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ELLIPTIC CURVES AND PRIMALITY PROVING

A. O. L. ATKIN AND F. MORAIN

Dedicated to the memory ofD. H. Lehmer

Abstract. The aim of this paper is to describe the theory and implementation

of the Elliptic Curve Primality Proving algorithm.

Problema, números primos a compositis dignoscendi, hosque in factores suos

primos resolvendi, ad gravissima ac utilissima totius arithmeticae pertinere, et

geometrarum turn veterum turn recentiorum industriam ac sagacitatem occu-

pavisse, tarn notum est, ut de hac re copióse loqui superfluum foret.

C. F. Gauss [38, Art. 329]

1. Introduction

Primality testing is one of the most flourishing fields in computational num-

ber theory. Dating back to Gauss, the interest has recently risen with modern

cryptology [16]. For quite a long time, it has been known that one could quickly

recognize most composite numbers using Fermat's little theorem. For crypto-

graphical purposes, this idea was extended and it has yielded some fast prob-

abilistic compositeness algorithms (for this, we refer to [52], the introduction

of [28], and [9]). On the other hand, testing an arbitrary number for primality

depended on integer factorization. For this era, see [18, 92, 95]. The reader

interested in large or curious primes is referred to [80] as well as [68].

The year 1979 saw the appearance of the first general-purpose primality test-

ing algorithm, designed by Adleman, Pomerance, and Rumely [3]. The running
time of the algorithm was proved to be (^((logA'y108108108^) for some effective

c > 0. This algorithm was simplified and made practical by H. W. Lenstra

and H. Cohen [28] and then successfully implemented by H. Cohen and A. K.

Lenstra [27]. Motivated by our results with elliptic curves (see below), the algo-

rithm was recently optimized by Bosma and Van der Hülst [15] (see also [60]).

However, it is not possible to check the results of this algorithm independently

without rewriting and rerunning the entire program; by contrast, our algorithm

gives a "certificate" which enables a second programmer to verify our proof in

a time much shorter than the original time.
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In 1985, H. W. Lenstra (Jr.) introduced the use of elliptic curves in fac-

torization. There was then hope to find a similar use for primality testing.

This was first done by Goldwasser and Kilian [40] using the architecture of

the DOWNRUN algorithm of [97] together with a theoretical algorithm due
to Schoof [83]. They found that this algorithm recognizes primes in expected

random polynomial time, at least assuming some very plausible conjectures in

analytic number theory. Almost simultaneously, the first author [4] designed a

practical algorithm based on the same ideas, but using results from the theory

of elliptic curves over finite fields (see also [25] and [14] for a first insight).

From a practical point of view, this algorithm is faster and yields a proof that

the computation is correct in the form of a list of numbers by means of which

one can easily check the primality properties (see § 10). In another direction, the

theory of elliptic pseudoprimality tests and elliptic pseudoprimes was introduced

[41,61,8].
Shortly afterwards, Adleman and Huang announced [2] that they designed a

primality testing algorithm using curves of genus two whose expected running

time is also polynomial, but without any unproven hypothesis. As for now, it

seems that this algorithm has not been implemented.

The purpose of this paper is to describe the test due to the first author (which

is known as the Elliptic Curve Primality Proving—ECPP—algorithm), together

with the implementations made by the authors (other implementations include

that of D. Bernardi for the class number one case and more recently that of

Kaltofen, Valente and Yui [49] and that of Vardi (personal communication,

August 1989) for the Mathematica system).

Since there are considerable differences of detail between the implementa-

tions of the two authors, we have decided for the sake of clarity to present the

algorithm solely as implemented by the second author. We make a few historical

remarks in §8.1.
The plan of the paper is as follows. In §2, we recall some well-known prop-

erties of quadratic forms and fields necessary for presenting §3, which deals

with the theory of Hubert class fields of imaginary quadratic fields via modular

forms. At this point, we introduce Weber's functions as well as Dedekind's n .

In §4, we present the relevant theory of elliptic curves in a manner similar to

that of [57]: This unified approach is well suited for our purpose, which goes

from classical elliptic curves over C to curves over a finite field. Section 5 is

concerned with primality testing using elliptic curves as used by Goldwasser and

Kilian on the one hand, and the first author in his designing the ECPP algorithm

on the other. A path towards analyzing ECPP is made in §6: We present some

heuristic arguments concerning the ability for a number to be good with respect

to ECPP as well as the probability of failure of a weak version of ECPP. In

§7, we develop an efficient algorithm for constructing the Hubert class field of

an imaginary quadratic field by means of the functions introduced in §3. At

this point, we introduce the concept of Weber polynomials and we detail a fast

algorithm to compute the factorization of Weber polynomials over their genus
field. In §8, we detail the computational routines we use in the implementation:

Section 9 contains some typical running times for numbers of less than 300 dig-

its and also some running times for larger numbers, most of all taken from [19]

or discovered by the authors. Section 10 is briefly concerned with the second

problem mentioned above, namely that of the actual proof we get by ECPP.
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Notation. Throughout the paper, N will denote a probable prime, which means

that A^ was not declared composite by any of the probabilistic primality testing

algorithms which were used.

Historical note. The basic algorithm was designed and implemented by the
first author in 1986. In 1987, the second author implemented a version of the

algorithm based on a paper of Cohen [26]. In May 1989, the two authors met

and merged part of their ideas to come up with the present paper, a longer

version of which is available as [6].

2. Some properties of quadratic forms and fields

Our aim is to recall basic properties of quadratic forms and fields that are

necessary for the following sections. We introduce first quadratic forms that

are easy to compute with, and then quadratic fields that are well suited for

explaining the theory. These are two sides of the same object.

2.1. Quadratic forms. The following results are well known and can be found

in [35, 30]. Let -D be a fundamental discriminant, i.e., D is a positive

integer which is not divisible by any square of an odd prime and which satisfies

D = 3mod4 or D = 4, 8mod 16. We can factor -D as q\---q* , where

q* = (-l)^q~x^2q if q is an odd prime and -4 or ±8 otherwise. In the

sequel, the q¡ 's are supposed to be ordered as follows: if D = 0 mod 4, then

qx — 4 or 8. Then the q 's with q* = q are listed in increasing order and finally

the q 's with q* = -q , also in increasing order. We put / = #{/, q* = <?,}. It

is easy to see that

(1) t-l-1=0    mod2.

A quadratic form of discriminant -D is a 3-tuple of integers (a, b, c) such

that b2 - 4ac = -D. There is a correspondence between the set of quadratic

forms and the set of 2x2 matrices with half integer coefficients. With Q =

(a, b, c), we associate the 2x2 matrix

Two forms Q and Q' of the same discriminant are said to be equivalent (or

Q ~ Q') if there exists N in SL2(Z) (i.e., a 2x2 integer matrix with deter-

minant 1 ) such that
M(Q') = N~lM(Q)N.

This clearly defines an equivalence relation on quadratic forms. It can be shown

that

Proposition 2.1. Each equivalence class contains exactly one form (a, b, c) with

a, b, c relatively prime and satisfying \b\ < a < c and (\b\ = a or a = c =>

b > 0). Such a form is called reduced.

There is an algorithm that computes a reduced form equivalent to a given

form: we refer to the literature for this [85].

The set of primitive reduced quadratic forms of discriminant -D, denoted

by %?(-D), is finite (for \b\ < \fDß if (a, b, c) is reduced). Moreover, it
is possible to define an operation on classes that gives to %?(-D) the structure
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of an Abelian group. This operation is called the composition of classes and is

ordinarily written multiplicatively. For the actual computation, we refer to [85].

The order of %*(—D) is denoted by h(—D). The neutral element FD is called

the principal form. It is equal to (1,0, D/4) or (1, 1, (D + l)/4) according
as D = 0 or 3 (mod 4).

Let C = (a, b, c) be an element of %*(—D). For (x, y) in 7?, put

C(x, y) — ax2 + bxy + cy2 and assume that a is prime to D (otherwise
consider c instead of a, since a and c cannot both have a common factor

with D). Let p be a rational prime. The equation p = C(x, y) has a solution

in (x, y) only if the following conditions are satisfied:

<2>     (tH - (f)-(f)-  '«'-•
(¿fc'nfi write 4a/? = (2ax + èy)2 + Dy2.)

Put z,(a) = Xi(C) - (a/q¡) for all i. This defines a map from ß?(—D) to

Z, = {±1}' by

(3) -H»-*.

The following theorem was proven by Gauss:

Theorem 2.1. The map E is onto: If we start from e = (ex, ... , et) satisfying

[[¡et — +1, we can find a C such that 3(C) = e. Moreover, E is a homo-

morphism. The associated cosets are called the genera and they inherit the group

law. Each coset has cardinality e = h/g, where g = 2'"1 .

We define the principal genus as Go = E~[(+l, ... , +1). For each genus

Gi, we can find C, in ßf(-D) such that G, = C¡Gq . Thus, the product of the
genera G, = C¡Go and G¡ = CjGq is G\ with C*. = C, • Cj.

A prime p which is representable by a form of G, is said to belong to (7,
(this is denoted by p € G¡(-D)).

2.2. Quadratic fields. Consider now K = Q(\/-D). The extension K/Q is

Abelian of degree 2, of Galois group {1, t} , where x denotes complex conju-

gation. The ring of integers of K is @k = Z[co], where

^-Dj4      if/) = 0mod4,

y=^   1 + s/^D
otherwise.

The conjugate of an element a = x + yœ is a' = r(a) = x + yT(<y). The trace

(resp. the norm) of a is Tk(q) = a + x(a) (resp. Nk(q) — ax(a)). If a is

an element of K, its associates are the va, where v is any unit of K (that is,

N¡c(v) = 1). The number of units is denoted by w(-D) and is equal to 6, 4,

or 2 according to D equal to 3, 4, or > 4.

The decomposition of the ideal (p) in K is given by the following theorem:

Proposition 2.2. If (-D/p) = +1, the ideal (p) splits as the product of two

distinct ideals in K. If (-D/p) = 0, (p) ramifies, and if (-D/p) = -\ , it is
inert.

We conclude this section with
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Proposition 2.3. The equation p = Nk(ti) has a solution in cffc if and only if

(p) splits as the product of two principal ideals in K. This is equivalent to saying

that p is represented by the principal form of discriminant -D. In other words:

4p = A2 + DB2 with A and B in Z.

If p is representable by the principal form of discriminant -D, we shall

say that "/? is a norm in Q(y/-D) " or simply up is a norm" when the context

is clear. Conversely, we shall say that " -D is good for p " if p is a norm.

Thus, in general, (-D/p) = 1, that p splits in Q(y/-D), and even that p is

representable by a form of the principal genus, are all necessary conditions for

p to be a norm.

2.3. Genus field. The genus field of K is Kg- = Q(^/qf, ... , s/qf), the q¡
being described above. The field ¥,%> is the maximal unramified extension of K

that is Abelian over Q. The Galois group of K^/Q is isomorphic to (Z/2Z)'.

We recall that the Artin symbol associated with the quadratic form C (in

fact with the genus G containing C) is (see [29]):

^/K^/KV  (Xl(G),...,x,(G)),

with Xi(G) = (q*/p), where (p) = pp' is any prime number represented by a

form of G and p the ideal above p in K.

3. Modular forms

3.1. The modular group and the modular invariant j. We follow [84]. The

modular group is defined to be T = SL2(Z)/{±1}. An element g = (acbd) of

T acts on H = {z e C, Im(z) > 0} by

__ az + b
gz~cT+d~-

It is known that Y is generated by S and T where

0 -1\ (1    1

1 0 J ' \0    1

A modular form of weight 2k (k any integer) is a function meromorphic ev-

erywhere on H and at infinity, satisfying

v(«   J)eSL2(Z),VzeH,    f(z) = (cz + d)-2kf(^±^j.

If the form is holomorphic everywhere (which implies k > 0 for nonconstant

forms), we say that the form is regular.

Let L( 1, co) = Z + coZ be a lattice in C   (co e H). Put

G^=      E      (mco + n)2k'

for k > 1. If k > 1, then G2k(L) is a regular modular form of weight 2k.
We put gi(L) = 6OG4 , gi(L) = 140^6 , and A = g\ - 21 g2 : these are regular
modular forms of weight 4, 6, and 12, respectively. The modular invariant is

then j = 123g|/A. We have
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Proposition 3.1. The function j is a modular function (i.e., a modular form of

weight 0), is holomorphic in H, and has a simple pole at infinity. The function

j is a complex analytic isomorphism from H/r to C.

One can show that the ^-expansion of j is (cf. [84])

(4) ;(«) = ^ + 744 + J>„<7n,

n>\

where the cn are positive integers. For a survey of the arithmetical and numer-

ical properties of the c„ , see, for instance, [84, 63].

3.2. Complex multiplication for lattices. Let L = L( 1, co) be a lattice in C.

Put M(L) = {a e C, aL c L}. It is clear that Z c M(L). When M(L) is
greater than Z, we say that L has complex multiplication. It can be shown [53,

Chapter 1] that if L has complex multiplication, then co belongs to a complex

quadratic field K = Q(y/-D). Then M(L) is an order of K, that is, a ring

which is a free submodule of rank 2 over Z of cf¡c, the ring of integers of K.

3.3. Class field theory of imaginary quadratic fields. Class field theory is one of

the most remarkable achievements of mathematics. One of its motivating prob-

lem was the construction of the maximal unramified Abelian extension of an

imaginary quadratic field (for a modern presentation of the classical approach,

see [13]). An algebraic treatment was given by Deuring [34]. The theory was

generalized in [87]. In the present paper, we only need to use a comparatively

small part of the theory, which we specify below.

Let -D bea fundamental discriminant and K = Q(\/-D). The Hubert
Class Field of K is the maximal unramified Abelian extension of K and is

denoted by KH (see [34]). We have (see [13, 91]):

Theorem 3.1. The field Kh can be obtained by adjoining to K any value jr =

j(cor), where cor is the complex number associated with Cr, i.e., cor = co(Cr) =

(-br + iVD)/(2ar) with Cr = (ar, br, cr) in ß?(—D). The minimal polynomial

of the jr 's is denoted by Hd(X) . It follows that KH is precisely the splitting

field of HD(X).
The Galois group Z// o/Kh/K is isomorphic to %?(—D). If C is an element

of %?\-D), the corresponding element oc ofLn acts on j(C') by

(5) ac(i(C)) = j(C-'-C).

We also require the following (see [31, 33]):

Theorem 3.2. A rational prime p is a norm in K if and only if (p) splits

completely in Kh . This is equivalent to saying that Hd(X) (mod/?) has only

simple roots and they are all in Z/pZ. Moreover, we have that

4p = A2 + DB2

has a solution in rational integers (A,B) if and only if Hd(X) splits completely

modulo p.

The last statement follows from Proposition 2.3.
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3.4.   Dedekind's and Weber's functions.   Let z be any complex number and

put q = exp(2inz). Dedekind's n function is defined by [91, §24, p. 85]

(6) t](z) = q1>24l[(l -qm).

We can expand n as [91, §34, p. 112]

(7) n(z) = q1'24 [ 1 + ^(-l)"^"«3"-1)/2 + q"^"+iy2)

The function n is a modular form of weight 1/2 with a complicated multiplier

function.
If we let C« stand for exp(2in/n), the Weber functions are [91, §34, p. 114]

(8) f(z) = C,
,i?((z+l)/2)

n(z)

(9, M.)-*$.

M.)-**$.(10)

and [91, §54, p. 179]

(12) ».w+w-to.

We can reconstruct the modular invariant j through [91, §54, p. 179]:

We also note the following transformation formulas [91, §34, p. 113]. First,

(14) n(z + I) = ^»(z),        t1(-l/z) = ^zTiri(z),

from which

(15) f(z+l) = Qslfx(z),     fx(z+l) = C^f(z),     f2(z + 1) = Ç24fi(z)

and

(16) f(-l/z) = f(z),     f(-l/z) = f2(z),     h(-l/z) = fx(z).

4. Elliptic curves

4.1. Definition. We follow Lenstra [57]. Let k be a field of characteristic 0

or prime to 6. Let P2(k) be the projective plane over k. The equivalence class

containing (x, y, z) is denoted by (x : y : z).

An elliptic curve is a pair E = (a, b) (which we sometimes write as E(a, b))

of elements of k such that A¿ = - 16(4a3 + 27è2) ^ 0. This quantity is called
the discriminant of the curve E. We also define the invariant of the curve

j(E) = 2833a3/(4a3 + 27¿>2).
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The set of points of E over k is:

E(k) = {(x : y : z) e P2(k), y2z = x3 + axz2 + bz3}.

There is exactly one point of E(k) with z = 0, namely (0:1:0), called the

point at infinity, denoted by Oe . The set E(k) can be made an Abelian group

with an operation denoted by + using the tangent-and-chord method. Suppose

temporarily that k = R. Then E(R) is a projective curve that we can look

at. In order to add two points Mx and M2 resulting in Ms, we draw the line

MXM2 (or the tangent if Mx = M2). This line intersects E in a third point, P,

whose reflection in the x-axis yields the sum M-¡ = Mx + M2. The symmetric

of a point M = (x : y : z) is -M = (x : -y : z), and the neutral element is the

point at infinity. From a practical point of view, the coordinates of a nontrivial

M3 are
X3 = A   — XX — X2 ,

y3 =k(xx -X))-yx,

where
¡_((y2-yi)(x2-xx)-]   ifx2#x,,

\ (3x2+ a)(2yi)_1 otherwise.

We can compute kP using the binary method [52] (see also [27]) or addition-

subtraction chains [71].

Figure 1. An elliptic curve over R

The same equations are used to define the group law for arbitrary k.

An isomorphism between E(a, b) and E(a!, b') is defined to be an element

u in kx such that a' = u4a and b' = u6b. Such an isomorphism induces an

isomorphism between E(a, b)(k) and E(a!, b')(k) by sending (x : y : z) to

(u2x : u3y : z). An automorphism of E is an isomorphism from E to E.

The group of automorphisms has at most six elements [57]. For most of the

curves, it is of order 2.
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4.2. k = Z/pZ. Let p be a prime number greater than 3. Let E be an

elliptic curve defined over Z/pZ. We do not intend to explain Deuring's work
concerning its reduction modulo p , but the interested reader may consult [53,

Chapter 13] and the references given there. It can be shown that E can be

described as the reduction modulo p of an elliptic curve E(C) with complex

multiplication by an order of a quadratic field K = Q(\/-D).
From a practical point of view, one can construct a curve which has complex

multiplication by the ring of integers of Q(^-D) in the following way. Suppose

that p is a norm in K: (p) = pp' = (?t)(?t') and p splits completely in KH as

p = <Pj ...<pA (with h = h(-D)). The polynomial HD(X) splits completely
modulo p. Let j be any root of Ho modulo p and E an elliptic curve of

invariant /'. Then #E(Z/pZ) =p+l-TrK(n) =p+l-A with \A\ < 2^/p (this
theorem was originally proved by Hasse) and E has complex multiplication by

the ring tfK.
Concerning the structure of E(Z/pZ) as an Abelian group, we have [22]:

Theorem 4.1. The group E(Z/pZ) is either cyclic or the product of two cyclic

groups of order mx and m2 that satisfy

(17) mx\m2,       mx\gcd(m,p-l),

where m = #E(Z/pZ).

5. PRIMALITY TESTING

5.1. Traditional primality testing and the DOWNRUN process. Before the

advent of the Jacobi sums algorithm, the main method for primality testing was

to use some known factors of N' - 1, ¿=1,2,3,4,6, involving either some
converse of Fermat's theorem, or Lucas sequences or a generalization thereof.

The simplest way to prove that an odd number N is prime is to prove that

the group (Z/NZ)X is cyclic (and that N is not a prime power). For this, we

need only to exhibit a generator of this group. This yields the following theorem.

(This is not the optimal theorem, but we cite it for the sake of simplicity.)

Theorem 5.1. If there exists an a prime to N such that aN~l = 1 mod N but

a(N-i)/q ^ i mocj ̂ y for evety prime divisor q of N - 1, then N is prime.

Of course, we need to factor N - I. Starting with a number No, a favorable

situation occurs whenever we can completely factor No - 1 or we find that

TVo - 1 has a large factor Nx which is probably prime: such a number No

we call probably factored. The problem is then reduced to proving that Nx is

prime. Also, we can use some factors of Nj - 1 to help us in our job.

This idea forms the DOWNRUN process of [97]: Build a decreasing sequence

of probable primes No > Nx > ■ ■ ■ > Nk such that the primality of Ni+X implies

that of N¡ (see [52, pp. 376-377]). Indeed, this is a factor and conquer method.

The problem is that for each A7,, there is only a limited number of candidates

that we can try to factor. We will see that this difficulty is overcome when using

elliptic curves.

5.2. The Goldwasser-Kilian algorithm.   From [40], we have:

Theorem 5.2. Let N be an integer prime to 6, E an elliptic curve over Z/NZ,

together with a point P on E and m and s two integers with s \ m.   For
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each prime divisor q of s, we put (m/q)P = (xa : yq : za). We assume that

mP = Oe and gcd(z9, N) = 1 for all q. Then, if p is a prime divisor of N,
one has #E(Z/pZ) = Omodi.

We have also:

Corollary 5.1. With the same conditions, if s > (\/~Ñ + I)2, then N is prime.

Combining this theorem with Schoof s algorithm that computes #E(Z/pZ)

in time 0((logp)&+E) (see [56]), we obtain the Goldwasser-Kilian algorithm.

procedure GK(N)

1. choose an elliptic curve E over Z/NZ, for which the number of points

m (computed with Schoof s algorithm) satisfies m = 2q, with q a

probable prime;
2. if (E, m) satisfies the conditions of the theorem with s = m , then N

is prime, otherwise it is composite;

3. the primality of q is proved in the same way;

4. end.

We see that we have solved one of the problems arising in the ordinary

DOWNRUN: this time, we have many numbers which we can try to factor.

The problem with GK is that Schoof s algorithm seems almost impossible

to implement (however, see [5]). We will use instead the properties of elliptic

curves over finite fields related to complex multiplication.

5.3. The ECPP algorithm. In algorithm GK, we begin by searching for a curve

and then compute its number of points. Here, we do exactly the contrary. We

get:

procedure ECPP(N) ;
(*N is a probable prime *)

1. set i:=0,N0:= N;

2. while N, > Vsmall
1. find a fundamental discriminant -D¡ which is good for N¡; in

other words, N¡ = ■Kiríi in K = Q(\Z-D¡) (see §2);
2. if one of the w(-D¡) numbers mx,..., mw (mr — Na(vrni—l),

where vr is a unit in K) is probably factored, go to step 2.3 else

go to 2.1;
3. store {/, N¡■, D¡, vrn¡, mr, Ff\, where mr = FjNi+x . Here, F,

is a completely factored integer and A^+i a probable prime; set

i := i + I and go to step 2.1;
4. compute a root j of HDi(X) = OmodN¡ ;

5. compute an equation of the curve E¡ of invariant j and whose

cardinality modulo N, is m¡ ;

6. find a point P¡ on the curve E¡ ;

7. check the conditions of the theorem with 5 = Ni+X and m = m¡ :

in other words, check that Q, = F,Pi / 0E, but sQ, = Oe, ;
3. end.

Finding mr which is probably factored will be referred to as "finding a suit-

able m ".
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6. Analysis

6.1. Theoretical results. The running time of GK is analyzed in the following

theorems [40, 56].

Theorem 6.1. Suppose that there exist two positive constants cx and c2 such

that the number of primes in the interval [x; x + \/2x](x > 2) is greater

than Civ/x(logx)_C2.   Then GK proves the primality of N in expected time

O((logA010+C2).

Theorem 6.2. There exist two positive constants c^ and c¡, such that, for all

k > 2, the proportion of prime numbers N of k bits for which the expected

time of GK is bounded by cs(lo%N)n is at least 1 - c$2~kin'   * .

As for ECPP, we only have the heuristic analysis cited in [54]. These authors

find that the running time of the algorithm is roughly 0((log N)6+e) for some

e>0.
The remaining of this section is devoted to some practical considerations

concerning ECPP.

6.2. What is a good discriminant? Let p be a prime number. Then p is a norm

in Q(\/-D) if and only if p is represented by the principal form of ßt^(-D).

As in §2, let -D = q* • • • q*, its class number is h — h(-D), and the number of

genera is g = 2'_l . The prime p is represented by a form of Go if and only

if V/, Xi(p) = +1 (see §2), which occurs with probability 1/2'. Given this, p
is represented by Fd with conditional probability g/h . We deduce

Proposition 6.1. A prime p is represented by FD with probability l/(2h).

A proof with less handwaving can be found in [33, Chapter 8].

6.3. Practical considerations: good and bad numbers. For practical purposes,

we are only interested in fundamental discriminants D (D < 106) with h(-D)

< 50 (the parameters 106 and 50 are somewhat arbitrary, and represent the
extreme limits of what we expect to need). They form a set 2¡. We have

(presumably) that §3) = 10628. Let H and G be two integers. We write

ND(H, G) for the number of D in 3¡ for which h(-D) = H and g(-D) =
G. In Table 1 (next page), we indicate the values of ND(H, G) for H < 50
(they agree with those of [20]). From this, we can deduce the number of D such

that h(-D) < 50 and with given value of H/G. This quantity represents the

degree of the final polynomial of which we want a root, and its inverse (G/H)

is just the probability that N is a norm in K (provided that (-D/N) = +1).

This yields Table 2 (next page).
Let S be a finite set of primes (here 4 and 8 are assumed to be distinct

primes). We define NP(S) to be the number of D in 2¡ which are divisible

by at least one prime of S: This quantity is tabulated in Table 3 (see p. 41).

From the above results, it is quite clear that bad numbers are those which are

quadratic nonresidues modulo small primes, such as N = -1 mod 12, which kill

off one third of our discriminants. As an example, it is interesting to compute

the smallest prime which does not split in any of the quadratic fields with class
number 1. This number is 3167 (the next one is 607823).
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Table 1. Statistics on the discriminants D with h(-D) < 50

// D„

3
15

23
39
84

47

87
71

95
260
420

199
119

167

327
231

191
215
239
407

399
1140

5460
383
335
311

776

455
431

591

647

695

759
2184

479

551

Dr,

163

427

907
1555
1435

2683

3763
5923

5947
6307
3315

10627
13843
15667

17803
15283

20563
30067
34483
31243
27307
16555

5460
37123
48427

38707
58507

43747

61483
85507

90787

111763

62155
42427

93307
103027

#
9

18

16

30
24
25
51

31
62
56
13

34
87
41

88
118
37
95

68
101
160
60

1

45

150
47

150
200
85

139

68

167

240
104
95

190

H Dr

983
831

935
887
671
719

791
1239

3080
7140

839

1079
1031

959
1295
1487

1199

1439

1271
2255
2415

1151
1959
1847

1391

2135
1319

2615

3023
1751

3615

4935

11220

1511
1799

D„

103387

126043
106723

166147

134467

133387
164803
136843

89947
40755

222643

189883
210907

217627

175123
158923

289963
253507

260947
250387
148603

296587
280267
300787
319867

319243
308323

308947
375523
333547

335203

275587

94395

393187
389467

#
93

174

283

83
255

73
187

333

173

15
101

219

103

271

397
85

237
115
251
438

223
109

339
106

261

430
154

267
107

343
621

355
46

132

345

Table 2. Number of discriminants D with given H/G for H < 50

H/G #(g/g) H/G MB/G) H/G #(H/G) H/G #(H/G) H/G #(H/G)
65

161

335
395

535

6

7

8
9

10

683

409

434

581
588

11

12

13
14

15

610

788
227

174

323

16

17

18

19
20

187

264

271
284

251

21

22
23
24

25

424

261
335
343
440

6.4. A theoretical failure case. Corollary 5.1 cannot be applied when 5 <

(ffp + I)2. In particular, we cannot use it when the number of points, m,

is a perfect square and E(Z/pZ) is isomorphic to (Z/MZ) x (Z/MZ) with
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Table 3. Divisibility of the discriminants

NP(S)

2495
1540

{3,4}
{5}

NP(S)

3669
1744

{3,5}
{4,5}

NJS)
3825
3020

{3,4,5}
{3,4,5,7,8}

41

MS)
4803

6382

m = M2. A necessary condition for that is

(18) Ml/7-1.

We also have y/p-l<M<^+l,by Hasse's theorem. Put [i/pj - a and

p — a2 + r, with

(19)

Then

(20)

0< r < 2a+ 1.

a< M <a+ 1.

Suppose first that M = a. Then (18) implies a\a2 + r

There are two cases.   First, when r = 1, one has p =
1, that is, a\r - 1 .
a2 + 1  and E has

complex multiplication by Q(\/-D), with -D = (m - p - I)2 - 4p - -4a2.

When r > 1, (19) implies r - 1 = a and thus p = a2 + a + 1. It is then easy

to see that E has complex multiplication by Q(\/^3).

7. Precomputations

This rather lengthy section deals with the effective construction of the Hubert
Class Field of K = Q(y/-D). This will be done using j and other modular
functions, especially Weber's class invariants. For this purpose, we introduce

the following notation. Let u be any complex function. We will denote by

H¡)[u](X) the minimal polynomial of u(co) over Q (remember that cf^ -

Z\co\, where co has been defined in §2). When u = j, we will abbreviate

HD[u] to HD.

7.1. Hubert polynomials. The determination of j as an algebraic integer in

Q(j) has been studied by many authors, including Weber [91], Greenhill [42],
Watson [90], Berwick [11], and more recently Gross and Zagier [44] (see also

[36]).
We first prefer a basic approach. The simplest way to compute j is to

compute Hj)(X) using floating-point numbers (see [50, 31, 51]). In order to

recognize that we have the right polynomial, we use an easy corollary of the
work of Gross and Zagier, that can be stated as follows.

Proposition 7.1. The norm of j in Q(j), which is the same as HD(0),

cube of an integer in Z.

is the

It is worth remarking at this point that we do not need to prove that our

calculations with j are correct. If in fact they are, they will lead to elliptic

curves which have the properties we need for proving primality, but the pri-

mality proof depends only on our computations on those curves. Thus, we may

find it convenient in the algorithm to work to limited floating-point accuracy

and confirm our y'-value without formal proof using observations like Proposi-

tion 7.1.
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We want to evaluate j(z) as fast as possible. For this, we compute in se-

quence n(z), t](2z), f2(z), and j(z). The heart of the computation being the

evaluation of n(z), we now study the optimal choice of the parameters. Let us

define
jf(q) = yjT(-i)n(<in{:i"~iy2 + qn{3n+l)/2),

n>l

and
N

JTN(q) = Y^(-l)n(qn(ln-X)l2 + qn(in+{)12),

n=l

where as usual q = exp(2/7iz). We want to compute the error made when

computing J^(q) instead of JV(q). We put q = p exp(/0) = /?(cos 6 + i sin 6).

The following proposition is easy to establish.

Proposition 7.2. There holds

(21) \yV(q)-^N(q)\<6piNll2.

We have to evaluate j for values of z of the form z = (-b + i\[D)/2a,

where (a, b, (b2 + D)/4a) is a primitive reduced form of discriminant -D.

When there is no ambiguity, we write j(a, b) for j((-b + i\f~D)/2a). We put

q = pe'e, with p = e~n^la and 8 = -nb/a. Since this form is reduced,

a < s/Dß. We deduce that p < e'*^ < 4.34 x 10"3.
Now, we remark that if (a, b, c) is an ambiguous form, then j(a, b) is a

real number. When (a, b, c) is nonambiguous, we get

j(a, -b) = j(a, b)

(conjugation in C), which halves the computation. After we have computed

the h -values of j, we build HD(X).

By means of the ^-expansion of j, it is not hard to see that log \j\ « Ti\fD/a .

The number of decimal digits of j(q) is asymptotically 7ty/~D/(alog 10). We

have to compute the coefficients of HD(X) to within 0.5. The precision required

is thus

(22, prec(D)=(iA*2j)^Ei + „0,

where the sum is taken over all primitive reduced forms of discriminant -D ,

and vq a positive constant that takes care of the rounding error and the error

made in our estimation of log |_/"| (typically vq — 10).

Suppose we want to compute j(a, b). Then, using (7.2), we compute rj(kz)

to the order

(23) V'Sxp

where

,,,. c _ 2 log6 + Prec(Z))log 10
(24) S~3 WB •

We then form all products of the form X — j, grouping terms of the type

(X - j) and (X-J), to get

(X - j)(X -J) = X2 - (j +J)X + j!,
which reduces computational errors.
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We check the result with Proposition 7.1. If we find that HD(0) is the cube

of an integer to within 0.5, we are confident that the computed polynomial is

indeed the one we were looking for.

The coefficients of these polynomials become very large. For example, D =

23 already yields

H23(X) = X3 + 3491750X2 - 5151296875* + 233753.

Thus, it may be desirable to use subsidiary functions on subgroups of T.

7.2. Weber polynomials. Let u(z) denote any modular function: Weber calls

u(co) a class invariant if u(co) is in K(j(co)) = KH (co is the generator of cffc).

It turns out that there are a lot of alternative choices of class invariants other

than /'.
The following results can be found in [91, §125-144] or in [12, 82].

Theorem 7.1 [91, §125, p. 459]. Let z be a quadratic number defined by Az2 +

Bz + C = 0. If

(25) 3 | B,     3\A,     2\B2-4AC,

we have

Q(7i(z)) = Q(j(z)).

Note that the conditions are redundant, since A and B cannot be both

divisible by 3 (else D = 0 mod 3). Moreover, a careful look at the proof of

this in [91, §125] shows that we can replace the above conditions by A = C =

0 mod 3 and 5^0 mod 3 . From this, we deduce a very simple algorithm to

compute the correct value of the conjugates of y2(co). We start from a form

(a, b, c) associated with zq and we compute an equivalent form satisfying

the above conditions, say (A, B, C) associated with z . We use the following

procedure.

procedure GAMMA2(a, b, c)

1. if a ^ 0 mod 3 , then choose k such that B = b + 2ak = 0 mod 3 ; take
k = -b/(2a) mod 3 and (a, b + 2ak, c + bk + ak2) satisfies one of the
above conditions;

2. if a = 0 mod 3, but b ^ 0 mod 3, then find k such that C = c + bk +
ak2 = 0 mod 3 ; a solution is given by k = -c/b mod 3 ;

3. compute y2(z) = e\p(2ink /3)y2(zo). This is valid because of (14) and

(11).

From a practical point of view, the computation of y2(z) is thus quite fast.

It turns out that its coefficients are smaller than those of the original Hp(X).

For example, for D = 23, we find

H23[y2](X) = X3+ 155A;2 + 650A" + 23375.

When D = 3 mod 6, we have the following result.

Theorem 7.2 [91, §134, p. 502]. If Az2 + Bz + C = 0   with  2 \ A, then
Q(^Dy3(z)) = Q(j(z)).

For instance, if D = 15 , then

HD[^Dy3](X) = X2- 1575A - 218295.
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We can also use some power of the functions f, fx, or f2. We extract

the following results from [51] (alternatively, see the references above). It is

assumed from now on that D ^ 0 mod 3 . With each value of D mod 32, we

have a canonical choice for u. Hence, we write WD(X) for the corresponding

minimal polynomial.

D WD(0) degTO

7 mod 8

3 mod 8
f(V=D)/V2

f(V^D) (-2)*

h
3h

0mod4

jD/4 = ±2mod8

5 mod 8

lmod8

fx(V=D)/V2
nv^D)4

f(^D)2/V2

±1
±2h

(-1)"

h

h

h

Weber also gives conditions for more general z to satisfy the same properties.

(One should also consult [88].) By extension, we will call class invariant any

conjugate of u(co) for a suitable u.

Theorem 7.3. Suppose Az2 + 2Bz + C = 0 with 4B2 - 4AC = -4D, A and C
odd, 3 | B, or equivalently, A = C = 0 mod 3 and 5^0 mod 3. Then

1. in the case where D = 1, 5, ±2 mod 8 : if B = 2((2/A) - 1 ) mod 8, then

f(z)2/\[2 (resp. f(z)4, fx(z)/\/2) is a class invariant;

2. in the case where Dm 3, 7 mod 8 : if B = 4((2/A) - 1 ) mod 16, then f(z)

(resp. f(z)/\[2) is a class invariant.

We only sketch the proof in the case D = 1 mod 8 . We combine the following
results.

Proposition 7.3 [91, §127, p. 467]. Let z be a root of Az2 + 2Bz + C = 0, with
-4D = 4(B2 - AC). Assume that 3 | B and that A and C are both odd and
nondivisible by 3 (or A = C = 0mod3 and B £ 0). Then /8(z) is a class
invariant.

Proposition 7.4 [91, §127, p. 472]. Assume the same conditions as above and

also that

(26) C2 + CB-1 = 0 or 8    mod 16.

Then \/2p(z) is a class invariant.

Note that (26) implies that B is divisible by 8. Suppose now that all the
preceding conditions are satisfied for (A, 2B, C). Since AC = D = -1 mod 8 ,

we see that A = -Cmod8, and therefore (2/A) = (2/C). Assume first that

(2/C) = 1. Then C = ±1 mod8 , and if B = Omod 16, then

C2 + CB- 1=0    mod 16.

The case (2/C) = -1 is treated in the same way. We then write

f(z)      1 (V2p)3

V2      4     P     '
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The other cases are dealt with using results from the same section of Weber's

book.   D

We now briefly describe the algorithm needed to compute H^D[f/\/2](X)
for £> = 7mod8.

procedure WEBER7(a,2b,c)

1. if a is even, replace (a, 2b, c) with (c, -2b, a) ;

2. put {(a) = 4((2/a) - 1) mod 16;
3. if a £ 0mod3, choose k such that B = b + ak = 0mod3 and B =

¿;(iz)mod 16; then (a, 2b + 2ak, c + bk + ak2) satisfies one of the
conditions of Theorem 7.3;

4. if a = 0mod3,but b ^ 0 mod 3, then find k suchthat C = c + 2bk +
ak2 = 0mod3 and b + ak = ¿¡(a)mod 16;

5. if zo (resp. z) is associated with (a,2b,c) (resp. (A, 2B, C)), then

z = z0-k and f(z) = t^f(zQ) (resp. f(z) = Çksfx(z0)) if k is even
(resp. odd), using (15).

As an example, we find

H4x2i[f/V2](X) = X3-X-l.

From this, it is easy to compute j(co) for co = (-1 + %/-23)/2 via f2(co) =

v/2C4g//(v/r23) (see [91, §34, (19)]).
Other cases yield the same kind of algorithms.

7.2.1. Alternative class invariants. The second author is indebted to J.-F.

Mestre who explained the following [59]. Let 5 be a prime positive integer

and Xq(s) be the modular curve [73]. It can be shown that (see, for example,

[37] or [58]), when Xo(s) is of genus 0 (i.e., í = 2,3,5,7, 13), it can be
parametrized by

/ n(z) ^^
(27) xs(z) = '

,f](sz)

The modular invariant j is related to xs via the following formulae:

(x2 + 16)3 _ (x3 + 27)(x3 + 3)3 _ (x52 + 10x5 + 5)3
J

X2 X3 X5

(x72 + 13x7 + 49)(x72 + 5x7+ 1 )3

x7

_ (x23 + 5xi3 + 13)(x/3 + 7x33 + 20x23 + 19Xi3 + I)3

Theorem 7.4. Let -D be a fundamental discriminant and s e {3, 5, 7, 13}

such that (-D/s) = 1. Let (s) = ss' in K = Q(y/-D). Let i be a reduced

ideal. Suppose we have found a basis (ex, e2) of i such that s x i = (ex, se2).

If we put x = -e2/ex, the number us(i) = xs(x) + si2^s^l^/xs(x) is a class

invariant.

For example, let D = 23 and 5=13. We have s = ( 13, 8 + co). There are

three reduced ideals. In the following table, we give the values of these ideals,

the values of the reduced ideals s x i and the values of ux3.
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(2, l + (o)

(2, a»)

(13, 8 + tu)

(26, 21 + <a)
(26, 8 + tu)

(gi, e2)

(8 + tu, 1)

(21 +tu, 2)

(8 +tu, 2)

*13(-g2/gl)_

-2.09988277- 1.73159352/
-3.68503738- 3.03873481/
-2.71507985 + 2.37241257/

"n(')_

-5.78492014+ 1.30714128/
-5.78492014- 1.30714129/
-5.43015970

We remark that, as soon as i = (a, b + co) and sx\ = (u, v + co), then (ex, e2)

is precisely (v + co, a), since u = as .
Finally, we get

Y[(X - wi3(i)) = X3 + 16.99999999X2 + 97.99999994X + 190.9999999,

and the minimal polynomial of w13 is H23[uxi](X) = X3 + 17X2 + 98X + 191
It is easily seen that in this case the minimal polynomial of xx3 is

17   .     59
H23[xxi](X) =(X3 + —X1 + ^-X + 37     + 23   ^ + V + 6     •

X2     5X

so that Xi3 and hence j could be found by solving a cubic equation modulo

p (recall that >/-23mod/? will already have been found). The same situation

arises in all cases given by Theorem 7.4.

With more effort one can also use values of 5 for which To(s) does not have

genus 0.

7.2.2. Remarks. A naive approach to the computation of WD is to use poly-

nomial factorization, or the LLL algorithm [51].
One of the phases of ECPP is to factor the polynomials Ho over Z/pZ. This

can be expensive, since for a fixed large p the complexity of such computations

is basically proportional to the square of the degree of the polynomial (see
§8.6.1): This explains why we discard the case D = 3 mod 8 , since in this case,

we might work on polynomials of degree 3/2.

We shall see in the following section how this computation can be simplified

by factoring these equations over the genus field of K. In order to simplify
the notation, we will refer to WD(X) as the defining polynomial of KH cor-

responding to whichever Hd[ ] we can use. We call Wp, a Weber polynomial

associated with -D.
Let us end this subsection by summarizing the strategy for computing Wo,

given D.

procedure Weber(D)

1. if Z)^0mod3 and D^3mod8 then

1. if D = 7 mod 8 then WD = H4D[f/y/2] ;

2. if D/4 = ±2 mod 8 then WD = HD[f/V2] ;
3. if D/4 = 5 mod 8 then WD = HD[f4] ;

4. if D/4 = 1 mod8 then WD = HD[f2/V2] ;
if there exists 5 in {3, 5, 7, 13} such that (-D/s) = 1 then WD =

Hd[xs] ;

if D = 3 mod 6 then WD = HD[^/^Dy3] ;

otherwise take Wp> = HD .

2.

3.
4.



ELLIPTIC CURVES AND PRIMALITY PROVING 47

7.3. Factoring the equations over the genus field. The aim of this subsection

is to explain how it is possible to factor our Wp, 's over Kg. We will show that

Wb has exactly g factors, each of degree e = h/g, with coefficients in Kg.

This reduces the time needed to compute a root of WD mod/? for large p , since

we have to find a root of degree e instead of h .

KH

I     e = h/g
Kg

I S
K

We first give some properties of composite quadratic fields, including the

computation of an integral basis. Then, we set up an ordering on the genera of

^(-D) through the action of the Galois group of Kg/K. After proving the

preceding results, we detail our algorithm and give some examples.

7.3.1. Some properties of composite quadratic fields. Let ux, ... , un be n

squarefree multiplicatively independent elements of Z. Suppose, moreover,

that they are multiplicatively independent (i.e., uax{ x • • • x uann — 1 is possi-

ble for some integers a¡ if and only if the a, 's are all zero). We put kn =

Q(V^7, ••• , V'w«) ano^ S = 2" . Following [23], we introduce the sequence

{Ai}o<i<g defined by

A = Í Wjt+i    Hj = 2k,

j     \A2k-lAi/ècd(A2k.i,Ai)2   ifj = 2k-l + iand0<i<2k-{.

We also define a, = \fA¡. Then {1, ax, ... , ag_x} is a basis for kn/Q.

Proposition 7.5 [23]. The integers of kn are necessarily of the form

1  g~l

(28) * = ^EF<a"
z   /=o

where the Pi 's are rational integers of the same parity, and all even if there is
an i in {0, ... , g - 1} such that A¡ ̂  1 mod 4.

7.3.2. Computations in Kg/K. As in §2, we write -D = q*---q*, where

q* = (-l)(9_1)/2<7 if q is an odd prime and -4 or ±8 otherwise. The <?,'s

are supposed to be ordered as follows: if D = 0 mod 4, then qx = 4 or 8.

Then the q 's with q* = q are listed in increasing order and finally the q 's

with q* = -q, also in increasing order. Then / is the number of positive q* 's:

-D = qx ■ ■ ■ q,(-ql+x) ■ ■ ■ (-qt).

The genus field Kg = Q(^/qf, ... , s/qf) can be described as

(29) Kg = K(Vúx',...,^ütZx-),

where
J q¡      for 1 < i < I,

\ qtqt   for I < i < t.
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The Galois group of Kg/K is E<; = (<p\,... , (Pt-i), where

,  __.      Í -Vul   if j = i,

V'^^Xvu]   if;*/.

Hence, XG is isomorphic to (Z/2Z)'-1 , and we can represent an element tp of

"Lq by a (t — l)-tuple of signs (i.e., elements of {±1}). We decide to use the

following ordering of the cp¡. If i is an integer between 0 and 2'~l - 1, we

can write i — £j~¿ iVt-12*  (u,• e {0, 1}) and we take

We represent <p¡ by (ex, ... , et-X), where es = 2us — 1.

With this ordering, the z'th conjugate of an integer 6 of K^ is 0('> = ç>,-(o).

7.3.3. Ordering the genera. We show how to express the ç>, 's in terms of s/G ,

as described in §2. Let us write tp¡ = (ex, ... , et-X) and stfG = (ei, ... , e,).
What we have to solve is the system

( ex =ex,

(30)

We compute

si =e¡,

El+l£t =   el+l   !

I e,_i£, e,_i.

/-i ('/-i

n^= n«.■ «r'-i=i
i-i

u'=l

(-1

With (1), we can simplify

n^-=iie'=e'
/=i   (=1

The solution of the system (30) is thus

for 1 < i

(31) e, ÏÏiZlet   if i = t,
V ete, for /</</.

We take the ordering on the genera to be that induced by the preceding process.

Let us give an example. Suppose that -D = -308 = (-7) x (-11) x (-4). We

take «i = (-1) x (-7) and u2 = (-1) x (-11). The tp¡-'s and the associated

genera are given below.

<Pi G,

(+,+) (+,+,+)
(+,-,-)
(-,+,-)
(-,-,+)
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It should be noted that the genus associated with cpo is always Go , the prin-

cipal genus. Moreover, the ordering on the <p, 's depends only on g and not on

D, whereas the correspondence with the genera depends on D and /. With

each pair (t, I) satisfying / = t - 1 mod 2, we associate the generic ordering

defined by the above process. The example given above is the generic ordering

(3,0).
We end this subsection by introducing

/, = J(Gi) = [j(C), C 6 C7,} = {jix ,..., jie], 0<i<g,

and

(32) WD{i)(X) = P(Ji) = P(Gi) = f[(X - ;•>)•
r=l

We remark that WD = \[ WD(,) and that each WD{,) has only real coefficients,

since two conjugate / 's are in the same J .

The following fundamental theorem is now an easy consequence of Galois

theory.

Theorem 7.5. For all i, WD(i)(X) is in Kg[X].

We also have

Corollary 7.1. For all i, <p¡(WD{0)) = WD(i).

This motivates our choice of the ordering on the G 's, since otherwise we

would have to justify that the <p 's permute the W¡ 's.

This result yields an algorithm for computing the expression of WD{0) over

Kg . We describe this algorithm in the next section.

7.3.4. Description of the algorithm. The preceding results make it clear that

the critical parameters are h and g ; the algorithm does not depend explicitly

on -D. Our purpose is now to explain how we can compute the coefficients of

Wp ' and to exemplify the use of symbolic manipulation in the process.

We are looking for the coefficients of the polynomial Wr)°\X), which is a

factor of WD over Kg . We shall write W¡ for WD(,) since there is no ambiguity.

In fact, since the coefficients of Wo are real, we can work over kt-X as defined

above. The results are still valid by using the canonical isomorphism between

the Galois groups of Kg/K and k,_x/Q.
We write

(33)

where all the asr are in (l/g)Z and the as 's as in §7.3.1. We will find these

coefficients by means of the resolution of a linear system. Let a^   = ft(as).

For any polynomial Q(X), let [Xr]Q denote the coefficient of degree r of

Q. Then

g-\

(34) Y,a'ras = WW0-
s=0
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Suppose now that r is fixed, 0 < r < e - 1 . If we apply <p¡ to (34), we find

(35)
5=0

We do the same thing for i = 0,
solution of the linear system

Xo + Xia(j0) + •

+ ■

-i)

Y.as^ = [Xr]Wi.

, g - 1, and we see that (asr)o<s<g is the

(36) Xo + Xial''

+

+ xg-xa{glll

+ xg-Xag_,

Y0,

Yx,

(Xo + Xxa\s

where we replace Y, by [Xr]W¡. We call the preceding system the generic system

of order g, since it depends only on g . We see that we have just to solve this

system once for each different value of g, computing all the asr 's by replacing

the values of the a's by their corresponding floating-point approximations.

From a practical point of view, we compute an approximation to gasr, take

the nearest integer, and then divide out by the same g. When we have com-

puted our Wq , we compute L, the 1cm of the denominators of the coefficients

and we store the coefficients of LWq .

As an example, let us treat the case of -D = -308 = (-7) x (-11) x (-4).

The generic system of order 4 is

(37)

where

' Xo+XiQ

Xo + Xia

x0 + Xia

k. Xq + Xi a

0) + x2a20) + x3a30) = yo,

+ x2a21) + x3a31) = Yx ,

2) + x2a22) + x342) = y2,

3) J3) (3)

a

+ x2a2v + x3a3 ' = Y3,

*(0)M

(0) _

ux,

= \ful,

2j0)   =   y/UXU2.

The generic ordering for D = 308 is (3, 0) and was given in §7.3.3.

We want to get the expression of //3o8[72](0)(^) over Kg* • We have

Hy»[yi\(X) = Xs - 95835320*7 - 923879753200*6 + 121516780240000X5

- 195287646706560000^4 - 1627416205536000000a:3

+ 35433687468608000000A2 + 1361283710251520000000*
- 12937041027046400000000.

Suppose that we have built the sets of roots of H30s[y2] according to the genera.

We have in this case

/, =/(+, +, +) = {880456353882407955305050.260304, 797.592915355},

J2 = J(+, -, -) = {5648.96421088 + 8460.8161800511/},

/3 = /(-,+,-) = {3456.226641, -938326357130.70446379},

/4 = /(-,-,+) = {-47921735.6519096497 ± 83004169.578235232/}.
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Finally, we obtain

#308[72](0)(*) = X2 + (-23958830 - 9057440a, - 7223840a2 - 2730910a3)X

+ 222228600 + 84022400ai+ 66972800a2 + 25321800a3.

Numerous additional checks on the accuracy of our calculations are available,

using the supersingular equation. For example, j — 0 is the only supersingular

value modulo 5, so that for (-D/5) = -1 all the roots of HD must be zero

modulo 5, as exemplified above.

8. Implementation details

8.1. Machines and languages. The algorithm as described in detail in this

paper has been implemented by the second author on a SUN 3/60, using

Le.Lisp and the arithmetic described in [45].

The first author implemented the main ideas in the spring of 1986, using an

IBM 3081 and his procedure LMA4064V. Most of the general-purpose number-

theoretic routines were already available and 95% efficient, using a combination

of FORTRAN and ASSEMBLER. However, he did not at that time have his
(subsequently written) arbitrary-precision complex floating-point routines, and

was thus confined in the computation of the HD to IBM quadruple precision

and some casual ingenuity. With a list of only 119 discriminants he was com-

pelled to factorize the numbers of points excessively at great cost for large inputs.

However, the largest remaining prp343 in the Cunningham tables was done in

2.5 hours, and 250-digit numbers routinely in 3 to 8 minutes.

8.2. Strategies.

8.2.1. Architecture of the program. The first basic approach is the Factor and

Prove Strategy (FPS), following the direct application of the procedure ECPP.

In other words, as soon as we have found a probably factored number, we

immediately verify the conditions of the corresponding theorem. This idea

works fine with small numbers (less than 10300, say) since we are almost sure

to find a good candidate among our list of D 's. However, for large N 's, our
finite lists of D 's can be too short and sometimes we are forced to backtrack

in our sequence of intermediate primes.

The preferred one is the Factor All Strategy (FAS) which first builds the

sequence of intermediate primes and then proves all the theorems. This enables

backtracking, as well as a more rational distributed algorithm (see [67]).

8.2.2. Philosophy.   We constantly use some principles:

1. the tests with N ± 1 are treated as a particular case of the elliptic curve

test;

2. it is understood that, if a probable prime is later proved composite,

then the program immediately returns to the preceding place in the

DOWNRUN or exits if we were at the top. This of course involves the

possibility of backtracking inside the program.

8.2.3. Computing WD(X). In the proving part of our algorithm, we must

compute Wo(X) in order to find a zero modulo p. There are two strategies.

The first one is to precompute a list of Wp>(X) for a subset of 2¡ and store

them in a file. The other is to compute WD(X) on the fly, as required by the
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factoring part of the algorithm. It is clearly impossible to store all the Wp,

for all Z)'s, and thus we mix the two ideas. We have computed Wp> for all

D with h(-D) < 20 and stored them. This makes about 1.5 Mbytes (on a
SUN 3/60). If necessary, other polynomials can be computed and introduced

in the program. The actual computation of WD is done by means of a MAPLE

program. If one has the desired complex multiprecision arithmetic, one can of

course merge the two programs.
We have computed all WD(X) for all (known) D such that h < 20 and for

(h,g)€{(32, 16), (24, 8), (48, 16), (32, 8), (64, 16)}. This yields 4500 po-
tential numbers of points for each probable prime in our DOWNRUN. These

are made up of 2 for ±1,6 for -3, 4 for -4 and 2 each for the remaining

2244 discriminants.

8.2.4. Ordering the data. We decide to use only the D less than 106 with
h(-D) < 50. We remark that there are two parts in deciding whether p is

a norm in Q(s/-D) or not. The first is checking that p e Go(-D) : this

is easy because we have only Jacobi symbols to compute. At this point, p

is represented by Fp with probability g(-D)/h(-D), but to be certain, we

must find a square root of -Dmodp and in effect reduce a quadratic form.

So, we store our D 's in increasing order with respect to (h/g, h, D). The

most interesting discriminants are those with h = g, which are called idoneal

numbers: Under the assumption of the Extended Riemann Hypothesis, there

are 65 of them (see [35, 24]).

8.3. Logistics and tactics. Many of the routines we use are explained and

codified in [27]. We mention here one or two additional points.

8.3.1. Multiprecision. It is obvious that we need the fastest algorithms pos-

sible, especially a good routine for finding gcd's and multiplicative inversions.

Also, the size of numbers we are currently tackling (more than twenty 32-bit
words) makes it worth using Karatsuba's algorithm. We refer to [52] for all this.

We add below some remarks which may be well known, but not easily found in

the literature.
We can use a special routine for squaring based on the following (trivial)

observation. Let m = ¿^,~¿ m¡B' be an integer written in base B . Then

/-i i-i f-i

m2 = ]T]m2B2i + 2^2m¡B¡ ^2 miB'•
1=0 1=1 y=/+l

This yields an algorithm for squaring that is asymptotically twice as fast as

(ordinary standard) multiplication. In order to speed up things, it is necessary

to program it directly in assembly in order to minimize overhead.

With this idea, we can replace multiplication by

(a + b)2 - (a - b)2 _ (a + b)2-a2-b2

4 " 2

both formulae being useful, the latter one in the case where we must multiply

many a's by the same b. Another application is given below.

8.3.2. Exponentiation over various rings. We use the exponentiation-by-blocks

method as described in [27] for Z/pZ  (= GF(p)), GF(p2)   (N + 1 primality
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test), and for elliptic curves. The optimal value for the size of the block was

determined empirically. The value of 26 seems to be the right one for almost
all values of tV.

When using Berlekamp's algorithm (as well as Girstmair's ideas, see below),

we have to compute P(z)e mod(p, f(z)) for a fixed monic f(z). Write f(z) =

zd + fd-Xzd~l H-h fi,. We precompute

F« = z1' mod(p, f(z)) = F^l)_xzd-X + ■ ■ ■ + F0{i),        0<i<2d-2.

The basic operation we have to perform is the multiplication of P(z) =

Pd-izd~l + Pd-2zd~2 + ■ ■ ■ + Po by Q(z) = qd_xzd-[ + qd_2zd~2 + ■■ ■ + q0 .

We have

d-ld-l

(i+j)

a — i a — i

P(z) x Q(z) mod(p, f(z)) = £ Y,MJZ'+J = Y,Y,P'QJF{Í~
/=0 7=0 /      7

The evaluation of p¡qj is then done using the multiply-by-squaring method

described above. If we precompute the pf and the qj (modulo p), we reduce

the cost of computing P x Q to

JZ Tsi(P') + S T*iÜj) + S Tsi(P' + Qj)>
i 7 i,j

which is basically (d2 + 2d)Tsa compared to d2Tx . The gain is thus

d2 + 2dTJlxl_/+2\

d2     Tx ~ 2 V      d

The most obvious gain is when we have to compute the square of a polynomial.

The cost of it is now (d2 + d) Tsq .

8.4. Finding a good D . We have decided to consider the N± 1 test as a special

case corresponding to a fictitious D = ± 1. These tests have been well studied,

and many tricks are known to speed them up. In particular, we prefer the
description of [27] since we can apply very easily the exponentiation-by-blocks

method when working directly over GF(/?2), but not with Lucas sequences.

We make here the remark that we use a trick of [21] to reduce the number of

computations needed when one of our A' ± 1 has many factors (this is also
valid for the elliptic case).

8.4.1. Looking for a splitting D. In the general case, we are looking for a

fundamental discriminant —D for which our probable prime N is a norm. The

first thing we do is to check that ;V e Go(-D). This is done by computing the

Jacobi symbols Xi(N) = (QÏ/N) in our notation. If all these symbols are equal

to +1, we proceed to the second phase, that is, computing a representation of
N by FD.

Though the computation of Jacobi symbols is very cheap, one can arrange

the D 's in such a way that if A^ is a nonresidue modulo 3 (say), then we only

look at those D which are not divisible by 3. In the same way, we can store

the values of (N/q) for some small primes q (typically q < 100) so as not to
recompute the same objects.
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8.4.2. Solving p = NK(n). We want to get the representation of a prime p

as a norm in K = Q(y/-D). Equivalently, we must solve

(38) 4/? = A2 + DB2

with A and B in Z. We can solve this problem using Shanks's algorithm [86]

or lattice reduction [89]. These two algorithms are basically the same and solve

the general case of representation of a prime number by a given quadratic form.

In the case where we want to represent p by the principal form only, one can

do slightly better, using the work of Cornacchia.

We first make some remarks. If D = 0 mod 4, one puts D = 4d, and we

have to solve p = A2 + dB2. If D = -1 mod 8 , then

4p = A2 + (&d- l)B2^A2-B2 = 4    mod8,

which is possible if A2 = 0 mod 8 and B2 = 4 mod 8 and in particular A and

B even. So we actually solve p = A'2 + (Sd - 1 )B'2. We can say nothing when

D = 3mod8.
Cornacchia's algorithm [32] finds the representation of p = u2 + dv2 when-

ever one exists, with (p, u, v) = 1. A proof of its validity can be found in

[70]. It runs like this:

procedure CORNACCHIA(u,v,d,p);

(* solution of u2 + dv2 — p*)

1. let Xo be a solution of x2 = -dmodp that satisfies p > xq > p/2 ;

2. develop p/xo as a continued fraction:

p = q0x0 + x,,

X0 = tflXi +x2,

Xr = qr+1 Xr+1 + Xr+2

and stop when x2 < p < x2_ [ ;

3. put

u = xr   and   v =

4. if v is not an integer, p is not representable as u2 + dv2.

In the case D = 3 mod 8, we can use the same algorithm, using for Xo a

solution of x2 + x + ^- modp .

8.4.3. Extracting a square root modulo N . In using the above procedure, we

have to compute square roots modulo N . We can benefit from some previous

computations as follows.

If we use Shanks's algorithm, we need a z such that z2 = -1 mod N ,

where N = 1 + 2k x b, b odd. We can obtain z as a byproduct of the

pseudoprimality test for tV as follows: first, find a such that (a/N) = -1 (if

after 50 trials, we have not found one, maybe AMs a square). Then, compute

z = ab : If z2*"' ^ -lmodA^, then N is composite. Otherwise, N is a

probable prime, and we can use z in Shanks's algorithm. It should be noted

that succeeding in computing a square root with this algorithm is almost a

guarantee that we have a prime. In other words, if a composite number passed

^
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the pseudoprimality test, it is very unlikely to pass this step (see [94] for the

combination of square roots with primality tests).
In many cases, a number of square roots can be found very cheaply at this

first stage. If N = 1 mod q for small odd q, we can usually find the square

root of (-l/q)q ; while if N = 1 mod8 , we find both s/^l and \/-2.
Also, it is possible to accumulate the square roots that we have to compute

until we find a suitable D. Hence, we can store y/q* mod N for some small

primes q . After that, we can use these values in the computation of / mod N

when Wo splits over an intermediate quadratic field of discriminant q*. We

also order our D 's in such a way that we compute less square roots modulo

p. For instance, we try D = 3, D = 4, then D = 15 by computing only

^5 = sf~5 modp , D = 20 by combining D — 4 and r$, etc.

8.5.   Factoring the number of points.

8.5.1. Finding all factors of an integer m which are less than B . It is well

known that the general problem of getting all factors of an arbitrarily large

number is very difficult (see [55]). However, the problem of getting small factors

of a number m isa little better understood.

What we want is an algorithm that can find small factors of a number in a

reasonable amount of time. Apart from trial division that is routinely used to

find all factors less than 106, the two best candidates are Pollard's p method

[62] and the ECM method of Lenstra [57]. According to [17], it seems that the

first one is worth using for finding factors less than 108, and the second for

factors from 1010 to 1015 using various speedups [62, 7].

However, the very best value among these probabilistic factoring methods is

given by Pollard's p - 1, even though this can only be used once.

It should be noted that we do not store the intermediate factors found, only

their product. This is motivated by the fact that we do not need to have the

exact factorization of m (unless m is small). It can happen that a 20-digit
factor of a 1000-digit number is not prime, but we are only interested in having

a 980-digit probable prime.
We detail the choices we made in the following section.

8.5.2. Sieving with small primes. We begin by looking for small prime factors

of m. Let Pi, ... , Pk be all the prime numbers less than a given B. We

suppose they are stored in a file. We extend a method already used in [18, §7,

Remark 1] and [27]. We first compute the quantities

r,■■ — (N + 1 ) mod/?,    for i = 1,... , k.

Divisibility of N ± 1 is then tested as follows. If r¡■ = 0, then yV + 1 is
divisible by p¡, and if r¡ = 2, then /?, divides N - 1 . In the case of testing the

divisibility of m± = N + 1 ±t, with \t\ < 2\fÑ~, we first compute r - t mod/?,
and check whether r = ±r,mod/7,. We replaced 2k divisions of numbers of

size L with k divisions of integers of size L/2 .

However, there is yet a further factor of 2 to be gained. With 4p - A2 + DB2

we have 4m — (A ± 2)2 + DB2. For any sieving prime p¡ > 2 with (-D/p,) =

-1, we have p,\m =>• p¡\B2 and p¡\(A ± 2)2, respectively. Thus, we first form

gcd(A + 2, B) and gcd(^ - 2, B) and remove the common factors from m ;

subsequently, only primes p¡ with (-D/p¡) = 1 are used in the sieve (and

recognized from a lookup table modulo D or 4D).
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8.5.3. Pollard's/). From [17], it is reasonable to find all factors less than 108

with this method. Using the ideas of [62], we decide to make 105 iterations of

this method. We accumulate the iterates of the function and do only two gcd's.

8.5.4. ECM. We use the algorithm as described in [17] with the parametriza-

tions of [62, 7] for having curves with some prescribed small divisors. One of

the major problems is the storage that is prohibitive when dealing with 1000-

digit numbers. This explains why the second stage is not performed on numbers

of size greater than 10700.

8.5.5. Pollard's p - 1. We note that this is reasonable when testing the Cun-

ningham numbers which often have the property of being congruent to ±1

modulo some large known prime integer. So we can spend a little time to see

if we can get a factor (possibly large) of m this way.

8.5.6. Further improvements. The best discriminants are those for which

h = 1, because j is easy to compute and E is easy to find (see next section).

Hence, we decide to use more factoring power on them. Say we multiply all
factorization parameters by 1.2, maybe with all possible methods as well. How-

ever, in order for them to appear in the DOWNRUN, we must find a suitable

number of points.

Suppose we test tV,- and we get a candidate tV' for yV,-+i . First of all, we

can impose an upper bound on N'. More precisely, we want to go down in

our sequence of primes as fast as possible. Therefore, we decide to reject all
possible N' such that N¡/N' < I0minx , say. The exact value of minx is best

found by experiments. This results in many different strategies, which we do

not discuss here.
We also try to have a next candidate that is as promising as possible. If we

find an N' which is congruent to 1 modulo 3 or 4, we take it. On the contrary,
when N' = -1 mod 24 , we prefer to try another one; the two strategies can be

combined.

8.6. Finding j(E) mod/7 and a point on E(Z/pZ). The process is the follow-

ing: first compute j(E), a root of HD(X) = Omod/7 , then find the equation of

E and a point on E. In fact, we compute a root of WD(X) = Ornod/» and we

compute j.

8.6.1. Solving WD(X) = Omodp . The obvious approach to solving WD(X) =

Omod/) is to use Berlekamp's algorithm [10, 52]. The complexity of this algo-

rithm is roughly

0((d2(logp) + d3)(logd)(logp)2),

if we use standard algorithms (with d = h(-D)/g(-D)). For small d , it is

possible to mimic the standard resolution over C (see [96, 65]).

Alternatively, one can use the fact that the Galois group of WD(X) is very

often a dihedral group. Then, with Girstmair's ideas [39], it is possible to solve

the equation Wp>(X) = 0 by radicals and use the resulting expressions modulo

(p, f(z)), where f(z) is any factor of the Ath cyclotomic polynomial modulo

p. For example, take p = 439 = l2 + 1 x 6 + 62 x (47 + l)/4, whose order

modulo 5 is 2. A root of W41(X) = X5 - X3 - 2X2 - 2X - 1 over C is given
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by

with:

4

5*5 = E tôt y
z«  ,

z(D'
fc=i

; 2z«>

^(H/^ - 650)C4 + (15v^47 - 975)£3 + (-975 - 15^=47)C2 + (-650 - 80x/=47)C

(ÎSV^??- 105)C4 + (5v^47- 185)C3 + (-185-5\/=47)i2 + (-105- 15^47)C

(V^47 - 35)C4 + (-15 - 3x/=47)f3 + ^v/^ - 15)£2 + (-35 - >/=47)f

-2f4-8í3-8f2-2f,

where Ç is a primitive 5th root of unity and y5 = zx. We work over

(Z/439Z)[z]/(z2 + 70z + 1) : The corresponding value of Ç is simply z . A
square root of -47 mod 439 is 294. We extract a fifth root of y using an

extension of the algorithm of [1] as described in [47] (see also [46]). We find

y5 = 269z + 64 = (383z + 244)5    mod(439, z2 + 70z + 1 ),

and x = 15 is a root of W41 mod 439. The ideas are detailed at some length

in [64].
In general, the Abelian Galois group KH/Kg is cyclic; when this is so and the

order is composite, the usual resolution into a sequence of equations of prime

degree (each with coefficients in the field defined by the previous equation) is

highly effective in solving for the (known) root modulo p . For example, with

D = -199 we find

H4xX99[f/V2](X) = X9- 5X* + 3X1 - IX6 - IX3 - X - 1,

whose roots are solved via

Y3-4Y2 + Y-l,        X3-(Y2-3Y+l)X2-X-Y.

Further examples can be found in [66].

8.6.2. Finding the right equation for E . We have to find an equation of the

curve E(Z/pZ) whose invariant is j (computed above) and whose Frobenius

is n with p a norm in Q(y/-D): p = nn'. In the general case D > 4, the

equation of E is of the form

(39) y2 = x3 + 3âx2x + 2Â:c3,

where k = /'/(1728 - j) with c any element of Z/pZ.
We can restate the problem as follows. By Deuring's work, we have

tAm T/.     ^/x3 + 3fcc2x + 2/cc3\
(40) I£(/7) = 2(-\=-Ttk(tic),

x=0^ P '

where nc is the actual Frobenius of E as parametrized by c. As a matter of

fact, it is always possible to write

(41) TTK(nc) = e(D,n)l-)TTK(n">(§)
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where e(D, n)(e e {±1}) is a function of n and D.  The equation we are

looking for is thus characterized by c such that

(£)-«D.«).

The aim of this section is to explain how we find the value of e(D, n) in some

cases. Before that, we treat two special cases.

The case h(—D) = 1. The first two cases are D = 3, 4. They are treated at

length in [48, Chapter 18, §§3-4] and involve quartic and sextic symbols. For

the sake of self-containedness, we just give the algorithms used in each case.

The validity of these come from [63]. Let us first consider D = 3 .

procedure FINDE3(p)

(*p = nn' with n = A + Bp, A, B in Z and p = ( 1 + v/r3)/2*)

(* the equation of E is y2 = x3 + b*)

1. let C = r + sp with r, s in {±1,0}, r = 2(A - B) mod 3, and 5 =

B mod 3 ; then Ç6 = 1 and Çn = 2 mod 3 ;
2. determine £% in Z/pZ such that ¿%t = -Çmod7r:

1. solve (A - B)v + Bu = s in rational integers (u, v);

2. put 3S = -r + Au - Bv ;
3. any b such that (4b)(p~X)l(l = S§ mod/» yields a curve E: y2 = x3 + b

suchthat #E = NK(n - 1).

For D = 4, we have

procedure FINDE4(/7, n)
(*p — nn' with n = A + Bi, A, B in Z and i2 = -1 *)

(* exactly one of A or B is even *)

(* the equation of E is y2 — x3 + ax*)

1. let r and 5 be two integers in {±1, 0} such that rs = 0 and (r, 5) =
(0, (Ä-^)mod4) if A is even, and (r, s) = ((/I - 5)mod4, 0) if B

is even; then £4 = 1 and 7r = Ç mod(2 + 2/) ;

2. determine j/ in Z/pZ such that j/ = C_1 mod7r :
1. solve Av + Bu = s in rational integers (w, v) ;

2. then sf — r + Au - Bv ;
3. any a with (-a)(p~X)lA = j/ mod/7 gives a curve £: y2 = x3 + ax with

#E = NK(n- 1).

When D = 8 , we use a result from [78]. Write

(42) Ed : y2 = x(x2 - 4öx + 2û2)

with û in Z.

Theorem 8.1. Le/ /? = tttc' = A2 + 2B2 = $k +1  (l G {1 , 3}) with A and B in
Z, A odd. Then

ZEAp) = -{^)(-\)K(Z})'frK(n).

We can restate this in the form of (39). We have

/'(y=2) = 203    and   k = -^.
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Letting c = 140/15 , we find that E$ is isomorphic to (39). Hence, we deduce

that

(43) lE(p) = lEg(p) =

We conclude that

£(8, n) =

15 x 14 x c

2.3.5.7

IVe
-1

Tr^(Tc).

■r

For the remaining cases where h(-D) — 1 and D is odd, we refer to some

work of Rajwade. In [79], he has designed a method to solve the problem in

the case where D = 1 and later extended it to the cases D e {11, 19} (see also

the bibliography in [76]). He uses the action of the Frobenius of the curve on

the \/-Z)-division points to deduce the actual value of Z£ . For D in {43, 67,

163}, he quotes some unpublished results from Stark (see [74]).

All these results can be summarized by the following theorem:

Theorem 8.2. Suppose that D is odd and h(-D) - 1. Let j — j((-l + \J-D)/2)
be the invariant of the curve having complex multiplication by the maximal order

of the quadratic field K = Q(\/-D), defined over Q. Let u and v be defined
by

,3 _ j,-Dv2 = j-172$.
D

v0,    v0> 0.

Let p be a norm for -D: p = nn'.  (In this case, this is merely the same as

(-D/p) = +l.) Then

(44) s(D,n)
3uv

P

2TrK(n)

D
D

We now give the numerical values of u and vq for all D,

D vo (2/D)
7

11

19

43

67

163

-3.5

-25

-25.3

-26.3.5

-25.3.5.11

-26.3.5.23.29

33

23.7

23.33

23.34.7

23.33.7.31

23.33.7.11.19.127

Examples. Let p = 17401 = 1012 + 2 x 602.  We choose n = 101 + 60isf^2
(m=p+ 1 -2x 101 = 17200). We find that /c = 2175 and

(45)
^2A^Z^(_1)^_L)

Therefore, the curve E: y2 = x3+15444x+10296mod 17401 has 17200 points.
Let p = 107 and D = 7 . We find

107= 102 + 7x l2,
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so that (107) = (n)(n') with n = 10 +V^. We choose m = NK(n - 1) =

We compute

f_c_\      /-3(3x5)(33)\ /20
U07/ ~ V 107 M 7

-(-.>(&)(S)-<-.K-.„-„~..
and the curve y2 = x3 + 60x + 80 mod 107 has 88 points.

The case h = 2.  Let Z> = 3mod4 such that h(-D) = 2.  Write -D =
(Qi)(-Q2). Then ; lies in Q(y/q~ï). Let

j = a + bsfq[   and   u = y/(j - 1728)/(-Z>).

Then u is also in Q(v^r) (see [44]). We conjecture the following:

Conjecture 8.1. Suppose that -D = qx(-q2) as above and v - A + By[q[ in

such a way that sign(ß) = - sign(è). Then

Example. Let -D = -403 = (13)(—31). We have

j= - 1226405694614665695989760000
+ 340143739727246741938176000v/Ï3,

.„„.„«,„,     4447554048000 /-v = 1233529551576--=-v 13.

Remark. The above results are also related to the concept of Q-curve as intro-

duced by Gross in [43]. Some of the methods used by him would yield the same
results, but using deep methods from algebraic geometry.

8.6.3. Finding P on E. Let (a, b) be two elements of Z/pZ. If Xo is any

element of Z/pZ, put

A = Xq + axo + b.

Then P = (Axo, a2) is on the curve

Y2 = X3 + al2X + bX3.

We suppose that E : y2 = x3 + 3A:c2x + 2A:c3. If we know something about

(c/p) (typically when h(-D) = 1), then we choose xo such that (À/p) agrees

with (c/p). Then, we have simultaneously E, and P on E. Otherwise, we

choose Xo at random and test whether mP is on E. If it is not, then we try

the twist of E. In the general case, the time needed to find the right curve is

thus 1.5 times the time needed for the h = 1 case. In all cases, we have no

extraction of square roots modulo p .

9. Numerical results

9.1. Timings on random input numbers. We follow the protocol given in [27].

That is, we obtain certain statistics on the behavior of our program for 20

numbers of w 32-bit words. The program is the DecStation 5000 version with
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the FAS strategy. We list the time for the first phase (building the sequence)

on the first line, the second one (proving) on the second line and the total

time on the third. Times are in seconds. The set 3¡ consists of all D 's with

A(-D)<20.
For larger numbers, we use a distributed process with all D with h less than

51 and some others (see §8.2.3). The order of magnitude of the time needed is

given in equivalent time for a DecStation 5000.

9.2. Some large primes. Both authors used their implementations to give

primality proofs for the probable primes of the Cunningham Tables [19]. The

first author did some with 212 to 343 digits (namely the cofactor of 2,1171+)
[19, Update #5] and the second author completed the long-standing list (about

50 numbers with more than 200 digits). The second author verified the primality

of the cofactor of Fxx (564 digits) [19, Update 2.2], and also (23539+1)/3 (1065
digits) with a distributed version of ECPP [67].

Table 4. Time for testing a number of w words for primality

10

0.1

0.0

0.1

0.4

0.2
0.7

1.7
3.5
5.4

2.5
7.3

10.2

7.6
20.6

28.2

0.4

0.3

0.6

2.6

2.7

5.3
55.2

8.9
61.6

13.7
24.4

34.8

31.3

54.6

85.0

0.2

0.1

0.3
1.2

1.5
2.7

6.1
5.8

12.0

7.7
14.9

22.6

19.9

35.3
55.2

st. dev.

0.1

0.1
0.1

0.5

0.7

1.1

11.4

1.5

11.7

3.0
4.8

7.5

6.2

9.2
14.2

12

14

16

18

20

nun

14.9

31.3

50.4

41.8

75.8
122.9

120.2

129.5

249.7

118.8
123.4

242.1

345.9
175.5

561.0

238.9

88.3
301.9

181.1

150.7

259.7

763.8
226.8

990.7

1699.1
339.5

1973.8

5656.8

362.3

5931.5

45.6

61.1
106.6

75.5

107.3

182.8

261.1

174.9
436.0

657.3
214.7

872.1

1598.0

255.3

1853.3

st. dev.

48.1

14.2

49.4

36.8

21.4

49.3

138.2

26.6

154.1

420.2
53.6

447.5

1392.2

52.3

1404.1

Table 5. Time for testing a ¿/-digit number for primality

400

600

800

DOWNRUN
1 day

6 days

18 days

proving

0.1 days

0.5 days

5 days

Aside from the Cunningham project, the second author found all primes of

the form

N2(n, r) = r l-l

(n times)

(introduced in [93]) for r greater than 1 and all n between 100 and 1000. We

indicate below these values (note that all numbers with n < 99 were found by

Williams).
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12,18,23,57,128,543,584,833

5,10,11,13,34,47,52,77,88,554,580
13,25,72,108,375,393,589,973

5,12,15,84,144,150

5,7,25,31,112,199

7,55

26,110,141,474

5,20,41,47,92,161,401,455

In addition, some large probable primes were successfully tested. Among

these were S1493 (572 digits, three weeks on a SUN 3/60) and Si901 (728
digits, one month), thus solving the problem mentioned at the end of [72].

Apart from these numbers with quite a lot of arithmetical properties, the

second author is currently looking for large primes coming from the factor-

ization of the numbers constructed from well-known constants such as n , e,

and y . To this date, the three largest proven primes found are the cofactor of

71137 = UO1137^ = 2x47x4231 x 7789xp1128 (with the distributed implemen-

tation in equivalently about 1.75 years of CPU of a SUN 3/60); the cofactor

of eX2i0 = U0123Y| = 36037 x Px226 (1.83 years of CPU); the partition num-
ber p( 1840926) with 1505 digits [69]. Together with the 1008-digit cofactor of
A/3359 , these are five Titanic primes successfully tested by ECPP.

10. What proof do we get?

We now turn our attention to the following problem: How can we be sure

that our program did not make any error during one month of CPU time?

We cannot be certain that there was no bit-loss during this period. However,

when the program finishes, we have built a sequence of intermediate primes

and found an elliptic curve and its number of points and a point on it satisfying

the requirements of a theorem. This we call a certificate of primality. We thus

generalize previous work of Pratt [77] and Pomerance [75]. We arrange such a

certificate in blocks of integers. Each block has the following structure:

Ni
type

0

where A7, is the number to be tested, type giving the type of theorem used to

show the primality of A7,-: it is -1 (resp. +1) if the N-l test (resp. N+l
test) was used, and the absolute value of the fundamental discriminant used in

the cases of elliptic curves. The primality proof of A^ ends with a 0. To each

of the types corresponds a list of numbers used to complete the proof of A7,

being prime, whenever the following block is valid. We now describe the four

possible lists:
In this way, an independent verifier can check the results. A cross verifica-

tion of certificates was carried out between the second author and Kaltofen and

Valente (personal communications via e-mail, October 1989). After some ad-

justments of format, they both agreed on the certification of a 222-digit prime,

namely 2, 1958M (in the notations of [19]). They also checked the 1226-digit

record.
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11. Conclusion

We have described a primality proving algorithm using the theory of elliptic
curves with complex multiplication over finite fields. This algorithm is supposed

to have polynomial complexity and performs well in practice, since it is powerful
enough to prove the primality of numbers from 100 to 1500 digits. It is now

possible to test arbitrary integers up to 400 digits in a few days on a single SUN

3/60 workstation. Numbers with less than 800 digits can be done in about one

week of real time, using a distributed process [67] on about 10 workstations.

type -1 type +1 type D

Po

Pk

b0

%
factors of N — 1 factors of TV + 1

(Cf. Theorem 1 in [97])
Po,Qo

Pk,Qk

id.

m = #£

ro  1
■ • •   > factors of m

r"  J
0

a, b: coefficients of E

x,y: coordinates of P on E

h
factors of the order of P

Figure 2. Format of the primality proof

There remains much uncertainty as to the best strategy for applying the

method to large probable prime inputs. We first eliminate some minor points
which are not germane to the general problem.

The situation for 100 digits and less is quite atypical. There the downrun is

dominated by D — ±1, D = -3 , and D = -4 ; in particular, once D = -3 is

reached, one can usually stay with it to the end. Square roots are much cheaper

relative to sieving than they are for large inputs, and optimization is desirable

at all stages of the program.
Also (for all sizes of input) the reduction of quadratic forms takes negligible

time, and the polynomials HD can be computed very quickly at the time when

they are needed.
Thus, the general operations which should be programmed optimally, and

whose timings on a particular machine are relevant to the strategy are:

1. Sieving and subsequent factorization of the numbers of points,

2. Exponentiation modulo p (and equivalent square roots, pseudoprime

tests),
3. Exponentiation on an elliptic curve modulo p ,

4. Solution of polynomial congruences modulo p .

Usually, 4 can be reduced to finding a small number of square roots, but an

occasional discriminant with large class number which is unfavorable for p can

be very expensive. As to sieving, it is worth pointing out that it is much more

effective here, relative to other factorization methods, than usual. Once -1 and

+ 1 have been done (as discriminants), there is available a list of (N+l) modq .
For any particular discriminant -D, one only needs to use half the sieving
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primes q, dividing numbers of size the square root of N, and applicable to

two possible numbers of points, a total improvement factor of 8 ( 16 or 24 for

0 = 4 or 3). On the other hand, (p - 1)-factorization and ECM are no better

than usual (except that one can in a few cases use an elliptic curve with complex

multiplication to good effect in ECM).
A further remark is that the timings of these operations depend not only on

the machine, but on the trouble which the programmer has been prepared to

take. For example, some critics purport to "prove" that the Weierstrass normal

form is not the best one to use in 3 above, but they rely on an unproved (and

possibly unconscious) assumption that finding inverses is slow. The first author

is fortunate in having the use of a very fast gcd routine written by N. W. Rickert

[81], which alters his choice of algorithm in this and other cases. We will now

assume that all these operations have been optimized as far as they are going

to be, and that the timings for various typical numbers of decimal digits are

known.

We feel that the optimal strategy will probably have more backtracking fa-

cility than either of us uses at the moment. At a given point in the downrun,

one has basically to choose four parameters: the size of the sieve, the additional

factoring to be used, the minimum acceptable downrun, and how many discrim-

inants to try before modifying the parameters. There is no doubt that sieving

represents by far the best value for time spent, so that for inputs of 500 decimal

digits or more one should probably think in terms of a sieve with several passes

and recomputed lists of primes. We hope to implement some of these ideas and

report further in due course.

The second author has made his C program (INRIA/ecpp.V3.4.1.tar.Z)

available via anonymous ftp from the site ftp.inria.fr (or 128.93.1.26).
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