# via Kurt Beschorner
n=5837: c5347(3163541039......) = 4353843308549595908715554641 * c5319(7266088408......)
# ECM B1=3e6, sigma=8758863469303394
n=6063: c3865(1109999999......) = 430274832344207496545220961 * c3838(2579746516......)
# ECM B1=25e4, sigma=8219783245428276
n=6227: c5661(9616668804......) = 79329365811507822446359335439 * c5633(1212245768......)
# ECM B1=25e4, sigma=8850660592913988
n=6335: c4277(4159741476......) = 137680332616971581268990156329840111 * c4242(3021304057......)
# ECM B1=3e6, sigma=6722473997209790
n=6373: c6309(3036917169......) = 2987015025074078176365899849 * c6282(1016706358......)
# ECM B1=25e4, sigma=5397707835117467
n=6433: c5494(2084456248......) = 80641512618487125116307679 * c5468(2584842695......)
# ECM B1=5e5, sigma=6012459907997929
n=6533: c6287(6285174366......) = 744285757169199924847575368181763 * c6254(8444571599......)
# ECM B1=3e6, sigma=2549517497392098
n=6571: c6557(1228255902......) = 327888727083917006550074729 * c6530(3745953432......)
# ECM B1=25e4, sigma=677123249681263
n=6635: c5257(1422157465......) = 104157786563405257240288766681 * c5228(1365387565......)
# ECM B1=25e4, sigma=6143170280832033
n=6759: c4489(4762072793......) = 551968902221696851159755919 * c4462(8627429506......)
# ECM B1=25e4, sigma=6534772702100733
# via factordb.com
n=5009: p4933(6266360376......) is proven prime
# via Kurt Beschorner
n=1609: c1603(9591028935......) = 3988374591609069058861951683108276907 * c1567(2404746273......)
# ECM B1=3e6, sigma=8249802312071881
n=1725: c864(7304508586......) = 19853619020021936551970643063517525036801 * c824(3679182409......)
# ECM B1=3e6, sigma=3779380196910715
n=2075: c1629(1596346768......) = 44116135258201262756851010544188401 * c1594(3618510006......)
# ECM B1 =11e6, sigma=4408864212547375
n=2161: c2142(8912926884......) = 6221137589716668935375823870769721 * c2109(1432684417......)
# ECM B1=3e6, sigma=6094737347714525
n=2345: c1536(2037266045......) = 570777583350017110986446490013709793871 * c1497(3569281808......)
# ECM B1=3e6, sigma=4758785880834541
n=3147: c2064(1688970792......) = 4558159981083740597862506354906893 * c2030(3705378484......)
# ECM B1 =11e6, sigma=3637883746385938
n=3425: c2693(1134360087......) = 17045545872540887804680148973243601 * c2658(6654876857......)
# ECM B1=3e6, sigma=4578322985393950
n=4391: c4371(7926868140......) = 5033391329704931814574325407693267 * c4338(1574856318......)
# ECM B1=3e6, sigma=7201141721436529
n=5009: c4966(6553558971......) = 1045831803040640897850510068638813 * p4933(6266360376......)
# ECM B1=11e6, sigma=8468291985023645
n=5039: c5026(2152439879......) = 37028776999778840804863751286769 * c4994(5812884068......)
# ECM B1=11e6, sigma=2355029166608306
# 1229 of 300000 Φn(10) factorizations were finished. 300000 個中 1229 個の Φn(10) の素因数分解が終わりました。
# 127 of 25997 Rprime factorizations were finished. 25997 個中 127 個の Rprime の素因数分解が終わりました。
# via Kurt Beschorner
n=12666: c4198(2563906034......) = 1630868332325116865720121013 * c4171(1572110993......)
n=769: c748(4519698509......) = 7315229730563819147169891302520141715784930317 * p702(6178477882......)
# ECM B1=43e6, sigma=0:4866262363522164
n=5653: c5622(9312696573......) = 131429749207554317387747253656773 * c5590(7085683895......)
# ECM B1=1e6, sigma=0:401625285338058
n=5827: c5817(2589552036......) = 1008218509284905931516633156479 * c5787(2568443261......)
# ECM B1=1e6, sigma=5942053452678234
n=10705: c8526(1577002491......) = 293392549453748243572610071 * c8499(5375059776......)
# P-1 B1=56e6
n=10729: c10688(1849798835......) = 942688392688856144806313827 * c10661(1962259056......)
# P-1 B1=45e6
# 1228 of 300000 Φn(10) factorizations were finished. 300000 個中 1228 個の Φn(10) の素因数分解が終わりました。
# 126 of 25997 Rprime factorizations were finished. 25997 個中 126 個の Rprime の素因数分解が終わりました。
# via Kurt Beschorner
n=67447: c67447(1111111111......) = 24502659057526982909109529 * c67421(4534655232......)
# ECM B1=5e4, sigma=5211384666972652
n=88471: c88471(1111111111......) = 550391854989650270083757 * c88447(2018763724......)
# ECM B1=5e4, sigma=2523433962642759
# 210449 of 300000 Φn(10) factorizations were cracked. 300000 個中 210449 個の Φn(10) の素因数が見つかりました。
# 20001 of 25997 Rprime factorizations were cracked. 25997 個中 20001 個の Rprime の素因数が見つかりました。
n=1437: c924(3795547044......) = 6113742087024026109272080792999993294483 * c884(6208222378......)
# ECM B1=43e6, sigma=0:4040555549286134
n=5641: c5590(5041249550......) = 64273018221861944374567184677 * c5561(7843492789......)
# ECM B1=1e6, sigma=0:4590892872674826
n=5743: c5716(7922710125......) = 36035631062116641922315397 * c5691(2198576767......)
# ECM B1=1e6, sigma=2042307130216783
n=10663: c10603(6913606988......) = 195767227045687775510379648079 * c10574(3531544627......)
# P-1 B1=46e6
n=10667: c10652(1519609055......) = 47419103138539476910320023111 * c10623(3204634745......)
# P-1 B1=46e6
n=10695: c5262(3403393825......) = 81664690458826337439403921 * c5236(4167521858......)
# P-1 B1=12e7
n=11198: c5081(1099999999......) = 297965317224358829992811936237 * c5051(3691704827......)
# ECM B1=1e6, sigma=0:5194620401845499
# 210447 of 300000 Φn(10) factorizations were cracked. 300000 個中 210447 個の Φn(10) の素因数が見つかりました。
# via Kurt Beschorner
n=12661: c11460(2260735106......) = 1338451132502419893860849 * c11436(1689068096......)
n=1435: c912(6455996275......) = 300978743058300440004015409566201936016570961 * c868(2145000743......)
# ECM B1=43e6, sigma=0:591520289497255
# via Kurt Beschorner
n=12648: c3840(9999000100......) = 49374529463081843135977 * c3818(2025133243......)
# 210446 of 300000 Φn(10) factorizations were cracked. 300000 個中 210446 個の Φn(10) の素因数が見つかりました。
# via Kurt Beschorner
n=17491: c17491(1111111111......) = 286540204491090507546774841 * c17464(3877679619......)
# ECM B1=1e6, sigma=0:3531486759
n=27799: c27799(1111111111......) = 3277681184332669708154885893 * c27771(3389930406......)
# ECM B1=3e5, sigma=0:4199823354
# 210445 of 300000 Φn(10) factorizations were cracked. 300000 個中 210445 個の Φn(10) の素因数が見つかりました。
# 19999 of 25997 Rprime factorizations were cracked. 25997 個中 19999 個の Rprime の素因数が見つかりました。
n=5623: c5609(2011322488......) = 33894966284770923403532792994108555761 * c5571(5933985807......)
# ECM B1=1e6, sigma=0:2847585960157092
n=11152: c5083(2400046101......) = 98634198640248440649183027809 * x5054(2433279871......)
# ECM B1=1e6, sigma=0:1487957157690338
n=11152: x5054(2433279871......) = 1089253429152156256471746514241 * c5024(2233896911......)
# ECM B1=1e6, sigma=0:123364306912441
n=12652: c6308(4701394375......) = 83290703775651183571067141 * c6282(5644560751......)
# P-1 B1=86e6
n=5617: c5399(6579303227......) = 1442352342212282064734080319729 * c5369(4561509025......)
# ECM B1=1e6, sigma=0:5924394643376098
n=10328: c5130(5839005957......) = 4006493522333901984780000976519275214961 * c5091(1457385597......)
# ECM B1=1e6, sigma=0:6830835193712620
n=10573: c10350(2188130385......) = 11356914865736082249559148247057961 * c10316(1926694362......)
# P-1 B1=48e6
n=147341: c147334(2513694671......) = 75597160128710707 * c147317(3325117857......)
# gr-mfaktc
# via Kurt Beschorner
n=19100L: c3781(9558986706......) = 450118169827182277613811301 * c3755(2123661595......)
# ECM B1=1e6, sigma=4486630379854031
n=19620M: c2560(7494505256......) = 195574683519227330343721 * c2537(3832042635......)
# ECM B1=1e6, sigma=4807667827384846
# via Kurt Beschorner
n=17820L: c2142(1790288825......) = 4351340512045385646216652182961 * c2111(4114338606......)
# ECM B1=25e4, sigma=4225631610388729
# via Kurt Beschorner
n=18016: c8972(5673246591......) = 7412449931218783302723329 * c8947(7653672731......)
# ECM B1=1e6, sigma=8471676387782823
n=18026: c8983(1817954015......) = 2508377899900949172233454720603333143 * c8946(7247528435......)
# ECM B1=1e6, sigma=5447651977129394
n=18032: c7386(7494178896......) = 25234644052897066855537 * c7364(2969797743......)
# ECM B1=1e6, sigma=1940449879482000
n=18034: c8821(1099999999......) = 21140627491374819434981635291 * c8792(5203251419......)
# ECM B1=1e6, sigma=5563662563834508
n=18046: c7704(2791948299......) = 92187728546692686483722402117 * x7675(3028546579......)
# ECM B1=1e6, sigma=8287380733900789
n=18046: x7675(3028546579......) = 207579343030540829724293 * c7652(1458982640......)
# ECM B1=1e6, sigma=1850007519628058
n=18072: c5992(2521955177......) = 254801563148492349961316117257 * c5962(9897722549......)
# ECM B1=1e6, sigma=5594550535579751
n=18091: c17772(1126428786......) = 10014112485841485606799 * c17750(1124841355......)
# ECM B1=25e4, sigma=7101080061804043
n=18098: c9040(4530672614......) = 7946775307654415455385185129 * c9012(5701271822......)
# ECM B1=1e6, sigma=4155814183775257
n=18110: c7241(1099989000......) = 361352468754805542510417466431091 * c7208(3044088792......)
# ECM B1=1e6, sigma=5165461276779925
n=18112: c8977(4081258998......) = 281971979851544679662209 * c8954(1447398780......)
# ECM B1=1e6, sigma=6370290404008509
n=18116: c7693(4696642095......) = 1770872694094595036755917689 * c7666(2652162468......)
# ECM B1=1e6, sigma=3159279001401795
n=18138: c6017(3128441505......) = 1047944516547484327207 * c5996(2985312156......)
# ECM B1=1e6, sigma=2230787106195763
n=18148: c8332(1373785756......) = 128558761065510264563039529409 * c8303(1068605317......)
# ECM B1=1e6, sigma=5919027069979969
n=18152: c9052(1049892212......) = 10393938781834956328186049 * c9027(1010100438......)
# ECM B1=1e6, sigma=8378036762417876
n=18162: c6012(6294238545......) = 25444604056341710127861978841 * x5984(2473702688......)
# ECM B1=1e6, sigma=1521691221785057
n=18162: x5984(2473702688......) = 13921414986637337928367303 * x5959(1776904639......)
# ECM B1=1e6, sigma=446070030487092
n=18162: x5959(1776904639......) = 61281540778010918819743 * c5936(2899575658......)
# ECM B1=1e6, sigma=778654903059104
n=18164: c8528(4540728662......) = 627999652404802918527361 * x8504(7230463654......)
# ECM B1=1e6, sigma=3416451743525242
n=18164: x8504(7230463654......) = 67165305671287908385988349581 * c8476(1076517642......)
# ECM B1=1e6, sigma=2144887355737859
n=18166: c8747(1116415214......) = 129755816360511232035383 * c8723(8603970489......)
# ECM B1=1e6, sigma=8268660378821889
n=18182: c9090(9090909090......) = 70126096080080007841401603001 * c9062(1296366060......)
# ECM B1=1e6, sigma=3858571212124943
n=18192: c6042(6871147502......) = 293041344572790863683518193 * c6016(2344770671......)
# ECM B1=1e6, sigma=1956904232500231
n=18197: c17548(9576252451......) = 78252632604140135173187 * c17526(1223761058......)
# ECM B1=5e4, sigma=7047127865718731
n=18198: c6049(1000000000......) = 2962107517213815023644693237 * c6021(3375974690......)
# ECM B1=1e6, sigma=3117514438744850
n=18204: c5722(2131809763......) = 114276661103432255230261 * c5699(1865481317......)
# ECM B1=1e6, sigma=1387408871341573
n=18208: c9066(1272568047......) = 5324069044784843538194561 * c9041(2390217026......)
# ECM B1=1e6, sigma=1067609750907374
n=18210: c4844(4997029817......) = 224200363450522205394190453201 * c4815(2228823245......)
# ECM B1=1e6, sigma=8143065655842138
n=18212: c8715(2706463160......) = 3174289596355314932118475549 * c8687(8526201148......)
# ECM B1=1e6, sigma=5084267060085267
n=18243: c12120(1469459727......) = 4749308774944311169 * c12101(3094049676......)
# ECM B1=5e4, sigma=6952114583174218
n=18250: c7188(8402672621......) = 51273194574194338348868136251 * x7160(1638804192......)
# ECM B1=1e6, sigma=7589510662890343
n=18250: x7160(1638804192......) = 1040697156023448639985879615001 * c7130(1574717661......)
# ECM B1=1e6, sigma=6002612322362930
n=18268: c9123(2966678403......) = 7929490093517918588409629 * c9098(3741323047......)
# ECM B1=1e6, sigma=3912322075316529
n=18351: c12223(5443815362......) = 1302477032548081477 * c12205(4179586454......)
# ECM B1=25e4, sigma=1201017875625757
n=18354: c4739(3977779211......) = 68706037554549651005204491 * c4713(5789562829......)
# ECM B1=1e6, sigma=5512619962167373
n=18361: c15111(1299916058......) = 8183150638792894871 * c15092(1588527593......)
# ECM B1=5e4, sigma=5709546796289443
n=18395: c13522(3341313821......) = 27780272529467918591 * c13503(1202764953......)
# ECM B1=5e4, sigma=5184859805836035
n=18409: c17908(6760903124......) = 29107326393863899207363 * c17886(2322749617......)
# ECM B1=25e4, sigma=4011783050291777
n=18470: c7340(7318713230......) = 115774500717166822273811 * c7317(6321524330......)
# ECM B1=1e6, sigma=7990544147785702
n=18486: c5590(3519349402......) = 32713791772183844401 * c5571(1075799903......)
# ECM B1=1e6, sigma=4823066396987332
n=18495: c9774(7210381407......) = 262328779422479335381201 * c9751(2748604794......)
# ECM B1=5e4, sigma=5596554645892977
n=18516: c6163(2181889842......) = 13961618722234248308993929 * c6138(1562777129......)
# ECM B1=1e6, sigma=2224182734424486
n=18536: c7914(4611490778......) = 12412665770363762923993 * c7892(3715149399......)
# ECM B1=1e6, sigma=6468297675737741
n=18543: c10585(1109999889......) = 5131616659093351425054169 * c10560(2163060810......)
# ECM B1=25e4, sigma=3261080799550095
n=18609: c12389(3058293434......) = 1559728919717370638413 * c12368(1960785233......)
# ECM B1=5e4, sigma=515457719529818
n=18684: c6152(9857564203......) = 54765508095401391109 * c6133(1799958504......)
# ECM B1=1e6, sigma=3490781769872449
n=18685: c14388(2476256897......) = 9508212518282779801 * c14369(2604334823......)
# ECM B1=25e4, sigma=1331690515522991
n=18717: c11713(1109999999......) = 48167025934146358470853 * c11690(2304481081......)
# ECM B1=5e4, sigma=8887196587543861
n=18726: c6236(1956070949......) = 32575081453625199446779 * c6213(6004807547......)
# ECM B1=1e6, sigma=8208856613011690
n=18730: c7479(5465730155......) = 38356644831027034481 * c7460(1424976084......)
# ECM B1=1e6, sigma=3074476060954312
n=18789: c12524(9009009009......) = 74722116512336773225477 * c12502(1205668338......)
# ECM B1=25e4, sigma=8725196442248221
n=18899: c18875(1029173973......) = 257454702564524747724809 * c18851(3997495339......)
# ECM B1=5e4, sigma=1316508110150026
n=18903: c12592(7177582682......) = 22519736540491473319 * c12573(3187240964......)
# ECM B1=25e4, sigma=4298449833299370
n=18920: c6683(1663531081......) = 92284788541237191058721 * c6660(1802605942......)
# ECM B1=1e6, sigma=1227331916318107
n=18932: c9432(4933284683......) = 53815729049139871256234621 * c9406(9166994057......)
# ECM B1=1e6, sigma=1852031111436643
n=18945: c10066(2721553468......) = 167363665765922734831 * c10046(1626131607......)
# ECM B1=25e4, sigma=1414853681442290
n=18975: c8776(5545446021......) = 109542025933285128151 * c8756(5062391328......)
# ECM B1=25e4, sigma=4976219132650485
n=19002: c6313(2458302090......) = 413091458853103867196142889 * c6286(5950987457......)
# ECM B1=1e6, sigma=500967349861990
n=19008: c5718(2140247855......) = 6556047672536869022209 * c5696(3264539799......)
# ECM B1=1e6, sigma=5847766857104753
n=19032: c5760(9999000100......) = 2686191748026387168508940689 * c5733(3722370194......)
# ECM B1=1e6, sigma=5185884525644342
n=19052: c8628(4746585726......) = 2603185741658752423407961 * c8604(1823375739......)
# ECM B1=1e6, sigma=5327957839398926
n=19072: c9434(4688907393......) = 21529374303394703980611841 * x9409(2177911595......)
# ECM B1=5e4, sigma=8195321079451422
n=19072: x9409(2177911595......) = 16035785254500191230138369 * c9384(1358157122......)
# ECM B1=1e6, sigma=242801435815814
n=19074: c5419(2942587220......) = 2680301906345200911049 * c5398(1097856630......)
# ECM B1=1e6, sigma=7566313541377232
n=19077: c12716(9009009009......) = 546276468394663217689 * c12696(1649166590......)
# ECM B1=5e4, sigma=3206658979267934
n=19084: c8775(1247970083......) = 10856468650554348989410415849 * c8747(1149517512......)
# ECM B1=1e6, sigma=6602634816790582
n=19090: c7216(9091000000......) = 23710290626789621352425491 * c7191(3834200155......)
# ECM B1=1e6, sigma=1196352458988238
n=19134: c6366(3269702074......) = 981359056405886097219373 * c6342(3331810160......)
# ECM B1=1e6, sigma=78888093451490
n=19160: c7582(2555379236......) = 614977904287597440252241 * x7558(4155237478......)
# ECM B1=1e6, sigma=2175658132667431
n=19160: x7558(4155237478......) = 62472842524371825488468085841 * c7529(6651270072......)
# ECM B1=1e6, sigma=2049727642790501
n=19166: c7959(1207772335......) = 19871953541058875138246217967 * c7930(6077773546......)
# ECM B1=1e6, sigma=2095680502231266
n=19186: c9347(3893342929......) = 293742934511307283750049408081 * c9318(1325425217......)
# ECM B1=1e6, sigma=1476732123577259
n=19190: c7186(4299750496......) = 8504170357156122930704641 * c7161(5056049345......)
# ECM B1=1e6, sigma=5001162778742992
n=19194: c5454(6122480239......) = 9305864402772823945921 * c5432(6579163390......)
# ECM B1=1e6, sigma=1594284350791035
n=19212: c6380(2255248849......) = 12255946855975087235449 * c6358(1840126165......)
# ECM B1=1e6, sigma=8192871474046754
n=19222: c8218(4076451918......) = 920076378123454109899447 * c8194(4430558175......)
# ECM B1=1e6, sigma=7071984673911274
n=19230: c5094(4365697455......) = 320724668469216315442921 * c5071(1361197900......)
# ECM B1=1e6, sigma=4504913400048484
n=19242: c6409(1000999998......) = 775482109667856247552957 * c6385(1290809918......)
# ECM B1=1e6, sigma=6018600656544143
n=19298: c9648(9090909090......) = 10586547803857242906072973013 * c9620(8587227167......)
# ECM B1=1e6, sigma=2218353121632410
n=19507: c19496(1042834690......) = 6086409664005366371791 * c19474(1713382351......)
# ECM B1=5e4, sigma=4241919192898100
n=19512: c6481(1000000000......) = 1689051660878138485193436313 * c6453(5920482026......)
# ECM B1=1e6, sigma=6488986860888057
n=19515: c10401(1109988900......) = 1011220177259899231 * c10383(1097672816......)
# ECM B1=5e4, sigma=4821770153175003
n=19518: c6505(1098901098......) = 16835016866221869029401 * c6482(6527472515......)
# ECM B1=1e6, sigma=3997210780036951
n=19558: c7538(4204809535......) = 508040060379389487475559881 * c7511(8276531445......)
# ECM B1=1e6, sigma=3130323138256020
n=19584: c6131(8751212598......) = 44042051785062188768884980481 * c6103(1987012921......)
# ECM B1=1e6, sigma=4127667978041251
n=19638: c6519(1791188225......) = 25116300190337295488097529 * c6493(7131576753......)
# ECM B1=1e6, sigma=7177227049317991
n=19641: c13049(1143804869......) = 3744255823870203060609667 * c13024(3054825640......)
# ECM B1=5e4, sigma=5068652418669030
n=19652: c9233(1424111359......) = 198267234363090570795209 * c9209(7182787234......)
# ECM B1=1e6, sigma=7369863772195378
n=19668: c5887(4976633271......) = 2468088060570692255615041 * c5863(2016392101......)
# ECM B1=1e6, sigma=4981670256796887
n=19698: c5531(1777050431......) = 509004838362526625727047507312941154089 * c5492(3491225028......)
# ECM B1=1e6, sigma=5535543303355901
n=19738: c9656(5572724048......) = 443042679621243639131054299 * c9630(1257830070......)
# ECM B1=1e6, sigma=2322889907188029
n=19750: c7762(3699954431......) = 17769582262849196455020251 * c7737(2082184249......)
# ECM B1=1e6, sigma=2329474169221759
n=19752: c6565(6745523073......) = 50007138229084179059089 * c6543(1348912037......)
# ECM B1=1e6, sigma=4356051766615793
n=19760: c6875(3549581945......) = 2149969406654385888001 * c6854(1650991839......)
# ECM B1=1e6, sigma=1706038676665166
n=19771: c18563(6472718121......) = 91067036137233352514239 * c18540(7107641135......)
# ECM B1=5e4, sigma=1363464468111940
n=19776: c6529(1000000000......) = 537177016853502364016327809 * c6502(1861583739......)
# ECM B1=1e6, sigma=5344013773051414
n=19790: c7903(1588523488......) = 2378729369023297284418891 * x7878(6678033696......)
# ECM B1=1e6, sigma=6811457372367392
n=19790: x7878(6678033696......) = 95595866146851354937361 * c7855(6985692964......)
# ECM B1=1e6, sigma=7196115497776035
n=19824: c5541(1220034502......) = 921496565360087159136583009 * c5514(1323970754......)
# ECM B1=1e6, sigma=6663875350866785
n=19828: c9901(2238550625......) = 13653500689040968460675956441 * c9873(1639543349......)
# ECM B1=1e6, sigma=7272199857487295
n=19832: c9483(5416130469......) = 351409415768851718896529281 * c9457(1541259347......)
# ECM B1=1e6, sigma=1694326439510915
n=19834: c9639(1359303832......) = 2431653672326999721746981326373329 * c9605(5590038780......)
# ECM B1=1e6, sigma=7587668820277720
n=19866: c5023(1561503264......) = 916025771285308057886511847 * c4996(1704649927......)
# ECM B1=1e6, sigma=1840130357649240
n=19874: c9349(4645372624......) = 256499227139746235384050567 * c9323(1811066908......)
# ECM B1=1e6, sigma=2536490361447859
n=19902: c6345(6588249052......) = 3934112537993779534009063 * c6321(1674646820......)
# ECM B1=1e6, sigma=5275263968378749
n=19908: c5607(1664629008......) = 32519097961365394058253841 * c5581(5118927378......)
# ECM B1=1e6, sigma=244684832580119
n=19924: c9320(5025180686......) = 162713372573148880863161 * c9297(3088363670......)
# ECM B1=1e6, sigma=3286311126892779
n=19926: c6467(1026044200......) = 399519915160756395149569 * c6443(2568192876......)
# ECM B1=1e6, sigma=5404224400006418
n=19974: c6620(1936665470......) = 1984059739931021561468587117 * c6592(9761124788......)
# ECM B1=1e6, sigma=6491693486209398
# 210443 of 300000 Φn(10) factorizations were cracked. 300000 個中 210443 個の Φn(10) の素因数が見つかりました。
# via Kurt Beschorner
n=9487: c9212(5135735762......) = 61183229894541021560985808453 * c9183(8394025244......)
# ECM B1=1e6, sigma=7634275285447370
n=9653: c8189(1075772127......) = 3200038208268763802284576732039 * c8158(3361747758......)
# ECM B1=1e6, sigma=5472057760986274
n=9834: c2922(4102531568......) = 126583733079378785362021468328797 * c2890(3240962696......)
# ECM B1=1e6, sigma=3780061253456632
n=9933: c4985(8637794576......) = 7470644066585671803748439293 * c4958(1156231577......)
# ECM B1=1e6, sigma=2074151642045139
n=9971: c9024(6371362379......) = 142019375285243998924357 * c9001(4486262784......)
# ECM B1=25e4, sigma=844769815632454
n=10566: c3462(2587087937......) = 1345137533492048852909763163609 * c3432(1923288788......)
# ECM B1=1e6, sigma=8704488892084815
n=10704: c3553(1000000009......) = 72841238673283847793996117940609 * c3521(1372848716......)
# ECM B1=1e6, sigma=2040506504840919
n=10870: c4295(1022114401......) = 85550856768491103644426046893161 * c4263(1194744787......)
# ECM B1=1e6, sigma=727762954492637
n=11294: c5638(2422525732......) = 414369762491182496621082370567 * c5608(5846289839......)
# ECM B1=5e4, sigma=3970022758127121
n=11612: c5728(1931571523......) = 129251412527778710102756089 * c5702(1494429720......)
# ECM B1=1e6, sigma=1164465327651493
n=11708: c5800(1070843981......) = 1442844122802905471209473569 * c5772(7421757936......)
# ECM B1=1e6, sigma=1689862390890003
# 210443 of 300000 Φn(10) factorizations were cracked. 300000 個中 210443 個の Φn(10) の素因数が見つかりました。
# via Kurt Beschorner
n=17137: c17128(3740450399......) = 123801622343621065831479863929067 * c17096(3021325834......)
# ECM B1=1e6, sigma=0:1896865138
n=17191: c17191(1111111111......) = 5747055463752121703767481 * c17166(1933357208......)
# ECM B1=1e6, sigma=3312859642
n=17203: c17203(1111111111......) = 19081414547132656686243720649 * c17174(5823001792......)
# ECM B1=1e6, sigma=0:1679835735
# 210426 of 300000 Φn(10) factorizations were cracked. 300000 個中 210426 個の Φn(10) の素因数が見つかりました。
# 19997 of 25997 Rprime factorizations were cracked. 25997 個中 19997 個の Rprime の素因数が見つかりました。
# via Kurt Beschorner
n=10565: c8389(2697520155......) = 2035365601010370050365241 * c8365(1325324626......)
n=10615: c7630(1531719481......) = 337712417377352603550361 * c7606(4535573472......)
# via Kurt Beschorner
n=16387: c14000(1565338094......) = 444632746836707249577443 * c13976(3520519138......)
# ECM B1=75e3, sigma=6178758472047261
n=16388: c7666(2481594646......) = 34208242748093017125479095441 * c7637(7254376276......)
# ECM B1=1e6, sigma=4274842413036703
n=16437: c10956(9009009009......) = 11518790169842022517123 * c10934(7821141696......)
# ECM B1=75e3, sigma=1445928104056008
n=16461: c10403(2143082967......) = 25624744126075286351911 * c10380(8363334117......)
# ECM B1=75e3, sigma=8327484888676444
n=16465: c12667(1687060906......) = 29291000654502486481 * c12647(5759656101......)
# ECM B1=75e3, sigma=7153109779297245
n=16469: c16044(9000000000......) = 45385530993599008831 * c16025(1983010841......)
# ECM B1=75e3, sigma=3762744443136656
n=16497: c9919(6740172941......) = 6207750833325827942053 * c9898(1085767312......)
# ECM B1=75e3, sigma=1129215292130134
n=16511: c14041(1111111111......) = 210779883214785477211279 * c14017(5271428630......)
# ECM B1=75e3, sigma=1438023311857960
n=16527: c9425(5625026327......) = 229482819082205227267 * c9405(2451175364......)
# ECM B1=5e4, sigma=8392998152764770
n=16531: c16181(2260218550......) = 1457824500730771387 * x16163(1550405106......)
# ECM B1=75e3, sigma=8178618282176246
n=16531: x16163(1550405106......) = 2108101345041127584419027 * c16138(7354509356......)
# ECM B1=75e3, sigma=3880639194556510
n=16539: c10657(1109999999......) = 582918717569368071033517 * c10633(1904210598......)
# ECM B1=5e4, sigma=5899517116822048
n=16545: c8811(8386072181......) = 1099282802798286991 * c8793(7628675860......)
# ECM B1=75e3, sigma=8635472632351845
n=16549: c14257(1111111111......) = 165495183474530359586761 * c14233(6713857695......)
# ECM B1=75e3, sigma=7606670976315151
n=16555: c10075(3020255947......) = 27719687270371713955801 * c10053(1089570714......)
# ECM B1=75e3, sigma=4667576196902349
n=16613: c16097(7986026139......) = 59413152402418734043 * c16078(1344151221......)
# ECM B1=75e3, sigma=7573155067028074
n=16629: c10541(1896656307......) = 50553225172290858679 * c10521(3751800802......)
# ECM B1=75e3, sigma=3573223959438135
n=16635: c8865(1109988900......) = 413651508231537192121 * c8844(2683391400......)
# ECM B1=75e3, sigma=4220728488665208
n=16637: c16327(5429055527......) = 11842780819896023027 * c16308(4584274259......)
# ECM B1=75e3, sigma=7522673661528617
n=16645: c13295(1069143150......) = 756293015816070430001 * c13274(1413662599......)
# ECM B1=5e4, sigma=7377664554700303
n=16695: c7478(2488953494......) = 5808060705985032949438953151 * c7450(4285343456......)
# ECM B1=75e3, sigma=1824921301501987
n=16707: c11129(4193122591......) = 7763831475690288133 * c11110(5400841845......)
# ECM B1=75e3, sigma=8047315095218157
n=16717: c16416(9000000000......) = 20957939246539038889 * c16397(4294315339......)
# ECM B1=75e3, sigma=4214941005506520
n=16725: c8881(1000010000......) = 445302469081752441001 * c8860(2245687076......)
# ECM B1=75e3, sigma=3732001075109983
n=16731: c9334(1969521432......) = 379517397525802410733 * c9313(5189541890......)
# ECM B1=75e3, sigma=1253857020380531
n=16739: c15825(1739282111......) = 121933604057370308239 * c15805(1426417372......)
# ECM B1=75e3, sigma=7681131192297456
n=16765: c11432(4503619088......) = 65789874874500573161 * c11412(6845459270......)
# ECM B1=75e3, sigma=4140804333039858
n=16795: c13425(1122024966......) = 17655742756797040921 * c13405(6355014241......)
# ECM B1=75e3, sigma=101229814774570
n=16811: c16804(1108964488......) = 20801833349961562779031171907123 * c16772(5331090149......)
# ECM B1=75e3, sigma=8541250071376232
n=16849: c13759(1655682871......) = 4329352892625258601321 * c13737(3824319505......)
# ECM B1=75e3, sigma=4631291155325571
n=16855: c13480(9000090000......) = 98855364742919870517721 * c13457(9104301040......)
# ECM B1=75e3, sigma=2414570560940351
n=16874: c6909(2913939574......) = 8278020209930799615574717 * c6884(3520092365......)
# ECM B1=1e6, sigma=3883343618846007
n=16877: c14438(3745509780......) = 11427856103647537378427 * c14416(3277526201......)
# ECM B1=75e3, sigma=5734635145676390
n=16883: c16844(1954553724......) = 3845748632024369821039 * c16822(5082375139......)
# ECM B1=75e3, sigma=4315490399335271
n=16903: c16882(1448033638......) = 9938944639970178699683 * c16860(1456928970......)
# ECM B1=75e3, sigma=4616400810916438
n=16925: c13509(1083300946......) = 1583949111190748801 * c13490(6839240852......)
# ECM B1=5e4, sigma=4932931550087311
n=16955: c13521(8459443986......) = 19810727067995233782224321 * c13496(4270133023......)
# ECM B1=75e3, sigma=6742655343268252
n=16971: c11304(7939683887......) = 31714686372819323517841 * c11282(2503472301......)
# ECM B1=75e3, sigma=7656198649355645
n=16977: c11306(1378718517......) = 42259609603197086917 * c11286(3262497051......)
# ECM B1=75e3, sigma=7735146726508651
n=16985: c13081(1617040835......) = 82118633557686129511 * c13061(1969152146......)
# ECM B1=75e3, sigma=2381566870706736
n=17001: c11314(3400442832......) = 5472446929255517591380951 * c11289(6213752049......)
# ECM B1=25e4, sigma=1547645826563529
n=17003: c14522(2241059095......) = 4827562668928878703441 * p14500(4642216475......)
makoto@bellatrix /cygdrive/d/factor2/repunit2 $ ./pfgw64 -tc -q"(10^7-1)*(10^17003-1)/(10^49-1)/(10^2429-1)/44621755039/4827562668928878703441" PFGW Version 4.0.3.64BIT.20220704.Win_Dev [GWNUM 29.8] Primality testing (10^7-1)*(10^17003-1)/(10^49-1)/(10^2429-1)/44621755039/4827562668928878703441 [N-1/N+1, Brillhart-Lehmer-Selfridge] Running N-1 test using base 3 Running N-1 test using base 7 Running N-1 test using base 11 Running N+1 test using discriminant 17, base 1+sqrt(17) Calling N-1 BLS with factored part 0.07% and helper 0.02% (0.24% proof) (10^7-1)*(10^17003-1)/(10^49-1)/(10^2429-1)/44621755039/4827562668928878703441 is Fermat and Lucas PRP! (11.2002s+0.0009s)
# ECM B1=25e4, sigma=7181990877957650
n=17089: c16305(1092504163......) = 3722056452688649490973867 * c16280(2935216531......)
# ECM B1=25e4, sigma=5928329483807271
n=17095: c12562(5275313822......) = 2764307821798290431 * c12544(1908366999......)
# ECM B1=5e4, sigma=4689321009872043
n=17105: c12391(1648034634......) = 1862812902210338086361 * c12369(8847021794......)
# ECM B1=25e4, sigma=1232182661449527
n=17127: c10301(9781791726......) = 4134800696190454048687237 * c10277(2365722666......)
# ECM B1=25e4, sigma=6041808485930476
n=17147: c15796(2067662913......) = 29526628777501295945848643 * c15770(7002705691......)
# ECM B1=5e4, sigma=4264005752293452
n=17151: c11432(9009009009......) = 4849880088112576849 * c11414(1857573557......)
# ECM B1=5e4, sigma=5214220185203441
n=17161: c17031(1000000000......) = 10190373182390909831069303827 * c17002(9813183306......)
# ECM B1=25e4, sigma=4866100867546997
n=17163: c11422(3389127570......) = 20957072303584774711 * c11403(1617176063......)
# ECM B1=25e4, sigma=3167730088103783
n=17195: c12947(2976363760......) = 2014254232211064220831 * c12926(1477650493......)
# ECM B1=5e4, sigma=3097326488237177
n=17229: c11464(1976599792......) = 386418132783634741147 * c11443(5115183851......)
# ECM B1=25e4, sigma=4569878362751008
n=17245: c13758(5117497657......) = 3784912245851457271 * c13740(1352078284......)
# ECM B1=5e4, sigma=5400251849820712
n=17261: c16775(4007540123......) = 22154753938644400522121 * c16753(1808884962......)
# ECM B1=25e4, sigma=1543770213193522
n=17265: c9188(2806593301......) = 34441852520323430551 * c9168(8148787292......)
# ECM B1=5e4, sigma=6996349374319556
n=17269: c14776(4422238062......) = 5662685401306120307 * c14757(7809436246......)
# ECM B1=25e4, sigma=4509182595281023
n=17271: c10795(2634469672......) = 3352457110743107487613 * c10773(7858324760......)
# ECM B1=5e4, sigma=6531850982417492
n=17307: c11491(8359599528......) = 50730052205390707837 * c11472(1647859437......)
# ECM B1=5e4, sigma=4231479336760216
n=17315: c13844(2598853628......) = 1437367365991611391 * c13826(1808065001......)
# ECM B1=5e4, sigma=1768548922920302
n=17355: c8448(9009099100......) = 2621243055503016361 * c8430(3436956783......)
# ECM B1=5e4, sigma=2542960111650005
n=17403: c11578(2023354329......) = 1672467177709775911 * c11560(1209802115......)
# ECM B1=5e4, sigma=7857227657296848
n=17433: c10644(6224000582......) = 2221058445534876403 * c10626(2802267808......)
# ECM B1=5e4, sigma=5560713387672636
n=17457: c10057(1291412126......) = 108374370377702401729681 * c10034(1191621341......)
# ECM B1=5e4, sigma=6012573865855560
n=17463: c11617(6590549907......) = 3985596895961404945759 * c11596(1653591690......)
# ECM B1=5e4, sigma=8773923639479765
n=17515: c13432(2676217254......) = 423598715105865988915511 * c13408(6317812493......)
# ECM B1=5e4, sigma=3354921034576709
n=17526: c5508(1178516496......) = 109704851018507843934247 * c5485(1074261060......)
# ECM B1=1e6, sigma=8893778573350583
n=17527: c16442(5853769685......) = 324145724813688097277 * c16422(1805906799......)
# ECM B1=5e4, sigma=2415351982266877
n=17575: c12946(2476714359......) = 1546312366277191786001 * c12925(1601690844......)
# ECM B1=5e4, sigma=485526407086334
n=17665: c14102(1194360254......) = 16467028763124664831 * c14082(7253040431......)
# ECM B1=5e4, sigma=8376039208804889
n=17693: c16320(9000000000......) = 175676625520378290747947 * c16297(5123049223......)
# ECM B1=5e4, sigma=4428565221934222
n=17702: c8593(7556016820......) = 1171849360831477133903 * c8572(6447942093......)
# ECM B1=5e4, sigma=2081171170567297
n=17708: c8353(1009999999......) = 25448130418184001529949 * c8330(3968857371......)
# ECM B1=1e6, sigma=1238718422313128
n=17730: c4690(7743509148......) = 29756572971243248146949371 * c4665(2602285268......)
# ECM B1=1e6, sigma=4918702373505139
n=17746: c8370(1962737527......) = 497302490484021274195531 * c8346(3946767943......)
# ECM B1=1e6, sigma=718280204716276
n=17796: c5900(4248402917......) = 1871466426737258910275281 * c5876(2270093044......)
# ECM B1=1e6, sigma=6140134240842226
n=17804: c8880(8699292778......) = 14209965575708811845909689 * c8855(6121966117......)
# ECM B1=1e6, sigma=1848035082948952
n=17810: c6528(9091000000......) = 2771252744525319762371 * c6507(3280465853......)
# ECM B1=1e6, sigma=1547145418513225
n=17823: c10932(2717999681......) = 50863855568794293481 * c10912(5343676076......)
# ECM B1=5e4, sigma=4630085389288454
n=17847: c11866(2060099872......) = 15109098387367039974253 * c11844(1363482995......)
# ECM B1=5e4, sigma=2125608409903811
n=17890: c7126(1594639325......) = 118827404455770533088641 * c7103(1341979430......)
# ECM B1=25e4, sigma=4549142144117655
n=17905: c14320(9000090000......) = 326773417491089607791 * c14300(2754229542......)
# ECM B1=5e4, sigma=6531710934507288
n=17916: c5969(1009998990......) = 84904675134270495232564592689 * c5940(1189568169......)
# ECM B1=1e6, sigma=4954996857320254
n=17965: c14349(1004077695......) = 6605163476275040309471 * c14327(1520140566......)
# ECM B1=5e4, sigma=900519292645139
n=17975: c14343(1910072619......) = 1190847785924916551 * c14325(1603960339......)
# ECM B1=5e4, sigma=5068952761942348
n=17983: c15368(1390182391......) = 3141554003624359471 * c15349(4425142430......)
# ECM B1=5e4, sigma=7950537385288281
# 1226 of 300000 Φn(10) factorizations were finished. 300000 個中 1226 個の Φn(10) の素因数分解が終わりました。
# 210424 of 300000 Φn(10) factorizations were cracked. 300000 個中 210424 個の Φn(10) の素因数が見つかりました。
# via Kurt Beschorner
n=16005: c7649(4024091584......) = 20154652704741883681 * c7630(1996606760......)
# ECM B1=75e3, sigma=8856720887035761
n=16017: c10081(1109999999......) = 70094322529041945787 * c10061(1583580466......)
# ECM B1=75e3, sigma=141109847233908
n=16023: c9073(1000000100......) = 36990649980484287411283 * c9050(2703386127......)
# ECM B1=75e3, sigma=4659999773939198
n=16027: c13786(6085353506......) = 313422807397241648987 * c13766(1941579669......)
# ECM B1=5e4, sigma=2019387804745992
n=16031: c14081(1111111111......) = 72997671627979044507509653 * c14055(1522118563......)
# ECM B1=5e4, sigma=8258231154230937
n=16047: c10683(1767542860......) = 76035334943104569001 * x10663(2324633490......)
# ECM B1=5e4, sigma=2204725944569055
n=16047: x10663(2324633490......) = 2573231475662068171843 * x10641(9033907411......)
# ECM B1=75e3, sigma=6237432045643806
n=16047: x10641(9033907411......) = 6175917086176805036081293 * c10617(1462763713......)
# ECM B1=75e3, sigma=7251954986593143
n=16053: c10684(1563704609......) = 4299347075516945016307 * c10662(3637074612......)
# ECM B1=5e4, sigma=2905138527116226
n=16065: c6906(3577419467......) = 8499701340695323081 * c6887(4208876670......)
# ECM B1=75e3, sigma=4996020067945009
n=16071: c9682(6463138523......) = 3068441302102926024649111 * c9658(2106326270......)
# ECM B1=75e3, sigma=6380698906044571
n=16079: c13731(2348683680......) = 9669783718288721453325551 * c13706(2428889568......)
# ECM B1=75e3, sigma=214808434829463
n=16113: c10388(3926587722......) = 79642819841537244310056700009 * c10359(4930246982......)
# ECM B1=5e4, sigma=732211870780390
n=16129: c16003(1000000000......) = 88020346496910733572253 * c15980(1136100958......)
# ECM B1=5e4, sigma=3925910320583828
n=16145: c12912(9000090000......) = 20189906610741681271 * c12893(4457717499......)
# ECM B1=75e3, sigma=2837539851415324
n=16157: c15887(1359091312......) = 189445852360029605803 * c15866(7174035724......)
# ECM B1=75e3, sigma=8820718827729161
n=16159: c13441(1111111111......) = 213078723307336887001 * c13420(5214556826......)
# ECM B1=75e3, sigma=3380031682417233
n=16191: c9184(5626322377......) = 89989599847114735648147 * c9161(6252191794......)
# ECM B1=75e3, sigma=2455015208405863
n=16227: c10787(1327107846......) = 63090121796142210037 * c10767(2103511307......)
# ECM B1=75e3, sigma=4304650827920384
n=16235: c12161(1111099999......) = 30973523760183037467915281 * c12135(3587257325......)
# ECM B1=75e3, sigma=4721704087368704
n=16268: c6856(2221947217......) = 375203735417488713709 * c6835(5921975204......)
# ECM B1=25e4, sigma=2944513438701888
n=16279: c15984(9000000000......) = 135640166547857161159681 * c15961(6635202705......)
# ECM B1=75e3, sigma=7089980821004161
n=16281: c10659(3887172408......) = 558404633423780193763 * c10638(6961210877......)
# ECM B1=75e3, sigma=2159881587821849
n=16285: c13015(5485036865......) = 2105350589427154591 * c12997(2605284313......)
# ECM B1=75e3, sigma=7453717810178444
n=16293: c10840(2254344019......) = 1140108738136248481 * x10822(1977306149......)
# ECM B1=75e3, sigma=4341399191764452
n=16293: x10822(1977306149......) = 1581093249608659542991 * c10801(1250594264......)
# ECM B1=75e3, sigma=714050029406353
n=16303: c13029(2178635622......) = 635096265017492056718521 * c13005(3430402196......)
# ECM B1=75e3, sigma=8615023901410628
n=16305: c8668(2469824003......) = 16883214725687714431 * c8649(1462887277......)
# ECM B1=75e3, sigma=7301858993568897
n=16343: c15992(5329370661......) = 193905231567153521719 * x15972(2748440884......)
# ECM B1=75e3, sigma=7317623783347026
n=16343: x15972(2748440884......) = 1454547585209802544625837 * c15948(1889550340......)
# ECM B1=75e3, sigma=8764633129725836
n=16344: c5425(1000000000......) = 458319145949925131674164294073 * c5395(2181885720......)
# ECM B1=25e4, sigma=3117044783023050
n=16347: c10880(1748315212......) = 4108364902099380077696773 * c10855(4255501286......)
# ECM B1=75e3, sigma=1776156934058899
n=16355: c13063(5001544173......) = 147676476067516133351 * c13043(3386825246......)
# ECM B1=75e3, sigma=769255222327761
n=16357: c14819(1138864754......) = 22025672941920769001 * c14799(5170624107......)
# ECM B1=75e3, sigma=1117650285043397
n=16385: c12526(4709561311......) = 87255068507647617911041 * c12503(5397464458......)
# ECM B1=75e3, sigma=4063298042283207
# 210407 of 300000 Φn(10) factorizations were cracked. 300000 個中 210407 個の Φn(10) の素因数が見つかりました。
# via Kurt Beschorner
n=7752: c2241(2166932176......) = 42353923360157502447534166996835876881 * c2203(5116248991......)
# ECM B1=3e6, sigma=2285511068875915
n=7850: c3095(5692542936......) = 13747714386463996216800537082801 * c3064(4140719523......)
# ECM B1=3e6, sigma=1105999260461860
n=7889: c6468(9999999999......) = 4277814513314993862986621267 * c6441(2337642263......)
# ECM B1=5e4, sigma=7582201310460296
n=8042: c3950(1873522805......) = 3613740590384116835954173411741899601 * c3913(5184441879......)
# ECM B1=3e6, sigma=4844699859669146
n=8140L: c1404(1729676994......) = 80622744652166457696395245164203461 * c1369(2145395820......)
# ECM B1=3e6, sigma=4074574849410810
n=8181: c5396(6111348774......) = 1308422483955383205252193590529 * c5366(4670776335......)
# ECM B1=1e6, sigma=4238026019074197
n=8392: c4182(2730341713......) = 3599156466433812795397984296574698260321 * c4142(7586060063......)
# ECM B1=3e6, sigma=1038259465840955
n=8625: c4401(1000000000......) = 381446118450180784610948538507751 * c4368(2621602243......)
# ECM B1=1e6, sigma=4179695821137327
n=8876: c3738(1629095739......) = 42578121936812302850424703961 * c3709(3826133389......)
# ECM B1=3e6, sigma=1792378130518983
n=8936: c4464(9999000099......) = 140429208050264216888582509081513 * c4432(7120313671......)
# ECM B1=3e6, sigma=377951961168560
n=9239: c9215(6489676051......) = 62669775402678117590827428689 * c9187(1035535233......)
# ECM B1=25e4, sigma=4934646406426321
n=9479: c9474(5860599773......) = 41211875020087006634201463431 * c9446(1422065793......)
# ECM B1=1e6, sigma=7861136345159153
# 210398 of 300000 Φn(10) factorizations were cracked. 300000 個中 210398 個の Φn(10) の素因数が見つかりました。
# via Kurt Beschorner
n=67369: c67352(1126912812......) = 186892259095033361668439 * c67328(6029745790......)
# ECM B1=5e4, sigma=6660079597888780
n=88007: c88007(1111111111......) = 11789824315950018449719 * c87984(9424322885......)
# ECM B1=5e4, sigma=4732639057627862
n=88469: c88469(1111111111......) = 18480808172113119499887708283 * c88440(6012243083......)
# ECM B1=5e4, sigma=728582668942992
# 210395 of 300000 Φn(10) factorizations were cracked. 300000 個中 210395 個の Φn(10) の素因数が見つかりました。
# 19995 of 25997 Rprime factorizations were cracked. 25997 個中 19995 個の Rprime の素因数が見つかりました。
# via factordb.com
n=7710: p1999(6139174789......) is proven prime
# via Kurt Beschorner
n=2113: c2069(1632658590......) = 354929074755704271165843846001853 * c2036(4599957306......)
# ECM B1=1e6, sigma=7246696440051791
n=6771: c4297(5146427224......) = 75952212778314289168987 * c4274(6775875298......)
# ECM B1=5e4, sigma=230329139279521
n=6836: c3402(1122939872......) = 20415654231968489599172591591429 * c3370(5500386419......)
# ECM B1=3e6, sigma=2219133135640438
n=7204: c3558(5215481928......) = 1792611605403123098539229078379149 * c3525(2909432201......)
# ECM B1=3e6, sigma=6121230499120445
n=7222: c3424(4359879153......) = 3653775233540851672781627075243270200397 * c3385(1193253244......)
# ECM B1=3e6, sigma=7822026574764889
n=7294: c3077(2220359907......) = 272799241926662791209917505350443321 * c3041(8139171840......)
# ECM B1=3e6, sigma=2947171639234522
n=7362: c2436(6147288088......) = 1889142577340213131496648834727637 * c2403(3254009603......)
# ECM B1=3e6, sigma=3002322087673142
n=7369: c7335(1495240218......) = 20270951656522899758172134963 * c7306(7376270459......)
# ECM B1=5e4, sigma=125603663189372
n=7420L: c1207(4397458072......) = 2340937705637882417208224655617801 * c1174(1878502816......)
# ECM B1=3e6, sigma=4814171662249052
n=7554: c2509(2655581220......) = 2389508715065538544734650342449 * c2479(1111350297......)
# ECM B1=3e6, sigma=1618995962471329
n=7594: c3784(4840856886......) = 6831445770573654431691283538611 * c3753(7086138204......)
# ECM B1=3e6, sigma=6025140471483118
n=7612: c3441(1009999999......) = 54681575751290909883901945368061 * c3409(1847057232......)
# ECM B1=3e6, sigma=7933871023863120
n=7645: c5515(2076236426......) = 18898813419143464670208071 * c5490(1098606764......)
# ECM B1=7e5, sigma=352409892073962
n=7683: c4660(2268996429......) = 28725234813559812989329310454871 * c4628(7898965645......)
# ECM B1=7e5, sigma=8241647108127009
n=7704: c2524(6570202963......) = 178041560769736312478867254989953569 * c2489(3690263630......)
# ECM B1=1e6, sigma=2763392246015981
n=7710: c2027(5404229289......) = 8802859463727639797791299361 * p1999(6139174789......)
# ECM B1=3e6, sigma=2197231942016623
n=7727: c7727(1111111111......) = 160313217802190637787806923 * c7700(6930876482......)
# ECM B1=5e4, sigma=890703124145020
# 210393 of 300000 Φn(10) factorizations were cracked. 300000 個中 210393 個の Φn(10) の素因数が見つかりました。
# 19993 of 25997 Rprime factorizations were cracked. 25997 個中 19993 個の Rprime の素因数が見つかりました。
# via factordb.com
n=15130: p5579(1670623001......) is proven prime
# via Kurt Beschorner
n=14413: c11743(8536186598......) = 166970966971236943369 * c11723(5112377770......)
n=14445: c7633(1000000001......) = 316250758517746765591 * x7612(3162047755......)
n=14445: x7612(3162047755......) = 879066998314826171311 * c7591(3597049782......)
n=14481: c9643(1437226025......) = 10917091689686126533 * c9624(1316491668......)
n=14517: c9644(2595333927......) = 9182629340686042345379791 * c9619(2826351615......)
n=14569: c13669(1086114683......) = 22443633425054649446083238609 * c13640(4839299694......)
n=14571: c9708(9990000009......) = 3658076287012737001 * c9690(2730943596......)
n=14673: c9488(5662148396......) = 475483711766804372077 * c9468(1190818582......)
n=14708: c7338(3823519866......) = 2192558026825804565807686978628341 * c7305(1743862565......)
n=14952: c4207(6050602707......) = 2789248315137724131979059409729 * c4177(2169259249......)
n=15005: c11967(6521318449......) = 15983293162325565016361 * c11945(4080084362......)
n=15029: c12081(2553216854......) = 13622095717362446987 * c12062(1874320154......)
n=15033: c9983(1788981359......) = 238008263495863697743369843 * c9956(7516467424......)
n=15059: c13294(6062550605......) = 2361270706474226297477 * c13273(2567494946......)
n=15063: c10019(4191415931......) = 2224417714292341123 * c10001(1884275558......)
n=15065: c11417(2720467562......) = 325077304852476722551 * c11396(8368678839......)
n=15066: c4826(2104715189......) = 1529828168913229051927 * c4805(1375785354......)
n=15072: c4982(6877791264......) = 1781588849293327282491649 * c4958(3860481764......)
n=15089: c14820(9000000000......) = 6015399565179816599369 * c14799(1496159964......)
n=15130: c5613(4309533754......) = 25795968034561722707971644771190441 * p5579(1670623001......)
n=15185: c12144(9000090000......) = 2651048245090043431 * c12126(3394917469......)
n=15205: c12139(3667463198......) = 630043524401854709268041 * c12115(5820968007......)
n=15239: c13014(1458246391......) = 2943521601045570917 * c12995(4954087617......)
n=15261: c10133(1369337658......) = 2739044939247316433787307 * c10108(4999325270......)
n=15265: c11756(1213110458......) = 21270400474878965735191 * c11733(5703279822......)
n=15282: c5069(9566733187......) = 10390294669181513520691 * c5047(9207374277......)
n=15311: c14995(9796771419......) = 63490481571677056933 * c14976(1543029943......)
n=15415: c12293(1363110505......) = 113418428023571510431 * c12273(1201842177......)
n=15421: c13212(9000000900......) = 4494340777847147599 * c13194(2002518577......)
n=15431: c14232(9000000000......) = 252816462617370489683 * c14212(3559894757......)
n=15463: c12956(1203045750......) = 27788181685656629119 * c12936(4329343187......)
n=15561: c7770(1146409850......) = 405107217105555321631 * c7749(2829892438......)
n=15700L: c3075(7924133653......) = 4949635952475223234934801 * c3051(1600952823......)
n=15744: c5062(2513072236......) = 3683085861296245547137 * x5040(6823278987......)
n=15744: x5040(6823278987......) = 13680107036093792174679994369 * c5012(4987738012......)
n=15781: c15372(9000000000......) = 4496325838430068729 * c15354(2001634295......)
n=15831: c10522(4950835459......) = 37816790255067463813 * c10503(1309163317......)
n=15876: c4537(1000000000......) = 8735229018367194426214321 * c4512(1144789676......)
n=15892: c7591(5954154334......) = 8842711418956384659004589 * c7566(6733403424......)
n=15933: c10277(7205222100......) = 9139237322515297519 * c10258(7883833022......)
# 1225 of 300000 Φn(10) factorizations were finished. 300000 個中 1225 個の Φn(10) の素因数分解が終わりました。
# 210391 of 300000 Φn(10) factorizations were cracked. 300000 個中 210391 個の Φn(10) の素因数が見つかりました。
# via Kurt Beschorner
n=12663: c7076(3487285794......) = 34504836467357239453 * c7057(1010665793......)
# ECM B1=5e4, sigma=161413222477211
n=12672: c3835(2391331900......) = 54951214337391728771713 * c3812(4351736224......)
# ECM B1=1e6, sigma=6917630066149202
n=12775: c8641(1000010000......) = 38227959924998960551 * c8621(2615912546......)
# ECM B1=5e4, sigma=6875723530772047
n=12796: c5434(9585054995......) = 17178436756368127757719861 * c5409(5579701536......)
# ECM B1=1e6, sigma=8621255966812854
n=12819: c8527(1227038401......) = 1096566136620207973 * c8509(1118982576......)
# ECM B1=5e4, sigma=5461196199453459
n=12825: c6459(9551464176......) = 7223364122267281951 * c6441(1322301356......)
# ECM B1=5e4, sigma=5955703799695974
n=12835: c9594(6011661899......) = 51723675244997141349671 * c9572(1162265030......)
# ECM B1=5e4, sigma=5554226281362793
n=12987: c7769(2916669501......) = 18953527480527961613917 * c7747(1538853125......)
# ECM B1=5e4, sigma=585973883891887
n=13001: c12983(3492478649......) = 1709500391403474292714747 * c12959(2042982070......)
# ECM B1=5e4, sigma=6478810961582135
n=13023: c8654(9053274301......) = 54319042196889244533361 * c8632(1666685187......)
# ECM B1=5e4, sigma=931428349887032
n=13035: c6240(9009099100......) = 3814273764621319561 * c6222(2361943493......)
# ECM B1=5e4, sigma=1658036610229275
n=13053: c8183(1141002307......) = 28542523643940984757 * c8163(3997552291......)
# ECM B1=35e4, sigma=6654111345236889
n=13065: c6329(3013810318......) = 26512106215359308578711 * c6307(1136767593......)
# ECM B1=5e4, sigma=8476194230827430
n=13073: c12288(9000000000......) = 2142560033991766066213001 * c12264(4200582414......)
# ECM B1=5e4, sigma=6687196918666412
n=13077: c8684(2859990958......) = 1907666648793667406733225616027 * c8654(1499208973......)
# ECM B1=35e4, sigma=604707146548601
n=13091: c11174(9999468279......) = 152175029858243546519 * c11154(6571030929......)
# ECM B1=5e4, sigma=5347898949901686
n=13101: c7906(3341179804......) = 141032423406169408213 * c7886(2369086287......)
# ECM B1=5e4, sigma=7743988391920867
n=13105: c10465(1643165421......) = 61255299046914257971391 * c10442(2682486979......)
# ECM B1=5e4, sigma=1591561571985972
n=13152: c4353(1000000000......) = 53985328287900778995452929 * c4327(1852355133......)
# ECM B1=1e6, sigma=7105924543752128
n=13167: c6480(9990000009......) = 434056672726940570077 * c6460(2301542779......)
# ECM B1=35e4, sigma=7258802464942200
n=13206: c4166(4549010925......) = 103695089259407998367731 * c4143(4386910660......)
# ECM B1=1e6, sigma=7382420473326748
n=13221: c8065(1001000999......) = 9551504838321850249 * c8046(1048003447......)
# ECM B1=35e4, sigma=1787670506839974
n=13281: c8347(1193970770......) = 6997240862558616271489 * c8325(1706345106......)
# ECM B1=35e4, sigma=1099484654860337
n=13323: c8880(9009009009......) = 297455500090709626759 * c8860(3028691352......)
# ECM B1=35e4, sigma=2695810402952813
n=13341: c8892(9009009009......) = 198417090607837129471 * c8872(4540440030......)
# ECM B1=35e4, sigma=2168647370172610
n=13355: c10669(3148613403......) = 6397612208824744361 * c10650(4921544633......)
# ECM B1=5e4, sigma=5790338425355709
n=13363: c10815(1296275878......) = 75615786034739244163213 * c10792(1714292672......)
# ECM B1=35e4, sigma=65307610802837
n=13365: c6481(1000000000......) = 2379379157610091449121 * c6459(4202777000......)
# ECM B1=35e4, sigma=3306860259257732
n=13446: c4411(3575665852......) = 2435848481216268143148727 * c4387(1467934430......)
# ECM B1=1e6, sigma=8325099715098432
n=13461: c7681(1109999889......) = 2475016507151963792027809 * c7656(4484818124......)
# ECM B1=5e4, sigma=967751318308558
n=13497: c8148(4038861444......) = 1572852250292417993517961 * c8124(2567858133......)
# ECM B1=5e4, sigma=4539039781041915
n=13546: c6180(4749426944......) = 5712073589995599555976639806259 * c6149(8314715960......)
# ECM B1=1e6, sigma=7613970391773738
n=13565: c10841(5385379595......) = 49308549273770970881 * c10822(1092179687......)
# ECM B1=5e4, sigma=8707264176665232
n=13584: c4466(2918919404......) = 56919753481426275422076961 * c4440(5128130790......)
# ECM B1=1e6, sigma=737952805876859
n=13851: c8733(4306980609......) = 49317553927744058431 * c8713(8733159426......)
# ECM B1=5e4, sigma=6350562998651370
n=13922: c6946(6460186295......) = 4452553526763061449993386983 * c6919(1450894696......)
# ECM B1=1e6, sigma=279184792993842
n=13935: c7410(4516506251......) = 3715162151014015951 * c7392(1215695592......)
# ECM B1=5e4, sigma=4279971945026849
n=13975: c10075(1084196797......) = 14237128365789433001 * c10055(7615277247......)
# ECM B1=5e4, sigma=2759718042404167
n=14037: c9349(1249132808......) = 2457925607471391741121 * c9327(5082061088......)
# ECM B1=3e5, sigma=4468514200765509
n=14049: c7984(8296540918......) = 1786416260223231631 * c7966(4644237238......)
# ECM B1=5e4, sigma=2712166336223661
n=14073: c9372(1414974252......) = 10419619512713640871 * c9353(1357990328......)
# ECM B1=5e4, sigma=6743398403018248
n=14105: c8623(2499498520......) = 13822060372724965892448191 * c8598(1808340040......)
# ECM B1=3e5, sigma=7916890481552942
n=14139: c9408(2405197824......) = 2319334623279823777867 * c9387(1037020618......)
# ECM B1=5e4, sigma=5119656356238730
n=14155: c10657(1111099999......) = 506655490689825784201 * c10636(2193008899......)
# ECM B1=3e5, sigma=8769803787835243
n=14187: c9456(9009009009......) = 264201894861633802147 * c9436(3409895683......)
# ECM B1=5e4, sigma=3262538436144051
n=14292: c4739(1421885117......) = 137707349954914464928731109 * c4713(1032541195......)
# ECM B1=1e6, sigma=2916503490794551
n=14295: c7587(8841297447......) = 104806199662893600871 * c7567(8435853485......)
# ECM B1=3e5, sigma=8039642350330028
n=14335: c11014(4712481358......) = 2444778957014834641 * c10996(1927569502......)
# ECM B1=5e4, sigma=7041566429140705
n=14351: c14099(7108212123......) = 13231344149009902617943849 * c14074(5372252466......)
# ECM B1=3e5, sigma=2156084421842029
n=14354: c7176(9090909090......) = 1629222825533417460332572685291 * c7146(5579905307......)
# ECM B1=1e6, sigma=4191768970483022
n=6139: c5250(4027572264......) = 30723810793576247330511378952837 * c5219(1310896064......)
# ECM B1=1e6, sigma=0:3953534446061228
n=6445: c5136(6200372653......) = 38319335216923565902890403001 * c5108(1618079389......)
# ECM B1=1e6, sigma=0:2662215690739678
n=10493: c8983(1949347488......) = 81910793997154206182972459293 * c8954(2379842012......)
# P-1 B1=50e6
n=10517: c9648(1271140242......) = 107322946041438755758674136341191 * c9616(1184406773......)
# P-1 B1=52e6
n=10535: c7046(1128311372......) = 440566231899073590474991 * c7022(2561048240......)
# P-1 B1=75e6
n=12629: c12362(5594028408......) = 3356260338673768100663111 * c12338(1666744484......)
# P-1 B1=36e6
n=12634: c6311(1332514813......) = 1907581652611973673675667774969 * c6280(6985361869......)
# P-1 B1=84e6