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1. Introduction and statement of problems

Dirichlet in 1837 proved that for any a, q with (a, q) = 1 there are infinitely many
primes p with p ≡ a (mod q); see, for example, ([Da], chapter 4). Chebyshev [Ch]
noted in 1853 that there are “more” primes congruent to 3 than 1 modulo 4. His
conjecture states that

lim
x→∞

∑

p>2

(−1)(p−1)/2e−p/x = −∞.

As it was shown by Hardy, Littlewood [HL] and Landau [La2] this holds if and only
if the function

L(s, χ1) =
∞
∑

n=0

(−1)n

(2n+ 1)s

does not vanish for ℜs > 1/2.
Chebyshev’s conjecture was the origin for a big branch of modern Number The-

ory, namely, comparative prime–number theory. As usual, p runs over the primes,
k is a positive integer, (k, l) = 1,

π(x, k, l) =
∑

p6x
p≡l (mod k)

1,

π(x) = π(x, 1, 1). The functions π(x, k, l) for fixed k and (l, k) = 1 are all asymptot-
ically x/(ϕ(k) logx) [Da, Ch. 20], where ϕ(k) is Euler’s function, i.e. the number
of positive integers l 6 k with (k, l) = 1. Still, as Chebyshev observed, there are
interesting inequities in the functions π(x, k, l) for fixed k. Of particular interest is
the behavior of the functions

∆(x, k, l1, l2) = π(x, k, l1)− π(x, k, l2).

In Chebyshev’s case, for example, ∆(x, 4, 3, 1) is negative for the first time at
x = 26861 [Lee]. More dramatically, ∆(x, 3, 2, 1) is negative for the first time
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at x = 608, 981, 813, 029 [BH1]. Nonetheless, Littlewood [Li] proved in 1914 that
the functions ∆(x, 4, 3, 1) and ∆(x, 3, 2, 1) each change sign infinitely often. In their
fundamental series of papers on comparative prime–number theory ([KT1], [KT2]),
Knapowski and Turán generalized Littlewood’s theorem and also indicated a large
number of problems related to comparison of π(x, k, l1) and π(x, k, l2). Below we
list some of these (and other) problems. In the sequel discussing sign changes of
∆(x, k, l1, l2) and similar differences we shall assume that l1 6≡ l2 (mod k) and
(l1, k) = (l2, k) = 1.

1. “Infinity of sign changes”. To prove that ∆(x, k, l1, l2) changes sign infinitely
often.

2. “Big sign changes”. To prove that ∆(x, k, l1, l2) is > x1/2−ε (respectively <
−x1/2−ε) for an unbounded sequence of x. The use of function x1/2−ε is motivated
by the fact that if Extended Riemann Hypothesis for k (see below) is true than the
inequality

(1.1) |∆(x, k, l1, l2)| = O(x1/2 log x) (x > 2)

holds (see e.g. [Da, Ch. 20, (14)]).
3. “Localized sign changes”. To prove that (i) for T > T0(k) and suitable

G(T ) < T the function ∆(x, k, l1, l2) changes sign in the interval G(T ) 6 x < T ;
(ii-a) prove that ∆(x, k, l1, l2) takes “large” positive and negative values in the
interval G(T ) 6 x < T , where “large” means > T 1/2−ε; (ii-b) find lower bounds on
the number of sign changes for x 6 T .

4. “First sign change”. To determine a function B(k) such that for 1 6 x 6 B(k)
all ∆(x, k, l1, l2) change sign at least once.

5. “Average preponderance problems”. A typical question is the following.
Denote by N(x) the number of integers n 6 x with the property ∆(x, 4, 3, 1) 6 0.
Does the relation

(1.2) lim
x→+∞

N(x)

x
= 0

hold?
6. “Littlewood–generalizations”. A typical problem of this type would be the

existence of a sequence x1 < x2 < · · · → +∞ such that simultaneously the inequal-
ities

π(x, 4, 1) >
1

2
Li(xν)

and

π(x, 4, 3) >
1

2
Li(xν)

hold, where

Li(x) = lim
ε→0+

∫ 1−ε

0

dt

log t
+

∫ x

1+ε

dt

log t
.

This would constitute an obvious generalization of Littlewood’s theorem [Li] that
for a suitable sequence y1 < y2 < · · · → +∞ the inequality π(yν) > Li(yν) holds.
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7. “Racing problems”. The “prime number race” is colorfully described in [KT2,
I] in the following way. Consider a game with r players, 2 6 r 6 ϕ(k), called “l1”
through “lr” (here l1, . . . lr are mutually incongruent modulo k), and at time t, each
player “j” has a score of π(t, k, j) (i.e. player “j” scores 1 point whenever t reaches
a prime ≡ j (mod k)). As t → ∞, will each player take the lead infinitely often?
More generally, will all r! orderings of the players occur for infinitely many integers
t? This type of question originated in a paper of Shanks [Sh], who calculated that
π(x, 8, 1) 6 maxa∈{3,5,7} π(x, 8, a) for x 6 106. It is generally believed that the
answers to both questions are yes. If r = 2 this is just the first problem (infinity of
sign changes).

8. “Distribution problems”. Investigate the distribution of ∆(x, k, l1, l2), e.g.
study S(x; z) = {1 6 y 6 x : ∆(y, k, l1, l2) 6 z(x1/2/ log x)} in a more general way
than indicated by problems 1–6. For the general race problem, study distribution
properties of the vectors (π(x, k, l1), . . . , π(x, k, lr)).

9. “Union–problems”. For a given modulus k and disjoint subsets A and B of
reduced residue classes mod k, study the distribution of the function

(1.3)
∑

p∈A,p6x

1− |A|
|B|

∑

p∈B,p6x

1.

An important example is a generalization of Chebyshev’s example: let A be the set
of quadratic non-residues modulo k, and take B to be the set of quadratic residues.

Besides the functions π(x, k, l), the distribution of primes in arithmetic progres-
sions can be characterized by some other functions which are more convenient to
work with. Let Λ(n) be the Dirichlet–von Mangoldt function, namely, Λ(n) = log p
if n = pm for some prime p and some positive integer m, and Λ(n) = 0 otherwise.
The following functions are studied:

ψ(x, k, l) =
∑

n6x
n≡l (mod k)

Λ(n),

Π(x, k, l) =
∑

n6x
n≡l (mod k)

Λ(n)

logn
,

θ(x, k, l) =
∑

p6x
p≡l (mod k)

log p.

All problems 1–9 can be formulated for comparison of these functions. Moreover,
one can consider all questions “in the Abelian sense” as in original Chebyshev’s
paper [Ch]; for example, π(x, k, l) can be replaced by

∑

p≡l (mod k) e
−pr for r > 0.

In this paper, however, we will be concerned only with problems involving the
functions π(x, k, l), concentrating on problems 1 and 7.
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2. Analytic Tools

The methods of investigation of oscillatory properties of the functions π(x, k, l1)−
π(x, k, l2) are similar to those used to study oscillatory properties of the remainder
term of the prime number theorem, i.e. E(x) = π(x) − Li(x). The primary tools
are so-called “explicit formulas” linking the functions π(x, k, l) to the distribution
of the zeros in the critical strip 0 < ℜs < 1 of the Dirichlet L-functions L(s, χ) for
the characters χ modulo k. Note that

∑

n6x
n≡l (mod k)

Λ(n)

logn
=

∑

p6x
p≡l (mod k)

Λ(p)

log p
+

∑

p26x
p2≡l (mod k)

Λ(p2)

log(p2)
+O(x1/3)

= π(x, k, l) +
∑

16u6k
u2≡l (mod k)

π(x1/2, k, u)

2
+O(x1/3).

Using the asymptotic formula for π(x, k, l) we have

(2.1) π(x, k, l) =
∑

n6x
n≡l (mod k)

Λ(n)

logn
− Nk(l)

ϕ(k)

x1/2

log x
+ o

(

x1/2

log x

)

(x→ ∞)

where Nk(l) is the number of incongruent solutions of the congruence u2 ≡ l
(mod k).

Let Dk (Ck) denote the set of all (correspondingly, non-principal) characters
modulo k. For χ ∈ Dk define

Ψ(x;χ) =
∑

n6x

Λ(n)χ(n).

It is not difficult to show that

ϕ(k)
∑

n6x
n≡l (mod k)

Λ(n)

logn
= ϕ(k)

(

ψ(x, k, l)

log x
+

∫ x

2

ψ(t, k, l)

t log2 t
dt

)

=
∑

χ∈Dk

χ(l)

(

Ψ(x;χ)

log x
+

∫ x

2

Ψ(t;χ)

t log2 t
dt

)

.

Writing D(x, k, l1, l2) = ψ(x, k, l1)− ψ(x, k, l2), we have by (2.1)

(2.2)

ϕ(k)∆(x, k, l1, l2) = ϕ(k)

(

D(x, k, l1, l2)

log x
+

∫ x

2

D(t, k, l1, l2)

t log2 t
dt

)

− (Nk(l1)−Nk(l2))
x1/2

log x
+ o

(

x1/2

log x

)

=
∑

χ∈Ck

(χ(l1)− χ(l2))

(

Ψ(x;χ)

log x
+

∫ x

2

Ψ(t;χ)

t log2 t
dt

)

− (Nk(l1)−Nk(l2))
x1/2

log x
+ o

(

x1/2

log x

)

(x→ ∞).
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By well-known explicit formulas (Ch. 19, (7)–(8) in [Da]), when χ ∈ Ck,

(2.3) Ψ(x;χ) = −
∑

|ℑρ|6x

xρ

ρ
+O

(

log2 x
)

, (x > 2)

where the sum is over zeros ρ of L(s, χ) with 0 < ℜρ < 1.
The zeros of L(x, χ) with largest real part will dominate the sum in (2.3). The

Extended Riemann Hypothesis for k (abbreviated ERHk) states that all these zeros
for all χ ∈ Dk lie on the critical line ℜs = 1

2 . Since

(2.4)
∑

06ℑρ6T

1 = O(T logT ) (T > 2)

for each χ ([Da], Ch. 16, (1)), one can see that ERHk plus (2.3) implies (1.1).
Moreover, it is known that if ERHk holds then

1

x

∫ x

0

|Ψ(t;χ)|2dt = O(x)

for any χ ∈ Ck (this follows easily by the methods in Chapter III of Cramér
[Cr2]). In this case ∆(x, k, l1, l2) has average order at most x1/2/ logx. If also
Nk(l1) 6= Nk(l2) then the term

(2.5) −(Nk(l1)−Nk(l2))
x1/2

log x

in (2.2) is very significant, causing a shift in the mean value of ∆(x, k, l1, l2). In
particular, we can expect that if l1 is a quadratic residue and l2 is a quadratic
nonresidue modulo k then for “most” x’s π(x, k, l1) < π(x, k, l2). Sometimes this
phenomenon is called “Chebyshev’s Bias”.

A basic tool for proving oscillation theorems is the following result of Landau
[La1] on the location of singularities of the Mellin transform of a non-negative
function.

Lemma 2.1 [La1, p. 548]. Suppose f(x) is real valued, and also non-negative
for x > x0. Suppose also for some real numbers β < σ that the Mellin transform

g(s) =

∫ ∞

1

f(x)x−s−1 dx

is analytic for ℜs > σ and can be analytically continued to the real segment (β, σ].
Then g(s) in fact represents an analytic function in the half-plane ℜs > β.

For example, if f(x) = ϕ(k)D(x, k, l1, l2) then

(2.6) g(s) = g(s, k, l1, l2) = −1

s

∑

χ∈Ck

(χ(l1)− χ(l2))
L′(s, χ)

L(s, χ)
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for ℜs > 1, with the right side providing a meromorphic continuation of g(s) to
the whole complex plane. Note that the poles of g(s) (except s = 0) are a subset
of the zeros of the functions L(s, χ). Also, g(s) always has an infinite number
of poles in the critical strip [G1]. Assume that g(s) has no real poles s > 1

2 ,

g(s) has a pole s0 with ℜs0 > 1
2 . Take any α satisfying 1

2 < α < ℜs0 and put
f(x) = (−1)nD(x, k, l1, l2) + cxα for some constant c and n ∈ {0, 1}. Applying
Lemma 2.1 with different n and c we conclude that

lim sup
x→∞

D(x, k, l1, l2)

xα
= ∞, lim inf

x→∞

D(x, k, l1, l2)

xα
= −∞.

Since α > 1
2
, this is enough to deduce that ∆(x, k, l1, l2) changes sign infinitely

often. More generally, the following lemma shows how oscillations of D(x, k, l1, l2)
and ∆(x, k, l1, l2) are related.

Lemma 2.2. Let

(2.7) h(x) = h(x, k, l1, l2) = ϕ(k)x−1/2D(x, k, l1, l2)−Nk(l1) +Nk(l2).

If
lim inf
x→∞

h(x) < 0 < lim sup
x→∞

h(x),

then ∆(x, k, l1, l2) has infinitely many sign changes.

Proof. By (2.2),

(2.8) ϕ(k)∆(x, k, l1, l2) =
x1/2

log x
h(x) +

∫ x

2

h(t)√
t log2 t

dt+ o

( √
x

log x

)

.

By hypothesis, for an unbounded set of x we have

h(x) >
1

2
max

logx6y6x
h(y).

For such x sufficiently large, (2.8) and the trivial bound h(t) ≪
√
t (which we use

for t 6 log x) imply that

ϕ(k)∆(x, k, l1, l2) >
x1/2

log x
h(x)

(

1 +O

(

1

log x

))

> 0.

Similarly, there is an unbounded set of x with ∆(x, k, l1, l2) < 0.

3. Sign changes in ∆(x, k, l1, l2)

3.1. The effect or large real zeros.
By the remarks at the end of section 2, to settle question 1 we need to deal with

two cases: (i) g(s) has a real pole s > 1
2 ; (ii) g(s) has all of its poles in the critical

strip on the line ℜs = 1
2
.
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Assume for the moment the following situation. Let χ1 ∈ Ck be a real character,
L(β, χ1) = 0 for some β ∈ (1/2, 1), but all other zeros of L(s, χ1) and all zeros of
L(s, χ), χ ∈ Dk \ {χ1}, have real part 6 β − δ for some δ > 0. Take l such that
χ1(l) = −1. It follows from (2.2)—(2.4) that

ϕ(k)∆(x, k, 1, l) = − 2xβ

β log x
+O

(

xβ

log2 x

)

.

Therefore π(x, k, 1) < π(x, k, l) for sufficiently large x. This simple example shows
that to prove the infinity of sign changes of ∆(x, k, l1, l2) (and to succeed in any
of the problems 1–9) for a general modulus k we need some information about the
location of the zeros ρ. Nowadays we cannot prove such properties in general, and
they are usually stated as suppositions. Thus, many results of comparative prime-
number theory are conditional. The most common supposition is Haselgrove’s
condition: no L(s, χ), χ ∈ Ck, vanishes in the real interval (0, 1) (which eliminates
the possibility of case (i)). To get effective results we need a bound on the distance
from any zero to the real axis, and Haselgrove’s condition is usually formulated as
the existence of an A(k) such that no L(s, χ), χ ∈ Ck, vanishes in the parallelogram
0 < ℜρ < 1, |ℑρ| 6 A(k).

3.2. Infinitely many sign changes on Haselgrove’s condition.
As already mentioned, Littlewood [Li] proved that both functions ∆(x, 4, 3, 1)

and ∆(x, 3, 2, 1) change sign infinitely often. Knapowski and Turán [KT1, II] ex-
tended these results significantly, on the assumption of Haselgrove’s condition.

Theorem 3.1 [KT1, II, Theorem 5.1]. If Haselgrove’s condition is true for k
then the difference π(x, k, l)− π(x, k, 1) changes sign infinitely often for any l.

In addition, Knapowski and Turán prove bounds for the first sign change as well
as for the magnitude and frequency of the oscillations ([KT1, II, Theorems 5.1, 5.2],
[KT1,III, Theorems 1.2, 1.3, 2.1, 3.1–3.4]). In principal it is not difficult to verify
Haselgrove’s condition for a particular k, and this has been done for many small
k (P.C. Haselgrove, unpublished) including all k 6 72 [Ru1]. Recently, Conrey
and Soundararajan [CS] proved that L(s, χ) 6= 0 on s ∈ (0, 1) for at least 20% of
the real quadratic characters χ−8d(n) = (−8d

n ), where d runs over odd squarefree
positive integers. In [KT1, VI], a more general theorem is proved under a slightly
stronger hypothesis. For some effectively computable constant c1 (independent
of k), if no L(s, χ), χ ∈ Ck, vanishes in the domain ℜs > 1/2, |ℑs| 6 c1k

10,
and Nk(l1) = Nk(l2), then ∆(x, k, l1, l2) changes sign infinitely often. The last
condition means that l1, l2 are simultaneously either quadratic residues or quadratic
nonresidues modulo k. Later Kátai [Ka1] proved the same conclusion under weaker
hypotheses.

Theorem 3.2 [Ka1, Satz 2]. Assuming Haselgrove’s condition for k and Nk(l1) =
Nk(l2), then ∆(x, k, l1, l2) changes sign infinitely often. More specifically,

lim sup
x→∞

∆(x, k, l1, l2)√
x/ log x

> 0, lim inf
x→∞

∆(x, k, l1, l2)√
x/ log x

< 0.
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For the general case of arbitrary l1 and l2, Haselgrove’s condition implies infin-
itely many sign changes of the difference D(x, k, l1, l2) [KT1, VII] (see also [Ka1,
Satz 1]), but the proof breaks down for ∆(x, k, l1, l2), even if one assumes the full
ERHk. Basically, the proven magnitude of oscillations of ψ(x, k, l1)−ψ(x, k, l2) (of
order

√
x in [Ka1, Satz 1]) are insufficient to overcome the term (2.4) appearing

in (2.2). As mentioned at the end of section 2, the difficulty is when all of the
singularities of g(s) (a linear combination of functions logL(s, χ) in our case) have
real part = 1

2 .

3.3. Infinitely many sign changes when Nk(l1) 6= Nk(l2), l1 6= 1, l2 6= 1.
Fix k, l1, l2 and define g(s) as in (2.6) and h(x) as in (2.7). Suppose g(s) has no

poles with ℜs > 1
2
. Label the poles in the right half plane with positive imaginary

part as 1
2 + iγ1,

1
2 + iγ2, . . . and let G = {γ1, γ2, . . .}. Put γ0 = 0 and let a0 be

the residue of g(s) at s = 1
2
(a0 = 0 if g(s) is analytic at s = 1

2
) and let aj be the

residue of g(s) at s = 1
2 + iγj (typically the numbers aj have order 1/γj). Define

A(u) = ϕ(k)e−u/2D(eu, k, l1, l2) = h(eu) +Nk(l1)−Nk(l2)

and for each T > 0 let

A∗
T (u) =

∑

|γj |<T

(

1− |γj|
T

)

aje
iγju = a0 + 2ℜ

∑

0<γj<T

(

1− γj
T

)

aje
iγju.

By Theorem 1 of Ingham [I],

(3.1) lim inf
u→∞

A(u) 6 lim inf
u→∞

A∗
T (u) 6 lim sup

u→∞
A∗

T (u) 6 lim sup
u→∞

A(u).

As a consequence, if the numbers {γi : 0 < γi < T} are linearly independent over
the rationals then Kronecker’s Theorem implies

lim sup
u→∞

A∗
T (u) = a0 + 2ℜ

∑

0<γj<T

(

1− γj
T

)

|aj|,

lim inf
u→∞

A∗
T (u) = a0 − 2ℜ

∑

0<γj<T

(

1− γj
T

)

|aj|.

In particular, if all γ1, γ2, . . . are linearly independent over the rationals, then the
above sum over γj tends to ∞ as T → ∞. In this case, by Lemma 2.2 the function
∆(x, k, l1, l2) changes sign infinitely often.

The linear independence property was introduced earlier by Wintner [W1], [W2,
chapter 13], and in [RS] it is called the Grand Simplicity Hypothesis (GSHk): The
set of all γ > 0 such that L( 1

2
+ iγ, χ) = 0 for χ ∈ Ck, are linearly independent over

Q. Note that GSHk implies that all the zeros are simple and that L( 12 , χ) 6= 0 for
all such χ.
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Theorem 3.3 [I]. Assume ERHk and GSHk. Then every function ∆(x, k, l1, l2)
changes sign infinitely often.

It is not possible at the moment to show that any set of γi are linearly indepen-
dent. One way to avoid this is to use a computer to find values of u so that A∗

T (u)
is small or large and use the inequality

lim inf
u→∞

A(u) 6 A∗
T (u) 6 lim sup

u→∞
A(u),

which follows from (3.1) and the almost periodic properties of A∗
T (u).

Stark [St] generalized Ingham’s theorem [St, Theorem 1], in particular showing
that ∆(x, 5, 4, 2) changes sign infinitely often, which neither Knapowski and Turán
nor Kátai could prove with their methods. A limiting case of Stark’s method
allows one to prove results without any knowledge of the non-trivial zeros of L(s, χ)
[St, Theorem 3]. Stark also proved a more general theorem where one compares
π(x, k1, l1) with π(x, k2, l2) with k1 6= k2 (this theorem can also be proved from the
methods of [Ka1]).

Theorem 3.4 [St, Theorem 2 (i)]. Suppose (l1, k1) = (l2, k2) = 1, Nk1
(l1) =

Nk2
(l2) and no L-function in Ck1

∪ Ck2
has a real zero > 1

2 . Then

lim sup
x→∞

ϕ(k1)π(x, k1, l1)− ϕ(k2)π(x, k2, l2)√
x/ logx

> 0.

About the same time, Bateman et al [BBHKS] showed that the linear indepen-
dence condition in Ingham’s theorem could be relaxed considerably with only a
slightly weaker conclusion. Diamond [Di] extended and generalized this result. To
state it, we introduce a notion of weak independence. Let N be a positive integer.
A subset of G, {γj1 , γj2 , . . . , γjm}, is said to be N -independent if for every choice
of integers n1, . . . , nm satisfying |nr| 6 N for each r and

∑m
r=1 |nr| > 2 we have

∑m
r=1 nrγjr 6∈ G. With modest values ofm and N , this can be checked by computer

in a reasonable time.

Theorem 3.5 [Di]. Suppose that {γj1 , γj2, . . . , γjm} is N -independent. Then

lim sup
u→∞

A(u) > a0 +
2N

N + 1

m
∑

r=1

|ajr |, lim inf
u→∞

A(u) 6 a0 −
2N

N + 1

m
∑

r=1

|ajr |.

In light of Lemma 2.2, for every k, l1, l2 it is possible to prove with a finite com-
putation that ∆(x, k, l1, l2) changes sign infinitely often using Diamond’s theorem.
Grosswald [G3] carried out such computations for k ∈ {5, 7, 11, 13, 19}, in each case
proving unconditionally that all functions ∆(x, k, l1, l2) change sign infinitely often.
The cases k = 3, 4 and 6 were settled by Littlewood [Li], k = 8 by Knapowski
and Turán [KT1], and earlier the cases k ∈ {43, 67, 163} were settled by Grosswald
[G2] (important here is the fact that a1 is quite large; this is connected to the class
number of Q(

√
−k) being 1 [BFHR]). We know of no computations for other k.
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Applying Theorem 3.5 with N = 1 and m = 1 gives the unconditional bounds

lim sup
u→∞

A(u) > a0 +max
j>1

|aj|, lim inf
u→∞

A(u) 6 a0 −max
j>1

|aj|.

Kaczorowksi [K2] proposed different method for avoiding full linear independence
of the γi. Let Ω = T∞ denote the infinite dimensional torus, i.e. the topological
product of infinitely many copies of T = {z ∈ C : |z| = 1}. Define the continuous

homomorphism λ(t) = (e2πiγ1t, e2πiγ2t, . . . ). Let Γ = λ(R), the closure of λ(R) in
the Tikhonov topology of Ω. For α = (α1, α2, . . . ) ∈ Ω define uα = (uα1, uα2, . . . )
and let S0 be the stabilizer of Γ, i.e. S0 = {u ∈ T : uΓ = Γ}. As S0 is a
closed subgroup of T , either S0 = T or S0 is a cyclic group generated by a root of
unity. If the numbers γj are linearly independent, Kronecker’s theorem implies that
S0 = T . However, Kaczorowski proves that h(x, k, l1, l2) takes arbitrarily large and
small values on the hypothesis that S0 contains any element other that ±1 ([K2],
Corollaries 4,5). This will be discussed further in §4.
3.4. First sign change.

The problem of bounding the first sign change of ∆(x, k, l1, l2) can be attacked
in a brute-force way by computing all of the primes up to a given limit using the
sieve of Eratosthenes and then tabulate the functions π(x, k, l) directly. Using
modern computers, John Leech [Lee] discovered in 1957 the first negative value in
∆(x, 4, 3, 1), which occurs at x = 26861. It turns out that when k|24, (l, k) = 1
and 1 < l < k that negative values of ∆(x, k, l, 1) are quite rare. In a massive
computation in the 1970s, Bays and Hudson ([BH1]–[BH4]) computed these func-
tions up to x = 1012. In addition to several sign changes in ∆(x, 4, 3, 1), they
discovered sign changes in only three other such functions: ∆(x, 3, 2, 1) with its
first negative value at x = 608, 981, 813, 029, ∆(x, 8, 5, 1) with its first negative
value at x = 588, 067, 889, and ∆(x, 24, 13, 1) with its first negative value near
978, 000, 000, 000.

Computations with the explicit formulas (2.3) but truncated to a sum over ρ
with |ℑρ| 6 T for a fixed T (e.g. T = 10000) provides one with a good sense
of where the sign changes likely occur, since the smaller zeros of (2.3) contribute
the dominant part of the sum. Actually proving that a negative value occurs at
or near x can be done in three ways. First, if x is not too large (say x < 1014

with the latest computers), the above mentioned brute force method can work. For
intermediate x (up to maybe 1020 with today’s technology), one can use Hudson’s
[H1] generalization of the famous Meissel formula to compute exactly the value of
the functions π(x, k, l). As shown by Lagarias, Miller and Odlyzko [LMO], this can
be done in time O(x2/3+ε), compared to time O(x1+ε) required for the brute-force
method. The first author wrote a computer program implementing the algorithm,
and one result is that ∆(1.9282× 1014, 8, 1, 7) < 0.

The third method, which is the only practical one for really large x, is based
on the explicit formulas (2.3). The first papers on the subject are those of Skewes
([Sk1], [Sk2]), who gave in 1955 the first unconditional upper bound on the first sign

change of π(x) − Li(x), namely 1010
1010

3

. Lehman [Leh] showed that the results
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of the computations of the greatly truncated sums (2.3) for the Riemann zeta
function could be made rigorous, in the sense that one could use the calculations to
prove that π(x) > Li(x) somewhere in a short interval of the form [x0, (1 + δ)x0].
Lehman’s method drastically improved the upper bound for the first sign change.
In particular, he proved that it must occur before 1.5926× 101165 and using more
known zeros for the Riemann zeta function his method was used by te Riele [tR]
to lower the bound to 6.6658 × 10370 and by Bays and Hudson [BH5] to lower it
further to 1.39822× 10316. Ford and Hudson [FH] generalized Lehman’s method,
which allowed them to localize sign changes of any linear combination of functions
π(x, k, l), in particular the functions ∆(x, k, l1, l2). A consequence is the following
theorem, proved with the aid of the zeros ρ of L-functions with |ℑρ| 6 10000
([Ru1],[Ru2]).

Theorem 3.6 [FH, Corollary 4]. For each b ∈ {3, 5, 7}, π8,b(x) < π8,1(x) for
some x < 5× 1019. For each b ∈ {5, 7, 11}, π12,b(x) < π12,1(x) for some x < 1084.
For each b ∈ {5, 7, 11, 13, 17, 19, 23}, π24,b(x) < π24,1(x) for some x < 10353.

4. Racing problems

In racing problems for r > 2 virtually nothing is known unconditionally. All
results we know are proven under ERHk; sometimes other assumptions are used.
In the end of this paper we will explain principal difficulties to get unconditional
results in racing problems.

4.1 Conditional Results.
In [K3] Kaczorowski assuming ERHk solves the racing problem in a weak form:

he shows that 1 (mod k) wins and loses infinitely often.

Theorem 4.1 [K3, Theorem 1]. Let k > 3 and assume ERHk. Then there exist
infinitely many integers m with π(m, k, 1) > max

l6≡1 (mod k)
π(m, k, l). Moreover, the

set of m’s satisfying this inequality has positive lower density. The same statement
holds true for m satisfying the inequality π(m, k, 1) < min

l6≡1 (mod k)
π(m, k, l).

In [K5] Kaczorowski showed that certain other orderings of the functions π(x, k, l)
occur for a set of x having positive lower density, but these results are very compli-
cated and we do not state them here. Note that Theorem 4.1 conditionally solves
an average preponderance problem for π(n, 4, 1)−π(n, 4, 3) as it stated in problem
5 of section 1, (1.2). It shows that under ERH4,

lim inf
x→+∞

N(x)

x
> 0.

This inequality could also be deduced from Wintner [W1].
In [K3] Kaczorowski assuming ERHk solves the racing problem modulo 5 for the

function ψ. So, for any permutation (l1, l2, l3, l4) of the sequence (1, 2, 3, 4) there
exist infinitely many integers m with

(4.1) ψ(m, 5, l1) > ψ(m, 5, l2) > ψ(m, 5, l3) > ψ(m, 5, l4).
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No doubt, more extensive (maybe, technically not feasible) calculations can give
the same assertion for the function π(x, 5, l). Moreover, one can try do the same
job for other moduli.

All results on sign changes of the functions ∆(x, k, l1, l2) make use of some kind
of almost periodicity of the sums in (2.3). For example, the work of Knapowski
and Turán depends on results from Turán’s power sum methods [T]. Kaczorowski
takes a different approach, replacing x in (2.3) by ez where z is a complex variable.
This gives the so-called k-functions [K1]. For ℑz > 0 and χ ∈ Dk he defines

k(z, χ) =
∑

ℑρ>0

eρz

and

K(z, χ) =

∫ z

i∞

k(s, χ)ds =
∑

ℑρ>0

1

ρ
eρz

where the summation is taken over all nontrivial zeros of L(s, χ) with positive
imaginary parts. Further, for (l, k) = 1, 0 < l 6 k the following functions are
defined

F (z, k, l) = −2e−z/2 1

ϕ(k)

∑

χ (mod k)

χ(l)K(z, χ′)− 2

ϕ(k)

∑

χ (mod k)

χ(l)m(
1

2
, χ),

where χ′ denotes the primitive Dirichlet’s character induced by χ and m( 1
2
, χ) is

the multiplicity of a zero of L(s, χ) at s = 1
2 (m( 12 , χ) = 0 when L( 12 , χ) 6= 0).

Historically, the k-functions were introduced by Cramér ([Cr1], [Cr2]) in connec-
tion with the Riemann zeta function and the Dedekind zeta functions.

For real x let P (x, k, l) = limy→0+ ℜF (x + iy, k, l). It can be proved that the
limit exists for all real x, and that P (x, k, l) is piecewise continuous. Moreover, we
have (cf. (2.3))

P (x, k, l) = e−x/2

(

ψ(ex, k, l)− ex

φ(k)

)

+ E(x, k, l),

where |E(x, k, l)| = O(xe−x/2) (x > 1). Even though E(x, k, l) is very small,
its behavior near x = 0 is important to many of the applications. Important
in Kaczorowski’s analysis is the property that for fixed y = ℑz > 0 each func-
tion F (x + iy, k, l) is almost periodic in the sense of Bohr, and further the func-
tions P (x, k, l) are almost periodic in the sense of Stepanov (see e.g. [Be] for
definitions and properties of various types of almost periodic functions). A conse-
quence ([K3], Lemma 3) is that for every number x0 and every ε > 0, the vector
V (x) = (P (x, k, l1), . . . , P (x, k, ln)) satisfies ‖V (x) − V (x0)‖ 6 ε for a set of x
having positive lower density. Thus, finding a single point x0 with

P (x0, k, lj1) > P (x0, k, lj2) > · · · > P (x0, k, ljn)
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implies that the same inequality occurs for a set of x having positive lower density.
Computing P (x, k, l) is easy for small x, and to prove Theorem 4.1, Kaczorowski
finds appropriate x0’s in a small neighborhood of 0.

The proof of Kaczorowski’s theorem mentioned in §3.3 uses the fact that the
function F (z, k, l) has logarithmic singularities at the points± log(pm) where pm ≡ l
(mod k), and thus ℑF (z, k, l) is unbounded in a vicinity of these points. Adopting
the notation from §3.3, let ζ ∈ S0, ζ 6= ±1. Then, for fixed y > 0 the function
F (x+iy, k, l) exhibits a kind of “twisted” almost periodicity, namely for every ε > 0
there is a number w so that

sup
x∈R

|F (x+ iy, k, l)− ζF (x+ w + iy, k, l)| 6 ε.

Since ζ 6= ±1, this implies that the real part of F (z, k, l) is unbounded in the upper
half plane, and this can be used to prove that P (x, k, l) is unbounded.

The paper [K6] contains a nice overview of Kaczorowski’s methods and results.
In addition, one can define k-functions for a wide class of L-functions occurring in
number theory and use them to study oscillations and distribution of various “error
terms” in prime number theory [KR].

The racing problem has been extensively investigated by Rubinstein and Sarnak
[RS]. Let P ⊂ (0,+∞),

δ(P ) = lim sup
X→∞

1

logX

∫

t∈P∩[2,X]

dt

t
,

δ(P ) = lim inf
X→∞

1

logX

∫

t∈P∩[2,X]

dt

t
.

If the latter two quantities are equal, the logarithmic density δ(P ) of the set P is
their common value. The problem is to study the existence of and to estimate the
logarithmic density of the set

Pk;l1,...,lr = {x > 2 : π(x, k, l1) > π(x, k, l2) > · · · > π(x, k, lr}.
Introduce the vector valued functions

Ek;l1,...,lr(x) =
log x√
x

(ϕ(k)π(x, k, l1)− π(x), . . . , ϕ(k)π(x, k, lr)− π(x)).

Theorem 4.2 [RS, Theorem 1.1]. Assume ERHk. Then Ek;l1,...,lr has a limiting
distribution µk;l1,...,lr on Rr, that is

lim
X→∞

1

logX

∫ X

2

f(Ek;l1,...,lr(x))
dx

x
=

∫

Rr

f(x)dµk;l1,...,lr

for all bounded continuous functions f on Rr.

If it turns out that if the measure µk;l1,...,lr is absolutely continuous then

δ(Pk;l1,...,lr) = µk;l1,...,lr({x ∈ Rr : x1 > · · · > xr}).
However, the authors of [RS] write that assuming only ERHk they don’t know that
δ(Pk;l1,...,lr) exists.

The measures µ are very localized but not compactly supported. Let B′
R = {x ∈

Rr : |x| > R}, B+
R = {x ∈ B′

R : ε(lj)xj > 0}, B−
R = −B+

R , where ε(l) = 1 if l ≡ 1
(mod k) and ε(l) = −1 if l 6≡ 1 (mod k).
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Theorem 4.3 [RS, Theorem 1.2]. Assume ERHk. Then there are positive con-
stants c1, c2, c3, c4, depending only on k, such that

µk;l1,...,lr(B
′
R) 6 c1 exp(−c2

√
R),

µk;l1,...,lr(B
±
R ) > c3 exp(− exp(c4R)).

The second inequality gives a quantitative version of the theorem from [K3].
Montgomery [Mo], using ERH1 (the Riemann Hypothesis) and GSH1, investi-

gated the tails of µ1 = µ1:1. He showed that

exp(−c2
√
R exp

√
2πR) 6 µ1(B

±
R ) 6 exp(−c1

√
R exp

√
2πR).

Rubinstein and Sarnak [RS] under ERHk and GSHk have found an explicit formula
for the Fourier transform of µk;l1,...,lr . Special cases of the formula were proven
earlier in [W1] and [Ho]. The formula implies that, for r < ϕ(k), µk;l1,...,lr = f(x)dx
with a rapidly decreasing entire function f . As a consequence, under ERHk and
GSHk each δ(Pk;l1,...,lr) does exist and is nonzero (including the case r = ϕ(k)).
Hence, conditionally the solution to the racing problem is affirmative.

Also in [RS] is a procedure for calculating δ(Pk;l1,... ,lr) using known zeros of
L-functions ([Ru1],[Ru2]). In particular, they compute δ(P4;3,1) = 0.9959 . . . , thus
giving a quantitative version of Chebyshev’s statement. Although for small k many
of the densities are quite large, as k → ∞ they become more uniform.

Theorem 4.4 [RS, Theorem 1.5]. Assume ERHk and GSHk for all k > 3. For
r fixed,

max
l1,... ,lr

∣

∣

∣

∣

δ(Pk;l1,... ,lr)−
1

r!

∣

∣

∣

∣

→ 0 as k → ∞.

We say that k; l1, . . . , lr is unbiased if µk;l1,...,lr is invariant under permutations
of (x1, . . . , xr). In this case δ(Pk;l1,...,lr) = 1/r!.

Theorem 4.5 [RS, Theorem 1.4]. Assume ERHk and GSH. Then k; l1, . . . , lr
is unbiased if and only if either r = 2 and Nk(l1) = Nk(l2), or r = 3 and l2 ≡ l1g
(mod k), l3 ≡ l1g

2 (mod k), where g3 ≡ 1 (mod k).

Feuerverger and Martin [FM] computed numerous densities for small moduli
k, studying in particular the cases where r > 3, k; l1, . . . , lr is not unbiased and
Nk(l1) = · · · = Nk(lr), e.g. 8; 3, 5, 7. Curious inequities occur in these cases, which
can be “explained” in terms of distribution properties of the functions Ψ(x, χ) (see
(2.3) and also [Ma]). Computation of the densities when r > 3 is very complex
using the methods in [RS] or [FM]. A much simpler and faster method (but less
rigorous) is given in [BFHR].

Rubinstein and Sarnak also studied the union problem mentioned in problem 9
in section 1. Suppose k > 3, let A be the set of quadratic non-residues modulo k
and let B be the set of quadratic residues. Define

Pk;N,R =







x > 2 :
∑

p∈A,p6x

1 >
|A|
|B|

∑

p∈B,p6x

1







.
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With k restricted to integers possessing a primitive root (again assuming ERHk and
GSHk), in [RS] it is proved that δ(Pk;N,R) → 1

2
as k → ∞, although the convergence

is far from monotone. In fact there is a connection between the values of δ(Pk;N,R)

and the class number of the imaginary quadratic field Q(
√
−d) [BFHR].

4.2 Barriers to unconditional results.

One may ask if a racing problem for r > 2 may be solved without the assumption
of ERHk, since the problem of proving infinitely many sign changes of ∆(x, k, l1, l2)
is easier if g(s, k, l1, l2) (cf. end of section 2) has a pole with real part > 1/2 and
no real poles > 1/2. Since it is believed that the sets of zeros for each L(s, χ) are
disjoint, this condition essentially says that ERHK is false.

In particular, can it be shown, for some quadruples (k, l1, l2, l3), that the 6
orderings of the functions π(x, k, lj) occur for infinitely many integers x, without the
assumption of ERHk (while still allowing the assumption of Haselgrove’s condition
and/or that zeros with imaginary part < Rk lie on the critical line for some constant
Rk)? Recently we have answered this question in the negative (in a sense) for all
quadruples (k, l1, l2, l3) [FK]. Thus, in a sense the hypothesis ERHk is a necessary
condition for proving any such results when r > 2.

Let D = (k, l1, l2, l3), where l1, l2, l3 are distinct residues modulo k which are
coprime to k. Suppose for each χ ∈ Ck, B(χ) is a sequence of complex numbers
with positive imaginary part (possibly empty, duplicates allowed), and denote by
B the system of B(χ) for χ ∈ Ck. Let n(ρ, χ) be the number of occurrences of the
number ρ in B(χ). The system B is called a barrier for D if the following hold: (i)
all numbers in each B(χ) have real part in [β2, β3], where

1
2 < β2 < β3 6 1; (ii) for

some β1 satisfying 1
2
6 β1 < β2, if we assume that for each χ ∈ Ck and ρ ∈ B(χ),

L(s, χ) has a zero of multiplicity n(ρ, χ) at s = ρ, and all other zeros of L(s, χ) in
the upper half plane have real part 6 β1, then one of the six orderings of the three
functions π(x, k, lj) does not occur for large x. If each sequence B(χ) is finite, we
call B a finite barrier for D and denote by |B| the sum of the number of elements
of each sequence B(χ), counted according to multiplicity.

Theorem 4.6 [FK]. For every real numbers τ > 0 and σ > 1
2 and every D =

(k, l1, l2, l3), there is a finite barrier for D, where each sequence B(χ) consists of
numbers with real part 6 σ and imaginary part > τ . In fact, for most D, there is
a barrier with |B| 6 3.

We do not claim that the falsity of ERHk implies that one of the six orderings
does not occur for large x. For example, take σ > 1

2
, and suppose each non-principal

character modulo k has a unique zero with positive imaginary part to the right of
the critical line, at σ + iγχ. If the numbers γχ are linearly independent over the
rationals, it follows easily from Lemma 4.1 below and Kronecker’s Theorem that
in fact all φ(k)! orderings of the functions {π(x, k, l) : (l, k) = 1} occur for an
unbounded set of x.

As an example, we will demonstrate the existence of a barrier in a more simple
situation: r = 4, k = 5, lj = j (j = 1, 2, 3, 4). By (2.2)–(2.4) we have the following
lemma.
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Lemma 4.1. Let β >
1
2 , x > 10 and for each χ ∈ Ck, let B(χ) be the sequence of

zeros (duplicates allowed) of L(s, χ) with ℜs > β and ℑs > 0. Suppose further that
all L(s, χ) are zero-free on the real segment 0 < s < 1. If (l1, k) = (l2, k) = 1 and
x is sufficiently large, then

φ(k)∆(x, k, l1, l2) = −2ℜ











∑

χ∈Ck

(χ(l1)− χ(l2))
∑

ρ∈B(χ)
|ℑρ|6x

f(ρ)











+O(xβ log2 x),

where

f(ρ) :=
xρ

ρ logx
+

1

ρ

∫ x

2

tρ

t log2 t
dt =

xρ

ρ log x
+O

(

xℜρ

|ρ|2 log2 x

)

.

Here the constant implied by the Landau O-symbol may depend on k, but not on
any other variable. Take χ1 ∈ C5 so that χ1(1) = 1, χ1(2) = i, χ1(3) = −i, χ1(4) =
−1. Let t be a large positive number. Take σ > 1

2
, B(χ1) = {σ+ it}, B(χ) = ∅ for

χ ∈ C5 \ {χ1}. We use Lemma 4.1 with 1
2 < β < σ. For ρ = σ + it we have

(4.2) f(ρ) =
−xσ
t logx

xiti+O

(

xσ

t2 log x

)

.

We claim that in this situation the inequality

(4.3) π(x, 5, 1) > π(x, 5, 4) > π(x, 5, 2) > π(x, 5, 3)

cannot occur for large x. Indeed, by Lemma 4.1 and (4.2), for large x (depending
on σ, β) we have

(4.4) π(x, 5, 1)− π(x, 5, 4) =
xσ

t log x
ℜ(xiti) +O

(

xσ

t2 log x

)

,

(4.5) π(x, 5, 4)− π(x, 5, 2) =
xσ

t log x
ℜ(xit(−1/2− i/2)) +O

(

xσ

t2 log x

)

,

(4.6) π(x, 5, 2)− π(x, 5, 3) =
xσ

t logx
ℜ(xit) +O

(

xσ

t2 log x

)

.

It is not difficult to prove that for any t

min(ℜ(xiti),ℜ(xit(−1/2− i/2)),ℜ(xit)) 6 −
√
0.1.
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Therefore, the estimates (4.4)–(4.6) imply

min(π(x, 5, 1)− π(x, 5, 4), π(x, 5, 4)− π(x, 5, 2), π(x, 5, 2)− π(x, 5, 3))

6 − xσ√
10t log x

+O

(

xσ

t2 log x

)

.

For large t this does not agree with (4.3).
For r = 3 our construction of finite barriers is more difficult. It uses multi-

ple zeros or zeros of several functions L(s, χ) simultaneously. However, answering
a question posed by Peter Sarnak, in [FK] for many quadruples (k, l1, l2, l3) we
construct a barrier (with an infinite set B(χ)) where the imaginary parts of the
numbers in the sets B(χ) are linearly independent; in particular, we assume all
zeros of each L(s, χ) are simple, and L(s, χ1) = 0 = L(s, χ2) does not occur for
χ1 6= χ2 and ℜs > β2.

So, the results of [FK] show that there are barriers blocking for large x some
ordering of each triple of functions π(x, k, li) (i = 1, 2, 3). One can ask about
barriers blocking some other natural (and usually proven under ERHk) properties
studied in comparative prime–number theory. We can prove the following results
(a paper is in preparation) concerning the problems 5–7 from section 1:

(1) For many k, l1, l2, barriers blocking the property

lim sup
x→+∞

card{n 6 x : π(n, k, l1) > π(n, k, l2)}
x

> 0;

(2) For many k, l1, l2, barriers blocking the property

π(xν , k, l1) >
1

ϕ(k)
Li(xν) and π(xν, k, l2) >

1

ϕ(k)
Li(xν)

for an unbounded sequence xν ;
(3) For many k, barriers blocking the existence of a sequence xν → ∞ such that

π(xν , k, 1) < min
l
π(xν, k, l) or π(xν , k, 1) > max

l
π(xν , k, l).
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