two simple Lemmata that estimate the probability that a
fixed single polynomial ) divides a random polynomial. Both of them
are implicitly contained in [26]. The first one is useful when deg @ is
large.

Lemma 39. Let P = Agx? + ... + Ajx + Ay € Z[z] be a random
polynomial with independent coefficients, and write p; for the law of
A;. Let Q € Z[z] be a polynomial of degree n < d.
Then
Pr(QIP) < 1ol -+ lltn—1]c-

Proof. Write R for the remainder of Agz?+. ..+ A,z" modulo Q in Q[x].

If Q|P, then R = —A, 2" 1 — ... — Ay. Therefore, the probability of
Q|P conditioned on the value of Agz? + ...+ A,a™ is bounded by the
maximal probability of Ay,..., A, 1 taking any given value, which is
precisely the claimed bound. U

Lemma 40. Let P = Agx? + ... + Ajx + Ay € Z[z] be a random
polynomial with independent coefficients, and write ji; for the law of a;.
Let H € Z-.o and 7 > 0 be numbers. We assume supp p; < [—H, H]
for all j and |ui|3 < 1 —7 for all j # 0,d. Let Q € Z[z] be a non-
cyclotomic irreducible polynomial.

Then for d larger than some absolute constant:

P(Q|P) < exp(—crd(log H + logd) *(log d) ™),
where ¢ > 0 is some absolute constant.

Proof. Let
_log(2H(d +1)'?)
~ c(loglogd)3/(log d)3’
where c is a sufficiently small constant so that

log(M(Q)) > c(log log d)* /(log d)’.
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The existence of such a constant follows by Dobrowolski’s bound [16].

By Lemma 26, there is a prime ¢ € (s, 2s] such that the ratio of any
two roots of @ is not a root of unity of order q. Let Py, P, € Z[x]
be two polynomials with coefficients of absolute value at most H that
differ only in some of the coefficients of monomials of the form 2% for
Jj € Zso. If Q|(Py — P,), then each number zw is a root for P, — P,
where z is a root of () and w is a ¢-th root of unity. And by our choice
of ¢ all zw are distinct as z ranges over the roots of () and w over the
g-th roots of unity. This implies that

M(Py— P) > M(Q)? > 2H(d + 1)"/?,

which is impossible by (1.6). This means that for any given choice
of integers b; € [—H, H]| for those j < d that are not a multiple of
q, in each class of Z[z] modulo @ there is at most one polynomial
P =oqy+...+ agx® with a; = b; for all such j.

Hence conditioning on the value of a; for all indices j that are not
multiples of ¢, the probability of Q|P is bounded by the probability that
the rest of the coefficients take any particular given value. Therefore

P(QIP) < [p]t/ ™.
O
Proof of Proposition 38. We fix a small number ¢ > 0. Let j > 0
be an integer and write Q; for the set of non-cyclotomic irreducible
polynomials @ with deg @ = j and log M (Q) < 7/10. By the estimate
of Dubickas and Konyagin [17, Theorem 1], we have |Q;| < exp(7;/10)
if 7 is sufficiently large.
Using Lemma 39, we then have
PEQ € Q; : Q|P) < exp(7;/10) - exp(—77/2) < exp(—77/10)
for each j. By Lemma 40 applied with H = exp(d"/'?)
P(3Q € U Q; : Q|P) < exp(rd"?/10)-exp(—7d"®) < exp(—7d**/10).
j<d4/5

provided d is sufficiently large depending on an absolute constant.
Summing up the above bounds we get

P(3Q € U Q; : Q|P) < exp(—7d*®/10) + Z exp(—77/10),
j>dVs

which proves the claim. O

8. PROPER POWERS

In this section, we estimate the probability that a random polynomial
P is of the form ®Q* with k& > 1, where ® is the product of cyclotomic
factors.
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Proposition 41. Let P = Agz? + ... + Ajx + Ag € Z[x] be a random
polynomial with independent coefficients. Assume that Ay, ..., Ag_1
are identically distributed with common law . Assume further that all
coefficients are bounded by exp(d'/'%) almost surely. Let 7 > 0 be a
number such that |3 <1 — 7.

Then there are absolute constants ¢, C > 0 such that the probability
that P = ®QF, where ® is a product of cyclotomic polynomials, Q €
Z[x] and k = 2, is less than 2 exp(—c(rd)"?), provided d is larger than
C/r.

In the next two lemmas we keep the assumptions of Proposition 41.

The first is a reformulation of Proposition 32.

Lemma 42. There is an absolute constant co > 0 such that the follow-
ing holds. Let q < exp(co(td)Y?) be a product of distinct primes larger
than 2 exp(d*/°). Then for every a € Z, we have

Pp[P(2)=a modq]—q~'| <q¢ .
Lemma 43. Fiz R € Z[z], and fiz an integer 2 < k < d/°. Then
Pp[P = RQ" for some Q € Z[z]] < exp(—c(rd)"?),
where ¢ > 0 is an absolute constant.

In the proof that follows, we will use the upper bound on k in only
one place, where we apply the prime number theorem in arithmetic
progressions. It would be sufficient to impose a significantly milder
upper bound on k, but we will see that P = RQ* may hold with
k > d'® only if Q is cyclotomic.

Proof of Lemma /3. If R(2) = 0 and R divides P, then P(2) =
Picking a prime ¢ in the interval (4 exp(co(7d)"?)/2,exp(co(Td)"?)
Lemma 42 implies that

Pp[P(2) =0 mod q| < 2/q.

0.
);

So we can safely assume in the rest of the proof that R(2) # 0. We
note also that |R(2)| < |P(2)] < exp(d¥/10)2¢+1,
We denote by P the collection of primes

e [% exp(co(d)2/2)/2, exp(co(rd) 2/2)]

such that p 1 R(2) and k|p — 1. It follows from the prime number
theorem in arithmetic progressions [14, Chp. 20, (10)] that there are
more than

[P| = exp(eo(rd)?/4)

such primes if d is sufficiently large (i.e. 7d larger than an effective
constant: we are counting primes between x/2 and x that are congruent
to 1 modulo k with &k allowed to take any value < (logx)%*° say).
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For each p € P we denote by X, the random variable that is equal
to 1 if

P(2) = R(2)a" mod p
for some a € Z/pZ and that is equal to 0 otherwise. If P = RQ* for
some () € Z[z], then clearly X, =1 for all p e P.

It follows from Lemma 42 applied first to ¢ = p; and then to g = p1po
that

Ep[X,, ] = [EP[X;] = (p1 — ;)l/k +1 + O(exp(—9co(7'd)1/2/2))
Ep[X, X,] = P17 3/ Frl (pm 3/ EEL L Ofexp(—0co(rd)2/2))

for any p; # ps € P. Therefore, writing Y = > _, X, since k > 2,

peP
2
EpY < Z|P|
3
and the variance Var(Y) = EpY? — (EpY)? is bounded by
p—1)/k+1 p—1)/k+ 1\2
WT(Y):Z(< )/ _(( )/ ))

p p
+ O(|P|? exp(—9¢co(rd)"?/2))

peEP

2
<IPl+1<[P)
provided d is sufficiently large. We conclude from Chebyshev’s inequal-
ity that
3 \2 9
LAt
|P| |P|

which proves the lemma. ([l

1
Pr(Y = [P]) <Pp(Y — EpY > g]P]) < Var(Y)(

Proof of Proposition 41. Boyd and Montgomery [7] gave an asymptotic
formula for the number of polynomials ® in Z[xz] of degree n that are
the product of their cyclotomic factors. In particular, they proved
that there are at most exp(Con'/?) such polynomials, where Cj is an
absolute constant (Cy = 4 works for large enough n).

For a fixed ® we may apply Lemma 39 and conclude that the prob-
ability that ® divides P is at most exp(—7 deg(®)/2). Therefore, the
probability that P = ®QF for some ® with

C
deg @ > 4=24"?
T
is at most exp(—Cod"/?).
We consider now the probability that P = ®QF with ® having
smaller degree. We can assume that () is not a product of cyclotomic
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factors, otherwise it can be absorbed into ® and it is covered by the
previous case. We note that if P = ®QF, then by (1.6)

M(Q) = M(P)Y* < exp(d**°/k)(d + 1)Y?*.

Since @ is not a product of cyclotomic factors, this implies that k& < d'/°
(say) by Dobrowolski’s bound (1.6).

Again by [7] the number of polynomials in the role of ® that are not
covered by the previous case is at most

exp (200(00/7)1/2d1/4).

Now we can use Lemma 43 to estimate the probability of P = ®Q* for
individual choices of ® and k and conclude the proof. O

9. PROOF OF THE MAIN RESULTS

We first give a simple lemma that allows us to decide when a per-
mutation group is m-transitive. Recall that the Bell number B,, is the
number of equivalence relations on a set with m elements.

Lemma 44. Let G be a permutation group acting on a set ) and let
m € Z~q. Suppose || = m. The number |Q" /G| of orbits of G acting
diagonally on Q™ satisfies

Q7/G| = B,
with equality if and only if the action of G on §2 is m-transitive.

Proof. If G is m-transitive, then its orbits on (2 are in one-to-one
correspondence with equivalence relations on the set of coordinates.
Given an equivalence relation on the m coordinates, the corresponding
orbit is the set of tuples in 2™ whose coordinates are equal if and
only if they are related by the equivalence relation. Since |Q2| = m, all
equivalence relations can occur. Hence |Q™/G| = B,,.

Now in the general case G < Sym(2), so each orbit of G is contained
in an orbit of Sym(Q2). Thus [Q™/G| = [/ Sym(Q2)| = B,,.

If G is not m-transitive, then the orbit of the full symmetric group
Sym(€2) consisting of tuples with distinct coordinates splits into mul-
tiple orbits of G, hence |Q™/G| > B,,. O

9.1. Proof of Theorem 2. We set k = 7/100, m = 1 and let X >
10. Recall that we denote by P the product of the (X, x)-admissible

irreducible factors of P and that €2 is the set of complex roots of P
(see Definition 14). We aim to show that the Galois group G of the

splitting field of P acts transitively on ) with high probability.
Recall that hx is the function hx (u) = 2™ 1(x_1og2,x] (). It follows
from the prime number theorem that

w = Zlog(p)hx(logp) — 1

p
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as X — o0. We apply Corollary 35 for g = hx with m = 1. It applies
if X is large enough and we conclude that

ZBP ) log(p)hx (logp) — 1] < (9.1)

COII\D

holds for any X e [100d"/1°, 1060 (log d)~3d] with probability at least

! X coT?d
(=) = ({50 % loa(@) 2
provided d > 100/7‘ say. Taking X = 7(cod/100)/2/logd (which is
allowed provided dr? is sufficiently large) this bound becomes > 1 —
2exp(—X/6). We now assume that (9.1) holds for P, and (x satisfies
RH for all K = Q(a) for any root a of P. By Proposmon 19, we then
have

EBP )log(p)hx(logp) = |Q2/G| + O(exp(—X/10)).

If d is sufﬁmently large, we can conclude that
[1-1€/G] <1

under the above assumptions on P. We therefore conclude that |Q2/G| =
1, and hence G acts transitively on €2, i.e. P is irreducible.

By Proposition 38, with probability at least 1 — 2 exp(—crd*?), any
exceptional factor of P is cyclotomic. If that holds in addition to the
hypothesis we have already made, then P = ®P* where ® € Z[z] is a
product of a power of x and cyclotomic polynomials, and k € Z~.

By Proposition 41, we know that £k = 1 with probability at least
1—2exp(—c(rd)"/?). Furthermore, the probability that deg(®) > £+/d
is at most exp(—Cd'/2/4), because this is true for any given polynomial
® by Lemma 39 and, as recalled in the proof of Proposition 41, there
are at most exp(Cd"/?/4)) such poynomials for some absolute constant
C > 0. This establishes part (1) of Theorem 2.

The proof of part (2) is similar, but we need to also consider moments
of Bp(p) of order m > 1 in order to show that |2 /G| = B,, and hence
conclude, by Lemma 44, that G acts m-transitively on 2. An old fact,
going back to Bochert and Jordan [23] in the 19-th century, asserts that
every degree d permutation group that is at least (30log d)?-transitive
must contain the alternating group Alt(d). A simple proof of a slightly
better bound can be found in [1] (see also [15, Theorem 5.5.B] where
Wielandt’s stronger bound 6logd is proved). Using the classification
of finite simple groups it is now known that there is a bound inde-
pendent of d and indeed every 6-transitive group contains Alt(d) (see
[11, Corollary 5.4]). But we choose not to rely on the classification,
since, at the expense of loosing a log(d) factor in the probability of
exceptions, we can avoid it. In fact if instead we use Wielandt’s bound
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(whose proof is more involved) we can get the slightly better bound
exp(—crd"?/(log d)*?) in (2) of Theorem 2.

So let m > 1, k = 7/100 and X > 10 and consider P the product of
the irreducible (=, mX)-admissible factors of P and as earlier Bp(p)
the number of (*, mX)-admissible roots of P in [,

By Corollary 35 applied to g = hx we get that
|3 Be(p)" log(p)hx (logp) ~ Bow] < 3 92)

with probability Zt least
1 exp(— ) — exp(— 0

6 100mX(log(md))2)

provided X is in the interval allowed by (6.1). We now set m =
[30(logd)?] and X? = ¢y72/100 - d/(m(log(md))?). Note then that
when 7d is large enough X is in the allowed interval and that (9.2)
holds with probability at least 1 —2 exp(—X/6). Assume now that (9.2)
holds for P and that (x satisfies RH for all K = Q(ay, ..., a,,) for any
choice of m roots of P. By Proposition 19 we then get

> Br(p)™ log(p)hx (logp) = [2"/G| + O(exp(—X /10)).

If d is large enough |w — 1| = O(X?%exp(—X/2)) by Proposition 9
(assuming RH for (g). Since B,, < 2™ < exp(X/100) this implies
that

1
|B,, — |Q"/G|| < 5t B,|1 —w| + O(exp(—X/10)) < 1

as soon as d is large enough, and hence that |Q™/G| = B,,. So by
Lemma 44 G acts m-transitively on 2 and by the 19-th century tran-
sitivity bound recalled earlier, since deg]S < d, G contains the alter-
nating group Alt(deg 15) Finally as in part (1), except for a small set
of exceptions P = (IDﬁ, and this completes the proof of the theorem.

9.2. Proof of Corollaries 3 and 4. The following lemma is implicitly
contained in [26, pp. 345]

Lemma 45. Let w, be the n-th cyclotomic polynomial of degree o(n).
Then for all n,d,

Plun|Pa] < (CO) ),
where C'(p) > 0 depends only on p.
Proof. Write Qg = 22:01 Bjx/, where Bj 1= Y. _ |4 no<i<d
that if w,|P;, then w,|Q4, and hence Lemma 39 implies that

p(n)—1

PloalPal < [ lnsle,
0

A;. Note
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where f; is the law of B;, which is the sum of roughly |d/n| i.i.d.
variables with common law p. Since p has a finite second moment,
there is a constant C'(;1) > 0 such that we have ||, < (C(u)n/d)"?,
as follows say from the local limit theorem. The claim follows. O

We apply this lemma for different ranges of n. If N < p(n) < 100N,
then n is bounded in terms of N and

Pl P] < (C(p)n/d)™"? = Onu(d™7?)

If 100N < ¢(n) < d"?, then n < Cd"?loglogd for some absolute
constant ¢ > 0 and

Plwa| P] < (C(p)cloglog d/d'/?)™N
If d'? < p(n) < d, then
Pl | P] < |l 2
by Lemma 39. Summing over all such n’s we get:
Plw,| P for some n with p(n) = N| = O, n(d""/?).

In order to apply Theorem 2, we need to truncate the coefficients.
But

Plmax [Ai] > ¢ < (d + DP[Ao| > ] < (d + 1)e ™" E[| Ao’
by Chebyshev’s inequality. The proof of Corollary 3 now follows by
combining the above inequalities with Theorem 2.

To get Corollary 4 take N = 2 and observe that the law of P in the
statement is designed to make sure that x t P always. Note also that
Lemma 45 still holds even though Ay and A, are not distributed like
the other A;’s, so the above estimates continue to hold. Since P has
non-negative coefficients and at least two positive ones P(1) > 0. So
it is only left to estimate P[ws|P] = P[P(—1) = 0]. Looking at P(—1)
yields a random walk on Z and it is therefore a simple matter to verify

that P[P(—1) = 0] = 4/ 2 + O(d™"), as desired.

9.3. Proof of Theorem 5. The proof is identical to that of part (1) of
Theorem 2, except that we take X = d(logd)~” and apply Proposition
20 instead of Proposition 19. We note that the exceptional zeros are
not present by the assumptions of the theorem, so the right hand side
of the displayed formula in Proposition 20 becomes

1Q/G| + O(exp(—c(log d)*~?)).



46 EMMANUEL BREUILLARD AND PETER P. VARJU

9.4. Proof of Theorem 6. Set J := a—~. Asin the proof of Theorem
2, we set k = 7/10 for the admissibility parameter (see Def. 14). By
Proposition 38 with probability at least 1 — 2 exp(—c,d*®) every non-
cyclotomic irreducible factor of P has Mahler measure at least exp(x).

We may thus assume that P has this property, and let P be the product
of the non-cyclotomic irreducible factors of P. As before 2 is the set
of roots of P and G the Galois group of the splitting field of P.

We use Proposition 34 with m = 1, X = X; = 2d(logd)~”? and
X = X, = d(logd)=" for the functions g = gx,x and g = gx, 1,
respectively, where k = |(log d)*~?/10]. We can conclude that

Ep(Z7) = O(exp(—c(logd)”~?))
holds for each i = 1,2, where

Z;:= ) Bp(p) log(p)gx., x(log p) — w,
p

w; = Y 1og(p)gx; r(logp) and Bp(p) is the set of (X, x)-admissible
roots of P in F,. Hence by Chebychev’s inequality Pp(|Z;| > t) <
t?’Ep(Z?), we obtain that with probability at least 1—2 exp(—c(log d)?~2)

|Zi] = O(exp(—c(logd)”™?)) (9-3)

holds for each 7 = 1, 2.

We note that |1 — w;| < Cexp(—c(logd)*#) as can be seen for ex-
ample from Proposition 13 applied for K = Q, since the Riemann zeta
function (g has no zeros in a sufficiently small neighborhood of 1. (Sig-
nificantly better bounds can be obtained by the proof of Proposition
13, but this is not needed.)

Now we assume that P satisfies (9.3) for both i = 1,2. We apply
Proposition 20 and obtain for ¢ = 1,2

Zi +w; = Z (1 — Gx,1(pro0)) + O(exp(—c(logd)*™)).  (9.4)
ocq/G

Now we combine the above estimates and |w; —ws,| < C exp(—c(log d)*#)
to get

D (G k(PKo.0)=Gxy k(K0 .0)) < Clexp(—c(log d)*P)+exp(—c(log d)’?)).
0eQ/G

We note that
(Gxok(PKo0) — Gxy k(K0 0)) = (1 - M)G&,k(ﬂm,e)
GXg,k(pKo,O)
>(1 — exp(—(1 = pro,0) (X1 — X2)/4))Gx, 1 (Pro,0)
>cexp(—co(log d))d(log d) 7Gx, k(pro0):

Here we used the bound on Gx, x/Gx,, from Lemma 11 and then
the assumption on the exceptional zeros from the theorem, and the
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constant ¢ is the constant ¢ in that bound. Therefore, we can conclude
that

N Grarlpron) < Clexp(—c(log d)*) + exp(—c(log d)*~2))
0eQ/G

if we choose ¢y sufficiently small, since o — 3,6 —2 >~ and v > 1.
We combine the last estimate with (9.3) and (9.4) and we can write

1Q/G| =1+ O(exp(—c(logd)*™?) + exp(—c(log d)?~?)),

hence |Q2/G| = 1 as it is an integer. Therefore P is irreducible. Now
we can finish the proof by applying Proposition 41.

9.5. Proof of Theorem 7. We pick a number o/ € (5,a). We use
Proposition 34 with m = 1, g = gxj, where X = d(logd)™" and
k = |(logd)®~"/10|. After applying Chebychev’s inequality as in the
proof of Theorem 6, we get that

Z Bp(p)log(p)gx x(log p) = w + O(exp(—c(logd)*?)),

holds with probability at least 1 — C exp(—c(logd)?~2), where
w =Y log(p)gx.x(log p).

p
Moreover, as before, using Proposition 13 for the field of rational
numbers we see that |w — 1| = O(exp(—c(logd)®*~#)). Hence

ZBP ) log(p)gx.k(logp) = 1 + O(exp(—c(log d)™™#=>=7)) (9.5)

with probability at least 1 — C exp(—c(log d)?~2).

According to the Deuring-Heilbronn phenomenon if the Dedekind
zeta function (i of a number field K has a real zero very close to 1, then
it cannot have other zeros nearby 1. More precisely (see [27, Theorem
5.1]) there is a positive, absolute, effectively computable constant ¢y >
0 such that for every number field K if (x has a real zero pg o, then
every other zero p satisfies:

Co Co
172 aata g " T pos@iag))

So assume, by contradiction, that (x has a zero px o with |1 —pk | <
exp(—(logd)**1) for each K = Q(a) for each non-zero complex root
a of P, which is not a root of unity (this is void and hence always
holds if P is a product of cyclotomic polynomials or factors of the type
™). Note then that |1 — pxo| < 1/(4log|Ak|) (because by Lemma 21
|Ag| < d720) and hence by [33, Lemma 3] px.o must be real and
is the unique Siegel zero of (k. Thus every other zero p satisfies

1= p> og (cexp((log d)a“)) _ (log d)*
~ dlogd dlogd - d
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provided d is sufficiently large.
So we can apply Proposition 20 and, using Lemma 11, write

2. Be(p)log(p)oxs(logp) = 35 (1= Gxlpion)) + Olexp(—c(logd)*?))
p 0eQ/G

<|Q/G|X exp(—(logd)**!) + C exp(—c(logd)* )
<d? exp(—(log d)*) + C exp(—c(log d)* 7).

But this is incompatible with (9.5).
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