THE LARGEST KNOWN PRIMES (Primes with 800,000 or more digits) (selected smaller primes which have comments are included) Originally Compiled by Samuel Yates -- Continued by Chris Caldwell and now maintained by Reginald McLean (Mon Aug 14 20:39:34 UTC 2023) So that I can maintain this database of the 5,000 largest known primes (plus selected smaller primes with 1,000 or more digits), please send any new primes (that are large enough) to: https://t5k.org/bios/submission.php This list in a searchable form (plus information such as how to find large primes and how to prove primality) is available at the interactive web site: https://t5k.org/primes/ See the last pages for information about the provers. The letters after the rank refer to when the prime was submitted. 'a' is this month, 'b' last month... ----- ------------------------------- -------- ----- ---- -------------- rank description digits who year comment ----- ------------------------------- -------- ----- ---- -------------- 1 2^82589933-1 24862048 G16 2018 Mersenne 51?? 2 2^77232917-1 23249425 G15 2018 Mersenne 50?? 3 2^74207281-1 22338618 G14 2016 Mersenne 49?? 4 2^57885161-1 17425170 G13 2013 Mersenne 48 5 2^43112609-1 12978189 G10 2008 Mersenne 47 6 2^42643801-1 12837064 G12 2009 Mersenne 46 7d Phi(3,-465859^1048576) 11887192 L4561 2023 Generalized unique 8 2^37156667-1 11185272 G11 2008 Mersenne 45 9 2^32582657-1 9808358 G9 2006 Mersenne 44 10 10223*2^31172165+1 9383761 SB12 2016 11 2^30402457-1 9152052 G9 2005 Mersenne 43 12 2^25964951-1 7816230 G8 2005 Mersenne 42 13 2^24036583-1 7235733 G7 2004 Mersenne 41 14 1963736^1048576+1 6598776 L4245 2022 Generalized Fermat 15 1951734^1048576+1 6595985 L5583 2022 Generalized Fermat 16 202705*2^21320516+1 6418121 L5181 2021 17 2^20996011-1 6320430 G6 2003 Mersenne 40 18 1059094^1048576+1 6317602 L4720 2018 Generalized Fermat 19b 3*2^20928756-1 6300184 L5799 2023 20 919444^1048576+1 6253210 L4286 2017 Generalized Fermat 21c 81*2^20498148+1 6170560 L4965 2023 Generalized Fermat 22 7*2^20267500+1 6101127 L4965 2022 Divides GF(20267499,12) [GG] 23 168451*2^19375200+1 5832522 L4676 2017 24 69*2^19374980-1 5832452 L4965 2022 25 3*2^18924988-1 5696990 L5530 2022 26 69*2^18831865-1 5668959 L4965 2021 27e 97139*2^18397548-1 5538219 L4965 2023 28 7*2^18233956+1 5488969 L4965 2020 Divides Fermat F(18233954) 29 3*2^18196595-1 5477722 L5461 2022 30 3*2^17748034-1 5342692 L5404 2021 31 Phi(3,-123447^524288) 5338805 L4561 2017 Generalized unique 32 3622*5^7558139-1 5282917 L4965 2022 33 7*6^6772401+1 5269954 L4965 2019 34 2*3^10852677+1 5178044 L4965 2023 Divides phi 35 8508301*2^17016603-1 5122515 L4784 2018 Woodall 36 3*2^16819291-1 5063112 L5230 2021 37 3*2^16408818+1 4939547 L5171 2020 Divides GF(16408814,3), GF(16408817,5) 38 69*2^15866556-1 4776312 L4965 2021 39 2525532*73^2525532+1 4705888 L5402 2021 Generalized Cullen 40 11*2^15502315+1 4666663 L4965 2023 Divides GF(15502313,10) [GG] 41 37*2^15474010+1 4658143 L4965 2022 42 93839*2^15337656-1 4617100 L4965 2022 43 2^15317227+2^7658614+1 4610945 L5123 2020 Gaussian Mersenne norm 41?, generalized unique 44 6*5^6546983+1 4576146 L4965 2020 45 69*2^14977631-1 4508719 L4965 2021 46 192971*2^14773498-1 4447272 L4965 2021 47 4*5^6181673-1 4320805 L4965 2022 48 6962*31^2863120-1 4269952 L5410 2020 49 37*2^14166940+1 4264676 L4965 2022 50 99739*2^14019102+1 4220176 L5008 2019 51 69*2^13832885-1 4164116 L4965 2022 52 404849*2^13764867+1 4143644 L4976 2021 Generalized Cullen 53 25*2^13719266+1 4129912 L4965 2022 Generalized Fermat 54 81*2^13708272+1 4126603 L4965 2022 Generalized Fermat 55 2740879*2^13704395-1 4125441 L4976 2019 Generalized Woodall 56 479216*3^8625889-1 4115601 L4976 2019 Generalized Woodall 57 Phi(3,-143332^393216) 4055114 L4506 2017 Generalized unique 58 81*2^13470584+1 4055052 L4965 2022 Generalized Fermat 59 2^13466917-1 4053946 G5 2001 Mersenne 39 60 9*2^13334487+1 4014082 L4965 2020 Divides GF(13334485,3) 61 206039*2^13104952-1 3944989 L4965 2021 62 2805222*5^5610444+1 3921539 L4972 2019 Generalized Cullen 63 19249*2^13018586+1 3918990 SB10 2007 64 2293*2^12918431-1 3888839 L4965 2021 65 81*2^12804541+1 3854553 L4965 2022 66 4*5^5380542+1 3760839 L4965 2023 Generalized Fermat 67 9*2^12406887+1 3734847 L4965 2020 Divides GF(12406885,3) 68c 7*2^12286041-1 3698468 L4965 2023 69 69*2^12231580-1 3682075 L4965 2021 70 27*2^12184319+1 3667847 L4965 2021 71 3761*2^11978874-1 3606004 L4965 2022 72 3*2^11895718-1 3580969 L4159 2015 73 37*2^11855148+1 3568757 L4965 2022 74c 6339004^524288+1 3566218 L1372 2023 Generalized Fermat 75 5897794^524288+1 3549792 x50 2022 Generalized Fermat 76 3*2^11731850-1 3531640 L4103 2015 77 69*2^11718455-1 3527609 L4965 2020 78 41*2^11676439+1 3514960 L4965 2022 79 4896418^524288+1 3507424 L4245 2022 Generalized Fermat 80 81*2^11616017+1 3496772 L4965 2022 81 69*2^11604348-1 3493259 L4965 2020 82 9*2^11500843+1 3462100 L4965 2020 Divides GF(11500840,12) 83 3*2^11484018-1 3457035 L3993 2014 84 193997*2^11452891+1 3447670 L4398 2018 85 3638450^524288+1 3439810 L4591 2020 Generalized Fermat 86 9221*2^11392194-1 3429397 L5267 2021 87 9*2^11366286+1 3421594 L4965 2020 Generalized Fermat 88 5*2^11355764-1 3418427 L4965 2021 89 3214654^524288+1 3411613 L4309 2019 Generalized Fermat 90 146561*2^11280802-1 3395865 L5181 2020 91 2985036^524288+1 3394739 L4752 2019 Generalized Fermat 92 6929*2^11255424-1 3388225 L4965 2022 93 2877652^524288+1 3386397 L4250 2019 Generalized Fermat 94 2788032^524288+1 3379193 L4584 2019 Generalized Fermat 95 2733014^524288+1 3374655 L4929 2019 Generalized Fermat 96 9*2^11158963+1 3359184 L4965 2020 Divides GF(11158962,5) 97 9271*2^11134335-1 3351773 L4965 2021 98 2312092^524288+1 3336572 L4720 2018 Generalized Fermat 99 2061748^524288+1 3310478 L4783 2018 Generalized Fermat 100 1880370^524288+1 3289511 L4201 2018 Generalized Fermat 101 27*2^10902757-1 3282059 L4965 2022 102 3*2^10829346+1 3259959 L3770 2014 Divides GF(10829343,3), GF(10829345,5) 103 11*2^10803449+1 3252164 L4965 2022 Divides GF(10803448,6) 104 11*2^10797109+1 3250255 L4965 2022 105 7*2^10612737-1 3194754 L4965 2022 106 37*2^10599476+1 3190762 L4965 2022 Divides GF(10599475,10) 107 5*2^10495620-1 3159498 L4965 2021 108c Phi(3,-3^3304302+1)/3 3153105 L5123 2023 Generalized unique 109 5*2^10349000-1 3115361 L4965 2021 110 Phi(3,-844833^262144) 3107335 L4506 2017 Generalized unique 111a 52922*5^4399812-1 3075342 A1 2023 112 Phi(3,-712012^262144) 3068389 L4506 2017 Generalized unique 113b 177742*5^4386703-1 3066180 L5807 2023 114 874208*54^1748416-1 3028951 L4976 2019 Generalized Woodall 115 475856^524288+1 2976633 L3230 2012 Generalized Fermat 116 2*3^6236772+1 2975697 L4965 2022 117 9*2^9778263+1 2943552 L4965 2020 118 1806676*41^1806676+1 2913785 L4668 2018 Generalized Cullen 119 356926^524288+1 2911151 L3209 2012 Generalized Fermat 120 341112^524288+1 2900832 L3184 2012 Generalized Fermat 121 213988*5^4138363-1 2892597 L5621 2022 122 43*2^9596983-1 2888982 L4965 2022 123 121*2^9584444+1 2885208 L5183 2020 Generalized Fermat 124 11*2^9381365+1 2824074 L4965 2020 Divides GF(9381364,6) 125a 15*2^9312889+1 2803461 L4965 2023 126 49*2^9187790+1 2765803 L4965 2022 Generalized Fermat 127 27653*2^9167433+1 2759677 SB8 2005 128 90527*2^9162167+1 2758093 L1460 2010 129 6795*2^9144320-1 2752719 L4965 2021 130b 75*2^9079482+1 2733199 L4965 2023 131 1323365*116^1323365+1 2732038 L4718 2018 Generalized Cullen 132 57*2^9075622-1 2732037 L4965 2022 133 63838*5^3887851-1 2717497 L5558 2022 134 13*2^8989858+1 2706219 L4965 2020 135 4159*2^8938471-1 2690752 L4965 2022 136 273809*2^8932416-1 2688931 L1056 2017 137 2*3^5570081+1 2657605 L4965 2020 Divides Phi(3^5570081,2) [g427] 138 25*2^8788628+1 2645643 L5161 2021 Generalized Fermat 139 2038*366^1028507-1 2636562 L2054 2016 140 64598*5^3769854-1 2635020 L5427 2022 141 8*785^900325+1 2606325 L4786 2022 142 17*2^8636199+1 2599757 L5161 2021 Divides GF(8636198,10) 143 75898^524288+1 2558647 p334 2011 Generalized Fermat 144 25*2^8456828+1 2545761 L5237 2021 Divides GF(8456827,12), generalized Fermat 145 39*2^8413422+1 2532694 L5232 2021 146 31*2^8348000+1 2513000 L5229 2021 147 27*2^8342438-1 2511326 L3483 2021 148 3687*2^8261084-1 2486838 L4965 2021 149 273662*5^3493296-1 2441715 L5444 2021 150 81*2^8109236+1 2441126 L4965 2022 Generalized Fermat 151 11*2^8103463+1 2439387 L4965 2020 Divides GF(8103462,12) 152 102818*5^3440382-1 2404729 L5427 2021 153 11*2^7971110-1 2399545 L2484 2019 154 27*2^7963247+1 2397178 L5161 2021 Divides Fermat F(7963245) 155 3177*2^7954621-1 2394584 L4965 2021 156 39*2^7946769+1 2392218 L5226 2021 Divides GF(7946767,12) 157 7*6^3072198+1 2390636 L4965 2019 158 3765*2^7904593-1 2379524 L4965 2021 159 29*2^7899985+1 2378134 L5161 2021 Divides GF(7899984,6) 160 5113*2^7895471-1 2376778 L4965 2022 161 861*2^7895451-1 2376771 L4965 2021 162 28433*2^7830457+1 2357207 SB7 2004 163 2589*2^7803339-1 2349043 L4965 2022 164e 8401*2^7767655-1 2338302 L4965 2023 165 5*2^7755002-1 2334489 L4965 2021 166 2945*2^7753232-1 2333959 L4965 2022 167 2545*2^7732265-1 2327648 L4965 2021 168 5539*2^7730709-1 2327180 L4965 2021 169 4817*2^7719584-1 2323831 L4965 2021 170 1341174*53^1341174+1 2312561 L4668 2017 Generalized Cullen 171 9467*2^7680034-1 2311925 L4965 2022 172 45*2^7661004+1 2306194 L5200 2020 173 15*2^7619838+1 2293801 L5192 2020 174 3597*2^7580693-1 2282020 L4965 2021 175f 3129*2^7545557-1 2271443 L4965 2023 176 7401*2^7523295-1 2264742 L4965 2021 177 45*2^7513661+1 2261839 L5179 2020 178 Phi(3,-558640^196608) 2259865 L4506 2017 Generalized unique 179c 9*2^7479919-1 2251681 L3345 2023 180 1875*2^7474308-1 2249995 L4965 2022 181f 69*2^7452023+1 2243285 L4965 2023 Divides GF(7452020,3) [GG] 182 4*5^3189669-1 2229484 L4965 2022 183 29*2^7374577+1 2219971 L5169 2020 Divides GF(7374576,3) 184 3197*2^7359542-1 2215447 L4965 2022 185 109838*5^3168862-1 2214945 L5129 2020 186 101*2^7345194-1 2211126 L1884 2019 187 15*2^7300254+1 2197597 L5167 2020 188 422429!+1 2193027 p425 2022 Factorial 189 1759*2^7284439-1 2192838 L4965 2021 190d 1909683*14^1909683+1 2188748 L5765 2023 Generalized Cullen 191 737*2^7269322-1 2188287 L4665 2017 192 118568*5^3112069+1 2175248 L690 2020 193 6039*2^7207973-1 2169820 L4965 2021 194 502573*2^7181987-1 2162000 L3964 2014 195 402539*2^7173024-1 2159301 L3961 2014 196 3343*2^7166019-1 2157191 L1884 2016 197 161041*2^7107964+1 2139716 L4034 2015 198 27*2^7046834+1 2121310 L3483 2018 199 1759*2^7046791-1 2121299 L4965 2021 200 327*2^7044001-1 2120459 L4965 2021 201 5*2^7037188-1 2118406 L4965 2021 202 3*2^7033641+1 2117338 L2233 2011 Divides GF(7033639,3) 203 33661*2^7031232+1 2116617 SB11 2007 204 Phi(3,-237804^196608) 2114016 L4506 2017 Generalized unique 205 207494*5^3017502-1 2109149 L5083 2020 206 15*2^6993631-1 2105294 L4965 2021 207 8943501*2^6972593-1 2098967 L466 2022 208 6020095*2^6972593-1 2098967 L466 2022 209 2^6972593-1 2098960 G4 1999 Mersenne 38 210 273*2^6963847-1 2096330 L4965 2022 211 6219*2^6958945-1 2094855 L4965 2021 212 51*2^6945567+1 2090826 L4965 2020 Divides GF(6945564,12) [p286] 213 238694*5^2979422-1 2082532 L5081 2020 214 4*72^1119849-1 2079933 L4444 2016 215 33*2^6894190-1 2075360 L4965 2021 216 2345*2^6882320-1 2071789 L4965 2022 217 146264*5^2953282-1 2064261 L1056 2020 218 69*2^6838971-1 2058738 L5037 2020 219 35816*5^2945294-1 2058677 L5076 2020 220 127*2^6836153-1 2057890 L1862 2018 221 19*2^6833086+1 2056966 L5166 2020 222 40597*2^6808509-1 2049571 L3749 2013 223 283*2^6804731-1 2048431 L2484 2020 224 1861709*2^6789999+1 2044000 L5191 2020 225 5781*2^6789459-1 2043835 L4965 2021 226 8435*2^6786180-1 2042848 L4965 2021 227 51*2^6753404+1 2032979 L4965 2020 228f 69*2^6745775+1 2030683 L4965 2023 229 9995*2^6711008-1 2020219 L4965 2021 230 39*2^6684941+1 2012370 L5162 2020 231 6679881*2^6679881+1 2010852 L917 2009 Cullen 232 37*2^6660841-1 2005115 L3933 2014 233 39*2^6648997+1 2001550 L5161 2020 234 304207*2^6643565-1 1999918 L3547 2013 235 69*2^6639971-1 1998833 L5037 2020 236 6471*2^6631137-1 1996175 L4965 2021 237f 9935*2^6603610-1 1987889 L4965 2023 238c 554051*2^6517658-1 1962017 L5811 2023 239 1319*2^6506224-1 1958572 L4965 2021 240f 3163*2^6504943-1 1958187 L4965 2023 241 322498*5^2800819-1 1957694 L4954 2019 242 88444*5^2799269-1 1956611 L3523 2019 243 13*2^6481780+1 1951212 L4965 2020 244 21*2^6468257-1 1947141 L4965 2021 245a 25690360^262144+1 1942427 L5809 2023 Generalized Fermat 246a 25635940^262144+1 1942186 L4307 2023 Generalized Fermat 247b 25461468^262144+1 1941408 L4210 2023 Generalized Fermat 248b 25333402^262144+1 1940834 L5802 2023 Generalized Fermat 249c 24678636^262144+1 1937853 L5586 2023 Generalized Fermat 250 138514*5^2771922+1 1937496 L4937 2019 251d 24429706^262144+1 1936699 L4670 2023 Generalized Fermat 252 33*2^6432160-1 1936275 L4965 2022 253 15*2^6429089-1 1935350 L4965 2021 254e 23591460^262144+1 1932724 L5720 2023 Generalized Fermat 255e 23479122^262144+1 1932181 L5773 2023 Generalized Fermat 256 398023*2^6418059-1 1932034 L3659 2013 257f 22984886^262144+1 1929758 L4928 2023 Generalized Fermat 258c Phi(3,3^2021560+1)/3 1929059 L5123 2023 Generalized unique 259f 22790808^262144+1 1928793 L5047 2023 Generalized Fermat 260f 22480000^262144+1 1927230 L4307 2023 Generalized Fermat 261f 22479752^262144+1 1927229 L5159 2023 Generalized Fermat 262f 22470828^262144+1 1927183 L4201 2023 Generalized Fermat 263 20866766^262144+1 1918752 L4245 2023 Generalized Fermat 264 20710506^262144+1 1917896 L5676 2023 Generalized Fermat 265 20543682^262144+1 1916975 L5663 2023 Generalized Fermat 266 20105956^262144+1 1914523 L5005 2023 Generalized Fermat 267 631*2^6359347-1 1914357 L4965 2021 268 4965*2^6356707-1 1913564 L4965 2022 269 19859450^262144+1 1913119 L5025 2023 Generalized Fermat 270 19527922^262144+1 1911202 L4745 2023 Generalized Fermat 271 19322744^262144+1 1910000 L4775 2023 Generalized Fermat 272 1995*2^6333396-1 1906546 L4965 2021 273 1582137*2^6328550+1 1905090 L801 2009 Cullen 274 18395930^262144+1 1904404 x50 2022 Generalized Fermat 275 17191822^262144+1 1896697 x50 2022 Generalized Fermat 276 16769618^262144+1 1893866 L4677 2022 Generalized Fermat 277 16048460^262144+1 1888862 L5127 2022 Generalized Fermat 278 10^1888529-10^944264-1 1888529 p423 2021 Near-repdigit, palindrome 279 15913772^262144+1 1887902 L4387 2022 Generalized Fermat 280 15859176^262144+1 1887511 L5544 2022 Generalized Fermat 281 3303*2^6264946-1 1885941 L4965 2021 282 15417192^262144+1 1884293 L5051 2022 Generalized Fermat 283 14741470^262144+1 1879190 L4204 2022 Generalized Fermat 284 14399216^262144+1 1876516 L4745 2021 Generalized Fermat 285 14103144^262144+1 1874151 L5254 2021 Generalized Fermat 286 13911580^262144+1 1872594 L5068 2021 Generalized Fermat 287 13640376^262144+1 1870352 L4307 2021 Generalized Fermat 288 13553882^262144+1 1869628 L4307 2021 Generalized Fermat 289 13039868^262144+1 1865227 L5273 2021 Generalized Fermat 290 7*6^2396573+1 1864898 L4965 2019 291 12959788^262144+1 1864525 L4591 2021 Generalized Fermat 292f 69*2^6186659+1 1862372 L4965 2023 293 12582496^262144+1 1861162 L5202 2021 Generalized Fermat 294 12529818^262144+1 1860684 L4871 2020 Generalized Fermat 295 12304152^262144+1 1858615 L4591 2020 Generalized Fermat 296 12189878^262144+1 1857553 L4905 2020 Generalized Fermat 297 39*2^6164630+1 1855741 L4087 2020 Divides GF(6164629,5) 298 11081688^262144+1 1846702 L5051 2020 Generalized Fermat 299 10979776^262144+1 1845650 L5088 2020 Generalized Fermat 300 10829576^262144+1 1844082 L4677 2020 Generalized Fermat 301 194368*5^2638045-1 1843920 L690 2018 302 10793312^262144+1 1843700 L4905 2020 Generalized Fermat 303 10627360^262144+1 1841936 L4956 2020 Generalized Fermat 304 10578478^262144+1 1841411 L4307 2020 Generalized Fermat 305 66916*5^2628609-1 1837324 L690 2018 306d 521921*2^6101122-1 1836627 L5811 2023 307 3*2^6090515-1 1833429 L1353 2010 308 9812766^262144+1 1832857 L4245 2020 Generalized Fermat 309 9750938^262144+1 1832137 L4309 2020 Generalized Fermat 310 8349*2^6082397-1 1830988 L4965 2021 311 9450844^262144+1 1828578 L5020 2020 Generalized Fermat 312a 71*2^6070943+1 1827538 L4965 2023 313 32*470^683151+1 1825448 L4064 2021 314 9125820^262144+1 1824594 L5002 2019 Generalized Fermat 315 8883864^262144+1 1821535 L4715 2019 Generalized Fermat 316 21*2^6048861+1 1820890 L5106 2020 Divides GF(6048860,5) 317 9999*2^6037057-1 1817340 L4965 2021 318 8521794^262144+1 1816798 L4289 2019 Generalized Fermat 319 33*2^6019138-1 1811943 L4965 2022 320a 67*2^6018626+1 1811789 L4965 2023 321 1583*2^5989282-1 1802957 L4036 2015 322e 101806*15^1527091-1 1796004 L5765 2023 Generalized Woodall 323 6291332^262144+1 1782250 L4864 2018 Generalized Fermat 324 6287774^262144+1 1782186 L4726 2018 Generalized Fermat 325 327926*5^2542838-1 1777374 L4807 2018 326 81556*5^2539960+1 1775361 L4809 2018 327 5828034^262144+1 1773542 L4720 2018 Generalized Fermat 328 993*10^1768283-1 1768286 L4879 2019 Near-repdigit 329 9*10^1762063-1 1762064 L4879 2020 Near-repdigit 330 5205422^262144+1 1760679 L4201 2018 Generalized Fermat 331 5152128^262144+1 1759508 L4720 2018 Generalized Fermat 332 4489246^262144+1 1743828 L4591 2018 Generalized Fermat 333b 2240501*6^2240501+1 1743456 L5765 2023 Generalized Cullen 334 2*3^3648969+1 1741001 L5043 2020 Divides Phi(3^3648964,2) [g427] 335 7*2^5775996+1 1738749 L3325 2012 336 4246258^262144+1 1737493 L4720 2018 Generalized Fermat 337 3933508^262144+1 1728783 L4309 2018 Generalized Fermat 338 3853792^262144+1 1726452 L4715 2018 Generalized Fermat 339 3673932^262144+1 1721010 L4649 2017 Generalized Fermat 340 (10^859669-1)^2-2 1719338 p405 2022 Near-repdigit 341 3596074^262144+1 1718572 L4689 2017 Generalized Fermat 342 3547726^262144+1 1717031 L4201 2017 Generalized Fermat 343 8*10^1715905-1 1715906 L4879 2020 Near-repdigit 344 1243*2^5686715-1 1711875 L1828 2016 345 25*2^5658915-1 1703505 L1884 2021 346d 1486287*14^1486287+1 1703482 L5765 2023 Generalized Cullen 347 41*2^5651731+1 1701343 L1204 2020 348 3060772^262144+1 1700222 L4649 2017 Generalized Fermat 349 9*2^5642513+1 1698567 L3432 2013 350 10*3^3550446+1 1693995 L4965 2020 351 2622*11^1621920-1 1689060 L2054 2015 352 81*2^5600028+1 1685779 L4965 2022 Generalized Fermat 353 2676404^262144+1 1684945 L4591 2017 Generalized Fermat 354 301562*5^2408646-1 1683577 L4675 2017 355 2611294^262144+1 1682141 L4250 2017 Generalized Fermat 356 171362*5^2400996-1 1678230 L4669 2017 357 2514168^262144+1 1677825 L4564 2017 Generalized Fermat 358 31*2^5560820+1 1673976 L1204 2020 Divides GF(5560819,6) 359 13*2^5523860+1 1662849 L1204 2020 Divides Fermat F(5523858) 360 252191*2^5497878-1 1655032 L3183 2012 361 2042774^262144+1 1654187 L4499 2016 Generalized Fermat 362 1828858^262144+1 1641593 L4200 2016 Generalized Fermat 363 258317*2^5450519+1 1640776 g414 2008 364 7*6^2104746+1 1637812 L4965 2019 365 5*2^5429494-1 1634442 L3345 2017 366 43*2^5408183-1 1628027 L1884 2018 367 1615588^262144+1 1627477 L4200 2016 Generalized Fermat 368 2*296598^296598-1 1623035 L4965 2022 369 1349*2^5385004-1 1621051 L1828 2017 370 1488256^262144+1 1618131 L4249 2016 Generalized Fermat 371 1415198^262144+1 1612400 L4308 2016 Generalized Fermat 372 45*2^5308037+1 1597881 L4761 2019 373 5468*70^864479-1 1595053 L5410 2022 374e 92*10^1585996-1 1585998 L4789 2023 Near-repdigit 375 Phi(3,-1082083^131072) 1581846 L4506 2017 Generalized unique 376 7*2^5229669-1 1574289 L4965 2021 377 180062*5^2249192-1 1572123 L4435 2016 378 124125*6^2018254+1 1570512 L4001 2019 379 27*2^5213635+1 1569462 L3760 2015 380 9992*10^1567410-1 1567414 L4879 2020 Near-repdigit 381 308084!+1 1557176 p425 2022 Factorial 382 Phi(3,-843575^131072) 1553498 L4506 2017 Generalized unique 383 25*2^5152151-1 1550954 L1884 2020 384 53546*5^2216664-1 1549387 L4398 2016 385 773620^262144+1 1543643 L3118 2012 Generalized Fermat 386 39*2^5119458+1 1541113 L1204 2019 387 607*26^1089034+1 1540957 L5410 2021 388 81*2^5115131+1 1539810 L4965 2022 Divides GF(5115128,12) [GG] 389 223*2^5105835-1 1537012 L2484 2019 390 99*10^1536527-1 1536529 L4879 2019 Near-repdigit 391 81*2^5100331+1 1535355 L4965 2022 Divides GF(5100327,6) [GG] 392 992*10^1533933-1 1533936 L4879 2019 Near-repdigit 393 51*2^5085142-1 1530782 L760 2014 394 3*2^5082306+1 1529928 L780 2009 Divides GF(5082303,3), GF(5082305,5) 395 676754^262144+1 1528413 L2975 2012 Generalized Fermat 396 296024*5^2185270-1 1527444 L671 2016 397 5359*2^5054502+1 1521561 SB6 2003 398e 1405486*12^1405486-1 1516781 L5765 2023 Generalized Woodall 399b 53*2^5019181+1 1510926 L4965 2023 400 13*2^4998362+1 1504659 L3917 2014 401 525094^262144+1 1499526 p338 2012 Generalized Fermat 402 92158*5^2145024+1 1499313 L4348 2016 403 499238*10^1497714-1 1497720 L4976 2019 Generalized Woodall 404 77072*5^2139921+1 1495746 L4340 2016 405 2*3^3123036+1 1490068 L5043 2020 406b 51*2^4923905+1 1482245 L4965 2023 407 519397*2^4908893-1 1477730 L5410 2022 408 306398*5^2112410-1 1476517 L4274 2016 409 265711*2^4858008+1 1462412 g414 2008 410 154222*5^2091432+1 1461854 L3523 2015 411 1271*2^4850526-1 1460157 L1828 2012 412 333*2^4846958-1 1459083 L5546 2022 413e 156*532^534754-1 1457695 L5410 2023 414 Phi(3,-362978^131072) 1457490 p379 2015 Generalized unique 415 361658^262144+1 1457075 p332 2011 Generalized Fermat 416 100186*5^2079747-1 1453686 L4197 2015 417 288465!+1 1449771 p3 2022 Factorial 418 15*2^4800315+1 1445040 L1754 2019 Divides GF(4800313,3), GF(4800310,5) 419 2^4792057-2^2396029+1 1442553 L3839 2014 Gaussian Mersenne norm 40?, generalized unique 420 92*10^1439761-1 1439763 L4789 2020 Near-repdigit 421 653*10^1435026-1 1435029 p355 2014 422 197*2^4765318-1 1434506 L5175 2021 423 1401*2^4759435-1 1432736 L4965 2023 424 2169*2^4754343-1 1431204 L4965 2023 425 188*468^535963+1 1431156 L4832 2019 426 1809*2^4752792-1 1430737 L4965 2022 427 2427*2^4749044-1 1429609 L4965 2022 428 2259*2^4746735-1 1428913 L4965 2022 429 2223*2^4729304-1 1423666 L4965 2022 430 1851*2^4727663-1 1423172 L4965 2022 431 1725*2^4727375-1 1423085 L4965 2022 432 1611*2^4724014-1 1422074 L4965 2022 433 1383*2^4719270-1 1420645 L4965 2022 434 1749*2^4717431-1 1420092 L4965 2022 435 2325*2^4713991-1 1419057 L4965 2022 436 3267113#-1 1418398 p301 2021 Primorial 437 100*406^543228+1 1417027 L5410 2020 Generalized Fermat 438 2337*2^4705660-1 1416549 L4965 2022 439 1229*2^4703492-1 1415896 L1828 2018 440 144052*5^2018290+1 1410730 L4146 2015 441 195*2^4685711-1 1410542 L5175 2021 442 9*2^4683555-1 1409892 L1828 2012 443 31*2^4673544+1 1406879 L4990 2019 444 34*993^469245+1 1406305 L4806 2018 445 79*2^4658115-1 1402235 L1884 2018 446 39*2^4657951+1 1402185 L1823 2019 447 4*650^498101-1 1401116 L4294 2021 448 11*2^4643238-1 1397755 L2484 2014 449d 884411*38^884411+1 1397184 L5765 2023 Generalized Cullen 450 68*995^465908-1 1396712 L4001 2017 451 7*6^1793775+1 1395830 L4965 2019 452 Phi(3,-192098^131072) 1385044 p379 2015 Generalized unique 453e 6*10^1380098+1 1380099 L5009 2023 454 27*2^4583717-1 1379838 L2992 2014 455c Phi(3,-3^1444194+1)/3 1378111 L5123 2023 Generalized unique 456d 1198433*14^1198433+1 1373564 L5765 2023 Generalized Cullen 457 121*2^4553899-1 1370863 L3023 2012 458 9473*2^4543680-1 1367788 L5037 2022 459 27*2^4542344-1 1367384 L1204 2014 460 29*2^4532463+1 1364409 L4988 2019 461 4*797^468702+1 1359920 L4548 2017 Generalized Fermat 462 145310^262144+1 1353265 p314 2011 Generalized Fermat 463 25*2^4481024+1 1348925 L4364 2019 Generalized Fermat 464f 81*536^493229+1 1346106 p431 2023 465 303*2^4471002-1 1345909 L5545 2022 466 2*1283^432757+1 1345108 L4879 2019 Divides Phi(1283^432757,2) 467 36772*6^1723287-1 1340983 L1301 2014 468 583854*14^1167708-1 1338349 L4976 2019 Generalized Woodall 469d 20*634^476756-1 1335915 L4975 2023 470b 85*2^4432870+1 1334429 L4965 2023 471 151*2^4424321-1 1331856 L1884 2016 472 195*2^4373994-1 1316706 L5175 2020 473 (10^657559-1)^2-2 1315118 p405 2022 Near-repdigit 474 49*2^4365175-1 1314051 L1959 2017 475 49*2^4360869-1 1312755 L1959 2017 476 13*2^4333087-1 1304391 L1862 2018 477 353159*2^4331116-1 1303802 L2408 2011 478 9959*2^4308760-1 1297071 L5037 2022 479 23*2^4300741+1 1294654 L4147 2019 480 682156*79^682156+1 1294484 L4472 2016 Generalized Cullen 481 141941*2^4299438-1 1294265 L689 2011 482b 87*2^4297718+1 1293744 L4965 2023 483d 993149*20^993149+1 1292123 L5765 2023 Generalized Cullen 484b 79*2^4279006+1 1288112 L4965 2023 485 612749*2^4254500-1 1280738 L5410 2022 486b 1644731*6^1644731+1 1279856 L5765 2023 Generalized Cullen 487 2*1151^417747+1 1278756 L4879 2019 Divides Phi(1151^417747,2) 488 15*2^4246384+1 1278291 L3432 2013 Divides GF(4246381,6) 489 3*2^4235414-1 1274988 L606 2008 490 2*1259^411259+1 1274914 L4879 2020 Divides Phi(1259^411259,2) 491b 93*2^4232892+1 1274230 L4965 2023 492a 131*2^4227493+1 1272605 L5226 2023 493 45*436^481613+1 1271213 L5410 2020 494 109208*5^1816285+1 1269534 L3523 2014 495b 435*2^4216447+1 1269280 L5178 2023 496 1091*2^4215518-1 1269001 L1828 2018 497 191*2^4203426-1 1265360 L2484 2012 498b 269*2^4198809+1 1263970 L5226 2023 499b 545*2^4198333+1 1263827 L5804 2023 500b 53*2^4197093+1 1263453 L5563 2023 501 1259*2^4196028-1 1263134 L1828 2016 502b 329*2^4193199+1 1262282 L5226 2023 503b 141*2^4192911+1 1262195 L5226 2023 Divides Fermat F(4192909) 504 325918*5^1803339-1 1260486 L3567 2014 505b 345*2^4173969+1 1256493 L5226 2023 506b 161*2^4164267+1 1253572 L5178 2023 507b 135*2^4162529+1 1253049 L5178 2023 Divides GF(4162525,10) 508b 177*2^4162494+1 1253038 L5796 2023 509c 237*2^4153348+1 1250285 L5178 2023 510f 69*2^4151165+1 1249628 L4965 2023 511 133778*5^1785689+1 1248149 L3903 2014 512c 201*2^4146003+1 1248074 L5161 2023 513c 329*2^4136019+1 1245069 L5178 2023 514 81*2^4131975+1 1243851 L4965 2022 515c 459*2^4129577+1 1243130 L5226 2023 516c 551*2^4126303+1 1242144 L5226 2023 517c 363*2^4119017+1 1239951 L5226 2023 518c 105*2^4113039+1 1238151 L5178 2023 519e 204*532^454080-1 1237785 L5410 2023 520 17*2^4107544-1 1236496 L4113 2015 521d 261*2^4106385+1 1236148 L5178 2023 522 24032*5^1768249+1 1235958 L3925 2014 523 172*159^561319-1 1235689 L4001 2017 524 10^1234567-20342924302*10^617278-1 1234567 p423 2021 Palindrome 525c 10^1234567-1927633367291*10^617277-1 1234567 p423 2023 Palindrome 526 10^1234567-3626840486263*10^617277-1 1234567 p423 2021 Palindrome 527 10^1234567-4708229228074*10^617277-1 1234567 p423 2021 Palindrome 528d 67*2^4100746+1 1234450 L5178 2023 529d 191*2^4099097+1 1233954 L5563 2023 530d 325*2^4097700+1 1233534 L5226 2023 531d 519*2^4095491+1 1232869 L5226 2023 532d 111*2^4091044+1 1231530 L5783 2023 Divides GF(4091041,3) 533e 1182072*11^1182072-1 1231008 L5765 2023 Generalized Woodall 534 64*425^467857-1 1229712 p268 2021 535d 381*2^4069617+1 1225080 L5226 2023 536 97*2^4066717-1 1224206 L2484 2019 537d 95*2^4063895+1 1223357 L5226 2023 538d 79*2^4062818+1 1223032 L5178 2023 539 1031*2^4054974-1 1220672 L1828 2017 540d 309*2^4054114+1 1220413 L5178 2023 541 2022202116^131072+1 1219734 L4704 2022 Generalized Fermat 542 37*2^4046360+1 1218078 L2086 2019 543e 141*2^4043116+1 1217102 L5517 2023 544 39653*430^460397-1 1212446 L4187 2016 545 1777034894^131072+1 1212377 L4704 2022 Generalized Fermat 546e 141*2^4024411+1 1211471 L5226 2023 547e 515*2^4021165+1 1210494 L5174 2023 548e 73*2^4016912+1 1209213 L5226 2023 549 40734^262144+1 1208473 p309 2011 Generalized Fermat 550e 235*2^4013398+1 1208156 L5178 2023 551 9*2^4005979-1 1205921 L1828 2012 552e 417*2^4003224+1 1205094 L5764 2023 553 12*68^656921+1 1203815 L4001 2016 554 67*688^423893+1 1202836 L4001 2017 555f 221*2^3992723+1 1201932 L5178 2023 556f 213*2^3990702+1 1201324 L5216 2023 557 1993191*2^3986382-1 1200027 L3532 2015 Generalized Woodall 558f 163*2^3984604+1 1199488 L5756 2023 559f 725*2^3983355+1 1199113 L5706 2023 560 (146^276995+1)^2-2 1199030 p405 2022 561f 455*2^3981067+1 1198424 L5724 2023 562 138172*5^1714207-1 1198185 L3904 2014 563 50*383^463313+1 1196832 L2012 2021 564f 339*2^3974295+1 1196385 L5178 2023 565f 699*2^3974045+1 1196310 L5750 2023 566 Phi(3,-1202113^98304) 1195366 L4506 2016 Generalized unique 567 29*2^3964697+1 1193495 L1204 2019 568f 599*2^3963655+1 1193182 L5226 2023 569f 683*2^3962937+1 1192966 L5226 2023 570 39*2^3961129+1 1192421 L1486 2019 571f 165*2^3960664+1 1192281 L5178 2023 572f 79*2^3957238+1 1191250 L5745 2023 573 687*2^3955918+1 1190853 L5554 2023 Divides GF(3955915,6) 574 163*2^3954818+1 1190522 L5178 2023 575 431*2^3953647+1 1190169 L5554 2023 576 Phi(3,-1110815^98304) 1188622 L4506 2016 Generalized unique 577 341*2^3938565+1 1185629 L5554 2023 578 503*2^3936845+1 1185112 L5706 2023 579 717*2^3934760+1 1184484 L5285 2023 580 493*2^3929192+1 1182808 L5161 2023 581 273*2^3929128+1 1182788 L5554 2023 582 609*2^3928682+1 1182654 L5178 2023 583 609*2^3928441+1 1182582 L5527 2023 584 281*2^3926467+1 1181987 L5174 2023 585 153*2^3922478+1 1180786 L5554 2023 586 69*2^3920863+1 1180300 L5554 2023 587 273*2^3919321+1 1179836 L5706 2023 588 531*2^3918985+1 1179735 L5706 2023 589 1000032472^131072+1 1179650 L4704 2022 Generalized Fermat 590 555*2^3916875+1 1179100 L5302 2023 591 571*2^3910616+1 1177216 L5178 2023 592 421*2^3905144+1 1175569 L5600 2023 593 P1174253 1174253 p414 2022 594 567*2^3897588+1 1173294 L5600 2023 595 417*2^3895404+1 1172637 L5600 2023 596 539*2^3894953+1 1172501 L5285 2023 597 645*2^3893849+1 1172169 L5600 2023 598e 818764*3^2456293-1 1171956 L4965 2023 Generalized Woodall 599 22478*5^1675150-1 1170884 L3903 2014 600 1199*2^3889576-1 1170883 L1828 2018 601 298989*2^3886857+1 1170067 L2777 2014 Generalized Cullen 602 93*10^1170023-1 1170025 L4789 2022 Near-repdigit 603 711*2^3886480+1 1169950 L5320 2023 604 375*2^3884634+1 1169394 L5600 2023 605 94*872^397354+1 1168428 L5410 2019 606 269*2^3877485+1 1167242 L5649 2023 607 163*2^3874556+1 1166360 L5646 2023 Divides GF(3874552,5) 608 313*2^3869536+1 1164849 L5600 2023 609 159*2^3860863+1 1162238 L5226 2023 610 445*2^3860780+1 1162214 L5640 2023 611 397*2^3859450+1 1161813 L5226 2023 612 685*2^3856790+1 1161013 L5226 2023 613 27*2^3855094-1 1160501 L3033 2012 614 537*2^3853860+1 1160131 L5636 2022 615 164*978^387920-1 1160015 L4700 2018 616 175*2^3850344+1 1159072 L5226 2022 617 685*2^3847268+1 1158146 L5226 2022 618 655*2^3846352+1 1157871 L5282 2022 619 583*2^3846196+1 1157824 L5226 2022 620 615*2^3844151+1 1157208 L5226 2022 621 14772*241^485468-1 1156398 L5410 2022 622 525*2^3840963+1 1156248 L5613 2022 623 313*2^3837304+1 1155147 L5298 2022 624 49*2^3837090+1 1155081 L4979 2019 Generalized Fermat 625 431*2^3835247+1 1154528 L5161 2022 626 97*2^3833722+1 1154068 L5226 2022 627 2*839^394257+1 1152714 L4879 2019 Divides Phi(839^394257,2) 628 125*392^444161+1 1151839 L4832 2022 629 255*2^3824348+1 1151246 L5226 2022 630 30*514^424652-1 1151218 L4001 2017 631 569*2^3823191+1 1150898 L5226 2022 632 24518^262144+1 1150678 g413 2008 Generalized Fermat 633 563*2^3819237+1 1149708 L5178 2022 634 345*2^3817949+1 1149320 L5373 2022 635 Phi(3,-700219^98304) 1149220 L4506 2016 Generalized unique 636 241*2^3815727-1 1148651 L2484 2019 637 351*2^3815467+1 1148573 L5226 2022 638 109*980^383669-1 1147643 L4001 2018 639 427*2^3811610+1 1147412 L5614 2022 640 569*2^3810475+1 1147071 L5610 2022 641 213*2^3807864+1 1146284 L5609 2022 642 87*2^3806438+1 1145854 L5607 2022 643 369*2^3805321+1 1145519 L5541 2022 644 123547*2^3804809-1 1145367 L2371 2011 645 2564*75^610753+1 1145203 L3610 2014 646 539*2^3801705+1 1144430 L5161 2022 647 159*2^3801463+1 1144357 L5197 2022 648 235*2^3801284+1 1144303 L5608 2022 649 Phi(3,-660955^98304) 1144293 L4506 2016 Generalized unique 650 519*2^3800625+1 1144105 L5315 2022 651 281*2^3798465+1 1143455 L5178 2022 652 166*443^432000+1 1143249 L5410 2020 653 85*2^3797698+1 1143223 L5161 2022 654 326834*5^1634978-1 1142807 L3523 2014 655 459*2^3795969+1 1142704 L5161 2022 656 447*2^3780151+1 1137942 L5596 2022 657 345*2^3779921+1 1137873 L5557 2022 658 477*2^3779871+1 1137858 L5197 2022 659 251*2^3774587+1 1136267 L5592 2022 660 439*2^3773958+1 1136078 L5557 2022 661 43*182^502611-1 1135939 L4064 2020 662 415267*2^3771929-1 1135470 L2373 2011 663 11*2^3771821+1 1135433 p286 2013 664 427*2^3768104+1 1134315 L5192 2022 665 1455*2^3768024-1 1134292 L1134 2022 666 711*2^3767492+1 1134131 L5161 2022 667 265*2^3765189-1 1133438 L2484 2018 668 297*2^3765140+1 1133423 L5197 2022 669 381*2^3764189+1 1133137 L5589 2022 670 115*2^3763650+1 1132974 L5554 2022 671 411*2^3759067+1 1131595 L5589 2022 672 405*2^3757192+1 1131031 L5590 2022 673 938237*2^3752950-1 1129757 L521 2007 Woodall 674 399866798^131072+1 1127471 L4964 2019 Generalized Fermat 675 701*2^3744713+1 1127274 L5554 2022 676 207394*5^1612573-1 1127146 L3869 2014 677 684*10^1127118+1 1127121 L4036 2017 678 Phi(3,-535386^98304) 1126302 L4506 2016 Generalized unique 679 104944*5^1610735-1 1125861 L3849 2014 680 23451*2^3739388+1 1125673 L591 2015 681d 78*622^402915-1 1125662 L5645 2023 682 615*2^3738023+1 1125260 L5161 2022 683 347*2^3737875+1 1125216 L5178 2022 684 163*2^3735726+1 1124568 L5477 2022 Divides GF(3735725,6) 685 375*2^3733510+1 1123902 L5584 2022 686 25*2^3733144+1 1123790 L2125 2019 Generalized Fermat 687 629*2^3731479+1 1123290 L5283 2022 688 113*2^3728113+1 1122276 L5161 2022 689 303*2^3725438+1 1121472 L5161 2022 690 187*2^3723972+1 1121030 L5178 2022 691 2*1103^368361+1 1120767 L4879 2019 Divides Phi(1103^368361,2) 692 105*2^3720512+1 1119988 L5493 2022 693 447*2^3719024+1 1119541 L5493 2022 694 177*2^3717746+1 1119156 L5279 2022 695 2*131^528469+1 1118913 L4879 2019 Divides Phi(131^528469,2) 696 123*2^3716758+1 1118858 L5563 2022 697 313*2^3716716+1 1118846 L5237 2022 698 367*2^3712952+1 1117713 L5264 2022 699 53*2^3709297+1 1116612 L5197 2022 700 2^3704053+2^1852027+1 1115032 L3839 2014 Gaussian Mersenne norm 39?, generalized unique 701 395*2^3701693+1 1114324 L5536 2022 702 589*2^3699954+1 1113800 L5576 2022 703 314187728^131072+1 1113744 L4704 2019 Generalized Fermat 704 119*2^3698412-1 1113336 L2484 2018 705 391*2^3693728+1 1111926 L5493 2022 706 485*2^3688111+1 1110235 L5237 2022 707 341*2^3686613+1 1109784 L5573 2022 708 87*2^3686558+1 1109767 L5573 2022 709 675*2^3682616+1 1108581 L5231 2022 710 569*2^3682167+1 1108446 L5488 2022 711 330286*5^1584399-1 1107453 L3523 2014 712 34*951^371834-1 1107391 L5410 2019 713 45*2^3677787+1 1107126 L1204 2019 714 625*2^3676300+1 1106680 L5302 2022 Generalized Fermat 715 13*2^3675223-1 1106354 L1862 2016 716 271643232^131072+1 1105462 L4704 2019 Generalized Fermat 717 463*2^3671262+1 1105163 L5524 2022 718 735*2^3670991+1 1105082 L5575 2022 719 475*2^3670046+1 1104797 L5524 2022 720 15*2^3668194-1 1104238 L3665 2013 721 273*2^3665736+1 1103499 L5192 2022 722 13*2^3664703-1 1103187 L1862 2016 723 Phi(3,-406515^98304) 1102790 L4506 2016 Generalized unique 724 609*2^3662931+1 1102655 L5573 2022 725 118*892^373012+1 1100524 L5071 2020 726 33300*430^417849-1 1100397 L4393 2016 727 655*2^3653008+1 1099668 L5574 2022 728 291*268^452750-1 1099341 L5410 2022 729 33*2^3649810+1 1098704 L4958 2019 730 295*2^3642206+1 1096416 L5161 2022 731 989*2^3640585+1 1095929 L5115 2020 732 567*2^3639287+1 1095538 L4959 2019 733 639*2^3635707+1 1094460 L1823 2019 734 753*2^3631472+1 1093185 L1823 2019 735 2*205731^205731-1 1093111 L4965 2022 736 65531*2^3629342-1 1092546 L2269 2011 737 1121*2^3629201+1 1092502 L4761 2019 738 215*2^3628962-1 1092429 L2484 2018 739 113*2^3628034-1 1092150 L2484 2014 740 1175*2^3627541+1 1092002 L4840 2019 741 2*431^414457+1 1091878 L4879 2019 Divides Phi(431^414457,2) 742 951*2^3623185+1 1090691 L1823 2019 743 29*920^367810-1 1090113 L4064 2015 744 14641*2^3618876+1 1089395 L181 2018 Generalized Fermat 745 485*2^3618563+1 1089299 L3924 2019 746 95*2^3614033+1 1087935 L1474 2019 747 1005*2^3612300+1 1087414 L1823 2019 748 861*2^3611815+1 1087268 L1745 2019 749 1087*2^3611476+1 1087166 L4834 2019 750 485767*2^3609357-1 1086531 L622 2008 751 675*2^3606447+1 1085652 L3278 2019 752 669*2^3606266+1 1085598 L1675 2019 753 65077*2^3605944+1 1085503 L4685 2020 754 1365*2^3605491+1 1085365 L1134 2022 755 851*2^3604395+1 1085034 L2125 2019 756 1143*2^3602429+1 1084443 L4754 2019 757 1183*2^3601898+1 1084283 L1823 2019 758 189*2^3596375+1 1082620 L3760 2016 759 1089*2^3593267+1 1081685 L3035 2019 760 19581121*2^3589357-1 1080512 p49 2022 761 1101*2^3589103+1 1080431 L1823 2019 762a 173962482^131072+1 1080093 L4249 2023 Generalized Fermat 763 35*2^3587843+1 1080050 L1979 2014 Divides GF(3587841,5) 764a 173717408^131072+1 1080013 L5634 2023 Generalized Fermat 765a 173561300^131072+1 1079962 L4249 2023 Generalized Fermat 766a 173343810^131072+1 1079891 L4249 2023 Generalized Fermat 767b 172026454^131072+1 1079456 L4737 2023 Generalized Fermat 768b 172004036^131072+1 1079449 L5512 2023 Generalized Fermat 769 275*2^3585539+1 1079358 L3803 2016 770b 171677924^131072+1 1079341 L5512 2023 Generalized Fermat 771b 171610156^131072+1 1079319 L4249 2023 Generalized Fermat 772b 171518672^131072+1 1079288 L5586 2023 Generalized Fermat 773b 171128300^131072+1 1079158 L4249 2023 Generalized Fermat 774b 170982934^131072+1 1079110 L4201 2023 Generalized Fermat 775b 170626040^131072+1 1078991 L5748 2023 Generalized Fermat 776b 169929578^131072+1 1078758 L5748 2023 Generalized Fermat 777c 169369502^131072+1 1078570 L4410 2023 Generalized Fermat 778c 169299904^131072+1 1078547 L4559 2023 Generalized Fermat 779c 169059224^131072+1 1078466 L5746 2023 Generalized Fermat 780c 168885632^131072+1 1078408 L5793 2023 Generalized Fermat 781c 168602250^131072+1 1078312 L5782 2023 Generalized Fermat 782c 168576546^131072+1 1078303 L5639 2023 Generalized Fermat 783c 167845698^131072+1 1078056 L5735 2023 Generalized Fermat 784c 167604930^131072+1 1077974 L4859 2023 Generalized Fermat 785 2*59^608685+1 1077892 g427 2014 Divides Phi(59^608685,2) 786d 167206862^131072+1 1077839 L5641 2023 Generalized Fermat 787d 166964502^131072+1 1077756 L5627 2023 Generalized Fermat 788 651*2^3579843+1 1077643 L3035 2018 789d 166609122^131072+1 1077635 L5782 2023 Generalized Fermat 790d 166397330^131072+1 1077563 L5578 2023 Generalized Fermat 791d 166393356^131072+1 1077561 L5782 2023 Generalized Fermat 792d 166288612^131072+1 1077525 L4672 2023 Generalized Fermat 793d 166277052^131072+1 1077521 L5755 2023 Generalized Fermat 794d 166052226^131072+1 1077444 L4670 2023 Generalized Fermat 795d 165430644^131072+1 1077231 L4672 2023 Generalized Fermat 796d 165427494^131072+1 1077230 L4249 2023 Generalized Fermat 797 583*2^3578402+1 1077210 L3035 2018 798d 165361824^131072+1 1077207 L5586 2023 Generalized Fermat 799d 165258594^131072+1 1077172 L4884 2023 Generalized Fermat 800d 165036358^131072+1 1077095 L5156 2023 Generalized Fermat 801d 164922680^131072+1 1077056 L4249 2023 Generalized Fermat 802d 164800594^131072+1 1077014 L5775 2023 Generalized Fermat 803e 164660428^131072+1 1076965 L4249 2023 Generalized Fermat 804 309*2^3577339+1 1076889 L4406 2016 805e 164440734^131072+1 1076889 L5485 2023 Generalized Fermat 806e 163871194^131072+1 1076692 L5772 2023 Generalized Fermat 807e 163838506^131072+1 1076680 L5758 2023 Generalized Fermat 808e 163821336^131072+1 1076674 L5544 2023 Generalized Fermat 809e 163820256^131072+1 1076674 L5452 2023 Generalized Fermat 810e 163666380^131072+1 1076621 L5030 2023 Generalized Fermat 811e 163585288^131072+1 1076592 L4928 2023 Generalized Fermat 812e 163359994^131072+1 1076514 L5769 2023 Generalized Fermat 813e 163214942^131072+1 1076463 L4933 2023 Generalized Fermat 814e 163193584^131072+1 1076456 L5595 2023 Generalized Fermat 815e 163152818^131072+1 1076442 L5639 2023 Generalized Fermat 816e 163044252^131072+1 1076404 L5775 2023 Generalized Fermat 817e 162950466^131072+1 1076371 L5694 2023 Generalized Fermat 818e 162874590^131072+1 1076345 L5586 2023 Generalized Fermat 819e 162850104^131072+1 1076336 L5769 2023 Generalized Fermat 820e 162817576^131072+1 1076325 L5772 2023 Generalized Fermat 821 1185*2^3574583+1 1076060 L4851 2018 822 251*2^3574535+1 1076045 L3035 2016 823 1485*2^3574333+1 1075985 L1134 2022 824e 161706626^131072+1 1075935 L4870 2023 Generalized Fermat 825e 161619620^131072+1 1075904 L5586 2023 Generalized Fermat 826e 161588716^131072+1 1075893 L4928 2023 Generalized Fermat 827e 161571504^131072+1 1075887 L5030 2023 Generalized Fermat 828e 161569668^131072+1 1075887 L5639 2023 Generalized Fermat 829e 160998114^131072+1 1075685 L5586 2023 Generalized Fermat 830f 160607310^131072+1 1075547 L5763 2023 Generalized Fermat 831f 160325616^131072+1 1075447 L5586 2023 Generalized Fermat 832f 160228242^131072+1 1075412 L5632 2023 Generalized Fermat 833f 160146172^131072+1 1075383 L4773 2023 Generalized Fermat 834f 159800918^131072+1 1075260 L5586 2023 Generalized Fermat 835f 159794566^131072+1 1075258 L4249 2023 Generalized Fermat 836f 159784836^131072+1 1075254 L5639 2023 Generalized Fermat 837f 159784822^131072+1 1075254 L5637 2023 Generalized Fermat 838 1019*2^3571635+1 1075173 L1823 2018 839f 159509138^131072+1 1075156 L5637 2023 Generalized Fermat 840 119*2^3571416-1 1075106 L2484 2018 841f 159214418^131072+1 1075051 L5755 2023 Generalized Fermat 842f 158831096^131072+1 1074914 L5022 2023 Generalized Fermat 843 35*2^3570777+1 1074913 L2891 2014 844f 158696888^131072+1 1074865 L5030 2023 Generalized Fermat 845f 158472238^131072+1 1074785 L5586 2023 Generalized Fermat 846 33*2^3570132+1 1074719 L2552 2014 847f 157923226^131072+1 1074587 L4249 2023 Generalized Fermat 848f 157541220^131072+1 1074449 L5416 2023 Generalized Fermat 849 5*2^3569154-1 1074424 L503 2009 850f 157374268^131072+1 1074389 L5578 2023 Generalized Fermat 851 81*492^399095-1 1074352 L4001 2015 852f 156978838^131072+1 1074246 L5332 2023 Generalized Fermat 853f 156789840^131072+1 1074177 L4747 2023 Generalized Fermat 854f 156756400^131072+1 1074165 L4249 2023 Generalized Fermat 855 22934*5^1536762-1 1074155 L3789 2014 856f 156625064^131072+1 1074117 L5694 2023 Generalized Fermat 857f 156519708^131072+1 1074079 L5746 2023 Generalized Fermat 858f 156468140^131072+1 1074060 L4249 2023 Generalized Fermat 859f 156203340^131072+1 1073964 L5578 2023 Generalized Fermat 860f 156171526^131072+1 1073952 L5698 2023 Generalized Fermat 861 155778562^131072+1 1073809 L4309 2023 Generalized Fermat 862 155650426^131072+1 1073762 L5668 2023 Generalized Fermat 863 155536474^131072+1 1073720 L4249 2023 Generalized Fermat 864 155339878^131072+1 1073648 L5206 2023 Generalized Fermat 865 155305266^131072+1 1073636 L5549 2023 Generalized Fermat 866 155006218^131072+1 1073526 L4742 2023 Generalized Fermat 867 154553092^131072+1 1073359 L4920 2023 Generalized Fermat 868 154492166^131072+1 1073337 L4326 2023 Generalized Fermat 869 154478286^131072+1 1073332 L4544 2023 Generalized Fermat 870 154368914^131072+1 1073291 L5738 2023 Generalized Fermat 871 153966766^131072+1 1073143 L5732 2023 Generalized Fermat 872 265*2^3564373-1 1072986 L2484 2018 873 153485148^131072+1 1072965 L5736 2023 Generalized Fermat 874 153432848^131072+1 1072945 L5030 2023 Generalized Fermat 875 153413432^131072+1 1072938 L4835 2023 Generalized Fermat 876 771*2^3564109+1 1072907 L2125 2018 877 381*2^3563676+1 1072776 L4190 2016 878 152966530^131072+1 1072772 L5070 2023 Generalized Fermat 879 555*2^3563328+1 1072672 L4850 2018 880 152542626^131072+1 1072614 L5460 2023 Generalized Fermat 881 151999396^131072+1 1072411 L5586 2023 Generalized Fermat 882 151609814^131072+1 1072265 L5663 2023 Generalized Fermat 883 151218242^131072+1 1072118 L5588 2023 Generalized Fermat 884 151108236^131072+1 1072076 L4672 2023 Generalized Fermat 885 151044622^131072+1 1072052 L5544 2023 Generalized Fermat 886 151030068^131072+1 1072047 L4774 2023 Generalized Fermat 887 150908454^131072+1 1072001 L4758 2023 Generalized Fermat 888 150863054^131072+1 1071984 L5720 2023 Generalized Fermat 889 1183*2^3560584+1 1071846 L1823 2018 890 150014492^131072+1 1071663 L4476 2023 Generalized Fermat 891 149972788^131072+1 1071647 L4559 2023 Generalized Fermat 892 415*2^3559614+1 1071554 L3035 2016 893 149665588^131072+1 1071530 L4892 2023 Generalized Fermat 894 149142686^131072+1 1071331 L4684 2023 Generalized Fermat 895 149057554^131072+1 1071298 L4933 2023 Generalized Fermat 896 148598024^131072+1 1071123 L4476 2023 Generalized Fermat 897 1103*2^3558177-503*2^1092022-1 1071122 p423 2022 Arithmetic progression (3,d=1103*2^3558176-503*2^1092022) 898 1103*2^3558176-1 1071121 L1828 2018 899 148592576^131072+1 1071121 L4476 2023 Generalized Fermat 900 148425726^131072+1 1071057 L4289 2023 Generalized Fermat 901 148154288^131072+1 1070952 L5714 2023 Generalized Fermat 902 148093952^131072+1 1070929 L4720 2023 Generalized Fermat 903 148070542^131072+1 1070920 L5155 2023 Generalized Fermat 904 147988292^131072+1 1070889 L5155 2023 Generalized Fermat 905 147816036^131072+1 1070822 L5634 2023 Generalized Fermat 906 1379*2^3557072-1 1070789 L1828 2018 907 147539992^131072+1 1070716 L4917 2023 Generalized Fermat 908 147433824^131072+1 1070675 L4753 2023 Generalized Fermat 909 147310498^131072+1 1070627 L5403 2023 Generalized Fermat 910 147265916^131072+1 1070610 L5543 2023 Generalized Fermat 911 146994540^131072+1 1070505 L5634 2023 Generalized Fermat 912 146520528^131072+1 1070321 L5469 2023 Generalized Fermat 913 146465338^131072+1 1070300 L5704 2023 Generalized Fermat 914 146031082^131072+1 1070131 L4697 2023 Generalized Fermat 915 145949782^131072+1 1070099 L5029 2023 Generalized Fermat 916 145728478^131072+1 1070013 L5543 2023 Generalized Fermat 917 145245346^131072+1 1069824 L5586 2023 Generalized Fermat 918 145137270^131072+1 1069781 L4742 2023 Generalized Fermat 919 145132288^131072+1 1069779 L4774 2023 Generalized Fermat 920 144926960^131072+1 1069699 L5036 2023 Generalized Fermat 921 144810806^131072+1 1069653 L5543 2023 Generalized Fermat 922 681*2^3553141+1 1069605 L3035 2018 923 144602744^131072+1 1069571 L5543 2023 Generalized Fermat 924 143844356^131072+1 1069272 L5693 2023 Generalized Fermat 925 599*2^3551793+1 1069200 L3824 2018 926 143421820^131072+1 1069104 L4904 2023 Generalized Fermat 927 621*2^3551472+1 1069103 L4687 2018 928 143416574^131072+1 1069102 L4591 2023 Generalized Fermat 929 143126384^131072+1 1068987 L5288 2023 Generalized Fermat 930 142589776^131072+1 1068773 L4201 2023 Generalized Fermat 931 773*2^3550373+1 1068772 L1808 2018 932 142527792^131072+1 1068748 L4387 2023 Generalized Fermat 933 142207386^131072+1 1068620 L5694 2023 Generalized Fermat 934 142195844^131072+1 1068616 L5548 2023 Generalized Fermat 935 141636602^131072+1 1068391 L5639 2023 Generalized Fermat 936 141554190^131072+1 1068358 L4956 2023 Generalized Fermat 937 1199*2^3548380-1 1068172 L1828 2018 938 140928044^131072+1 1068106 L4870 2023 Generalized Fermat 939 191*2^3548117+1 1068092 L4203 2015 940 140859866^131072+1 1068078 L5011 2023 Generalized Fermat 941 140824516^131072+1 1068064 L4760 2023 Generalized Fermat 942 140649396^131072+1 1067993 L5578 2023 Generalized Fermat 943 867*2^3547711+1 1067971 L4155 2018 944 140473436^131072+1 1067922 L4210 2023 Generalized Fermat 945 140237690^131072+1 1067826 L5051 2023 Generalized Fermat 946 139941370^131072+1 1067706 L5671 2023 Generalized Fermat 947 Phi(3,3^1118781+1)/3 1067588 L3839 2014 Generalized unique 948 139352402^131072+1 1067466 L5663 2023 Generalized Fermat 949 351*2^3545752+1 1067381 L4082 2016 950 138896860^131072+1 1067279 L4745 2023 Generalized Fermat 951 138894074^131072+1 1067278 L5041 2023 Generalized Fermat 952 138830036^131072+1 1067252 L5662 2023 Generalized Fermat 953 138626864^131072+1 1067169 L5663 2023 Generalized Fermat 954 138527284^131072+1 1067128 L5663 2023 Generalized Fermat 955 93*2^3544744+1 1067077 L1728 2014 956 138000006^131072+1 1066911 L5051 2023 Generalized Fermat 957 137900696^131072+1 1066870 L4249 2023 Generalized Fermat 958 137878102^131072+1 1066860 L5051 2023 Generalized Fermat 959 1159*2^3543702+1 1066764 L1823 2018 960 137521726^131072+1 1066713 L4672 2023 Generalized Fermat 961 137486564^131072+1 1066699 L5586 2023 Generalized Fermat 962 136227118^131072+1 1066175 L5416 2023 Generalized Fermat 963 136192168^131072+1 1066160 L5556 2023 Generalized Fermat 964 136124076^131072+1 1066132 L5041 2023 Generalized Fermat 965 136122686^131072+1 1066131 L5375 2023 Generalized Fermat 966 178658*5^1525224-1 1066092 L3789 2014 967 135744154^131072+1 1065973 L5068 2023 Generalized Fermat 968 135695350^131072+1 1065952 L4249 2023 Generalized Fermat 969 135623220^131072+1 1065922 L5657 2023 Generalized Fermat 970 135513092^131072+1 1065876 L5656 2023 Generalized Fermat 971 135497678^131072+1 1065869 L4387 2023 Generalized Fermat 972 135458028^131072+1 1065852 L5051 2023 Generalized Fermat 973 135332960^131072+1 1065800 L5655 2023 Generalized Fermat 974 135135930^131072+1 1065717 L4387 2023 Generalized Fermat 975 1085*2^3539671+1 1065551 L3035 2018 976 134706086^131072+1 1065536 L5378 2023 Generalized Fermat 977 134459616^131072+1 1065431 L5658 2023 Generalized Fermat 978 134447516^131072+1 1065426 L4387 2023 Generalized Fermat 979 134322272^131072+1 1065373 L4387 2023 Generalized Fermat 980 134206304^131072+1 1065324 L4684 2023 Generalized Fermat 981 134176868^131072+1 1065311 L5375 2023 Generalized Fermat 982 133954018^131072+1 1065217 L5088 2023 Generalized Fermat 983 133676500^131072+1 1065099 L4387 2023 Generalized Fermat 984 133569020^131072+1 1065053 L5277 2023 Generalized Fermat 985 133345154^131072+1 1064958 L4210 2023 Generalized Fermat 986 133180238^131072+1 1064887 L5586 2023 Generalized Fermat 987 133096042^131072+1 1064851 L4755 2023 Generalized Fermat 988 465*2^3536871+1 1064707 L4459 2016 989 1019*2^3536312-1 1064539 L1828 2012 990 131820886^131072+1 1064303 L5069 2023 Generalized Fermat 991 131412078^131072+1 1064126 L5653 2023 Generalized Fermat 992 131370186^131072+1 1064108 L5036 2023 Generalized Fermat 993 131309874^131072+1 1064082 L5069 2023 Generalized Fermat 994 131112524^131072+1 1063996 L4245 2023 Generalized Fermat 995 1179*2^3534450+1 1063979 L3035 2018 996 130907540^131072+1 1063907 L4526 2023 Generalized Fermat 997 130593462^131072+1 1063771 L4559 2023 Generalized Fermat 998 447*2^3533656+1 1063740 L4457 2016 999 130518578^131072+1 1063738 L5029 2023 Generalized Fermat 1000 1059*2^3533550+1 1063708 L1823 2018 1001 130198372^131072+1 1063598 L5416 2023 Generalized Fermat 1002 130148002^131072+1 1063576 L4387 2023 Generalized Fermat 1003 130128232^131072+1 1063567 L5029 2023 Generalized Fermat 1004 130051980^131072+1 1063534 L5416 2023 Generalized Fermat 1005 130048816^131072+1 1063533 L4245 2023 Generalized Fermat 1006 345*2^3532957+1 1063529 L4314 2016 1007 553*2^3532758+1 1063469 L1823 2018 1008 129292212^131072+1 1063201 L4285 2023 Generalized Fermat 1009 129159632^131072+1 1063142 L5051 2023 Generalized Fermat 1010 128558886^131072+1 1062877 L5518 2023 Generalized Fermat 1011 128520182^131072+1 1062860 L4745 2023 Generalized Fermat 1012 543131*2^3529754-1 1062568 L4925 2022 1013 127720948^131072+1 1062504 L5378 2023 Generalized Fermat 1014 141*2^3529287+1 1062424 L4185 2015 1015 127093036^131072+1 1062224 L4591 2023 Generalized Fermat 1016 126611934^131072+1 1062008 L4776 2023 Generalized Fermat 1017 126423276^131072+1 1061923 L4201 2023 Generalized Fermat 1018 126334514^131072+1 1061883 L4249 2023 Generalized Fermat 1019 13*2^3527315-1 1061829 L1862 2016 1020 126199098^131072+1 1061822 L4591 2023 Generalized Fermat 1021 126189358^131072+1 1061818 L4704 2023 Generalized Fermat 1022 125966884^131072+1 1061717 L4747 2023 Generalized Fermat 1023 125714084^131072+1 1061603 L4745 2023 Generalized Fermat 1024 125141096^131072+1 1061343 L4559 2023 Generalized Fermat 1025 1393*2^3525571-1 1061306 L1828 2017 1026 125006494^131072+1 1061282 L5639 2023 Generalized Fermat 1027 124877454^131072+1 1061223 L4245 2023 Generalized Fermat 1028 124875502^131072+1 1061222 L4591 2023 Generalized Fermat 1029 124749274^131072+1 1061164 L4591 2023 Generalized Fermat 1030 124586054^131072+1 1061090 L4249 2023 Generalized Fermat 1031 124582356^131072+1 1061088 L5606 2023 Generalized Fermat 1032 124543852^131072+1 1061071 L4249 2023 Generalized Fermat 1033 124393514^131072+1 1061002 L4774 2023 Generalized Fermat 1034 124219534^131072+1 1060922 L4249 2023 Generalized Fermat 1035 124133348^131072+1 1060883 L5088 2023 Generalized Fermat 1036 124080788^131072+1 1060859 L5639 2023 Generalized Fermat 1037 1071*2^3523944+1 1060816 L1675 2018 1038 123910270^131072+1 1060780 L4249 2023 Generalized Fermat 1039 123856592^131072+1 1060756 L4201 2023 Generalized Fermat 1040 123338660^131072+1 1060517 L4905 2022 Generalized Fermat 1041 123306230^131072+1 1060502 L5638 2023 Generalized Fermat 1042 123195196^131072+1 1060451 L5029 2022 Generalized Fermat 1043 122941512^131072+1 1060333 L4559 2022 Generalized Fermat 1044 122869094^131072+1 1060300 L4939 2022 Generalized Fermat 1045 122481106^131072+1 1060120 L4704 2022 Generalized Fermat 1046 122414564^131072+1 1060089 L5627 2022 Generalized Fermat 1047 122372192^131072+1 1060069 L5099 2022 Generalized Fermat 1048 121854624^131072+1 1059828 L5051 2022 Generalized Fermat 1049 121462664^131072+1 1059645 L5632 2022 Generalized Fermat 1050 121158848^131072+1 1059502 L4774 2022 Generalized Fermat 1051 329*2^3518451+1 1059162 L1823 2016 1052 135*2^3518338+1 1059128 L4045 2015 1053 120106930^131072+1 1059006 L4249 2022 Generalized Fermat 1054 2*10^1059002-1 1059003 L3432 2013 Near-repdigit 1055 119744014^131072+1 1058833 L4249 2022 Generalized Fermat 1056 64*10^1058794+1 1058796 L4036 2017 Generalized Fermat 1057 119604848^131072+1 1058767 L4201 2022 Generalized Fermat 1058 119541900^131072+1 1058737 L4747 2022 Generalized Fermat 1059 119510296^131072+1 1058722 L4201 2022 Generalized Fermat 1060 119246256^131072+1 1058596 L4249 2022 Generalized Fermat 1061 119137704^131072+1 1058544 L4201 2022 Generalized Fermat 1062 118888350^131072+1 1058425 L4999 2022 Generalized Fermat 1063 599*2^3515959+1 1058412 L1823 2018 1064 118583824^131072+1 1058279 L4210 2022 Generalized Fermat 1065 118109876^131072+1 1058051 L4550 2022 Generalized Fermat 1066 117906758^131072+1 1057953 L4249 2022 Generalized Fermat 1067 117687318^131072+1 1057847 L4245 2022 Generalized Fermat 1068 117375862^131072+1 1057696 L4774 2022 Generalized Fermat 1069 117345018^131072+1 1057681 L4848 2022 Generalized Fermat 1070 117196584^131072+1 1057609 L4559 2022 Generalized Fermat 1071 117153716^131072+1 1057588 L4774 2022 Generalized Fermat 1072 117088740^131072+1 1057557 L4559 2022 Generalized Fermat 1073 116936156^131072+1 1057483 L5332 2022 Generalized Fermat 1074 116402336^131072+1 1057222 L4760 2022 Generalized Fermat 1075 7*2^3511774+1 1057151 p236 2008 Divides GF(3511773,6) 1076 116036228^131072+1 1057043 L4773 2022 Generalized Fermat 1077 116017862^131072+1 1057034 L4559 2022 Generalized Fermat 1078 115992582^131072+1 1057021 L4835 2022 Generalized Fermat 1079 115873312^131072+1 1056963 L4677 2022 Generalized Fermat 1080 1135*2^3510890+1 1056887 L1823 2018 1081 115704568^131072+1 1056880 L4559 2022 Generalized Fermat 1082 115479166^131072+1 1056769 L4774 2022 Generalized Fermat 1083 115409608^131072+1 1056735 L4774 2022 Generalized Fermat 1084 115256562^131072+1 1056659 L4559 2022 Generalized Fermat 1085 114687250^131072+1 1056377 L5007 2022 Generalized Fermat 1086 114643510^131072+1 1056356 L4659 2022 Generalized Fermat 1087 114340846^131072+1 1056205 L4559 2022 Generalized Fermat 1088 114159720^131072+1 1056115 L4787 2022 Generalized Fermat 1089 114055498^131072+1 1056063 L4387 2022 Generalized Fermat 1090 114009952^131072+1 1056040 L4387 2022 Generalized Fermat 1091 113904214^131072+1 1055987 L4559 2022 Generalized Fermat 1092 113807058^131072+1 1055939 L5157 2022 Generalized Fermat 1093 113550956^131072+1 1055810 L5578 2022 Generalized Fermat 1094 113521888^131072+1 1055796 L4387 2022 Generalized Fermat 1095 113431922^131072+1 1055751 L4559 2022 Generalized Fermat 1096 113328940^131072+1 1055699 L4787 2022 Generalized Fermat 1097 113327472^131072+1 1055698 L5467 2022 Generalized Fermat 1098 113325850^131072+1 1055698 L4559 2022 Generalized Fermat 1099 113313172^131072+1 1055691 L5005 2022 Generalized Fermat 1100 113191714^131072+1 1055630 L5056 2022 Generalized Fermat 1101 113170004^131072+1 1055619 L4584 2022 Generalized Fermat 1102 428639*2^3506452-1 1055553 L2046 2011 1103 112996304^131072+1 1055532 L5544 2022 Generalized Fermat 1104 112958834^131072+1 1055513 L5512 2022 Generalized Fermat 1105 112852910^131072+1 1055459 L5157 2022 Generalized Fermat 1106 112719374^131072+1 1055392 L4793 2022 Generalized Fermat 1107 112580428^131072+1 1055322 L5512 2022 Generalized Fermat 1108 112248096^131072+1 1055154 L5359 2022 Generalized Fermat 1109 112053266^131072+1 1055055 L5359 2022 Generalized Fermat 1110 112023072^131072+1 1055039 L5156 2022 Generalized Fermat 1111 111673524^131072+1 1054861 L5548 2022 Generalized Fermat 1112 111181588^131072+1 1054610 L4550 2022 Generalized Fermat 1113 104*383^408249+1 1054591 L2012 2021 1114 110866802^131072+1 1054449 L5547 2022 Generalized Fermat 1115 555*2^3502765+1 1054441 L1823 2018 1116 110824714^131072+1 1054427 L4201 2022 Generalized Fermat 1117d 8300*171^472170+1 1054358 L5780 2023 1118 110428380^131072+1 1054223 L5543 2022 Generalized Fermat 1119 110406480^131072+1 1054212 L5051 2022 Generalized Fermat 1120 643*2^3501974+1 1054203 L1823 2018 1121 2*23^774109+1 1054127 g427 2014 Divides Phi(23^774109,2) 1122 1159*2^3501490+1 1054057 L2125 2018 1123 109678642^131072+1 1053835 L4559 2022 Generalized Fermat 1124 109654098^131072+1 1053823 L5143 2022 Generalized Fermat 1125 109142690^131072+1 1053557 L4201 2022 Generalized Fermat 1126 109082020^131072+1 1053525 L4773 2022 Generalized Fermat 1127 1189*2^3499042+1 1053320 L4724 2018 1128 108584736^131072+1 1053265 L5057 2022 Generalized Fermat 1129 108581414^131072+1 1053263 L5088 2022 Generalized Fermat 1130 108195632^131072+1 1053060 L5025 2022 Generalized Fermat 1131 108161744^131072+1 1053043 L4945 2022 Generalized Fermat 1132 108080390^131072+1 1053000 L4945 2022 Generalized Fermat 1133 107979316^131072+1 1052947 L4559 2022 Generalized Fermat 1134 107922308^131072+1 1052916 L5025 2022 Generalized Fermat 1135 609*2^3497474+1 1052848 L1823 2018 1136 9*2^3497442+1 1052836 L1780 2012 Generalized Fermat, divides GF(3497441,10) 1137 107732730^131072+1 1052816 L5518 2022 Generalized Fermat 1138 107627678^131072+1 1052761 L5025 2022 Generalized Fermat 1139 107492880^131072+1 1052689 L4550 2022 Generalized Fermat 1140 107420312^131072+1 1052651 L4550 2022 Generalized Fermat 1141 107404768^131072+1 1052643 L4267 2022 Generalized Fermat 1142 107222132^131072+1 1052546 L5019 2022 Generalized Fermat 1143 107126228^131072+1 1052495 L5025 2022 Generalized Fermat 1144 87*2^3496188+1 1052460 L1576 2014 1145 106901434^131072+1 1052375 L4760 2022 Generalized Fermat 1146 106508704^131072+1 1052166 L5505 2022 Generalized Fermat 1147 106440698^131072+1 1052130 L4245 2022 Generalized Fermat 1148 106019242^131072+1 1051904 L5025 2022 Generalized Fermat 1149 105937832^131072+1 1051860 L4745 2022 Generalized Fermat 1150 783*2^3494129+1 1051841 L3824 2018 1151 105861526^131072+1 1051819 L5500 2022 Generalized Fermat 1152 105850338^131072+1 1051813 L5504 2022 Generalized Fermat 1153 105534478^131072+1 1051643 L5025 2022 Generalized Fermat 1154 105058710^131072+1 1051386 L5499 2022 Generalized Fermat 1155 104907548^131072+1 1051304 L4245 2022 Generalized Fermat 1156 104808996^131072+1 1051250 L4591 2022 Generalized Fermat 1157 104641854^131072+1 1051159 L4245 2022 Generalized Fermat 1158 51*2^3490971+1 1050889 L1823 2014 1159 1485*2^3490746+1 1050823 L1134 2021 1160 103828182^131072+1 1050715 L5072 2022 Generalized Fermat 1161 103605376^131072+1 1050593 L5056 2022 Generalized Fermat 1162 103289324^131072+1 1050419 L5044 2022 Generalized Fermat 1163 103280694^131072+1 1050414 L4745 2022 Generalized Fermat 1164 103209792^131072+1 1050375 L5025 2022 Generalized Fermat 1165 103094212^131072+1 1050311 L4245 2022 Generalized Fermat 1166 103013294^131072+1 1050266 L4745 2022 Generalized Fermat 1167 753*2^3488818+1 1050242 L1823 2018 1168 102507732^131072+1 1049986 L4245 2022 Generalized Fermat 1169 102469684^131072+1 1049965 L4245 2022 Generalized Fermat 1170 102397132^131072+1 1049925 L4720 2022 Generalized Fermat 1171 102257714^131072+1 1049847 L4245 2022 Generalized Fermat 1172 699*2^3487253+1 1049771 L1204 2018 1173 102050324^131072+1 1049732 L5036 2022 Generalized Fermat 1174 102021074^131072+1 1049716 L4245 2022 Generalized Fermat 1175 101915106^131072+1 1049656 L5469 2022 Generalized Fermat 1176 101856256^131072+1 1049623 L4774 2022 Generalized Fermat 1177 249*2^3486411+1 1049517 L4045 2015 1178 195*2^3486379+1 1049507 L4108 2015 1179 101607438^131072+1 1049484 L4591 2022 Generalized Fermat 1180 101328382^131072+1 1049328 L4591 2022 Generalized Fermat 1181 101270816^131072+1 1049295 L4245 2022 Generalized Fermat 1182 100865034^131072+1 1049067 L4387 2022 Generalized Fermat 1183 59912*5^1500861+1 1049062 L3772 2014 1184 495*2^3484656+1 1048989 L3035 2016 1185 100719472^131072+1 1048985 L5270 2022 Generalized Fermat 1186 100534258^131072+1 1048880 L4245 2022 Generalized Fermat 1187 100520930^131072+1 1048872 L4201 2022 Generalized Fermat 1188 100441116^131072+1 1048827 L4309 2022 Generalized Fermat 1189 100382228^131072+1 1048794 L4308 2022 Generalized Fermat 1190 100369508^131072+1 1048786 L5157 2022 Generalized Fermat 1191 100324226^131072+1 1048761 L4201 2022 Generalized Fermat 1192 100010426^131072+1 1048582 L5375 2022 Generalized Fermat 1193 323*2^3482789+1 1048427 L1204 2016 1194 99665972^131072+1 1048386 L4201 2022 Generalized Fermat 1195 99650934^131072+1 1048377 L5375 2022 Generalized Fermat 1196 99557826^131072+1 1048324 L5466 2022 Generalized Fermat 1197 99351950^131072+1 1048206 L5143 2022 Generalized Fermat 1198 99189780^131072+1 1048113 L4201 2022 Generalized Fermat 1199 1149*2^3481694+1 1048098 L1823 2018 1200 98978354^131072+1 1047992 L5465 2022 Generalized Fermat 1201 98922946^131072+1 1047960 L5453 2022 Generalized Fermat 1202 98652282^131072+1 1047804 L4201 2022 Generalized Fermat 1203b 1740349*2^3480698+1 1047801 L5765 2023 Generalized Cullen 1204 98557818^131072+1 1047750 L5464 2022 Generalized Fermat 1205 98518362^131072+1 1047727 L5460 2022 Generalized Fermat 1206 98240694^131072+1 1047566 L4720 2022 Generalized Fermat 1207 98200338^131072+1 1047543 L4559 2022 Generalized Fermat 1208 701*2^3479779+1 1047521 L2125 2018 1209 98137862^131072+1 1047507 L4525 2022 Generalized Fermat 1210 813*2^3479728+1 1047506 L4724 2018 1211a 1215*2^3478543+1 1047149 L5226 2023 1212 97512766^131072+1 1047143 L5460 2022 Generalized Fermat 1213a 5985*2^3478217+1 1047052 L5387 2023 1214a 3093*2^3478148+1 1047031 L5261 2023 1215a 2145*2^3478095+1 1047015 L5387 2023 1216a 6685*2^3478086+1 1047013 L5237 2023 1217a 9603*2^3478084+1 1047012 L5178 2023 1218a 1315*2^3477718+1 1046901 L5316 2023 1219 97046574^131072+1 1046870 L4956 2022 Generalized Fermat 1220 197*2^3477399+1 1046804 L2125 2015 1221a 8303*2^3477201+1 1046746 L5387 2023 1222 96821302^131072+1 1046738 L5453 2022 Generalized Fermat 1223b 5925*2^3477009+1 1046688 L5810 2023 1224 96734274^131072+1 1046686 L5297 2022 Generalized Fermat 1225b 7825*2^3476524+1 1046542 L5174 2023 1226 96475576^131072+1 1046534 L4424 2022 Generalized Fermat 1227b 8197*2^3476332+1 1046485 L5174 2023 1228b 8529*2^3476111+1 1046418 L5387 2023 1229b 8411*2^3476055+1 1046401 L5783 2023 1230b 4319*2^3475955+1 1046371 L5803 2023 1231 96111850^131072+1 1046319 L4245 2022 Generalized Fermat 1232 95940796^131072+1 1046218 L4591 2022 Generalized Fermat 1233b 6423*2^3475393+1 1046202 L5174 2023 1234b 2281*2^3475340+1 1046185 L5302 2023 1235b 7379*2^3474983+1 1046078 L5798 2023 1236 4*5^1496566+1 1046056 L4965 2023 Generalized Fermat 1237 95635202^131072+1 1046036 L5452 2021 Generalized Fermat 1238 95596816^131072+1 1046013 L4591 2021 Generalized Fermat 1239c 4737*2^3474562+1 1045952 L5302 2023 1240c 2407*2^3474406+1 1045904 L5557 2023 1241 95308284^131072+1 1045841 L4584 2021 Generalized Fermat 1242 491*2^3473837+1 1045732 L4343 2016 1243c 2693*2^3473721+1 1045698 L5174 2023 1244 94978760^131072+1 1045644 L4201 2021 Generalized Fermat 1245c 3375*2^3473210+1 1045544 L5294 2023 1246c 8835*2^3472666+1 1045381 L5178 2023 1247c 5615*2^3472377+1 1045294 L5174 2023 1248c 1785*2^3472229+1 1045249 L875 2023 1249c 8997*2^3472036+1 1045191 L5302 2023 1250c 9473*2^3471885+1 1045146 L5294 2023 1251c 7897*2^3471568+1 1045050 L5294 2023 1252 93950924^131072+1 1045025 L5425 2021 Generalized Fermat 1253 93886318^131072+1 1044985 L5433 2021 Generalized Fermat 1254 1061*2^3471354-1 1044985 L1828 2017 1255d 1913*2^3471177+1 1044932 L5189 2023 1256 93773904^131072+1 1044917 L4939 2021 Generalized Fermat 1257d 7723*2^3471074+1 1044902 L5189 2023 1258d 4195*2^3470952+1 1044865 L5294 2023 1259 93514592^131072+1 1044760 L4591 2021 Generalized Fermat 1260d 5593*2^3470520+1 1044735 L5387 2023 1261d 3665*2^3469955+1 1044565 L5189 2023 1262d 3301*2^3469708+1 1044490 L5261 2023 1263d 6387*2^3469634+1 1044468 L5192 2023 1264 93035888^131072+1 1044467 L4245 2021 Generalized Fermat 1265d 8605*2^3469570+1 1044449 L5387 2023 1266d 1359*2^3468725+1 1044194 L5197 2023 1267 92460588^131072+1 1044114 L5254 2021 Generalized Fermat 1268d 7585*2^3468338+1 1044078 L5197 2023 1269d 1781*2^3468335+1 1044077 L5387 2023 1270e 6885*2^3468181+1 1044031 L5197 2023 1271e 7287*2^3467938+1 1043958 L5776 2023 1272 92198216^131072+1 1043953 L4738 2021 Generalized Fermat 1273e 3163*2^3467710+1 1043889 L5517 2023 1274e 6099*2^3467689+1 1043883 L5197 2023 1275e 6665*2^3467627+1 1043864 L5174 2023 1276e 4099*2^3467462+1 1043814 L5774 2023 1277e 5285*2^3467445+1 1043809 L5189 2023 1278 91767880^131072+1 1043686 L5051 2021 Generalized Fermat 1279 91707732^131072+1 1043649 L4591 2021 Generalized Fermat 1280e 5935*2^3466880+1 1043639 L5197 2023 1281 91689894^131072+1 1043638 L4591 2021 Generalized Fermat 1282 91685784^131072+1 1043635 L4591 2021 Generalized Fermat 1283e 8937*2^3466822+1 1043622 L5174 2023 1284 91655310^131072+1 1043616 L4659 2021 Generalized Fermat 1285e 8347*2^3466736+1 1043596 L5770 2023 1286e 8863*2^3465780+1 1043308 L5766 2023 1287e 3895*2^3465744+1 1043297 L5640 2023 1288 91069366^131072+1 1043251 L5277 2021 Generalized Fermat 1289 91049202^131072+1 1043239 L4591 2021 Generalized Fermat 1290 91033554^131072+1 1043229 L4591 2021 Generalized Fermat 1291f 8561*2^3465371+1 1043185 L5197 2023 1292 90942952^131072+1 1043172 L4387 2021 Generalized Fermat 1293 90938686^131072+1 1043170 L4387 2021 Generalized Fermat 1294f 9971*2^3465233+1 1043144 L5488 2023 1295 90857490^131072+1 1043119 L4591 2021 Generalized Fermat 1296f 3801*2^3464980+1 1043067 L5197 2023 1297f 3099*2^3464739+1 1042994 L5284 2023 1298 90382348^131072+1 1042820 L4267 2021 Generalized Fermat 1299 641*2^3464061+1 1042790 L1444 2018 1300f 6717*2^3463735+1 1042692 L5754 2023 1301f 6015*2^3463561+1 1042640 L5387 2023 1302 90006846^131072+1 1042583 L4773 2021 Generalized Fermat 1303f 1667*2^3463355+1 1042577 L5226 2023 1304f 2871*2^3463313+1 1042565 L5189 2023 1305 89977312^131072+1 1042565 L5070 2021 Generalized Fermat 1306f 6007*2^3463048+1 1042486 L5226 2023 1307 89790434^131072+1 1042446 L5007 2021 Generalized Fermat 1308f 9777*2^3462742+1 1042394 L5197 2023 1309f 5215*2^3462740+1 1042393 L5174 2023 1310f 8365*2^3462722+1 1042388 L5320 2023 1311f 3597*2^3462056+1 1042187 L5174 2023 1312f 2413*2^3461890+1 1042137 L5197 2023 1313 89285798^131072+1 1042125 L5157 2021 Generalized Fermat 1314 453*2^3461688+1 1042075 L3035 2016 1315 89113896^131072+1 1042016 L5338 2021 Generalized Fermat 1316f 4401*2^3461476+1 1042012 L5197 2023 1317f 9471*2^3461305+1 1041961 L5594 2023 1318 7245*2^3461070+1 1041890 L5449 2023 1319 3969*2^3460942+1 1041851 L5471 2023 Generalized Fermat 1320f 4365*2^3460914+1 1041843 L5197 2023 1321 4613*2^3460861+1 1041827 L5614 2023 1322 88760062^131072+1 1041789 L4903 2021 Generalized Fermat 1323 5169*2^3460553+1 1041734 L5742 2023 1324 8395*2^3460530+1 1041728 L5284 2023 1325 5835*2^3460515+1 1041723 L5740 2023 1326 8059*2^3460246+1 1041642 L5350 2023 1327 571*2^3460216+1 1041632 L3035 2018 1328 6065*2^3460205+1 1041630 L5683 2023 1329 88243020^131072+1 1041457 L4774 2021 Generalized Fermat 1330 88166868^131072+1 1041408 L5277 2021 Generalized Fermat 1331 6237*2^3459386+1 1041383 L5509 2023 1332 88068088^131072+1 1041344 L4933 2021 Generalized Fermat 1333 4029*2^3459062+1 1041286 L5727 2023 1334 87920992^131072+1 1041249 L4249 2021 Generalized Fermat 1335 7055*2^3458909+1 1041240 L5509 2023 1336 7297*2^3458768+1 1041197 L5726 2023 1337 2421*2^3458432+1 1041096 L5725 2023 1338 7907*2^3458207+1 1041028 L5509 2023 1339 87547832^131072+1 1041006 L4591 2021 Generalized Fermat 1340 87454694^131072+1 1040946 L4672 2021 Generalized Fermat 1341 7839*2^3457846+1 1040920 L5231 2023 1342 87370574^131072+1 1040891 L5297 2021 Generalized Fermat 1343 87352356^131072+1 1040879 L4387 2021 Generalized Fermat 1344 87268788^131072+1 1040825 L4917 2021 Generalized Fermat 1345 87192538^131072+1 1040775 L4861 2021 Generalized Fermat 1346 5327*2^3457363+1 1040774 L5715 2023 1347 87116452^131072+1 1040725 L5297 2021 Generalized Fermat 1348 87039658^131072+1 1040675 L5297 2021 Generalized Fermat 1349 6059*2^3457001+1 1040665 L5197 2023 1350 8953*2^3456938+1 1040646 L5724 2023 1351 8669*2^3456759+1 1040593 L5710 2023 1352 86829162^131072+1 1040537 L5265 2021 Generalized Fermat 1353 4745*2^3456167+1 1040414 L5705 2023 1354 8213*2^3456141+1 1040407 L5703 2023 1355 86413544^131072+1 1040264 L4914 2021 Generalized Fermat 1356 86347638^131072+1 1040221 L4848 2021 Generalized Fermat 1357 86295564^131072+1 1040186 L5030 2021 Generalized Fermat 1358 1155*2^3455254+1 1040139 L4711 2017 1359 37292*5^1487989+1 1040065 L3553 2013 1360 86060696^131072+1 1040031 L5057 2021 Generalized Fermat 1361 5525*2^3454069+1 1039783 L5651 2023 1362 4235*2^3453573+1 1039633 L5650 2023 1363 6441*2^3453227+1 1039529 L5683 2023 1364 4407*2^3453195+1 1039519 L5650 2023 1365 9867*2^3453039+1 1039473 L5686 2023 1366 85115888^131072+1 1039403 L4909 2021 Generalized Fermat 1367 4857*2^3452675+1 1039363 L5600 2023 1368 8339*2^3452667+1 1039361 L5651 2023 1369 84924212^131072+1 1039275 L4309 2021 Generalized Fermat 1370 7079*2^3452367+1 1039270 L5650 2023 1371 5527*2^3452342+1 1039263 L5679 2023 1372 84817722^131072+1 1039203 L4726 2021 Generalized Fermat 1373 84765338^131072+1 1039168 L4245 2021 Generalized Fermat 1374 84757790^131072+1 1039163 L5051 2021 Generalized Fermat 1375 84723284^131072+1 1039140 L5051 2021 Generalized Fermat 1376 84715930^131072+1 1039135 L4963 2021 Generalized Fermat 1377 84679936^131072+1 1039111 L4864 2021 Generalized Fermat 1378 3719*2^3451667+1 1039059 L5294 2023 1379 6725*2^3451455+1 1038996 L5685 2023 1380 8407*2^3451334+1 1038959 L5524 2023 1381 84445014^131072+1 1038952 L4909 2021 Generalized Fermat 1382 84384358^131072+1 1038912 L4622 2021 Generalized Fermat 1383 1623*2^3451109+1 1038891 L5308 2023 1384 8895*2^3450982+1 1038854 L5666 2023 1385 84149050^131072+1 1038753 L5033 2021 Generalized Fermat 1386 2899*2^3450542+1 1038721 L5600 2023 1387 6337*2^3449506+1 1038409 L5197 2023 1388 4381*2^3449456+1 1038394 L5392 2023 1389 2727*2^3449326+1 1038355 L5421 2023 1390 2877*2^3449311+1 1038350 L5517 2023 1391 7507*2^3448920+1 1038233 L5284 2023 1392 3629*2^3448919+1 1038232 L5192 2023 1393 83364886^131072+1 1038220 L4591 2021 Generalized Fermat 1394 83328182^131072+1 1038195 L5051 2021 Generalized Fermat 1395 1273*2^3448551-1 1038121 L1828 2012 1396 1461*2^3448423+1 1038082 L4944 2023 1397 3235*2^3448352+1 1038061 L5571 2023 1398 4755*2^3448344+1 1038059 L5524 2023 1399 5655*2^3448288+1 1038042 L5651 2023 1400 4873*2^3448176+1 1038009 L5524 2023 1401 83003850^131072+1 1037973 L4963 2021 Generalized Fermat 1402 8139*2^3447967+1 1037946 L5652 2023 1403 1065*2^3447906+1 1037927 L4664 2017 1404 1717*2^3446756+1 1037581 L5517 2023 1405 6357*2^3446434+1 1037484 L5284 2023 1406 1155*2^3446253+1 1037429 L3035 2017 1407 9075*2^3446090+1 1037381 L5648 2023 1408 82008736^131072+1 1037286 L4963 2021 Generalized Fermat 1409 82003030^131072+1 1037282 L4410 2021 Generalized Fermat 1410 1483*2^3445724+1 1037270 L5650 2023 1411 81976506^131072+1 1037264 L4249 2021 Generalized Fermat 1412 2223*2^3445682+1 1037257 L5647 2023 1413 8517*2^3445488+1 1037200 L5302 2023 1414 2391*2^3445281+1 1037137 L5596 2023 1415 6883*2^3444784+1 1036988 L5264 2023 1416 81477176^131072+1 1036916 L4245 2020 Generalized Fermat 1417 81444036^131072+1 1036893 L4245 2020 Generalized Fermat 1418 8037*2^3443920+1 1036728 L5626 2023 1419 1375*2^3443850+1 1036706 L5192 2023 1420 81096098^131072+1 1036649 L4249 2020 Generalized Fermat 1421 27288429267119080686...(1036580 other digits)...83679577406643267931 1036620 p384 2015 1422 943*2^3442990+1 1036447 L4687 2017 1423 7743*2^3442814+1 1036395 L5514 2023 1424 5511*2^3442468+1 1036290 L5514 2022 1425 80284312^131072+1 1036076 L5051 2020 Generalized Fermat 1426 6329*2^3441717+1 1036064 L5631 2022 1427 3957*2^3441568+1 1036019 L5476 2022 1428 80146408^131072+1 1035978 L5051 2020 Generalized Fermat 1429 4191*2^3441427+1 1035977 L5189 2022 1430 2459*2^3441331+1 1035948 L5514 2022 1431 4335*2^3441306+1 1035940 L5178 2022 1432 2331*2^3441249+1 1035923 L5626 2022 1433 79912550^131072+1 1035812 L5186 2020 Generalized Fermat 1434 79801426^131072+1 1035733 L4245 2020 Generalized Fermat 1435 79789806^131072+1 1035725 L4658 2020 Generalized Fermat 1436 2363*2^3440385+1 1035663 L5625 2022 1437 5265*2^3440332+1 1035647 L5421 2022 1438 6023*2^3440241+1 1035620 L5517 2022 1439 943*2^3440196+1 1035606 L1448 2017 1440 6663*2^3439901+1 1035518 L5624 2022 1441 79485098^131072+1 1035507 L5130 2020 Generalized Fermat 1442 79428414^131072+1 1035466 L4793 2020 Generalized Fermat 1443 79383608^131072+1 1035434 L4387 2020 Generalized Fermat 1444 5745*2^3439450+1 1035382 L5178 2022 1445 79201682^131072+1 1035303 L5051 2020 Generalized Fermat 1446 5109*2^3439090+1 1035273 L5594 2022 1447 543*2^3438810+1 1035188 L3035 2017 1448 625*2^3438572+1 1035117 L1355 2017 Generalized Fermat 1449 3325*2^3438506+1 1035097 L5619 2022 1450 78910032^131072+1 1035093 L5051 2020 Generalized Fermat 1451 78880690^131072+1 1035072 L5159 2020 Generalized Fermat 1452 78851276^131072+1 1035051 L4928 2020 Generalized Fermat 1453 4775*2^3438217+1 1035011 L5618 2022 1454 78714954^131072+1 1034953 L5130 2020 Generalized Fermat 1455 6963*2^3437988+1 1034942 L5616 2022 1456 74*941^348034-1 1034913 L5410 2020 1457 7423*2^3437856+1 1034902 L5192 2022 1458 6701*2^3437801+1 1034886 L5615 2022 1459 5741*2^3437773+1 1034877 L5517 2022 1460 78439440^131072+1 1034753 L5051 2020 Generalized Fermat 1461 5601*2^3437259+1 1034722 L5612 2022 1462 7737*2^3437192+1 1034702 L5611 2022 1463 113*2^3437145+1 1034686 L4045 2015 1464 78240016^131072+1 1034608 L4245 2020 Generalized Fermat 1465 6387*2^3436719+1 1034560 L5613 2022 1466 78089172^131072+1 1034498 L4245 2020 Generalized Fermat 1467 2921*2^3436299+1 1034433 L5231 2022 1468 9739*2^3436242+1 1034416 L5178 2022 1469 77924964^131072+1 1034378 L5051 2020 Generalized Fermat 1470 77918854^131072+1 1034374 L4760 2020 Generalized Fermat 1471 1147*2^3435970+1 1034334 L3035 2017 1472 4589*2^3435707+1 1034255 L5174 2022 1473 7479*2^3435683+1 1034248 L5421 2022 1474 2863*2^3435616+1 1034227 L5197 2022 1475 77469882^131072+1 1034045 L4591 2020 Generalized Fermat 1476 9863*2^3434697+1 1033951 L5189 2022 1477 4065*2^3434623+1 1033929 L5197 2022 1478 77281404^131072+1 1033906 L4963 2020 Generalized Fermat 1479 9187*2^3434126+1 1033779 L5600 2022 1480 9531*2^3434103+1 1033772 L5601 2022 1481 1757*2^3433547+1 1033604 L5594 2022 1482 1421*2^3433099+1 1033469 L5237 2022 1483 3969*2^3433007+1 1033442 L5189 2022 1484 6557*2^3433003+1 1033441 L5261 2022 1485 7335*2^3432982+1 1033435 L5231 2022 1486 7125*2^3432836+1 1033391 L5594 2022 1487 2517*2^3432734+1 1033360 L5231 2022 1488 911*2^3432643+1 1033332 L1355 2017 1489 5413*2^3432626+1 1033328 L5231 2022 1490 76416048^131072+1 1033265 L4672 2020 Generalized Fermat 1491 3753*2^3432413+1 1033263 L5261 2022 1492 2691*2^3432191+1 1033196 L5585 2022 1493 3933*2^3432125+1 1033177 L5387 2022 1494 76026988^131072+1 1032975 L5094 2020 Generalized Fermat 1495 76018874^131072+1 1032969 L4774 2020 Generalized Fermat 1496 1435*2^3431284+1 1032923 L5587 2022 1497 75861530^131072+1 1032851 L5053 2020 Generalized Fermat 1498 6783*2^3430781+1 1032772 L5261 2022 1499 8079*2^3430683+1 1032743 L5585 2022 1500 75647276^131072+1 1032690 L4677 2020 Generalized Fermat 1501 75521414^131072+1 1032595 L4584 2020 Generalized Fermat 1502 6605*2^3430187+1 1032593 L5463 2022 1503 3761*2^3430057+1 1032554 L5582 2022 1504 6873*2^3429937+1 1032518 L5294 2022 1505 8067*2^3429891+1 1032504 L5581 2022 1506 3965*2^3429719+1 1032452 L5579 2022 1507 3577*2^3428812+1 1032179 L5401 2022 1508 8747*2^3428755+1 1032163 L5493 2022 1509 9147*2^3428638+1 1032127 L5493 2022 1510 3899*2^3428535+1 1032096 L5174 2022 1511 74833516^131072+1 1032074 L5102 2020 Generalized Fermat 1512 74817490^131072+1 1032062 L4591 2020 Generalized Fermat 1513 8891*2^3428303+1 1032026 L5532 2022 1514d 793181*20^793181+1 1031959 L5765 2023 Generalized Cullen 1515 2147*2^3427371+1 1031745 L5189 2022 1516 74396818^131072+1 1031741 L4791 2020 Generalized Fermat 1517 74381296^131072+1 1031729 L4550 2020 Generalized Fermat 1518 74363146^131072+1 1031715 L4898 2020 Generalized Fermat 1519 1127*2^3427219+1 1031699 L3035 2017 1520 74325990^131072+1 1031687 L5024 2020 Generalized Fermat 1521 3021*2^3427059+1 1031652 L5554 2022 1522 3255*2^3426983+1 1031629 L5231 2022 1523 1733*2^3426753+1 1031559 L5565 2022 1524 2339*2^3426599+1 1031513 L5237 2022 1525 4729*2^3426558+1 1031501 L5493 2022 1526 73839292^131072+1 1031313 L4550 2020 Generalized Fermat 1527 5445*2^3425839+1 1031285 L5237 2022 1528 159*2^3425766+1 1031261 L4045 2015 1529 73690464^131072+1 1031198 L4884 2020 Generalized Fermat 1530 3405*2^3425045+1 1031045 L5261 2022 1531 73404316^131072+1 1030976 L5011 2020 Generalized Fermat 1532 1695*2^3424517+1 1030886 L5387 2022 1533 4715*2^3424433+1 1030861 L5557 2022 1534 5525*2^3424423+1 1030858 L5387 2022 1535 8615*2^3424231+1 1030801 L5261 2022 1536 5805*2^3424200+1 1030791 L5237 2022 1537 73160610^131072+1 1030787 L4550 2020 Generalized Fermat 1538 73132228^131072+1 1030765 L4905 2020 Generalized Fermat 1539 73099962^131072+1 1030740 L5068 2020 Generalized Fermat 1540 2109*2^3423798-3027*2^988658+1 1030670 CH13 2023 Arithmetic progression (3,d=2109*2^3423797-3027*2^988658) 1541 2109*2^3423797+1 1030669 L5197 2022 1542 4929*2^3423494+1 1030579 L5554 2022 1543 2987*2^3422911+1 1030403 L5226 2022 1544 72602370^131072+1 1030351 L4201 2020 Generalized Fermat 1545 4843*2^3422644+1 1030323 L5553 2022 1546 5559*2^3422566+1 1030299 L5555 2022 1547 7583*2^3422501+1 1030280 L5421 2022 1548 1119*2^3422189+1 1030185 L1355 2017 1549 2895*2^3422031-143157*2^2144728+1 1030138 p423 2023 Arithmetic progression (3,d=2895*2^3422030-143157*2^2144728) 1550 2895*2^3422030+1 1030138 L5237 2022 1551 2835*2^3421697+1 1030037 L5387 2022 1552 3363*2^3421353+1 1029934 L5226 2022 1553 72070092^131072+1 1029932 L4201 2020 Generalized Fermat 1554 9147*2^3421264+1 1029908 L5237 2022 1555 9705*2^3420915+1 1029803 L5540 2022 1556 1005*2^3420846+1 1029781 L2714 2017 Divides GF(3420844,10) 1557 8919*2^3420758+1 1029755 L5226 2022 1558 71732900^131072+1 1029665 L5053 2020 Generalized Fermat 1559 71679108^131072+1 1029623 L5072 2020 Generalized Fermat 1560 5489*2^3420137+1 1029568 L5174 2022 1561 9957*2^3420098+1 1029557 L5237 2022 1562 93*10^1029523-1 1029525 L4789 2019 Near-repdigit 1563 71450224^131072+1 1029440 L5029 2020 Generalized Fermat 1564 7213*2^3419370+1 1029337 L5421 2022 1565 7293*2^3419264+1 1029305 L5192 2022 1566 975*2^3419230+1 1029294 L3545 2017 1567 4191*2^3419227+1 1029294 L5421 2022 1568 2393*2^3418921+1 1029202 L5197 2022 1569 999*2^3418885+1 1029190 L3035 2017 1570 2925*2^3418543+1 1029088 L5174 2022 1571 70960658^131072+1 1029049 L5039 2020 Generalized Fermat 1572 70948704^131072+1 1029039 L4660 2020 Generalized Fermat 1573 70934282^131072+1 1029028 L5067 2020 Generalized Fermat 1574 7383*2^3418297+1 1029014 L5189 2022 1575 70893680^131072+1 1028995 L5063 2020 Generalized Fermat 1576 907*2^3417890+1 1028891 L3035 2017 1577 5071*2^3417884+1 1028890 L5237 2022 1578 3473*2^3417741+1 1028847 L5541 2022 1579 191249*2^3417696-1 1028835 L1949 2010 1580 70658696^131072+1 1028806 L5051 2020 Generalized Fermat 1581 3299*2^3417329+1 1028723 L5421 2022 1582 6947*2^3416979+1 1028618 L5540 2022 1583 70421038^131072+1 1028615 L4984 2020 Generalized Fermat 1584 8727*2^3416652+1 1028519 L5226 2022 1585 8789*2^3416543+1 1028486 L5197 2022 1586 70050828^131072+1 1028315 L5021 2020 Generalized Fermat 1587 7917*2^3415947+1 1028307 L5537 2022 1588 70022042^131072+1 1028291 L4201 2020 Generalized Fermat 1589 2055*2^3415873+1 1028284 L5535 2022 1590 4731*2^3415712+1 1028236 L5192 2022 1591 2219*2^3415687+1 1028228 L5178 2022 1592 69915032^131072+1 1028204 L4591 2020 Generalized Fermat 1593 5877*2^3415419+1 1028148 L5532 2022 1594 3551*2^3415275+1 1028104 L5231 2022 1595 69742382^131072+1 1028063 L5053 2020 Generalized Fermat 1596 2313*2^3415046+1 1028035 L5226 2022 1597 69689592^131072+1 1028020 L4387 2020 Generalized Fermat 1598 7637*2^3414875+1 1027984 L5507 2022 1599 2141*2^3414821+1 1027967 L5226 2022 1600 69622572^131072+1 1027965 L4909 2020 Generalized Fermat 1601 3667*2^3414686+1 1027927 L5226 2022 1602 69565722^131072+1 1027919 L4387 2020 Generalized Fermat 1603 6159*2^3414623+1 1027908 L5226 2022 1604 69534788^131072+1 1027894 L5029 2020 Generalized Fermat 1605 4577*2^3413539+1 1027582 L5387 2022 1606 5137*2^3413524+1 1027577 L5261 2022 1607 8937*2^3413364+1 1027529 L5527 2022 1608 8829*2^3413339+1 1027522 L5531 2022 1609 7617*2^3413315+1 1027515 L5197 2022 1610 68999820^131072+1 1027454 L5044 2020 Generalized Fermat 1611 3141*2^3413112+1 1027453 L5463 2022 1612 8831*2^3412931+1 1027399 L5310 2022 1613 68924112^131072+1 1027391 L4745 2020 Generalized Fermat 1614 68918852^131072+1 1027387 L5021 2020 Generalized Fermat 1615 5421*2^3412877+1 1027383 L5310 2022 1616 9187*2^3412700+1 1027330 L5337 2022 1617 68811158^131072+1 1027298 L4245 2020 Generalized Fermat 1618 8243*2^3412577+1 1027292 L5524 2022 1619 1751*2^3412565+1 1027288 L5523 2022 1620 9585*2^3412318+1 1027215 L5197 2022 1621 9647*2^3412247+1 1027193 L5178 2022 1622 3207*2^3412108+1 1027151 L5189 2022 1623 479*2^3411975+1 1027110 L2873 2016 1624 245*2^3411973+1 1027109 L1935 2015 1625 177*2^3411847+1 1027071 L4031 2015 1626 68536972^131072+1 1027071 L5027 2020 Generalized Fermat 1627 9963*2^3411566+1 1026988 L5237 2022 1628 68372810^131072+1 1026934 L4956 2020 Generalized Fermat 1629 9785*2^3411223+1 1026885 L5189 2022 1630 5401*2^3411136+1 1026858 L5261 2022 1631 68275006^131072+1 1026853 L4963 2020 Generalized Fermat 1632 9431*2^3411105+1 1026849 L5237 2022 1633 8227*2^3410878+1 1026781 L5316 2022 1634 4735*2^3410724+1 1026734 L5226 2022 1635 9515*2^3410707+1 1026730 L5237 2022 1636 6783*2^3410690+1 1026724 L5434 2022 1637 8773*2^3410558+1 1026685 L5261 2022 1638 4629*2^3410321+1 1026613 L5517 2022 1639 67894288^131072+1 1026535 L5025 2020 Generalized Fermat 1640 113*2^3409934-1 1026495 L2484 2014 1641 5721*2^3409839+1 1026468 L5226 2022 1642 67725850^131072+1 1026393 L5029 2020 Generalized Fermat 1643 6069*2^3409493+1 1026364 L5237 2022 1644 1981*910^346850+1 1026347 L1141 2021 1645 5317*2^3409236+1 1026287 L5471 2022 1646 7511*2^3408985+1 1026211 L5514 2022 1647 7851*2^3408909+1 1026188 L5176 2022 1648 67371416^131072+1 1026094 L4550 2020 Generalized Fermat 1649 6027*2^3408444+1 1026048 L5239 2022 1650 59*2^3408416-1 1026038 L426 2010 1651 2153*2^3408333+1 1026014 L5237 2022 1652 9831*2^3408056+1 1025932 L5233 2022 1653 3615*2^3408035+1 1025925 L5217 2022 1654 6343*2^3407950+1 1025899 L5226 2022 1655 8611*2^3407516+1 1025769 L5509 2022 1656 66982940^131072+1 1025765 L4249 2020 Generalized Fermat 1657 7111*2^3407452+1 1025750 L5508 2022 1658 66901180^131072+1 1025696 L5018 2020 Generalized Fermat 1659 6945*2^3407256+1 1025691 L5507 2022 1660 6465*2^3407229+1 1025682 L5301 2022 1661 1873*2^3407156+1 1025660 L5440 2022 1662 7133*2^3406377+1 1025426 L5279 2022 1663 7063*2^3406122+1 1025349 L5178 2022 1664 3105*2^3405800+1 1025252 L5502 2022 1665 953*2^3405729+1 1025230 L3035 2017 1666 66272848^131072+1 1025159 L5013 2020 Generalized Fermat 1667 66131722^131072+1 1025037 L4530 2020 Generalized Fermat 1668 373*2^3404702+1 1024921 L3924 2016 1669 7221*2^3404507+1 1024863 L5231 2022 1670 6641*2^3404259+1 1024788 L5501 2022 1671 9225*2^3404209+1 1024773 L5250 2022 1672 65791182^131072+1 1024743 L4623 2019 Generalized Fermat 1673 833*2^3403765+1 1024639 L3035 2017 1674 65569854^131072+1 1024552 L4210 2019 Generalized Fermat 1675 2601*2^3403459+1 1024547 L5350 2022 1676 8835*2^3403266+1 1024490 L5161 2022 1677 7755*2^3403010+1 1024412 L5161 2022 1678 3123*2^3402834+1 1024359 L5260 2022 1679 65305572^131072+1 1024322 L5001 2019 Generalized Fermat 1680 65200798^131072+1 1024230 L4999 2019 Generalized Fermat 1681 1417*2^3402246+1 1024182 L5497 2022 1682 5279*2^3402241+1 1024181 L5250 2022 1683 6651*2^3402137+1 1024150 L5476 2022 1684 1779*2^3401715+1 1024022 L5493 2022 1685 64911056^131072+1 1023977 L4870 2019 Generalized Fermat 1686 8397*2^3401502+1 1023959 L5476 2022 1687 4057*2^3401472+1 1023949 L5492 2022 1688 64791668^131072+1 1023872 L4905 2019 Generalized Fermat 1689 4095*2^3401174+1 1023860 L5418 2022 1690 5149*2^3400970+1 1023798 L5176 2022 1691 4665*2^3400922+1 1023784 L5308 2022 1692 24*414^391179+1 1023717 L4273 2016 1693 64568930^131072+1 1023676 L4977 2019 Generalized Fermat 1694 64506894^131072+1 1023621 L4977 2019 Generalized Fermat 1695 1725*2^3400371+1 1023617 L5197 2022 1696 64476916^131072+1 1023595 L4997 2019 Generalized Fermat 1697 9399*2^3400243+1 1023580 L5488 2022 1698 1241*2^3400127+1 1023544 L5279 2022 1699 1263*2^3399876+1 1023468 L5174 2022 1700 1167*2^3399748+1 1023430 L3545 2017 1701 64024604^131072+1 1023194 L4591 2019 Generalized Fermat 1702 7679*2^3398569+1 1023076 L5295 2022 1703 6447*2^3398499+1 1023054 L5302 2022 1704 63823568^131072+1 1023015 L4585 2019 Generalized Fermat 1705 2785*2^3398332+1 1023004 L5250 2022 1706 611*2^3398273+1 1022985 L3035 2017 1707 2145*2^3398034+1 1022914 L5302 2022 1708 3385*2^3397254+1 1022679 L5161 2022 1709 4*3^2143374+1 1022650 L4965 2020 Generalized Fermat 1710 4463*2^3396657+1 1022500 L5476 2022 1711 2889*2^3396450+1 1022437 L5178 2022 1712 8523*2^3396448+1 1022437 L5231 2022 1713 63168480^131072+1 1022428 L4861 2019 Generalized Fermat 1714 63165756^131072+1 1022425 L4987 2019 Generalized Fermat 1715 3349*2^3396326+1 1022400 L5480 2022 1716 63112418^131072+1 1022377 L4201 2019 Generalized Fermat 1717 4477*2^3395786+1 1022238 L5161 2022 1718 3853*2^3395762+1 1022230 L5302 2022 1719 2693*2^3395725+1 1022219 L5284 2022 1720 8201*2^3395673+1 1022204 L5178 2022 1721 255*2^3395661+1 1022199 L3898 2014 1722 1049*2^3395647+1 1022195 L3035 2017 1723 9027*2^3395623+1 1022189 L5263 2022 1724 2523*2^3395549+1 1022166 L5472 2022 1725 3199*2^3395402+1 1022122 L5264 2022 1726 342924651*2^3394939-1 1021988 L4166 2017 1727 3825*2^3394947+1 1021985 L5471 2022 1728 1895*2^3394731+1 1021920 L5174 2022 1729 62276102^131072+1 1021618 L4715 2019 Generalized Fermat 1730 555*2^3393389+1 1021515 L2549 2017 1731 1865*2^3393387+1 1021515 L5237 2022 1732 4911*2^3393373+1 1021511 L5231 2022 1733 62146946^131072+1 1021500 L4720 2019 Generalized Fermat 1734 5229*2^3392587+1 1021275 L5463 2022 1735 61837354^131072+1 1021215 L4656 2019 Generalized Fermat 1736 609*2^3392301+1 1021188 L3035 2017 1737 9787*2^3392236+1 1021169 L5350 2022 1738 303*2^3391977+1 1021090 L2602 2016 1739 805*2^3391818+1 1021042 L4609 2017 1740 6475*2^3391496+1 1020946 L5174 2022 1741 67*2^3391385-1 1020911 L1959 2014 1742 61267078^131072+1 1020688 L4923 2019 Generalized Fermat 1743 4639*2^3390634+1 1020687 L5189 2022 1744 5265*2^3390581+1 1020671 L5456 2022 1745 663*2^3390469+1 1020636 L4316 2017 1746 6945*2^3390340+1 1020598 L5174 2022 1747 5871*2^3390268+1 1020577 L5231 2022 1748 7443*2^3390141+1 1020539 L5226 2022 1749 5383*2^3389924+1 1020473 L5350 2021 1750 61030988^131072+1 1020468 L4898 2019 Generalized Fermat 1751 9627*2^3389331+1 1020295 L5231 2021 1752 60642326^131072+1 1020104 L4591 2019 Generalized Fermat 1753 8253*2^3388624+1 1020082 L5226 2021 1754 3329*2^3388472-1 1020036 L4841 2020 1755 4695*2^3388393+1 1020012 L5237 2021 1756 60540024^131072+1 1020008 L4591 2019 Generalized Fermat 1757 7177*2^3388144+1 1019937 L5174 2021 1758 60455792^131072+1 1019929 L4760 2019 Generalized Fermat 1759 9611*2^3388059+1 1019912 L5435 2021 1760 1833*2^3387760+1 1019821 L5226 2021 1761 9003*2^3387528+1 1019752 L5189 2021 1762 3161*2^3387141+1 1019635 L5226 2021 1763 7585*2^3387110+1 1019626 L5189 2021 1764 60133106^131072+1 1019624 L4942 2019 Generalized Fermat 1765 453*2^3387048+1 1019606 L2602 2016 1766 5177*2^3386919+1 1019568 L5226 2021 1767 8739*2^3386813+1 1019537 L5226 2021 1768 2875*2^3386638+1 1019484 L5226 2021 1769 7197*2^3386526+1 1019450 L5178 2021 1770 1605*2^3386229+1 1019360 L5226 2021 1771 8615*2^3386181+1 1019346 L5442 2021 1772 3765*2^3386141+1 1019334 L5174 2021 1773 5379*2^3385806+1 1019233 L5237 2021 1774 59720358^131072+1 1019232 L4656 2019 Generalized Fermat 1775 59692546^131072+1 1019206 L4747 2019 Generalized Fermat 1776 59515830^131072+1 1019037 L4737 2019 Generalized Fermat 1777 173198*5^1457792-1 1018959 L3720 2013 1778 59405420^131072+1 1018931 L4645 2019 Generalized Fermat 1779 2109*2^3384733+1 1018910 L5261 2021 1780 7067*2^3384667+1 1018891 L5439 2021 1781 59362002^131072+1 1018890 L4249 2019 Generalized Fermat 1782 59305348^131072+1 1018835 L4932 2019 Generalized Fermat 1783 2077*2^3384472+1 1018831 L5237 2021 1784 59210784^131072+1 1018745 L4926 2019 Generalized Fermat 1785 59161754^131072+1 1018697 L4928 2019 Generalized Fermat 1786 9165*2^3383917+1 1018665 L5435 2021 1787 5579*2^3383209+1 1018452 L5434 2021 1788 8241*2^3383131+1 1018428 L5387 2021 1789 7409*2^3382869+1 1018349 L5161 2021 1790 4883*2^3382813+1 1018332 L5161 2021 1791 9783*2^3382792+1 1018326 L5189 2021 1792 58589880^131072+1 1018145 L4923 2019 Generalized Fermat 1793 58523466^131072+1 1018080 L4802 2019 Generalized Fermat 1794 8877*2^3381936+1 1018069 L5429 2021 1795 58447816^131072+1 1018006 L4591 2019 Generalized Fermat 1796 58447642^131072+1 1018006 L4591 2019 Generalized Fermat 1797 6675*2^3381688+1 1017994 L5197 2021 1798 2445*2^3381129+1 1017825 L5231 2021 1799 58247118^131072+1 1017811 L4309 2019 Generalized Fermat 1800 3381*2^3380585+1 1017662 L5237 2021 1801 7899*2^3380459+1 1017624 L5421 2021 1802 5945*2^3379933+1 1017465 L5418 2021 1803 1425*2^3379921+1 1017461 L1134 2020 1804 4975*2^3379420+1 1017311 L5161 2021 1805 57704312^131072+1 1017278 L4591 2019 Generalized Fermat 1806 57694224^131072+1 1017268 L4656 2019 Generalized Fermat 1807 57594734^131072+1 1017169 L4656 2019 Generalized Fermat 1808 9065*2^3378851+1 1017140 L5414 2021 1809 2369*2^3378761+1 1017112 L5197 2021 1810 57438404^131072+1 1017015 L4745 2019 Generalized Fermat 1811 621*2^3378148+1 1016927 L3035 2017 1812 7035*2^3378141+1 1016926 L5408 2021 1813 2067*2^3378115+1 1016918 L5405 2021 1814 1093*2^3378000+1 1016883 L4583 2017 1815 9577*2^3377612+1 1016767 L5406 2021 1816 861*2^3377601+1 1016763 L4582 2017 1817 5811*2^3377016+1 1016587 L5261 2021 1818 2285*2^3376911+1 1016555 L5261 2021 1819 4199*2^3376903+1 1016553 L5174 2021 1820 6405*2^3376890+1 1016549 L5269 2021 1821 1783*2^3376810+1 1016525 L5261 2021 1822 5401*2^3376768+1 1016513 L5174 2021 1823 56917336^131072+1 1016496 L4729 2019 Generalized Fermat 1824 2941*2^3376536+1 1016443 L5174 2021 1825 1841*2^3376379+1 1016395 L5401 2021 1826 6731*2^3376133+1 1016322 L5261 2021 1827 56735576^131072+1 1016314 L4760 2019 Generalized Fermat 1828 8121*2^3375933+1 1016262 L5356 2021 1829 5505*2^3375777+1 1016214 L5174 2021 1830 56584816^131072+1 1016162 L4289 2019 Generalized Fermat 1831 3207*2^3375314+1 1016075 L5237 2021 1832 56459558^131072+1 1016036 L4892 2019 Generalized Fermat 1833 5307*2^3374939+1 1015962 L5392 2021 1834 56383242^131072+1 1015959 L4889 2019 Generalized Fermat 1835 56307420^131072+1 1015883 L4843 2019 Generalized Fermat 1836 208003!-1 1015843 p394 2016 Factorial 1837 6219*2^3374198+1 1015739 L5393 2021 1838 3777*2^3374072+1 1015701 L5261 2021 1839 9347*2^3374055+1 1015696 L5387 2021 1840 1461*2^3373383+1 1015493 L5384 2021 1841 6395*2^3373135+1 1015419 L5382 2021 1842 7869*2^3373021+1 1015385 L5381 2021 1843 55645700^131072+1 1015210 L4745 2019 Generalized Fermat 1844 4905*2^3372216+1 1015142 L5261 2021 1845 55579418^131072+1 1015142 L4745 2019 Generalized Fermat 1846 2839*2^3372034+1 1015087 L5174 2021 1847 7347*2^3371803+1 1015018 L5217 2021 1848 9799*2^3371378+1 1014890 L5261 2021 1849 4329*2^3371201+1 1014837 L5197 2021 1850 3657*2^3371183+1 1014831 L5360 2021 1851 55268442^131072+1 1014822 L4525 2019 Generalized Fermat 1852 179*2^3371145+1 1014819 L3763 2014 1853 5155*2^3371016+1 1014781 L5237 2021 1854 7575*2^3371010+1 1014780 L5237 2021 1855 55184170^131072+1 1014736 L4871 2018 Generalized Fermat 1856 9195*2^3370798+1 1014716 L5178 2021 1857 1749*2^3370786+1 1014711 L5362 2021 1858 8421*2^3370599+1 1014656 L5174 2021 1859 55015050^131072+1 1014561 L4205 2018 Generalized Fermat 1860 4357*2^3369572+1 1014346 L5231 2021 1861 6073*2^3369544+1 1014338 L5358 2021 1862 839*2^3369383+1 1014289 L2891 2017 1863 65*2^3369359+1 1014280 L5236 2021 1864 8023*2^3369228+1 1014243 L5356 2021 1865 677*2^3369115+1 1014208 L2103 2017 1866 1437*2^3369083+1 1014199 L5282 2021 1867 9509*2^3368705+1 1014086 L5237 2021 1868 54548788^131072+1 1014076 L4726 2018 Generalized Fermat 1869 4851*2^3368668+1 1014074 L5307 2021 1870 7221*2^3368448+1 1014008 L5353 2021 1871 5549*2^3368437+1 1014005 L5217 2021 1872 715*2^3368210+1 1013936 L4527 2017 1873 617*2^3368119+1 1013908 L4552 2017 1874 54361742^131072+1 1013881 L4210 2018 Generalized Fermat 1875 1847*2^3367999+1 1013872 L5352 2021 1876 54334044^131072+1 1013852 L4745 2018 Generalized Fermat 1877 6497*2^3367743+1 1013796 L5285 2021 1878 2533*2^3367666+1 1013772 L5326 2021 1879 6001*2^3367552+1 1013738 L5350 2021 1880 54212352^131072+1 1013724 L4307 2018 Generalized Fermat 1881 54206254^131072+1 1013718 L4249 2018 Generalized Fermat 1882 777*2^3367372+1 1013683 L4408 2017 1883 9609*2^3367351+1 1013678 L5285 2021 1884 54161106^131072+1 1013670 L4307 2018 Generalized Fermat 1885 2529*2^3367317+1 1013667 L5237 2021 1886 5941*2^3366960+1 1013560 L5189 2021 1887 5845*2^3366956+1 1013559 L5197 2021 1888 54032538^131072+1 1013535 L4591 2018 Generalized Fermat 1889 9853*2^3366608+1 1013454 L5178 2021 1890 61*2^3366033-1 1013279 L4405 2017 1891 7665*2^3365896+1 1013240 L5345 2021 1892 8557*2^3365648+1 1013165 L5346 2021 1893 369*2^3365614+1 1013154 L4364 2016 1894 53659976^131072+1 1013141 L4823 2018 Generalized Fermat 1895 8201*2^3365283+1 1013056 L5345 2021 1896 9885*2^3365151+1 1013016 L5344 2021 1897 5173*2^3365096+1 1012999 L5285 2021 1898 8523*2^3364918+1 1012946 L5237 2021 1899 3985*2^3364776+1 1012903 L5178 2021 1900 9711*2^3364452+1 1012805 L5192 2021 1901 7003*2^3364172+1 1012721 L5217 2021 1902 6703*2^3364088+1 1012696 L5337 2021 1903 7187*2^3364011+1 1012673 L5217 2021 1904 53161266^131072+1 1012610 L4307 2018 Generalized Fermat 1905 53078434^131072+1 1012521 L4835 2018 Generalized Fermat 1906 2345*2^3363157+1 1012415 L5336 2021 1907 6527*2^3363135+1 1012409 L5167 2021 1908 9387*2^3363088+1 1012395 L5161 2021 1909 8989*2^3362986+1 1012364 L5161 2021 1910 533*2^3362857+1 1012324 L3171 2017 1911 619*2^3362814+1 1012311 L4527 2017 1912 2289*2^3362723+1 1012284 L5161 2021 1913 7529*2^3362565+1 1012237 L5161 2021 1914 7377*2^3362366+1 1012177 L5161 2021 1915 4509*2^3362311+1 1012161 L5324 2021 1916 7021*2^3362208+1 1012130 L5178 2021 1917 52712138^131072+1 1012127 L4819 2018 Generalized Fermat 1918 104*873^344135-1 1012108 L4700 2018 1919 4953*2^3362054+1 1012083 L5323 2021 1920 8575*2^3361798+1 1012006 L5237 2021 1921 2139*2^3361706+1 1011978 L5174 2021 1922 6939*2^3361203+1 1011827 L5217 2021 1923 52412612^131072+1 1011802 L4289 2018 Generalized Fermat 1924 3^2120580-3^623816-1 1011774 CH9 2019 1925 8185*2^3360896+1 1011735 L5189 2021 1926 2389*2^3360882+1 1011730 L5317 2021 1927 2787*2^3360631+1 1011655 L5197 2021 1928 6619*2^3360606+1 1011648 L5316 2021 1929 2755*2^3360526+1 1011623 L5174 2021 1930 1445*2^3360099+1 1011494 L5261 2021 1931b 2846*67^553905-1 1011476 L4955 2023 1932 8757*2^3359788+1 1011401 L5197 2021 1933 52043532^131072+1 1011400 L4810 2018 Generalized Fermat 1934 5085*2^3359696+1 1011373 L5261 2021 1935 51954384^131072+1 1011303 L4720 2018 Generalized Fermat 1936 6459*2^3359457+1 1011302 L5310 2021 1937 51872628^131072+1 1011213 L4591 2018 Generalized Fermat 1938 6115*2^3358998+1 1011163 L5309 2021 1939 7605*2^3358929+1 1011143 L5308 2021 1940 2315*2^3358899+1 1011133 L5197 2021 1941 6603*2^3358525+1 1011021 L5307 2021 1942 51580416^131072+1 1010891 L4765 2018 Generalized Fermat 1943 51570250^131072+1 1010880 L4591 2018 Generalized Fermat 1944 51567684^131072+1 1010877 L4800 2018 Generalized Fermat 1945 5893*2^3357490+1 1010709 L5285 2021 1946 6947*2^3357075+1 1010585 L5302 2021 1947 4621*2^3357068+1 1010582 L5301 2021 1948 51269192^131072+1 1010547 L4795 2018 Generalized Fermat 1949 1479*2^3356275+1 1010343 L5178 2021 1950 3645*2^3356232+1 1010331 L5296 2021 1951 1259*2^3356215+1 1010325 L5298 2021 1952 2075*2^3356057+1 1010278 L5174 2021 1953 4281*2^3356051+1 1010276 L5295 2021 1954 1275*2^3356045+1 1010274 L5294 2021 1955 50963598^131072+1 1010206 L4726 2018 Generalized Fermat 1956 4365*2^3355770+1 1010192 L5261 2021 1957 50844724^131072+1 1010074 L4656 2018 Generalized Fermat 1958 2183*2^3355297+1 1010049 L5266 2021 1959 3087*2^3355000+1 1009960 L5226 2021 1960 8673*2^3354760+1 1009888 L5233 2021 1961 50495632^131072+1 1009681 L4591 2018 Generalized Fermat 1962 3015*2^3353943+1 1009641 L5290 2021 1963 6819*2^3353877+1 1009622 L5174 2021 1964 9*10^1009567-1 1009568 L3735 2016 Near-repdigit 1965 6393*2^3353366+1 1009468 L5287 2021 1966 3573*2^3353273+1 1009440 L5161 2021 1967 4047*2^3353222+1 1009425 L5286 2021 1968 1473*2^3353114+1 1009392 L5161 2021 1969 1183*2^3353058+1 1009375 L3824 2017 1970 50217306^131072+1 1009367 L4720 2018 Generalized Fermat 1971 81*2^3352924+1 1009333 L1728 2012 Generalized Fermat 1972 50110436^131072+1 1009245 L4591 2018 Generalized Fermat 1973 50055102^131072+1 1009183 L4309 2018 Generalized Fermat 1974 7123*2^3352180+1 1009111 L5161 2021 1975 2757*2^3352180+1 1009111 L5285 2021 1976 9307*2^3352014+1 1009061 L5284 2021 1977 2217*2^3351732+1 1008976 L5283 2021 1978 543*2^3351686+1 1008961 L4198 2017 1979 4419*2^3351666+1 1008956 L5279 2021 1980 49817700^131072+1 1008912 L4760 2018 Generalized Fermat 1981 3059*2^3351379+1 1008870 L5278 2021 1982 7789*2^3351046+1 1008770 L5276 2021 1983 9501*2^3350668+1 1008656 L5272 2021 1984 49530004^131072+1 1008582 L4591 2018 Generalized Fermat 1985 9691*2^3349952+1 1008441 L5242 2021 1986 49397682^131072+1 1008430 L4764 2018 Generalized Fermat 1987 3209*2^3349719+1 1008370 L5269 2021 1988 49331672^131072+1 1008354 L4763 2018 Generalized Fermat 1989 393*2^3349525+1 1008311 L3101 2016 1990 49243622^131072+1 1008252 L4741 2018 Generalized Fermat 1991 5487*2^3349303+1 1008245 L5266 2021 1992 49225986^131072+1 1008232 L4757 2018 Generalized Fermat 1993 2511*2^3349104+1 1008185 L5264 2021 1994 1005*2^3349046-1 1008167 L4518 2021 1995 7659*2^3348894+1 1008122 L5263 2021 1996 9703*2^3348872+1 1008115 L5262 2021 1997 49090656^131072+1 1008075 L4752 2018 Generalized Fermat 1998 7935*2^3348578+1 1008027 L5161 2021 1999 49038514^131072+1 1008015 L4743 2018 Generalized Fermat 2000 7821*2^3348400+1 1007973 L5260 2021 2001 7911*2^3347532+1 1007712 L5250 2021 2002 8295*2^3347031+1 1007561 L5249 2021 2003 48643706^131072+1 1007554 L4691 2018 Generalized Fermat 2004 4029*2^3346729+1 1007470 L5239 2021 2005 9007*2^3346716+1 1007466 L5161 2021 2006 8865*2^3346499+1 1007401 L5238 2021 2007 6171*2^3346480+1 1007395 L5174 2021 2008 6815*2^3346045+1 1007264 L5235 2021 2009 5*326^400785+1 1007261 L4786 2019 2010 5951*2^3345977+1 1007244 L5233 2021 2011 48370248^131072+1 1007234 L4701 2018 Generalized Fermat 2012 1257*2^3345843+1 1007203 L5192 2021 2013 4701*2^3345815+1 1007195 L5192 2021 2014 48273828^131072+1 1007120 L4456 2018 Generalized Fermat 2015 7545*2^3345355+1 1007057 L5231 2021 2016 5559*2^3344826+1 1006897 L5223 2021 2017 6823*2^3344692+1 1006857 L5223 2021 2018 4839*2^3344453+1 1006785 L5188 2021 2019 7527*2^3344332+1 1006749 L5220 2021 2020 7555*2^3344240+1 1006721 L5188 2021 2021 6265*2^3344080+1 1006673 L5197 2021 2022 1299*2^3343943+1 1006631 L5217 2021 2023 2815*2^3343754+1 1006574 L5216 2021 2024 5349*2^3343734+1 1006568 L5174 2021 2025 2863*2^3342920+1 1006323 L5179 2020 2026 7387*2^3342848+1 1006302 L5208 2020 2027 9731*2^3342447+1 1006181 L5203 2020 2028 7725*2^3341708+1 1005959 L5195 2020 2029 7703*2^3341625+1 1005934 L5178 2020 2030 7047*2^3341482+1 1005891 L5194 2020 2031 4839*2^3341309+1 1005838 L5192 2020 2032 47179704^131072+1 1005815 L4673 2017 Generalized Fermat 2033 47090246^131072+1 1005707 L4654 2017 Generalized Fermat 2034 8989*2^3340866+1 1005705 L5189 2020 2035 6631*2^3340808+1 1005688 L5188 2020 2036 1341*2^3340681+1 1005649 L5188 2020 2037 733*2^3340464+1 1005583 L3035 2016 2038 2636*138^469911+1 1005557 L5410 2021 2039 3679815*2^3340001+1 1005448 L4922 2019 2040 57*2^3339932-1 1005422 L3519 2015 2041 46776558^131072+1 1005326 L4659 2017 Generalized Fermat 2042 46736070^131072+1 1005277 L4245 2017 Generalized Fermat 2043 46730280^131072+1 1005270 L4656 2017 Generalized Fermat 2044 3651*2^3339341+1 1005246 L5177 2020 2045 3853*2^3339296+1 1005232 L5178 2020 2046 8015*2^3339267+1 1005224 L5176 2020 2047 3027*2^3339182+1 1005198 L5174 2020 2048 9517*2^3339002+1 1005144 L5172 2020 2049 4003*2^3338588+1 1005019 L3035 2020 2050 6841*2^3338336+1 1004944 L1474 2020 2051 2189*2^3338209+1 1004905 L5031 2020 2052 46413358^131072+1 1004883 L4626 2017 Generalized Fermat 2053 46385310^131072+1 1004848 L4622 2017 Generalized Fermat 2054 46371508^131072+1 1004831 L4620 2017 Generalized Fermat 2055 2957*2^3337667+1 1004742 L5144 2020 2056 1515*2^3337389+1 1004658 L1474 2020 2057 7933*2^3337270+1 1004623 L4666 2020 2058 1251*2^3337116+1 1004576 L4893 2020 2059 651*2^3337101+1 1004571 L3260 2016 2060 46077492^131072+1 1004469 L4595 2017 Generalized Fermat 2061 8397*2^3336654+1 1004437 L5125 2020 2062 8145*2^3336474+1 1004383 L5110 2020 2063 1087*2^3336385-1 1004355 L1828 2012 2064 5325*2^3336120+1 1004276 L2125 2020 2065 849*2^3335669+1 1004140 L3035 2016 2066 8913*2^3335216+1 1004005 L5079 2020 2067 7725*2^3335213+1 1004004 L3035 2020 2068 611*2^3334875+1 1003901 L3813 2016 2069 45570624^131072+1 1003840 L4295 2017 Generalized Fermat 2070 403*2^3334410+1 1003761 L4293 2016 2071 5491*2^3334392+1 1003756 L4815 2020 2072 6035*2^3334341+1 1003741 L2125 2020 2073 1725*2^3334341+1 1003740 L2125 2020 2074 4001*2^3334031+1 1003647 L1203 2020 2075 2315*2^3333969+1 1003629 L2125 2020 2076 6219*2^3333810+1 1003581 L4582 2020 2077 8063*2^3333721+1 1003554 L1823 2020 2078 9051*2^3333677+1 1003541 L3924 2020 2079 45315256^131072+1 1003520 L4562 2017 Generalized Fermat 2080 4091*2^3333153+1 1003383 L1474 2020 2081 9949*2^3332750+1 1003262 L5090 2020 2082 3509*2^3332649+1 1003231 L5085 2020 2083 3781*2^3332436+1 1003167 L1823 2020 2084 4425*2^3332394+1 1003155 L3431 2020 2085 6459*2^3332086+1 1003062 L2629 2020 2086 44919410^131072+1 1003020 L4295 2017 Generalized Fermat 2087 5257*2^3331758+1 1002963 L1188 2020 2088 2939*2^3331393+1 1002853 L1823 2020 2089 6959*2^3331365+1 1002845 L1675 2020 2090 8815*2^3330748+1 1002660 L3329 2020 2091 4303*2^3330652+1 1002630 L4730 2020 2092 8595*2^3330649+1 1002630 L4723 2020 2093 673*2^3330436+1 1002564 L3035 2016 2094 8163*2^3330042+1 1002447 L3278 2020 2095 44438760^131072+1 1002408 L4505 2016 Generalized Fermat 2096 193*2^3329782+1 1002367 L3460 2014 Divides Fermat F(3329780) 2097 44330870^131072+1 1002270 L4501 2016 Generalized Fermat 2098 2829*2^3329061+1 1002151 L4343 2020 2099 5775*2^3329034+1 1002143 L1188 2020 2100 7101*2^3328905+1 1002105 L4568 2020 2101 7667*2^3328807+1 1002075 L4087 2020 2102 129*2^3328805+1 1002073 L3859 2014 2103 7261*2^3328740+1 1002055 L2914 2020 2104 4395*2^3328588+1 1002009 L3924 2020 2105 44085096^131072+1 1001953 L4482 2016 Generalized Fermat 2106 143183*2^3328297+1 1001923 L4504 2017 2107 44049878^131072+1 1001908 L4466 2016 Generalized Fermat 2108 9681*2^3327987+1 1001828 L1204 2020 2109 2945*2^3327987+1 1001828 L2158 2020 2110 5085*2^3327789+1 1001769 L1823 2020 2111 8319*2^3327650+1 1001727 L1204 2020 2112 4581*2^3327644+1 1001725 L2142 2020 2113 655*2^3327518+1 1001686 L4490 2016 2114 8863*2^3327406+1 1001653 L1675 2020 2115 659*2^3327371+1 1001642 L3502 2016 2116 3411*2^3327343+1 1001634 L1675 2020 2117 4987*2^3327294+1 1001619 L3924 2020 2118 821*2^3327003+1 1001531 L3035 2016 2119 2435*2^3326969+1 1001521 L3035 2020 2120 1931*2^3326850-1 1001485 L4113 2022 2121 2277*2^3326794+1 1001469 L5014 2020 2122 6779*2^3326639+1 1001422 L3924 2020 2123 6195*2^3325993+1 1001228 L1474 2019 2124 555*2^3325925+1 1001206 L4414 2016 2125 9041*2^3325643+1 1001123 L3924 2019 2126 1965*2^3325639-1 1001121 L4113 2022 2127 1993*2^3325302+1 1001019 L3662 2019 2128 6179*2^3325027+1 1000937 L3048 2019 2129 4485*2^3324900+1 1000899 L1355 2019 2130 3559*2^3324650+1 1000823 L3035 2019 2131 43165206^131072+1 1000753 L4309 2016 Generalized Fermat 2132 43163894^131072+1 1000751 L4334 2016 Generalized Fermat 2133 6927*2^3324387+1 1000745 L3091 2019 2134 9575*2^3324287+1 1000715 L3824 2019 2135 1797*2^3324259+1 1000705 L3895 2019 2136 4483*2^3324048+1 1000642 L3035 2019 2137 791*2^3323995+1 1000626 L3035 2016 2138 6987*2^3323926+1 1000606 L4973 2019 2139 3937*2^3323886+1 1000593 L3035 2019 2140 2121*2^3323852+1 1000583 L1823 2019 2141 1571*2^3323493+1 1000475 L3035 2019 2142 2319*2^3323402+1 1000448 L4699 2019 2143 2829*2^3323341+1 1000429 L4754 2019 2144 4335*2^3323323+1 1000424 L1823 2019 2145 8485*2^3322938+1 1000308 L4858 2019 2146 6505*2^3322916+1 1000302 L4858 2019 2147 597*2^3322871+1 1000287 L3035 2016 2148 9485*2^3322811+1 1000270 L2603 2019 2149 8619*2^3322774+1 1000259 L3035 2019 2150 387*2^3322763+1 1000254 L1455 2016 2151 1965*2^3322579-1 1000200 L4113 2022 2152 42654182^131072+1 1000075 L4208 2015 Generalized Fermat 2153 6366*745^348190-1 1000060 L4189 2022 2154 5553507*2^3322000+1 1000029 p391 2016 2155 5029159647*2^3321910-1 1000005 L4960 2021 2156 5009522505*2^3321910-1 1000005 L4960 2021 2157 4766298357*2^3321910-1 1000005 L4960 2021 2158 4759383915*2^3321910-1 1000005 L4960 2021 2159 4635733263*2^3321910-1 1000005 L4960 2021 2160 4603393047*2^3321910-1 1000005 L4960 2021 2161 4550053935*2^3321910-1 1000005 L4960 2021 2162 4288198767*2^3321910-1 1000005 L4960 2021 2163 4229494557*2^3321910-1 1000005 L4960 2021 2164 4110178197*2^3321910-1 1000005 L4960 2021 2165 4022490843*2^3321910-1 1000005 L4960 2021 2166 3936623697*2^3321910-1 1000005 L4960 2021 2167 3751145343*2^3321910-1 1000005 L4960 2021 2168 3715773735*2^3321910-1 1000005 L4960 2021 2169 3698976057*2^3321910-1 1000005 L4960 2021 2170 3659465685*2^3321910-1 1000005 L4960 2020 2171 3652932033*2^3321910-1 1000005 L4960 2020 2172 3603204333*2^3321910-1 1000005 L4960 2020 2173 3543733545*2^3321910-1 1000005 L4960 2020 2174 3191900133*2^3321910-1 1000005 L4960 2020 2175 3174957723*2^3321910-1 1000005 L4960 2020 2176 2973510903*2^3321910-1 1000005 L4960 2019 2177 2848144257*2^3321910-1 1000005 L4960 2019 2178 2820058827*2^3321910-1 1000005 L4960 2019 2179 2611553775*2^3321910-1 1000004 L4960 2020 2180 2601087525*2^3321910-1 1000004 L4960 2019 2181 2386538565*2^3321910-1 1000004 L4960 2019 2182 2272291887*2^3321910-1 1000004 L4960 2019 2183 2167709265*2^3321910-1 1000004 L4960 2019 2184 2087077797*2^3321910-1 1000004 L4960 2019 2185 1848133623*2^3321910-1 1000004 L4960 2019 2186 1825072257*2^3321910-1 1000004 L4960 2019 2187 1633473837*2^3321910-1 1000004 L4960 2019 2188 1228267623*2^3321910-1 1000004 L4808 2019 2189 1148781333*2^3321910-1 1000004 L4808 2019 2190 1065440787*2^3321910-1 1000004 L4808 2019 2191 1055109357*2^3321910-1 1000004 L4960 2019 2192 992309607*2^3321910-1 1000004 L4808 2019 2193 926102325*2^3321910-1 1000004 L4808 2019 2194 892610007*2^3321910-1 1000004 L4960 2019 2195 763076757*2^3321910-1 1000004 L4960 2019 2196 607766997*2^3321910-1 1000004 L4808 2019 2197 539679177*2^3321910-1 1000004 L4808 2019 2198 425521077*2^3321910-1 1000004 L4808 2019 2199 132940575*2^3321910-1 1000003 L4808 2019 2200 239378138685*2^3321891+1 1000001 L5104 2020 2201 464253*2^3321908-1 1000000 L466 2013 2202 3^2095902+3^647322-1 1000000 x44 2018 2203 191273*2^3321908-1 1000000 L466 2013 2204 1814570322984178^65536+1 1000000 L5080 2020 Generalized Fermat 2205 1814570322977518^65536+1 1000000 L5080 2020 Generalized Fermat 2206f 3292665455999520712131952624640^32768+1 1000000 L5749 2023 Generalized Fermat 2207 3292665455999520712131951642528^32768+1 1000000 L5120 2020 Generalized Fermat 2208 3292665455999520712131951625894^32768+1 1000000 L5122 2020 Generalized Fermat 2209d 10841645805132531666786792405311319418846637043199917731999190^16384+1 1000000 L5749 2023 Generalized Fermat 2210 10841645805132531666786792405311319418846637043199917731311876^16384+1 1000000 L5207 2020 Generalized Fermat 2211 10841645805132531666786792405311319418846637043199917731150000^16384+1 1000000 L5122 2020 Generalized Fermat 2212c 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729599864^8192+1 1000000 L5749 2023 Generalized Fermat 2213 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729375350^8192+1 1000000 p417 2021 Generalized Fermat 2214 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729240092^8192+1 1000000 p419 2021 Generalized Fermat 2215 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729154678^8192+1 1000000 p418 2021 Generalized Fermat 2216 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729122666^8192+1 1000000 p417 2021 Generalized Fermat 2217 1175412837639478208035149360635999371658705159870633484377238553812244\ 52611844232886228245901292532817349347812678729023786^8192+1 1000000 p416 2021 Generalized Fermat 2218 1381595338887690358821474589959638055848096769928148782339849168699728\ 6960050362175966390289809116354643446309069559318476498264187530254667\ 3096047093511481998019892105889132464543550102310865144502037206654116\ 79519151409973433052122012097875144^4096+1 1000000 p421 2021 Generalized Fermat 2219 1381595338887690358821474589959638055848096769928148782339849168699728\ 6960050362175966390289809116354643446309069559318476498264187530254667\ 3096047093511481998019892105889132464543550102310865144502037206654116\ 79519151409973433052122012097840702^4096+1 1000000 p417 2021 Generalized Fermat 2220 ((sqrtnint(10^999999,2048)+2)+364176)^2048+1 1000000 p417 2022 Generalized Fermat 2221 10^999999+308267*10^292000+1 1000000 CH10 2021 2222 10^999999-1022306*10^287000-1 999999 CH13 2021 2223 10^999999-1087604*10^287000-1 999999 CH13 2021 2224 531631540026641*6^1285077+1 999999 L3494 2021 2225 3139*2^3321905-1 999997 L185 2008 2226 42550702^131072+1 999937 L4309 2022 Generalized Fermat 2227 42414020^131072+1 999753 L5030 2022 Generalized Fermat 2228 4847*2^3321063+1 999744 SB9 2005 2229 42254832^131072+1 999539 L5375 2022 Generalized Fermat 2230 42243204^131072+1 999524 L4898 2022 Generalized Fermat 2231 42230406^131072+1 999506 L5453 2022 Generalized Fermat 2232 42168978^131072+1 999424 L5462 2022 Generalized Fermat 2233 439*2^3318318+1 998916 L5573 2022 2234 41688706^131072+1 998772 L5270 2022 Generalized Fermat 2235 41364744^131072+1 998327 L5453 2022 Generalized Fermat 2236 41237116^131072+1 998152 L5459 2022 Generalized Fermat 2237d 47714*17^811139+1 998070 L5765 2023 Generalized Cullen 2238 41102236^131072+1 997965 L4245 2022 Generalized Fermat 2239 41007562^131072+1 997834 L4210 2022 Generalized Fermat 2240 41001148^131072+1 997825 L4210 2022 Generalized Fermat 2241 975*2^3312951+1 997301 L5231 2022 2242 40550398^131072+1 997196 L4245 2022 Generalized Fermat 2243 11796*46^599707+1 997172 L5670 2023 2244 40463598^131072+1 997074 L4591 2022 Generalized Fermat 2245 689*2^3311423+1 996841 L5226 2022 2246 40151896^131072+1 996633 L4245 2022 Generalized Fermat 2247 593*2^3309333+1 996212 L5572 2022 2248 383*2^3309321+1 996208 L5570 2022 2249 49*2^3309087-1 996137 L1959 2013 2250 39746366^131072+1 996056 L4201 2022 Generalized Fermat 2251 139413*6^1279992+1 996033 L4001 2015 2252b 1274*67^545368-1 995886 L5410 2023 2253 51*2^3308171+1 995861 L2840 2015 2254 719*2^3308127+1 995849 L5192 2022 2255 39597790^131072+1 995842 L4737 2022 Generalized Fermat 2256 39502358^131072+1 995705 L5453 2022 Generalized Fermat 2257 39324372^131072+1 995448 L5202 2022 Generalized Fermat 2258 245114*5^1424104-1 995412 L3686 2013 2259 39100746^131072+1 995123 L5441 2022 Generalized Fermat 2260 38824296^131072+1 994719 L4245 2022 Generalized Fermat 2261 38734748^131072+1 994588 L4249 2021 Generalized Fermat 2262 175124*5^1422646-1 994393 L3686 2013 2263 453*2^3303073+1 994327 L5568 2022 2264 38310998^131072+1 993962 L4737 2021 Generalized Fermat 2265 531*2^3301693+1 993912 L5226 2022 2266 38196496^131072+1 993791 L4861 2021 Generalized Fermat 2267 38152876^131072+1 993726 L4245 2021 Generalized Fermat 2268 195*2^3301018+1 993708 L5569 2022 2269 341*2^3300789+1 993640 L5192 2022 2270 37909914^131072+1 993363 L4249 2021 Generalized Fermat 2271 849*2^3296427+1 992327 L5571 2022 2272 1611*22^738988+1 992038 L4139 2015 2273 36531196^131072+1 991254 L4249 2021 Generalized Fermat 2274 2017*2^3292325-1 991092 L3345 2017 2275 36422846^131072+1 991085 L4245 2021 Generalized Fermat 2276 36416848^131072+1 991076 L5202 2021 Generalized Fermat 2277 885*2^3290927+1 990671 L5161 2022 2278 36038176^131072+1 990481 L4245 2021 Generalized Fermat 2279 35997532^131072+1 990416 L4245 2021 Generalized Fermat 2280 35957420^131072+1 990353 L4245 2021 Generalized Fermat 2281 Phi(3,-107970^98304) 989588 L4506 2016 Generalized unique 2282 35391288^131072+1 989449 L5070 2021 Generalized Fermat 2283 35372304^131072+1 989419 L5443 2021 Generalized Fermat 2284 219*2^3286614+1 989372 L5567 2022 2285 61*2^3286535-1 989348 L4405 2016 2286 35327718^131072+1 989347 L4591 2021 Generalized Fermat 2287 35282096^131072+1 989274 L4245 2021 Generalized Fermat 2288 35141602^131072+1 989046 L4729 2021 Generalized Fermat 2289 35139782^131072+1 989043 L4245 2021 Generalized Fermat 2290 35047222^131072+1 988893 L4249 2021 Generalized Fermat 2291 531*2^3284944+1 988870 L5536 2022 2292 34957136^131072+1 988747 L5321 2021 Generalized Fermat 2293 301*2^3284232+1 988655 L5564 2022 2294 34871942^131072+1 988608 L4245 2021 Generalized Fermat 2295 34763644^131072+1 988431 L4737 2021 Generalized Fermat 2296 34585314^131072+1 988138 L4201 2021 Generalized Fermat 2297 311*2^3282455+1 988120 L5568 2022 2298 34530386^131072+1 988048 L5070 2021 Generalized Fermat 2299 833*2^3282181+1 988038 L5564 2022 2300 561*2^3281889+1 987950 L5477 2022 2301 34087952^131072+1 987314 L4764 2021 Generalized Fermat 2302 87*2^3279368+1 987191 L3458 2015 2303 965*2^3279151+1 987126 L5564 2022 2304 33732746^131072+1 986717 L4359 2021 Generalized Fermat 2305 33474284^131072+1 986279 L5051 2021 Generalized Fermat 2306 33395198^131072+1 986145 L4658 2021 Generalized Fermat 2307 427*2^3275606+1 986059 L5566 2022 2308 33191418^131072+1 985796 L4201 2021 Generalized Fermat 2309 337*2^3274106+1 985607 L5564 2022 2310 357*2^3273543+1 985438 L5237 2022 Divides GF(3273542,10) 2311 1045*2^3273488+1 985422 L5192 2022 2312 32869172^131072+1 985241 L4285 2021 Generalized Fermat 2313 32792696^131072+1 985108 L5198 2021 Generalized Fermat 2314 1047*2^3272351+1 985079 L5563 2022 2315 32704348^131072+1 984955 L5312 2021 Generalized Fermat 2316 32608738^131072+1 984788 L5395 2021 Generalized Fermat 2317 933*2^3270993+1 984670 L5562 2022 2318 311*2^3270759+1 984600 L5560 2022 2319 32430486^131072+1 984476 L4245 2021 Generalized Fermat 2320 32417420^131072+1 984453 L4245 2021 Generalized Fermat 2321 65*2^3270127+1 984409 L3924 2015 2322 32348894^131072+1 984333 L4245 2021 Generalized Fermat 2323 579*2^3269850+1 984326 L5226 2022 2324 32286660^131072+1 984223 L5400 2021 Generalized Fermat 2325 32200644^131072+1 984071 L4387 2021 Generalized Fermat 2326 32137342^131072+1 983959 L4559 2021 Generalized Fermat 2327 32096608^131072+1 983887 L4559 2021 Generalized Fermat 2328 32055422^131072+1 983814 L4559 2021 Generalized Fermat 2329 31821360^131072+1 983397 L4861 2021 Generalized Fermat 2330 31768014^131072+1 983301 L4252 2021 Generalized Fermat 2331 335*2^3266237+1 983238 L5559 2022 2332 1031*2^3265915+1 983142 L5364 2022 2333 31469984^131072+1 982765 L5078 2021 Generalized Fermat 2334 5*2^3264650-1 982759 L384 2013 2335 223*2^3264459-1 982703 L1884 2012 2336 1101*2^3264400+1 982686 L5231 2022 2337 483*2^3264181+1 982620 L5174 2022 2338 525*2^3263227+1 982332 L5231 2022 2339 31145080^131072+1 982174 L4201 2021 Generalized Fermat 2340 622*48^584089+1 981998 L5629 2023 2341 31044982^131072+1 981991 L5041 2021 Generalized Fermat 2342 683*2^3262037+1 981974 L5192 2022 2343 923*2^3261401+1 981783 L5477 2022 2344 30844300^131072+1 981622 L5102 2021 Generalized Fermat 2345 30819256^131072+1 981575 L4201 2021 Generalized Fermat 2346 9*2^3259381-1 981173 L1828 2011 2347 1059*2^3258751+1 980985 L5231 2022 2348 6*5^1403337+1 980892 L4965 2020 2349 30318724^131072+1 980643 L4309 2021 Generalized Fermat 2350 30315072^131072+1 980636 L5375 2021 Generalized Fermat 2351 30300414^131072+1 980609 L4755 2021 Generalized Fermat 2352 30225714^131072+1 980468 L4201 2021 Generalized Fermat 2353 875*2^3256589+1 980334 L5550 2022 2354 30059800^131072+1 980155 L4928 2021 Generalized Fermat 2355 30022816^131072+1 980085 L5273 2021 Generalized Fermat 2356 29959190^131072+1 979964 L4905 2021 Generalized Fermat 2357 29607314^131072+1 979292 L5378 2021 Generalized Fermat 2358 779*2^3253063+1 979273 L5192 2022 2359 29505368^131072+1 979095 L5378 2021 Generalized Fermat 2360 163*2^3250978+1 978645 L5161 2022 Divides GF(3250977,6) 2361 29169314^131072+1 978443 L5380 2021 Generalized Fermat 2362 417*2^3248255+1 977825 L5178 2022 2363 28497098^131072+1 977116 L4308 2021 Generalized Fermat 2364 28398204^131072+1 976918 L5379 2021 Generalized Fermat 2365 28294666^131072+1 976710 L5375 2021 Generalized Fermat 2366 28175634^131072+1 976470 L5378 2021 Generalized Fermat 2367 33*2^3242126-1 975979 L3345 2014 2368 27822108^131072+1 975752 L4760 2021 Generalized Fermat 2369 39*2^3240990+1 975637 L3432 2014 2370 27758510^131072+1 975621 L4289 2021 Generalized Fermat 2371 27557876^131072+1 975208 L4245 2021 Generalized Fermat 2372 27544748^131072+1 975181 L4387 2021 Generalized Fermat 2373 27408050^131072+1 974898 L4210 2021 Generalized Fermat 2374 225*2^3236967+1 974427 L5529 2022 2375 27022768^131072+1 974092 L4309 2021 Generalized Fermat 2376 26896670^131072+1 973826 L5376 2021 Generalized Fermat 2377 1075*2^3234606+1 973717 L5192 2022 2378 26757382^131072+1 973530 L5375 2021 Generalized Fermat 2379 26599558^131072+1 973194 L4245 2021 Generalized Fermat 2380 6*5^1392287+1 973168 L4965 2020 2381 26500832^131072+1 972982 L4956 2021 Generalized Fermat 2382 325*2^3231474+1 972774 L5536 2022 2383 933*2^3231438+1 972763 L5197 2022 2384 123*2^3230548+1 972494 L5178 2022 Divides GF(3230546,12) 2385 26172278^131072+1 972272 L4245 2021 Generalized Fermat 2386 697*2^3229518+1 972185 L5534 2022 2387 22598*745^338354-1 971810 L4189 2022 2388 385*2^3226814+1 971371 L5178 2022 2389 211195*2^3224974+1 970820 L2121 2013 2390 1173*2^3223546+1 970388 L5178 2022 2391 7*6^1246814+1 970211 L4965 2019 2392 25128150^131072+1 969954 L4738 2021 Generalized Fermat 2393 25124378^131072+1 969946 L5102 2021 Generalized Fermat 2394 1089*2^3221691+1 969829 L5178 2022 2395 35*832^332073-1 969696 L4001 2019 2396 600921*2^3219922-1 969299 g337 2018 2397 939*2^3219319+1 969115 L5178 2022 2398 24734116^131072+1 969055 L5070 2021 Generalized Fermat 2399 24644826^131072+1 968849 L5070 2021 Generalized Fermat 2400 24642712^131072+1 968844 L5070 2021 Generalized Fermat 2401 24641166^131072+1 968840 L5070 2021 Generalized Fermat 2402 129*2^3218214+1 968782 L5529 2022 2403 24522386^131072+1 968565 L5070 2021 Generalized Fermat 2404 24486806^131072+1 968483 L4737 2021 Generalized Fermat 2405 811*2^3216944+1 968400 L5233 2022 2406 24297936^131072+1 968042 L4201 2021 Generalized Fermat 2407 1023*2^3214745+1 967738 L5178 2022 2408 187*2^3212152+1 966957 L5178 2022 2409 301*2^3211281-1 966695 L5545 2022 2410 6*409^369832+1 965900 L4001 2015 2411 23363426^131072+1 965809 L5033 2021 Generalized Fermat 2412 1165*2^3207702+1 965618 L5178 2022 2413 94373*2^3206717+1 965323 L2785 2013 2414 2751*2^3206569-1 965277 L4036 2015 2415 761*2^3206341+1 965208 L5178 2022 2416 23045178^131072+1 965029 L5023 2021 Generalized Fermat 2417 23011666^131072+1 964946 L5273 2021 Generalized Fermat 2418 911*2^3205225+1 964872 L5364 2022 2419 22980158^131072+1 964868 L4201 2021 Generalized Fermat 2420 22901508^131072+1 964673 L4743 2021 Generalized Fermat 2421 22808110^131072+1 964440 L5248 2021 Generalized Fermat 2422 22718284^131072+1 964215 L5254 2021 Generalized Fermat 2423 22705306^131072+1 964183 L5248 2021 Generalized Fermat 2424 113983*2^3201175-1 963655 L613 2008 2425 34*888^326732-1 963343 L4001 2017 2426 899*2^3198219+1 962763 L5503 2022 2427 22007146^131072+1 962405 L4245 2020 Generalized Fermat 2428 4*3^2016951+1 962331 L4965 2020 2429 21917442^131072+1 962173 L4622 2020 Generalized Fermat 2430 987*2^3195883+1 962060 L5282 2022 2431 21869554^131072+1 962048 L5061 2020 Generalized Fermat 2432 21757066^131072+1 961754 L4773 2020 Generalized Fermat 2433 21582550^131072+1 961296 L5068 2020 Generalized Fermat 2434 21517658^131072+1 961125 L5126 2020 Generalized Fermat 2435 20968936^131072+1 959654 L4245 2020 Generalized Fermat 2436 671*2^3185411+1 958908 L5315 2022 2437 20674450^131072+1 958849 L4245 2020 Generalized Fermat 2438 1027*2^3184540+1 958646 L5174 2022 2439 789*2^3183463+1 958321 L5482 2022 2440 855*2^3183158+1 958229 L5161 2022 2441 20234282^131072+1 957624 L4942 2020 Generalized Fermat 2442 20227142^131072+1 957604 L4677 2020 Generalized Fermat 2443 625*2^3180780+1 957513 L5178 2022 Generalized Fermat 2444 20185276^131072+1 957486 L4201 2020 Generalized Fermat 2445 935*2^3180599+1 957459 L5477 2022 2446 573*2^3179293+1 957066 L5226 2022 2447 33*2^3176269+1 956154 L3432 2013 2448 81*2^3174353-1 955578 L3887 2022 2449 19464034^131072+1 955415 L4956 2020 Generalized Fermat 2450 600921*2^3173683-1 955380 g337 2018 2451 587*2^3173567+1 955342 L5301 2022 2452 19216648^131072+1 954687 L5024 2020 Generalized Fermat 2453 1414*95^482691-1 954633 L4877 2019 2454 305*2^3171039+1 954581 L5301 2022 2455 755*2^3170701+1 954479 L5302 2022 2456 775*2^3170580+1 954443 L5449 2022 2457 78*236^402022-1 953965 L5410 2020 2458 18968126^131072+1 953946 L5011 2020 Generalized Fermat 2459 18813106^131072+1 953479 L4201 2020 Generalized Fermat 2460 18608780^131072+1 952857 L4488 2020 Generalized Fermat 2461 1087*2^3164677-1 952666 L1828 2012 2462 18509226^131072+1 952552 L4884 2020 Generalized Fermat 2463 18501600^131072+1 952528 L4875 2020 Generalized Fermat 2464 459*2^3163175+1 952214 L5178 2022 2465 15*2^3162659+1 952057 p286 2012 2466 18309468^131072+1 951934 L4928 2020 Generalized Fermat 2467 18298534^131072+1 951900 L4201 2020 Generalized Fermat 2468 849*2^3161727+1 951778 L5178 2022 2469 67*2^3161450+1 951694 L3223 2015 2470 119*2^3161195+1 951617 L5320 2022 2471 1759*2^3160863-1 951518 L4965 2021 2472 58*117^460033+1 951436 L5410 2020 2473 417*2^3160443+1 951391 L5302 2022 2474 9231*70^515544+1 951234 L5410 2021 2475 671*2^3159523+1 951115 L5188 2022 2476 17958952^131072+1 950834 L4201 2020 Generalized Fermat 2477 17814792^131072+1 950375 L4752 2020 Generalized Fermat 2478 17643330^131072+1 949824 L4201 2020 Generalized Fermat 2479 19*2^3155009-1 949754 L1828 2012 2480 281*2^3151457+1 948686 L5316 2022 2481 179*2^3150265+1 948327 L5302 2022 2482 17141888^131072+1 948183 L4963 2019 Generalized Fermat 2483 17138628^131072+1 948172 L4963 2019 Generalized Fermat 2484 17119936^131072+1 948110 L4963 2019 Generalized Fermat 2485 17052490^131072+1 947885 L4715 2019 Generalized Fermat 2486 17025822^131072+1 947796 L4870 2019 Generalized Fermat 2487 16985784^131072+1 947662 L4295 2019 Generalized Fermat 2488 865*2^3147482+1 947490 L5178 2021 2489 963*2^3145753+1 946969 L5451 2021 2490 16741226^131072+1 946837 L4201 2019 Generalized Fermat 2491 387*2^3144483+1 946587 L5450 2021 2492 1035*2^3144236+1 946513 L5449 2021 2493 1065*2^3143667+1 946342 L4944 2021 2494 193*2^3142150+1 945884 L5178 2021 2495 915*2^3141942+1 945822 L5448 2021 2496 939*2^3141397+1 945658 L5320 2021 2497 1063*2^3141350+1 945644 L5178 2021 2498 16329572^131072+1 945420 L4201 2019 Generalized Fermat 2499 69*2^3140225-1 945304 L3764 2014 2500 3*2^3136255-1 944108 L256 2007 2501 417*2^3136187+1 944089 L5178 2021 2502 15731520^131072+1 943296 L4245 2019 Generalized Fermat 2503 Phi(3,-62721^98304) 943210 L4506 2016 Generalized unique 2504 15667716^131072+1 943064 L4387 2019 Generalized Fermat 2505 15567144^131072+1 942698 L4918 2019 Generalized Fermat 2506 299*2^3130621+1 942414 L5178 2021 2507 15342502^131072+1 941870 L4245 2019 Generalized Fermat 2508 15237960^131072+1 941481 L4898 2019 Generalized Fermat 2509 571*2^3127388+1 941441 L5440 2021 2510 15147290^131072+1 941141 L4861 2019 Generalized Fermat 2511 197*2^3126343+1 941126 L5178 2021 2512 15091270^131072+1 940930 L4760 2019 Generalized Fermat 2513 1097*2^3124455+1 940558 L5178 2021 2514 3125*2^3124079+1 940445 L1160 2019 2515 495*2^3123624+1 940308 L5438 2021 2516 14790404^131072+1 939784 L4871 2019 Generalized Fermat 2517 1041*2^3120649+1 939412 L5437 2021 2518 14613898^131072+1 939101 L4926 2019 Generalized Fermat 2519 3317*2^3117162-1 938363 L5399 2021 2520 763*2^3115684+1 937918 L4944 2021 2521 581*2^3114611+1 937595 L5178 2021 2522 14217182^131072+1 937534 L4387 2019 Generalized Fermat 2523 134*864^319246-1 937473 L5410 2020 2524 700057*2^3113753-1 937339 L5410 2022 2525 1197*2^3111838+1 936760 L5178 2021 2526 14020004^131072+1 936739 L4249 2019 Generalized Fermat 2527 27777*2^3111027+1 936517 L2777 2014 Generalized Cullen 2528 755*2^3110759+1 936435 L5320 2021 2529 13800346^131072+1 935840 L4880 2019 Generalized Fermat 2530e 866981*12^866981-1 935636 L5765 2023 Generalized Woodall 2531 13613070^131072+1 935062 L4245 2019 Generalized Fermat 2532 628*80^491322+1 935033 L5410 2021 2533 761*2^3105087+1 934728 L5197 2021 2534 13433028^131072+1 934305 L4868 2018 Generalized Fermat 2535 1019*2^3103680-1 934304 L1828 2012 2536 579*2^3102639+1 933991 L5315 2021 2537 99*2^3102401-1 933918 L1862 2017 2538 256612*5^1335485-1 933470 L1056 2013 2539 13083418^131072+1 932803 L4747 2018 Generalized Fermat 2540 69*2^3097340-1 932395 L3764 2014 2541 153*2^3097277+1 932376 L4944 2021 2542 12978952^131072+1 932347 L4849 2018 Generalized Fermat 2543 12961862^131072+1 932272 L4245 2018 Generalized Fermat 2544 207*2^3095391+1 931808 L5178 2021 2545 12851074^131072+1 931783 L4670 2018 Generalized Fermat 2546 45*2^3094632-1 931579 L1862 2018 2547 259*2^3094582+1 931565 L5214 2021 2548 553*2^3094072+1 931412 L4944 2021 2549 57*2^3093440-1 931220 L2484 2020 2550 12687374^131072+1 931054 L4289 2018 Generalized Fermat 2551 513*2^3092705+1 931000 L4329 2016 2552 12661786^131072+1 930939 L4819 2018 Generalized Fermat 2553 933*2^3091825+1 930736 L5178 2021 2554 38*875^316292-1 930536 L4001 2019 2555 5*2^3090860-1 930443 L1862 2012 2556 12512992^131072+1 930266 L4814 2018 Generalized Fermat 2557 4*5^1330541-1 930009 L4965 2022 2558 12357518^131072+1 929554 L4295 2018 Generalized Fermat 2559 12343130^131072+1 929488 L4720 2018 Generalized Fermat 2560 297*2^3087543+1 929446 L5326 2021 2561 1149*2^3087514+1 929438 L5407 2021 2562 745*2^3087428+1 929412 L5178 2021 2563 373*520^342177+1 929357 L3610 2014 2564 19401*2^3086450-1 929119 L541 2015 2565 75*2^3086355+1 929088 L3760 2015 2566 65*2^3080952-1 927461 L2484 2020 2567 11876066^131072+1 927292 L4737 2018 Generalized Fermat 2568 1139*2^3079783+1 927111 L5174 2021 2569 271*2^3079189-1 926931 L2484 2018 2570 766*33^610412+1 926923 L4001 2016 2571 11778792^131072+1 926824 L4672 2018 Generalized Fermat 2572 555*2^3078792+1 926812 L5226 2021 2573 31*332^367560+1 926672 L4294 2018 2574 167*2^3077568-1 926443 L1862 2020 2575 10001*2^3075602-1 925853 L4405 2019 2576 116*107^455562-1 924513 L4064 2021 2577 11292782^131072+1 924425 L4672 2018 Generalized Fermat 2578 14844*430^350980-1 924299 L4001 2016 2579 11267296^131072+1 924297 L4654 2017 Generalized Fermat 2580 4*3^1936890+1 924132 L4965 2020 Generalized Fermat 2581 1105*2^3069884+1 924131 L5314 2021 2582 319*2^3069362+1 923973 L5377 2021 2583 11195602^131072+1 923933 L4706 2017 Generalized Fermat 2584 973*2^3069092+1 923892 L5214 2021 2585 765*2^3068511+1 923717 L5174 2021 2586 60849*2^3067914+1 923539 L591 2014 2587 674*249^385359+1 923400 L5410 2019 2588 499*2^3066970+1 923253 L5373 2021 2589 553*2^3066838+1 923213 L5368 2021 2590 629*2^3066827+1 923210 L5226 2021 2591 11036888^131072+1 923120 L4660 2017 Generalized Fermat 2592 261*2^3066009+1 922964 L5197 2021 2593 10994460^131072+1 922901 L4704 2017 Generalized Fermat 2594e 214916*3^1934246-1 922876 L4965 2023 Generalized Woodall 2595 21*2^3065701+1 922870 p286 2012 2596 10962066^131072+1 922733 L4702 2017 Generalized Fermat 2597 10921162^131072+1 922520 L4559 2017 Generalized Fermat 2598 875*2^3063847+1 922313 L5364 2021 2599 43*2^3063674+1 922260 L3432 2013 2600 677*2^3063403+1 922180 L5346 2021 2601 8460*241^387047-1 921957 L5410 2019 2602 10765720^131072+1 921704 L4695 2017 Generalized Fermat 2603 111*2^3060238-1 921226 L2484 2020 2604 1165*2^3060228+1 921224 L5360 2021 2605 5*2^3059698-1 921062 L503 2008 2606 10453790^131072+1 920031 L4694 2017 Generalized Fermat 2607 453*2^3056181+1 920005 L5320 2021 2608 791*2^3055695+1 919859 L5177 2021 2609 10368632^131072+1 919565 L4692 2017 Generalized Fermat 2610 582971*2^3053414-1 919175 L5410 2022 2611 123*2^3049038+1 917854 L4119 2015 2612 10037266^131072+1 917716 L4691 2017 Generalized Fermat 2613 400*95^463883-1 917435 L4001 2019 2614 9907326^131072+1 916975 L4690 2017 Generalized Fermat 2615 454*383^354814+1 916558 L2012 2020 2616 9785844^131072+1 916272 L4326 2017 Generalized Fermat 2617 435*2^3041954+1 915723 L5320 2021 2618 639*2^3040438+1 915266 L5320 2021 2619 1045*2^3037988+1 914529 L5178 2021 2620 291*2^3037904+1 914503 L3545 2015 2621 311*2^3037565+1 914401 L5178 2021 2622 373*2^3036746+1 914155 L5178 2021 2623 9419976^131072+1 914103 L4591 2017 Generalized Fermat 2624 801*2^3036045+1 913944 L5348 2021 2625 915*2^3033775+1 913261 L5178 2021 2626 38804*3^1913975+1 913203 L5410 2021 2627 9240606^131072+1 913009 L4591 2017 Generalized Fermat 2628 869*2^3030655+1 912322 L5260 2021 2629 643*2^3030650+1 912320 L5320 2021 2630 99*2^3029959-1 912111 L1862 2020 2631 417*2^3029342+1 911926 L5178 2021 2632 345*2^3027769+1 911452 L5343 2021 2633 26*3^1910099+1 911351 L4799 2020 2634 355*2^3027372+1 911333 L5174 2021 2635 99*2^3026660-1 911118 L1862 2020 2636 417*2^3026492+1 911068 L5197 2021 2637 1065*2^3025527+1 910778 L5208 2021 2638 34202*3^1908800+1 910734 L5410 2021 2639 8343*42^560662+1 910099 L4444 2020 2640 699*2^3023263+1 910096 L5335 2021 2641 8770526^131072+1 910037 L4245 2017 Generalized Fermat 2642 8704114^131072+1 909604 L4670 2017 Generalized Fermat 2643 383731*2^3021377-1 909531 L466 2011 2644 46821*2^3021380-374567 909531 p363 2013 2645 2^3021377-1 909526 G3 1998 Mersenne 37 2646 615*2^3019445+1 908947 L5260 2021 2647 389*2^3019025+1 908820 L5178 2021 2648 875*2^3018175+1 908565 L5334 2021 2649b 375*2^3016803-1 908151 L2235 2023 2650 555*2^3016352+1 908016 L5178 2021 2651 7*2^3015762+1 907836 g279 2008 2652 759*2^3015314+1 907703 L5178 2021 2653 32582*3^1901790+1 907389 L5372 2021 2654 75*2^3012342+1 906808 L3941 2015 2655 459*2^3011814+1 906650 L5178 2021 2656 991*2^3010036+1 906115 L5326 2021 2657 583*2^3009698+1 906013 L5325 2021 2658 8150484^131072+1 905863 L4249 2017 Generalized Fermat 2659 593*2^3006969+1 905191 L5178 2021 2660f 327*2^3006540-1 905062 L2257 2023 2661 367*2^3004536+1 904459 L5178 2021 2662 7926326^131072+1 904276 L4249 2017 Generalized Fermat 2663 1003*2^3003756+1 904224 L5320 2021 2664 573*2^3002662+1 903895 L5319 2021 2665 7858180^131072+1 903784 L4201 2017 Generalized Fermat 2666 329*2^3002295+1 903784 L5318 2021 2667 4*5^1292915-1 903710 L4965 2022 2668 7832704^131072+1 903599 L4249 2017 Generalized Fermat 2669 268514*5^1292240-1 903243 L3562 2013 2670 7*10^902708+1 902709 p342 2013 2671 435*2^2997453+1 902326 L5167 2021 2672 583*2^2996526+1 902047 L5174 2021 2673 1037*2^2995695+1 901798 L5178 2021 2674 717*2^2995326+1 901686 L5178 2021 2675 885*2^2995274+1 901671 L5178 2021 2676 43*2^2994958+1 901574 L3222 2013 2677 1065*2^2994154+1 901334 L5315 2021 2678 561*2^2994132+1 901327 L5314 2021 2679 1095*2^2992587-1 900862 L1828 2011 2680 519*2^2991849+1 900640 L5311 2021 2681 7379442^131072+1 900206 L4201 2017 Generalized Fermat 2682 459*2^2990134+1 900123 L5197 2021 2683 15*2^2988834+1 899730 p286 2012 2684 29*564^326765+1 899024 L4001 2017 2685 971*2^2982525+1 897833 L5197 2021 2686 1033*2^2980962+1 897362 L5305 2021 2687f 357*2^2980540-1 897235 L2257 2023 2688f 367*2^2979033-1 896781 L2257 2023 2689 39*2^2978894+1 896739 L2719 2013 2690 38*977^299737+1 896184 L5410 2021 2691 4348099*2^2976221-1 895939 L466 2008 2692 205833*2^2976222-411665 895938 L4667 2017 2693 18976*2^2976221-18975 895937 p373 2014 2694 2^2976221-1 895932 G2 1997 Mersenne 36 2695 1024*3^1877301+1 895704 p378 2014 2696 1065*2^2975442+1 895701 L5300 2021 Divides GF(2975440,3) 2697 24704*3^1877135+1 895626 L5410 2021 2698 591*2^2975069+1 895588 L5299 2021 2699 249*2^2975002+1 895568 L2322 2015 2700 195*2^2972947+1 894949 L3234 2015 2701 6705932^131072+1 894758 L4201 2017 Generalized Fermat 2702 391*2^2971600+1 894544 L5242 2021 2703 46425*2^2971203+1 894426 L2777 2014 Generalized Cullen 2704 625*2^2970336+1 894164 L5233 2021 Generalized Fermat 2705f 369*2^2968175-1 893513 L2257 2023 2706 493*72^480933+1 893256 L3610 2014 2707 561*2^2964753+1 892483 L5161 2021 2708 1185*2^2964350+1 892362 L5161 2021 2709 6403134^131072+1 892128 L4510 2016 Generalized Fermat 2710 6391936^131072+1 892028 L4511 2016 Generalized Fermat 2711f 395*2^2961370-1 891464 L2257 2023 2712 21*2^2959789-1 890987 L5313 2021 2713 627*2^2959098+1 890781 L5197 2021 2714 45*2^2958002-1 890449 L1862 2017 2715 729*2^2955389+1 889664 L5282 2021 2716 198677*2^2950515+1 888199 L2121 2012 2717 88*985^296644+1 887987 L5410 2020 2718 303*2^2949403-1 887862 L1817 2022 2719 5877582^131072+1 887253 L4245 2016 Generalized Fermat 2720 321*2^2946654-1 887034 L1817 2022 2721 17*2^2946584-1 887012 L3519 2013 2722 489*2^2944673+1 886438 L5167 2021 2723 141*2^2943065+1 885953 L3719 2015 2724 757*2^2942742+1 885857 L5261 2021 2725 5734100^131072+1 885846 L4477 2016 Generalized Fermat 2726 33*2^2939064-5606879602425*2^1290000-1 884748 p423 2021 Arithmetic progression (3,d=33*2^2939063-5606879602425*2^1290000) 2727 33*2^2939063-1 884748 L3345 2013 2728 5903*2^2938744-1 884654 L4036 2015 2729 717*2^2937963+1 884418 L5256 2021 2730 5586416^131072+1 884361 L4454 2016 Generalized Fermat 2731 243*2^2937316+1 884223 L4114 2015 2732 973*2^2937046+1 884142 L5253 2021 2733 61*2^2936967-1 884117 L2484 2017 2734 903*2^2934602+1 883407 L5246 2021 2735 5471814^131072+1 883181 L4362 2016 Generalized Fermat 2736 188*228^374503+1 883056 L4786 2020 2737 53*248^368775+1 883016 L5196 2020 2738 5400728^131072+1 882436 L4201 2016 Generalized Fermat 2739 17*326^350899+1 881887 L4786 2019 2740 855*2^2929550+1 881886 L5200 2021 2741 5326454^131072+1 881648 L4201 2016 Generalized Fermat 2742 839*2^2928551+1 881585 L5242 2021 2743 7019*10^881309-1 881313 L3564 2013 2744 25*2^2927222+1 881184 L1935 2013 Generalized Fermat 2745f 391*2^2925759-1 880744 L2257 2023 2746 577*2^2925602+1 880697 L5201 2021 2747 97366*5^1259955-1 880676 L3567 2013 2748 973*2^2923062+1 879933 L5228 2021 2749 1126*177^391360+1 879770 L4955 2020 2750 243944*5^1258576-1 879713 L3566 2013 2751 693*2^2921528+1 879471 L5201 2021 2752 6*10^879313+1 879314 L5009 2019 2753 269*2^2918105+1 878440 L2715 2015 2754 331*2^2917844+1 878362 L5210 2021 2755 169*2^2917805-1 878350 L2484 2018 2756 1085*2^2916967+1 878098 L5174 2020 2757 389*2^2916499+1 877957 L5215 2020 2758 431*2^2916429+1 877936 L5214 2020 2759 1189*2^2916406+1 877929 L5174 2020 2760e 1011*2^2916119-1 877843 L4518 2023 2761 7*2^2915954+1 877791 g279 2008 Divides GF(2915953,12) [g322] 2762 4974408^131072+1 877756 L4380 2016 Generalized Fermat 2763 465*2^2914079+1 877228 L5210 2020 2764 427194*113^427194+1 877069 p310 2012 Generalized Cullen 2765 4893072^131072+1 876817 L4303 2016 Generalized Fermat 2766 493*2^2912552+1 876769 L5192 2021 2767 379*2^2911423-1 876429 L2257 2023 2768 143157*2^2911403+1 876425 L4504 2017 2769 567*2^2910402+1 876122 L5201 2020 2770 683*2^2909217+1 875765 L5199 2020 2771 674*249^365445+1 875682 L5410 2019 2772 475*2^2908802+1 875640 L5192 2021 2773 371*2^2907377+1 875211 L5197 2020 2774 207*2^2903535+1 874054 L3173 2015 2775 851*2^2902731+1 873813 L5177 2020 2776 777*2^2901907+1 873564 L5192 2020 2777 717*2^2900775+1 873224 L5185 2020 2778 99*2^2899303-1 872780 L1862 2017 2779 63*2^2898957+1 872675 L3262 2013 2780 11*2^2897409+1 872209 L2973 2013 Divides GF(2897408,3) 2781 747*2^2895307+1 871578 L5178 2020 2782 403*2^2894566+1 871354 L5180 2020 2783 629*2^2892961+1 870871 L5173 2020 2784 627*2^2891514+1 870436 L5168 2020 2785 325*2^2890955-1 870267 L5545 2022 2786 363*2^2890208+1 870042 L3261 2020 2787 471*2^2890148+1 870024 L5158 2020 2788 4329134^131072+1 869847 L4395 2016 Generalized Fermat 2789 583*2^2889248+1 869754 L5139 2020 2790 353*2^2888332-1 869478 L2257 2023 2791 955*2^2887934+1 869358 L4958 2020 2792b 8300*171^389286+1 869279 L5410 2023 2793 303*2^2887603-1 869258 L5184 2022 2794 937*2^2887130+1 869116 L5134 2020 2795 885*2^2886389+1 868893 L3924 2020 2796 763*2^2885928+1 868754 L2125 2020 2797 1071*2^2884844+1 868428 L3593 2020 2798 1181*2^2883981+1 868168 L3593 2020 2799 327*2^2881349-1 867375 L5545 2022 2800 51*2^2881227+1 867338 L3512 2013 2801 933*2^2879973+1 866962 L4951 2020 2802 261*2^2879941+1 866952 L4119 2015 2803 4085818^131072+1 866554 L4201 2016 Generalized Fermat 2804 65*2^2876718-1 865981 L2484 2016 2805 21*948^290747-1 865500 L4985 2019 2806 4013*2^2873250-1 864939 L1959 2014 2807 41*2^2872058-1 864578 L2484 2013 2808 359*2^2870935+1 864241 L1300 2020 2809 165*2^2870868+1 864220 L4119 2015 2810 961*2^2870596+1 864139 L1300 2020 Generalized Fermat 2811 665*2^2869847+1 863913 L2885 2020 2812 283*2^2868750+1 863583 L3877 2015 2813e 663703*20^663703-1 863504 L5765 2023 Generalized Woodall 2814 845*2^2868291+1 863445 L5100 2020 2815 3125*2^2867399+1 863177 L1754 2019 2816 701*2^2867141+1 863099 L1422 2020 2817 3814944^131072+1 862649 L4201 2016 Generalized Fermat 2818 119*954^289255+1 861852 L5410 2022 2819 307*2^2862962+1 861840 L4740 2020 2820 147*2^2862651+1 861746 L1741 2015 2821 1207*2^2861901-1 861522 L1828 2011 2822 231*2^2860725+1 861167 L2873 2015 2823 193*2^2858812+1 860591 L2997 2015 2824 629*2^2857891+1 860314 L3035 2020 2825 493*2^2857856+1 860304 L5087 2020 2826 241*2^2857313-1 860140 L2484 2018 2827 707*2^2856331+1 859845 L5084 2020 2828 3615210^131072+1 859588 L4201 2016 Generalized Fermat 2829 949*2^2854946+1 859428 L2366 2020 2830 222361*2^2854840+1 859398 g403 2006 2831 725*2^2854661+1 859342 L5031 2020 2832 399*2^2851994+1 858539 L4099 2020 2833 225*2^2851959+1 858528 L3941 2015 2834 247*2^2851602+1 858421 L3865 2015 2835 183*2^2850321+1 858035 L2117 2015 2836 1191*2^2849315+1 857733 L1188 2020 2837 717*2^2848598+1 857517 L1204 2020 2838 795*2^2848360+1 857445 L4099 2020 2839 4242104*15^728840-1 857189 L5410 2023 2840 3450080^131072+1 856927 L4201 2016 Generalized Fermat 2841 705*2^2846638+1 856927 L1808 2020 2842 369*2^2846547+1 856899 L4099 2020 2843 233*2^2846392-1 856852 L2484 2021 2844 955*2^2844974+1 856426 L1188 2020 2845 753*2^2844700+1 856343 L1204 2020 2846 11138*745^297992-1 855884 L4189 2019 2847 111*2^2841992+1 855527 L1792 2015 2848 44*744^297912-1 855478 L5410 2021 2849 649*2^2841318+1 855325 L4732 2020 2850 228*912^288954-1 855305 L5410 2022 2851 305*2^2840155+1 854975 L4907 2020 2852c 914*871^290787-1 854923 L5787 2023 2853 1149*2^2839622+1 854815 L2042 2020 2854 95*2^2837909+1 854298 L3539 2013 2855 199*2^2835667-1 853624 L2484 2019 2856 595*2^2833406+1 852943 L4343 2020 2857 1101*2^2832061+1 852539 L4930 2020 2858 813*2^2831757+1 852447 L4951 2020 2859 435*2^2831709+1 852432 L4951 2020 2860 393*2^2828738-1 851538 L2257 2023 2861 543*2^2828217+1 851381 L4746 2019 2862e 68*1010^283267+1 851027 L5778 2023 2863 704*249^354745+1 850043 L5410 2019 2864 1001*2^2822037+1 849521 L1209 2019 2865 84466*5^1215373-1 849515 L3562 2013 2866 97*2^2820650+1 849103 L2163 2013 2867 381*2^2820157-1 848955 L2257 2023 2868 107*2^2819922-1 848884 L2484 2013 2869 84256*3^1778899+1 848756 L4789 2018 2870 45472*3^1778899-1 848756 L4789 2018 2871 14804*3^1778530+1 848579 L4064 2021 2872 497*2^2818787+1 848543 L4842 2019 2873 97*2^2818306+1 848397 L3262 2013 2874 313*2^2817751-1 848231 L802 2021 2875 177*2^2816050+1 847718 L129 2012 2876 553*2^2815596+1 847582 L4980 2019 2877 1071*2^2814469+1 847243 L3035 2019 2878 105*2^2813000+1 846800 L3200 2015 2879 1115*2^2812911+1 846774 L1125 2019 2880 96*10^846519-1 846521 L2425 2011 Near-repdigit 2881 763*2^2811726+1 846417 L3919 2019 2882 1125*2^2811598+1 846379 L4981 2019 2883 891*2^2810100+1 845928 L4981 2019 2884 441*2^2809881+1 845862 L4980 2019 2885 711*2^2808473+1 845438 L1502 2019 2886 1089*2^2808231+1 845365 L4687 2019 2887 63*2^2807130+1 845033 L3262 2013 2888 1083*2^2806536+1 844855 L3035 2019 2889 675*2^2805669+1 844594 L1932 2019 2890 819*2^2805389+1 844510 L3372 2019 2891 1027*2^2805222+1 844459 L3035 2019 2892 437*2^2803775+1 844024 L3168 2019 2893 381*2^2801281-1 843273 L2257 2023 2894 4431*372^327835-1 842718 L5410 2019 2895 150344*5^1205508-1 842620 L3547 2013 2896 311*2^2798459+1 842423 L4970 2019 2897 81*2^2797443-1 842117 L3887 2021 2898 400254*127^400254+1 842062 g407 2013 Generalized Cullen 2899 2639850^131072+1 841690 L4249 2016 Generalized Fermat 2900 43*2^2795582+1 841556 L2842 2013 2901 1001*2^2794357+1 841189 L1675 2019 2902 117*2^2794014+1 841085 L1741 2015 2903 1057*2^2792700+1 840690 L1675 2019 2904 345*2^2792269+1 840560 L1754 2019 2905 711*2^2792072+1 840501 L4256 2019 2906 315*2^2791414-1 840302 L2235 2021 2907 973*2^2789516+1 839731 L3372 2019 2908 27602*3^1759590+1 839543 L4064 2021 2909 2187*2^2786802+1 838915 L1745 2019 2910 15*2^2785940+1 838653 p286 2012 2911 333*2^2785626-1 838560 L802 2021 2912 1337*2^2785444-1 838506 L4518 2017 2913 711*2^2784213+1 838135 L4687 2019 2914 58582*91^427818+1 838118 L5410 2020 2915 923*2^2783153+1 837816 L1675 2019 2916 1103*2^2783149+1 837815 L3784 2019 2917 485*2^2778151+1 836310 L1745 2019 2918 600921*2^2776014-1 835670 g337 2017 2919 1129*2^2774934+1 835342 L1774 2019 2920 750*1017^277556-1 834703 L4955 2021 2921 8700*241^350384-1 834625 L5410 2019 2922 1023*2^2772512+1 834613 L4724 2019 2923 656*249^348030+1 833953 L5410 2019 2924 92*10^833852-1 833854 L4789 2018 Near-repdigit 2925 437*2^2769299+1 833645 L3760 2019 2926 967*2^2768408+1 833377 L3760 2019 2927 2280466^131072+1 833359 L4201 2016 Generalized Fermat 2928 1171*2^2768112+1 833288 L2676 2019 2929 57*2^2765963+1 832640 L3262 2013 2930 1323*2^2764024+1 832058 L1115 2019 2931 77*2^2762047+1 831461 L3430 2013 2932 745*2^2761514+1 831302 L1204 2019 2933 2194180^131072+1 831164 L4276 2016 Generalized Fermat 2934 7*10^830865+1 830866 p342 2014 2935 893*2^2758841+1 830497 L4826 2019 2936 537*2^2755164+1 829390 L3035 2019 2937 579*2^2754370+1 829151 L1823 2019 2938 441*2^2754188+1 829096 L2564 2019 Generalized Fermat 2939 215*2^2751022-1 828143 L2484 2018 2940 337*2^2750860+1 828094 L4854 2019 2941 701*2^2750267+1 827916 L3784 2019 2942 467*2^2749195+1 827593 L1745 2019 2943 245*2^2748663+1 827433 L3173 2015 2944 591*2^2748315+1 827329 L3029 2019 2945 57*2^2747499+1 827082 L3514 2013 Divides Fermat F(2747497) 2946 1007*2^2747268-1 827014 L4518 2022 2947 1089*2^2746155+1 826679 L2583 2019 2948 707*2^2745815+1 826576 L3760 2019 2949 459*2^2742310+1 825521 L4582 2019 2950 777*2^2742196+1 825487 L3919 2019 2951 609*2^2741078+1 825150 L3091 2019 2952 684*157^375674+1 824946 L5112 2022 2953 639*2^2740186+1 824881 L4958 2019 2954 905*2^2739805+1 824767 L4958 2019 2955 119*954^276761+1 824625 L5410 2022 2956 1955556^131072+1 824610 L4250 2015 Generalized Fermat 2957 777*2^2737282+1 824007 L1823 2019 2958 765*2^2735232+1 823390 L1823 2019 2959 609*2^2735031+1 823330 L1823 2019 2960 305*2^2733989+1 823016 L1823 2019 2961 165*2^2732983+1 822713 L1741 2015 2962 1133*2^2731993+1 822415 L4687 2019 2963 251*2^2730917+1 822091 L3924 2015 2964 1185*2^2730620+1 822002 L4948 2019 2965 (10^410997+1)^2-2 821995 p405 2022 2966 173*2^2729905+1 821786 L3895 2015 2967 1981*2^2728877-1 821478 L1134 2018 2968 693*2^2728537+1 821375 L3035 2019 2969 501*2^2728224+1 821280 L3035 2019 2970 763*2^2727928+1 821192 L3924 2019 2971 10*743^285478+1 819606 L4955 2019 2972 17*2^2721830-1 819354 p279 2010 2973 1006*639^291952+1 819075 L4444 2021 2974 1101*2^2720091+1 818833 L4935 2019 2975 1766192^131072+1 818812 L4231 2015 Generalized Fermat 2976 165*2^2717378-1 818015 L2055 2012 2977 68633*2^2715609+1 817485 L5105 2020 2978 1722230^131072+1 817377 L4210 2015 Generalized Fermat 2979 9574*5^1169232+1 817263 L5410 2021 2980 1717162^131072+1 817210 L4226 2015 Generalized Fermat 2981 133*2^2713410+1 816820 L3223 2015 2982 45*2^2711732+1 816315 L1349 2012 2983 569*2^2711451+1 816231 L4568 2019 2984 12830*3^1709456+1 815622 L5410 2021 2985 335*2^2708958-1 815481 L2235 2020 2986 93*2^2708718-1 815408 L1862 2016 2987 1660830^131072+1 815311 L4207 2015 Generalized Fermat 2988 837*2^2708160+1 815241 L4314 2019 2989 1005*2^2707268+1 814972 L4687 2019 2990 13*458^306196+1 814748 L3610 2015 2991 253*2^2705844+1 814543 L4083 2015 2992 657*2^2705620+1 814476 L4907 2019 2993 39*2^2705367+1 814399 L1576 2013 Divides GF(2705360,3) 2994 303*2^2703864+1 813947 L1204 2019 2995 141*2^2702160+1 813434 L1741 2015 2996 753*2^2701925+1 813364 L4314 2019 2997 133*2^2701452+1 813221 L3173 2015 2998 521*2^2700095+1 812813 L4854 2019 2999 393*2^2698956+1 812470 L1823 2019 3000 417*2^2698652+1 812378 L3035 2019 3001 525*2^2698118+1 812218 L1823 2019 3002 3125*2^2697651+1 812078 L3924 2019 3003 153*2^2697173+1 811933 L3865 2015 3004 1560730^131072+1 811772 L4201 2015 Generalized Fermat 3005 26*3^1700041+1 811128 L4799 2020 3006 Phi(3,-1538654^65536) 810961 L4561 2017 Generalized unique 3007 11*2^2691961+1 810363 p286 2013 Divides GF(2691960,12) 3008 58*536^296735-1 809841 L5410 2021 3009 33016*3^1696980+1 809670 L5366 2021 3010 7335*2^2689080-1 809498 L4036 2015 3011 1049*2^2688749+1 809398 L4869 2018 3012a 120*957^271487-1 809281 L541 2023 3013 329*2^2688221+1 809238 L3035 2018 3014 865*2^2687434+1 809002 L4844 2018 3015 989*2^2686591+1 808748 L2805 2018 3016 136*904^273532+1 808609 L5410 2020 3017 243*2^2685873+1 808531 L3865 2015 3018 909*2^2685019+1 808275 L3431 2018 3019 1455*2^2683954-6325241166627*2^1290000-1 807954 p423 2021 Arithmetic progression (3,d=1455*2^2683953-6325241166627*2^1290000) 3020 1455*2^2683953-1 807954 L1134 2020 3021 11210*241^339153-1 807873 L5410 2019 3022 Phi(3,-1456746^65536) 807848 L4561 2017 Generalized unique 3023 975*2^2681840+1 807318 L4155 2018 3024 999*2^2681353-1 807171 L4518 2022 3025 295*2^2680932+1 807044 L1741 2015 3026 Phi(3,-1427604^65536) 806697 L4561 2017 Generalized unique 3027 575*2^2679711+1 806677 L2125 2018 3028 2386*52^469972+1 806477 L4955 2019 3029f 10*80^423715-1 806369 p247 2023 3030 219*2^2676229+1 805628 L1792 2015 3031 637*2^2675976+1 805552 L3035 2018 3032 Phi(3,-1395583^65536) 805406 L4561 2017 Generalized unique 3033 951*2^2674564+1 805127 L1885 2018 3034 1372930^131072+1 804474 g236 2003 Generalized Fermat 3035 662*1009^267747-1 804286 L5410 2020 3036 261*2^2671677+1 804258 L3035 2015 3037 895*2^2671520+1 804211 L3035 2018 3038 1361244^131072+1 803988 g236 2004 Generalized Fermat 3039 789*2^2670409+1 803877 L3035 2018 3040 256*11^771408+1 803342 L3802 2014 Generalized Fermat 3041 503*2^2668529+1 803310 L4844 2018 3042 255*2^2668448+1 803286 L1129 2015 3043 4189*2^2666639-1 802742 L1959 2017 3044 539*2^2664603+1 802129 L4717 2018 3045 3^1681130+3^445781+1 802103 CH9 2022 3046 26036*745^279261-1 802086 L4189 2020 3047 1396*5^1146713-1 801522 L3547 2013 3048f 676*687^282491-1 801418 L5426 2023 3049 267*2^2662090+1 801372 L3234 2015 Divides Fermat F(2662088) 3050 51*892^271541+1 801147 L5410 2019 3051 297*2^2660048+1 800757 L3865 2015 3052 99*2^2658496-1 800290 L1862 2021 3053 (10^393063-1)^2-2 786126 p405 2022 Near-repdigit 3054 334310*211^334310-1 777037 p350 2012 Generalized Woodall 3055 169*2^2545526+1 766282 L2125 2015 Divides GF(2545525,10), generalized Fermat 3056 9*2^2543551+1 765687 L1204 2011 Divides Fermat F(2543548), GF(2543549,3), GF(2543549,6), GF(2543549,12) 3057 3*2^2478785+1 746190 g245 2003 Divides Fermat F(2478782), GF(2478782,3), GF(2478776,6), GF(2478782,12) 3058 41676*7^875197-1 739632 L2777 2012 Generalized Woodall 3059 1183953*2^2367907-1 712818 L447 2007 Woodall 3060 150209!+1 712355 p3 2011 Factorial 3061 147855!-1 700177 p362 2013 Factorial 3062 3*2^2291610+1 689844 L753 2008 Divides GF(2291607,3), GF(2291609,5) 3063 2*11171^168429+1 681817 g427 2014 Divides Phi(11171^168429,2) 3064 11*2^2230369+1 671410 L2561 2011 Divides GF(2230368,3) 3065 (10^334568-1)^2-2 669136 p405 2022 Near-repdigit 3066 2*179^294739+1 664004 g424 2011 Divides Phi(179^294739,2) 3067 404882*43^404882-1 661368 p310 2011 Generalized Woodall 3068 2*10271^164621+1 660397 g427 2014 Divides Phi(10271^164621,2) 3069 2*659^233973+1 659544 g424 2015 Divides Phi(659^233973,2) 3070 2*191^287901+1 656713 g424 2015 Divides Phi(191^287901,2) 3071 7*2^2167800+1 652574 g279 2007 Divides Fermat F(2167797), GF(2167799,5), GF(2167799,10) 3072 1179*2^2158475+1 649769 L3035 2014 Divides GF(2158470,6) 3073 3*2^2145353+1 645817 g245 2003 Divides Fermat F(2145351), GF(2145351,3), GF(2145352,5), GF(2145348,6), GF(2145352,10), GF(2145351,12) 3074 753*2^2143388+1 645227 L2583 2014 Divides GF(2143383,3) 3075 25*2^2141884+1 644773 L1741 2011 Divides Fermat F(2141872), GF(2141871,5), GF(2141872,10); generalized Fermat 3076 7*2^2139912+1 644179 g279 2007 Divides GF(2139911,12) 3077 93*10^642225-1 642227 L4789 2020 Near-repdigit 3078 189*2^2115473+1 636824 L3784 2014 Divides GF(2115468,6) 3079 563528*13^563528-1 627745 p262 2009 Generalized Woodall 3080 107*2^2081775+1 626679 L3432 2013 Divides GF(2081774,6) 3081 45*2^2014557+1 606444 L1349 2012 Divides GF(2014552,10) 3082 251749*2^2013995-1 606279 L436 2007 Woodall 3083 657*2^1998854+1 601718 L2520 2013 Divides GF(1998852,10) 3084 17*2^1990299+1 599141 g267 2006 Divides GF(1990298,3) 3085 101*2^1988279+1 598534 L3141 2013 Divides GF(1988278,12) 3086e 549721*12^549721-1 593255 L5765 2023 Generalized Woodall 3087 175*2^1962288+1 590710 L2137 2013 Divides GF(1962284,10) 3088 225*2^1960083+1 590047 L3548 2013 Divides GF(1960078,6) 3089 2*47^346759+1 579816 g424 2011 Divides Phi(47^346759,2) 3090 71*2^1873569+1 564003 L1223 2011 Divides GF(1873568,5) 3091 13*2^1861732+1 560439 g267 2005 Divides GF(1861731,6) 3092 3*2^1832496+1 551637 p189 2007 Divides GF(1832490,3), GF(1832494,5) 3093 39*2^1824871+1 549343 L2664 2011 Divides GF(1824867,6) 3094 45*2^1779971+1 535827 L1223 2011 Divides GF(1779969,5) 3095 5*2^1777515+1 535087 p148 2005 Divides GF(1777511,5), GF(1777514,6) 3096 129*2^1774709+1 534243 L2526 2013 Divides GF(1774705,12) 3097 190088*5^760352-1 531469 L2841 2012 Generalized Woodall 3098 2*191^232149+1 529540 g424 2011 Divides Phi(191^232149,2) 3099 183*2^1747660+1 526101 L2163 2013 Divides Fermat F(1747656) 3100e 524427*10^524427-1 524433 L5765 2023 Generalized Woodall 3101 63*2^1686050+1 507554 L2085 2011 Divides GF(1686047,12) 3102 110059!+1 507082 p312 2011 Factorial 3103 55*2^1669798+1 502662 L2518 2011 Divides GF(1669797,12) 3104 2^1667321-2^833661+1 501914 L137 2011 Gaussian Mersenne norm 38?, generalized unique 3105 2*359^192871+1 492804 g424 2014 Divides Phi(359^192871,2) 3106 10^490000+3*(10^7383-1)/9*10^241309+1 490001 p413 2021 Palindrome 3107 1098133#-1 476311 p346 2012 Primorial 3108 10^474500+999*10^237249+1 474501 p363 2014 Palindrome 3109 103040!-1 471794 p301 2010 Factorial 3110 3803*2^1553013+1 467508 L1957 2020 Divides GF(1553012,5) 3111 135*2^1515894+1 456332 L1129 2013 Divides GF(1515890,10) 3112 2*839^155785+1 455479 g424 2014 Divides Phi(839^155785,2) 3113 131*2^1494099+1 449771 L2959 2012 Divides Fermat F(1494096) 3114 1467763*2^1467763-1 441847 L381 2007 Woodall 3115 4125*2^1445205-1 435054 L1959 2014 Arithmetic progression (2,d=4125*2^1445205-2723880039837*2^1290000) [p199] 3116 5529*2^1430926+1 430756 L3035 2017 Divides GF(1430925,5) 3117 94550!-1 429390 p290 2010 Factorial 3118 15*2^1418605+1 427044 g279 2006 Divides GF(1418600,5), GF(1418601,6) 3119 2415*2^1413627-1 425548 L1959 2014 Arithmetic progression (2,d=2415*2^1413627-1489088842587*2^1290000) [p199] 3120 2985*2^1404274-1 422733 L1959 2014 Arithmetic progression (2,d=2985*2^1404274-770527213395*2^1290000) [p199] 3121 2^1398269-1 420921 G1 1996 Mersenne 35 3122 17*2^1388355+1 417938 g267 2005 Divides GF(1388354,10) 3123 338707*2^1354830+1 407850 L124 2005 Cullen 3124 107*2^1337019+1 402485 L2659 2012 Divides GF(1337018,10) 3125 1389*2^1335434+1 402009 L1209 2015 Divides GF(1335433,10) 3126 10^400000+4*(10^102381-1)/9*10^148810+1 400001 p413 2021 Palindrome 3127 5*2^1320487+1 397507 g55 2002 Divides GF(1320486,12) 3128 10^390636+999*10^195317+1 390637 p363 2014 Palindrome 3129 6325241166627*2^1290000-1 388342 L3573 2021 Arithmetic progression (1,d=1455*2^2683953-6325241166627*2^1290000) 3130 5606879602425*2^1290000-1 388342 L3573 2021 Arithmetic progression (1,d=33*2^2939063-5606879602425*2^1290000) 3131 2618163402417*2^1290001-1 388342 L927 2016 Sophie Germain (2p+1) 3132 4966510140375*2^1290000-1 388342 L3573 2020 Arithmetic progression (2,d=2227792035315*2^1290001) 3133 2996863034895*2^1290000+1 388342 L2035 2016 Twin (p+2) 3134 2996863034895*2^1290000-1 388342 L2035 2016 Twin (p) 3135 2723880039837*2^1290000-1 388342 L3829 2016 Arithmetic progression (1,d=4125*2^1445205-2723880039837*2^1290000) [p199] 3136 2618163402417*2^1290000-1 388342 L927 2016 Sophie Germain (p) 3137 2060323099527*2^1290000-1 388342 L3606 2015 Arithmetic progression (2,d=69718264533*2^1290002) [p199] 3138 1938662032575*2^1290000-1 388341 L927 2015 Arithmetic progression (1,d=10032831585*2^1290001) [p199] 3139 1781450041395*2^1290000-1 388341 L3203 2015 Arithmetic progression (1,d=69718264533*2^1290002) [p199] 3140 15*2^1276177+1 384169 g279 2006 Divides GF(1276174,3), GF(1276174,10) 3141 1268979*2^1268979-1 382007 L201 2007 Woodall 3142 2^1257787-1 378632 SG 1996 Mersenne 34 3143 329*2^1246017+1 375092 L2085 2012 Divides Fermat F(1246013) 3144 843301#-1 365851 p302 2010 Primorial 3145 25*2^1211488+1 364696 g279 2005 Generalized Fermat, divides GF(1211487,12) 3146 10^362600+666*10^181299+1 362601 p363 2014 Palindrome 3147 2^1203793-2^601897+1 362378 L192 2006 Gaussian Mersenne norm 37, generalized unique 3148 1195203*2^1195203-1 359799 L124 2005 Woodall 3149 29*2^1152765+1 347019 g300 2005 Divides GF(1152760,10) 3150 2145*2^1099064+1 330855 L1792 2013 Divides Fermat F(1099061) 3151 Phi(3,10^160118)+(137*10^160119+731*10^159275)*(10^843-1)/999 320237 p44 2014 Palindrome 3152 Phi(3,10^160048)+(137*10^160049+731*10^157453)*(10^2595-1)/999 320097 p44 2014 Palindrome 3153 10^314727-8*10^157363-1 314727 p235 2013 Near-repdigit, palindrome 3154 10^300000+5*(10^48153-1)/9*10^125924+1 300001 p413 2021 Palindrome 3155 2^991961-2^495981+1 298611 x28 2005 Gaussian Mersenne norm 36, generalized unique 3156 10^290253-2*10^145126-1 290253 p235 2012 Near-repdigit, Palindrome 3157 11*2^960901+1 289262 g277 2005 Divides Fermat F(960897) 3158 10^283355-737*10^141676-1 283355 p399 2020 Palindrome 3159 Phi(3,10^137747)+(137*10^137748+731*10^129293)*(10^8454-1)/999 275495 p44 2012 Palindrome 3160 1705*2^906110+1 272770 L3174 2012 Divides Fermat F(906108) 3161 10^269479-7*10^134739-1 269479 p235 2012 Near-repdigit, Palindrome 3162 10^262144+7*(10^5193-1)/9*10^128476+1 262145 p413 2021 Palindrome 3163 2^859433-1 258716 SG 1994 Mersenne 33 3164 2^756839-1 227832 SG 1992 Mersenne 32 3165 10^223663-454*10^111830-1 223663 p363 2016 Palindrome 3166b 13243*2^699764+1 210655 L5808 2023 Divides Fermat F(699760) 3167 27*2^672007+1 202296 g279 2005 Divides Fermat F(672005) 3168 667071*2^667071-1 200815 g55 2000 Woodall 3169 18543637900515*2^666668-1 200701 L2429 2012 Sophie Germain (2p+1) 3170 18543637900515*2^666667-1 200701 L2429 2012 Sophie Germain (p) 3171 3756801695685*2^666669+1 200700 L1921 2011 Twin (p+2) 3172 3756801695685*2^666669-1 200700 L1921 2011 Twin (p) 3173 392113#+1 169966 p16 2001 Primorial 3174f 213778324725*2^561418+1 169015 p430 2023 Cunningham chain 2nd kind (2p-1) 3175f 213778324725*2^561417+1 169015 p430 2023 Cunningham chain 2nd kind (p) 3176 366439#+1 158936 p16 2001 Primorial 3177 2*893962950^16384+1 146659 p428 2023 Cunningham chain 2nd kind (2p-1) 3178 893962950^16384+1 146659 p427 2023 Cunningham chain 2nd kind (p), generalized Fermat 3179 481899*2^481899+1 145072 gm 1998 Cullen 3180 34790!-1 142891 p85 2002 Factorial 3181 2^364289-2^182145+1 109662 p58 2001 Gaussian Mersenne norm 35, generalized unique 3182 361275*2^361275+1 108761 DS 1998 Cullen 3183 26951!+1 107707 p65 2002 Factorial 3184 65516468355*2^333333+1 100355 L923 2009 Twin (p+2) 3185 65516468355*2^333333-1 100355 L923 2009 Twin (p) 3186 (7176^24691-1)/7175 95202 CH2 2017 Generalized repunit 3187d R(86453) 86453 E3 2023 Repunit, ECPP, unique 3188 21480!-1 83727 p65 2001 Factorial 3189 183027*2^265441-1 79911 L983 2010 Sophie Germain (2p+1) 3190 183027*2^265440-1 79911 L983 2010 Sophie Germain (p) 3191 262419*2^262419+1 79002 DS 1998 Cullen 3192 160204065*2^262148+1 78923 L5115 2021 Twin (p+2) 3193 160204065*2^262148-1 78923 L5115 2021 Twin (p) 3194 3622179275715*2^256003+1 77078 x47 2020 Cunningham chain 2nd kind (2p-1) 3195 3622179275715*2^256002+1 77077 x47 2020 Cunningham chain 2nd kind (p) 3196 648621027630345*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 3197 620366307356565*2^253825-1 76424 x24 2009 Sophie Germain (2p+1) 3198 648621027630345*2^253824-1 76424 x24 2009 Sophie Germain (p) 3199 620366307356565*2^253824-1 76424 x24 2009 Sophie Germain (p) 3200 2570606397*2^252763+1 76099 p364 2020 Cunningham chain 2nd kind (2p-1) 3201 2570606397*2^252762+1 76099 p364 2020 Cunningham chain 2nd kind (p) 3202 (40734^16111-1)/40733 74267 CH2 2015 Generalized repunit 3203 (64758^15373-1)/64757 73960 p170 2018 Generalized repunit 3204 5^104824+104824^5 73269 E4 2023 ECPP 3205 primV(111534,1,27000) 72683 x25 2013 Generalized Lucas primitive part 3206 (58729^15091-1)/58728 71962 CH2 2017 Generalized repunit 3207 2*352666770^8192+1 70021 p409 2020 Cunningham chain 2nd kind (2p-1) 3208 352666770^8192+1 70021 p411 2020 Cunningham chain 2nd kind (p), generalized Fermat 3209 (27987^15313-1)/27986 68092 CH12 2020 Generalized repunit 3210 (23340^15439-1)/23339 67435 p170 2020 Generalized repunit 3211 12770275971*2^222225+1 66907 L527 2017 Twin (p+2) 3212 12770275971*2^222225-1 66907 L527 2017 Twin (p) 3213 (24741^15073-1)/24740 66218 p170 2020 Generalized repunit 3214 (63847^13339-1)/63846 64091 p170 2013 Generalized repunit 3215 12599682117*2^211088+1 63554 L4166 2022 Twin (p+2) 3216 12599682117*2^211088-1 63554 L4166 2022 Twin (p) 3217 12566577633*2^211088+1 63554 L4166 2022 Twin (p+2) 3218 12566577633*2^211088-1 63554 L4166 2022 Twin (p) 3219 1068669447*2^211089-1 63554 L4166 2020 Sophie Germain (2p+1) 3220 1068669447*2^211088-1 63553 L4166 2020 Sophie Germain (p) 3221 145823#+1 63142 p21 2000 Primorial 3222 U(15694,1,14700)+U(15694,1,14699) 61674 x45 2019 Lehmer number 3223 (28507^13831-1)/28506 61612 CH12 2020 Generalized repunit 3224 2^203789+2^101895+1 61347 O 2000 Gaussian Mersenne norm 34, generalized unique 3225 (26371^13681-1)/26370 60482 p170 2012 Generalized repunit 3226 U(24,-25,43201) 60391 CH12 2020 Generalized Lucas number 3227 99064503957*2^200009-1 60220 L95 2016 Sophie Germain (2p+1) 3228 99064503957*2^200008-1 60220 L95 2016 Sophie Germain (p) 3229 70965694293*2^200006+1 60219 L95 2016 Twin (p+2) 3230 70965694293*2^200006-1 60219 L95 2016 Twin (p) 3231 66444866235*2^200003+1 60218 L95 2016 Twin (p+2) 3232 66444866235*2^200003-1 60218 L95 2016 Twin (p) 3233 (4529^16381-1)/4528 59886 CH2 2012 Generalized repunit 3234 4884940623*2^198800+1 59855 L4166 2015 Twin (p+2) 3235 4884940623*2^198800-1 59855 L4166 2015 Twin (p) 3236 3^125330+1968634623437000 59798 E4 2022 ECPP 3237 (9082^15091-1)/9081 59729 CH2 2014 Generalized repunit 3238 2003663613*2^195000+1 58711 L202 2007 Twin (p+2) 3239 2003663613*2^195000-1 58711 L202 2007 Twin (p) 3240 primV(27655,1,19926) 57566 x25 2013 Generalized Lucas primitive part 3241 Ramanujan tau function at 199^4518 57125 E3 2022 ECPP 3242 (43326^12041-1)/43325 55827 p170 2017 Generalized repunit 3243 12443794755*2^184517-1 55556 L3494 2021 Sophie Germain (2p+1) 3244 21749869755*2^184516-1 55556 L3494 2021 Sophie Germain (2p+1) 3245 14901867165*2^184516-1 55556 L3494 2021 Sophie Germain (2p+1) 3246 12443794755*2^184516-1 55555 L3494 2021 Sophie Germain (p) 3247 21749869755*2^184515-1 55555 L3494 2021 Sophie Germain (p) 3248 14901867165*2^184515-1 55555 L3494 2021 Sophie Germain (p) 3249 17976255129*2^183241+1 55172 p415 2021 Twin (p+2) 3250 17976255129*2^183241-1 55172 p415 2021 Twin (p) 3251 607095*2^176312-1 53081 L983 2009 Sophie Germain (2p+1) 3252 607095*2^176311-1 53081 L983 2009 Sophie Germain (p) 3253 (38284^11491-1)/38283 52659 CH2 2013 Generalized repunit 3254 (2^174533-1)/193594572654550537/91917886778031629891960890057 52494 E5 2022 Mersenne cofactor, ECPP 3255 191547657*2^173372+1 52199 L5116 2020 Twin (p+2) 3256 191547657*2^173372-1 52199 L5116 2020 Twin (p) 3257 38529154785*2^173250+1 52165 L3494 2014 Twin (p+2) 3258 38529154785*2^173250-1 52165 L3494 2014 Twin (p) 3259 29055814795*(2^172486-2^86243)+2^86245+1 51934 p408 2022 Consecutive primes arithmetic progression (2,d=4) 3260 11922002779*(2^172486-2^86243)+2^86245+1 51934 p408 2022 Consecutive primes arithmetic progression (2,d=6) 3261 48047305725*2^172404-1 51910 L99 2007 Sophie Germain (2p+1) 3262 48047305725*2^172403-1 51910 L99 2007 Sophie Germain (p) 3263 137211941292195*2^171961-1 51780 x24 2006 Sophie Germain (2p+1) 3264 194772106074315*2^171960+1 51780 x24 2007 Twin (p+2) 3265 194772106074315*2^171960-1 51780 x24 2007 Twin (p) 3266 137211941292195*2^171960-1 51780 x24 2006 Sophie Germain (p) 3267 100314512544015*2^171960+1 51780 x24 2006 Twin (p+2) 3268 100314512544015*2^171960-1 51780 x24 2006 Twin (p) 3269 16869987339975*2^171960+1 51779 x24 2005 Twin (p+2) 3270 16869987339975*2^171960-1 51779 x24 2005 Twin (p) 3271 (34120^11311-1)/34119 51269 CH2 2011 Generalized repunit 3272 33218925*2^169690+1 51090 g259 2002 Twin (p+2) 3273 33218925*2^169690-1 51090 g259 2002 Twin (p) 3274 U(809,1,17325)-U(809,1,17324) 50378 x45 2019 Lehmer number 3275 10^50000+65859 50001 E3 2022 ECPP 3276 R(49081) 49081 c70 2022 Repunit, unique, ECPP 3277 (50091^10357-1)/50090 48671 p170 2016 Generalized repunit 3278 268981272*5^69421+1 48532 L5695 2023 Twin (p+2) 3279 268981272*5^69421-1 48532 L5695 2023 Twin (p) 3280 2^160423-2^80212+1 48293 O 2000 Gaussian Mersenne norm 33, generalized unique 3281 U(67,-1,26161) 47773 x45 2019 Generalized Lucas number 3282 primV(40395,-1,15588) 47759 x23 2007 Generalized Lucas primitive part 3283 110427610*3^100003+1 47722 p415 2021 Twin (p+2) 3284 110427610*3^100003-1 47722 p415 2021 Twin (p) 3285 primV(53394,-1,15264) 47200 CH4 2007 Generalized Lucas primitive part 3286 (44497^10093-1)/44496 46911 p170 2016 Generalized repunit 3287 4931286045*2^152850-1 46023 L5389 2021 Sophie Germain (2p+1) 3288 4318624617*2^152850-1 46023 L5389 2021 Sophie Germain (2p+1) 3289 4931286045*2^152849-1 46022 L5389 2021 Sophie Germain (p) 3290 4318624617*2^152849-1 46022 L5389 2021 Sophie Germain (p) 3291 151023*2^151023-1 45468 g25 1998 Woodall 3292 (1852^13477-1)/1851 44035 p170 2015 Generalized repunit 3293 U(52245,1,9241)+U(52245,1,9240) 43595 x45 2019 Lehmer number 3294f 17147299833*2^143732-1 43278 L3494 2023 Sophie Germain (2p+1) 3295f 17147299833*2^143731-1 43278 L3494 2023 Sophie Germain (p) 3296 21195711*2^143631-1 43245 L3494 2019 Sophie Germain (2p+1) 3297 21195711*2^143630-1 43245 L3494 2019 Sophie Germain (p) 3298 (42417^9337-1)/42416 43203 p170 2015 Generalized repunit 3299 838269645*2^143166-1 43107 L3494 2019 Sophie Germain (2p+1) 3300 838269645*2^143165-1 43106 L3494 2019 Sophie Germain (p) 3301 570409245*2^143164-1 43106 L3494 2019 Sophie Germain (2p+1) 3302 570409245*2^143163-1 43106 L3494 2019 Sophie Germain (p) 3303 2830598517*2^143113-1 43091 L3494 2019 Sophie Germain (2p+1) 3304 2830598517*2^143112-1 43091 L3494 2019 Sophie Germain (p) 3305 71509*2^143019-1 43058 g23 1998 Woodall, arithmetic progression (2,d=(143018*2^83969-80047)*2^59049) [x12] 3306 U(2449,-1,12671) 42939 x45 2018 Generalized Lucas number, cyclotomy 3307 (36210^9319-1)/36209 42480 p170 2019 Generalized repunit 3308 E(11848)/7910215 40792 E8 2022 Euler irregular, ECPP 3309 10^40000+14253 40001 E3 2022 ECPP 3310 p(1289844341) 40000 c84 2020 Partitions, ECPP 3311 primV(4836,1,16704) 39616 x25 2013 Generalized Lucas primitive part 3312 (2^130439-1)/260879 39261 E9 2023 Mersenne cofactor, ECPP 3313 U(21041,-1,9059) 39159 x45 2018 Generalized Lucas number, cyclotomy 3314 tau(47^4176) 38404 E3 2022 ECPP 3315 (2^127031+1)/3 38240 E5 2023 Wagstaff, ECPP, generalized Lucas number 3316 3^78296+479975120078336 37357 E4 2022 ECPP 3317 63^20018+20018^63 36020 E4 2023 ECPP 3318 U(5617,-1,9539) 35763 x45 2019 Generalized Lucas number, cyclotomy 3319 (2^117239+1)/3 35292 E2 2022 Wagstaff, ECPP, generalized Lucas number 3320 p(1000007396) 35219 E4 2022 Partitions, ECPP 3321 2^116224-15905 34987 c87 2017 ECPP 3322 (V(60145,1,7317)-1)/(V(60145,1,27)-1) 34841 x45 2019 Lehmer primitive part 3323 primV(38513,-1,11502) 34668 x23 2006 Generalized Lucas primitive part 3324 primV(9008,1,16200) 34168 x23 2005 Generalized Lucas primitive part 3325 (14665*10^34110-56641)/9999 34111 c89 2018 ECPP, Palindrome 3326 10000000000000000000...(34053 other digits)...00000000000000532669 34093 c84 2016 ECPP 3327 (V(28138,1,7587)-1)/(V(28138,1,27)-1) 33637 x45 2019 Lehmer primitive part 3328 U(35896,1,7260)+U(35896,1,7259) 33066 x45 2019 Lehmer number 3329 primV(6586,1,16200) 32993 x25 2013 Generalized Lucas primitive part 3330 U(1624,-1,10169) 32646 x45 2018 Generalized Lucas number, cyclotomy 3331 (V(48395,1,6921)-1)/(V(48395,1,9)-1) 32382 x45 2019 Lehmer primitive part 3332 2^106693+2^53347+1 32118 O 2000 Gaussian Mersenne norm 32, generalized unique 3333 primV(28875,1,13500) 32116 x25 2016 Generalized Lucas primitive part 3334 (2^106391-1)/286105171290931103 32010 c95 2022 Mersenne cofactor, ECPP 3335 (V(77786,1,6453)+1)/(V(77786,1,27)+1) 31429 x25 2012 Lehmer primitive part 3336 primV(10987,1,14400) 31034 x25 2005 Generalized Lucas primitive part 3337 V(148091) 30950 c81 2015 Lucas number, ECPP 3338 U(148091) 30949 x49 2021 Fibonacci number, ECPP 3339d -E(9266)/(61657889*34536574993) 30900 E10 2023 Euler irregular, ECPP 3340 Phi(11589,-10000) 30897 E1 2022 Unique,ECPP 3341 (V(73570,1,6309)-1)/(V(73570,1,9)-1) 30661 x25 2016 Lehmer primitive part 3342 1524633857*2^99902-1 30083 p364 2022 Arithmetic progression (4,d=928724769*2^99901) 3343 Phi(36547,-10) 29832 E1 2022 Unique, ECPP 3344 49363*2^98727-1 29725 Y 1997 Woodall 3345 U(2341,-1,8819) 29712 x25 2008 Generalized Lucas number 3346 primV(24127,-1,6718) 29433 CH3 2005 Generalized Lucas primitive part 3347 primV(12215,-1,13500) 29426 x25 2016 Generalized Lucas primitive part 3348 V(140057) 29271 c76 2014 Lucas number,ECPP 3349 U(1404,-1,9209) 28981 CH10 2018 Generalized Lucas number, cyclotomy 3350 U(23396,1,6615)+U(23396,1,6614) 28898 x45 2019 Lehmer number 3351 (2^95369+1)/3 28709 x49 2021 Generalized Lucas number, Wagstaff, ECPP 3352 primV(45922,1,11520) 28644 x25 2011 Generalized Lucas primitive part 3353 primV(205011) 28552 x39 2009 Lucas primitive part 3354 -30*Bern(10264)/(1040513*252354668864651) 28506 c94 2021 Irregular, ECPP 3355 U(16531,1,6721)-U(16531,1,6720) 28347 x36 2007 Lehmer number 3356 (V(28286,1,6309)+1)/(V(28286,1,9)+1) 28045 x25 2016 Lehmer primitive part 3357 U(5092,1,7561)+U(5092,1,7560) 28025 x25 2014 Lehmer number 3358 90825*2^90825+1 27347 Y 1997 Cullen 3359 U(5239,1,7350)-U(5239,1,7349) 27333 CH10 2017 Lehmer number 3360 U(130021) 27173 x48 2021 Fibonacci number, ECPP 3361 primV(5673,1,13500) 27028 CH3 2005 Generalized Lucas primitive part 3362 primV(44368,1,9504) 26768 CH3 2005 Generalized Lucas primitive part 3363 546351925018076058*Bern(9702)/129255048976106804786904258880518941 26709 c77 2021 Irregular, ECPP 3364 22359307*60919#+1 26383 p364 2022 Arithmetic progression (4,d=5210718*60919#) 3365 17029817*60919#+1 26383 p364 2022 Arithmetic progression (4,d=1809778*60919#) 3366 (2^87691-1)/806957040167570408395443233 26371 E1 2022 Mersenne cofactor, ECPP 3367 primV(10986,-1,9756) 26185 x23 2005 Generalized Lucas primitive part 3368 1043945909*60013#+1 25992 p155 2019 Arithmetic progression (4,d=7399459*60013#) 3369 1041073153*60013#+1 25992 p155 2019 Arithmetic progression (4,d=10142823*60013#) 3370 (2^86371-1)/41681512921035887 25984 E2 2022 Mersenne cofactor, ECPP 3371 (2^86137-1)/2584111/7747937967916174363624460881 25896 c84 2022 Mersenne cofactor, ECPP 3372 primV(11076,-1,12000) 25885 x25 2005 Generalized Lucas primitive part 3373d -E(7894)/19 25790 E10 2023 Euler irregular, ECPP 3374 2^85237+2^42619+1 25659 x16 2000 Gaussian Mersenne norm 31, generalized unique 3375 primV(17505,1,11250) 25459 x25 2011 Generalized Lucas primitive part 3376 U(2325,-1,7561) 25451 x20 2013 Generalized Lucas number 3377 U(13084,-13085,6151) 25319 x45 2018 Generalized Lucas number, cyclotomy 3378 (2^84211-1)/1347377/31358793176711980763958121/33146416760423478241695\ 91561 25291 c95 2020 Mersenne cofactor, ECPP 3379 primV(42,-1,23376) 25249 x23 2007 Generalized Lucas primitive part 3380 U(1064,-1065,8311) 25158 CH10 2018 Generalized Lucas number, cyclotomy 3381 primV(7577,-1,10692) 25140 x33 2007 Generalized Lucas primitive part 3382 (2^83339+1)/3 25088 c54 2014 ECPP, generalized Lucas number, Wagstaff 3383 (2^82939-1)/883323903012540278033571819073 24938 c84 2021 Mersenne cofactor, ECPP 3384d -E(7634)/1559 24828 E10 2023 Euler irregular, ECPP 3385 U(1766,1,7561)-U(1766,1,7560) 24548 x25 2013 Lehmer number 3386 U(1383,1,7561)+U(1383,1,7560) 23745 x25 2013 Lehmer number 3387 798*Bern(8766)/(2267959*6468702182951641) 23743 c94 2021 Irregular, ECPP 3388 Phi(11867,-100) 23732 c47 2021 Unique, ECPP 3389 (2^78737-1)/1590296767505866614563328548192658003295567890593 23654 E2 2022 Mersenne cofactor, ECPP 3390 Phi(35421,-10) 23613 c77 2021 Unique, ECPP 3391 6917!-1 23560 g1 1998 Factorial 3392 2^77291+2^38646+1 23267 O 2000 Gaussian Mersenne norm 30, generalized unique 3393 (V(59936,1,4863)+1)/(V(59936,1,3)+1) 23220 x25 2013 Lehmer primitive part 3394 U(1118,1,7561)-U(1118,1,7560) 23047 x25 2013 Lehmer number 3395 (V(45366,1,4857)+1)/(V(45366,1,3)+1) 22604 x25 2013 Lehmer primitive part 3396 348054*Bern(8286)/1570865077944473903275073668721 22234 E1 2022 Irregular, ECPP 3397 p(398256632) 22223 E1 2022 Partitions, ECPP 3398 U(105509)/144118801533126010445795676378394340544227572822879081 21997 E1 2022 Fibonacci cofactor, ECPP 3399 U(104911) 21925 c82 2015 Fibonacci number, ECPP 3400 Phi(1203,10^27) 21600 c47 2021 Unique, ECPP 3401 U(19258,-1,5039) 21586 x23 2007 Generalized Lucas number 3402 6380!+1 21507 g1 1998 Factorial 3403 U(43100,1,4620)+U(43100,1,4619) 21407 x25 2016 Lehmer number 3404 -E(6658)/85079 21257 c77 2020 Euler irregular, ECPP 3405 Phi(39855,-10) 21248 c95 2020 Unique, ECPP 3406 (V(23354,1,4869)-1)/(V(23354,1,9)-1) 21231 x25 2013 Lehmer primitive part 3407 U(15631,1,5040)-U(15631,1,5039) 21134 x25 2003 Lehmer number 3408 U(35759,1,4620)+U(35759,1,4619) 21033 x25 2016 Lehmer number 3409 p(355646102) 21000 E1 2022 Partitions, ECPP 3410 p(350199893) 20838 E7 2022 Partitions, ECPP 3411 U(31321,1,4620)-U(31321,1,4619) 20767 x25 2016 Lehmer number 3412 primU(105821) 20598 E1 2022 Fibonacci primitive part, ECPP 3413 primU(172179) 20540 E1 2022 Fibonacci primitive part, ECPP 3414 U(11200,-1,5039) 20400 x25 2004 Generalized Lucas number, cyclotomy 3415 Phi(23749,-10) 20160 c47 2014 Unique, ECPP 3416 U(22098,1,4620)+U(22098,1,4619) 20067 x25 2016 Lehmer number 3417 primV(112028) 20063 E1 2022 Lucas primitive part, ECPP 3418 1128330746865*2^66441-1 20013 p158 2020 Cunningham chain (4p+3) 3419 1128330746865*2^66440-1 20013 p158 2020 Cunningham chain (2p+1) 3420 1128330746865*2^66439-1 20013 p158 2020 Cunningham chain (p) 3421 4111286921397*2^66420+5 20008 c88 2019 Triplet (3) 3422 4111286921397*2^66420+1 20008 L4808 2019 Triplet (2) 3423 4111286921397*2^66420-1 20008 L4808 2019 Triplet (1) 3424 U(21412,1,4620)-U(21412,1,4619) 20004 x25 2016 Lehmer number 3425 p(322610098) 20000 E1 2022 Partitions, ECPP 3426 primV(151521) 19863 E1 2022 Lucas primitive part, ECPP 3427 V(94823) 19817 c73 2014 Lucas number, ECPP 3428 U(19361,1,4620)+U(19361,1,4619) 19802 x25 2016 Lehmer number 3429 U(8454,-1,5039) 19785 x25 2013 Generalized Lucas number 3430 U(6584,-1,5039) 19238 x23 2007 Generalized Lucas number 3431 V(91943)/551659/2390519/9687119153094919 19187 E1 2022 Lucas cofactor, ECPP 3432 (V(428,1,8019)-1)/(V(428,1,729)-1) 19184 E1 2022 Lehmer primitive part, ECPP 3433 V(91873)/3674921/193484539/167745030829 19175 E1 2022 Lucas cofactor, ECPP 3434 (2^63703-1)/42808417 19169 c59 2014 Mersenne cofactor, ECPP 3435 primU(137439) 19148 E1 2022 Fibonacci primitive part, ECPP 3436 primU(107779) 18980 E1 2022 Fibonacci primitive part, ECPP 3437 (U(162,1,8581)+U(162,1,8580))/(U(162,1,66)+U(162,1,65)) 18814 E1 2022 Lehmer primitive part, ECPP 3438 V(89849) 18778 c70 2014 Lucas number, ECPP 3439 primV(145353) 18689 c69 2013 ECPP, Lucas primitive part 3440 Phi(14943,-100) 18688 c47 2014 Unique, ECPP 3441 (U(859,1,6385)-U(859,1,6384))/(U(859,1,57)-U(859,1,56)) 18567 E1 2022 Lehmer primitive part, ECPP 3442 Phi(18827,10) 18480 c47 2014 Unique, ECPP 3443 primB(220895) 18465 E1 2022 Lucas Aurifeuillian primitive part, ECPP 3444 primV(153279) 18283 E1 2022 Lucas primitive part, ECPP 3445 42209#+1 18241 p8 1999 Primorial 3446 (V(46662,1,3879)-1)/(V(46662,1,9)-1) 18069 x25 2012 Lehmer primitive part 3447 V(86477)/1042112515940998434071039 18049 c77 2020 Lucas cofactor, ECPP 3448 7457*2^59659+1 17964 Y 1997 Cullen 3449 primB(235015) 17856 E1 2022 Lucas Aurifeuillian primitive part, ECPP 3450 primV(148197) 17696 E1 2022 Lucas primitive part, ECPP 3451 (V(447,1,6723)+1)/(V(447,1,81)+1) 17604 E1 2022 Lehmer primitive part, ECPP 3452 (2^58199-1)/237604901713907577052391 17497 c59 2015 Mersenne cofactor, ECPP 3453 Phi(26031,-10) 17353 c47 2014 Unique, ECPP 3454 primV(169830) 17335 E1 2022 Lucas primitive part, ECPP 3455 (V(561,1,6309)+1)/(V(561,1,9)+1) 17319 x25 2016 Lehmer primitive part 3456 U(5768,-5769,4591) 17264 x45 2018 Generalized Lucas number, cyclotomy 3457 U(9657,1,4321)-U(9657,1,4320) 17215 x23 2005 Lehmer number 3458 (2^57131-1)/61481396117165983261035042726614288722959856631 17152 c59 2015 Mersenne cofactor, ECPP 3459 U(81839) 17103 p54 2001 Fibonacci number 3460 (V(1578,1,5589)+1)/(V(1578,1,243)+1) 17098 E1 2022 Lehmer primitive part, ECPP 3461 V(81671) 17069 c66 2013 Lucas number, ECPP 3462 primV(101510) 16970 E1 2022 Lucas primitive part, ECPP 3463 primV(86756) 16920 c74 2015 Lucas primitive part, ECPP 3464 V(80761)/(23259169*24510801979) 16861 c77 2020 Lucas cofactor, ECPP 3465 6521953289619*2^55555+1 16737 p296 2013 Triplet (3) 3466 6521953289619*2^55555-1 16737 p296 2013 Triplet (2) 3467 6521953289619*2^55555-5 16737 c58 2013 Triplet (1), ECPP 3468 primV(122754) 16653 c77 2021 Lucas primitive part, ECPP 3469 U(15823,1,3960)-U(15823,1,3959) 16625 x25 2002 Lehmer number, cyclotomy 3470 p(221444161) 16569 c77 2017 Partitions, ECPP 3471 (V(1240,1,5589)-1)/(V(1240,1,243)-1) 16538 E1 2022 Lehmer primitive part, ECPP 3472 primA(201485) 16535 E1 2022 Lucas Aurifeuillian primitive part, ECPP 3473 U(78919)/15574900936381642440917 16471 c77 2020 Fibonacci cofactor, ECPP 3474 (U(800,1,5725)-U(800,1,5724))/(U(800,1,54)-U(800,1,53)) 16464 E1 2022 Lehmer primitive part, ECPP 3475 (V(21151,1,3777)-1)/(V(21151,1,3)-1) 16324 x25 2011 Lehmer primitive part 3476 primV(123573) 16198 c77 2019 Lucas primitive part, ECPP 3477 primB(225785) 16176 E1 2022 Lucas Aurifeuillian primitive part, ECPP 3478 V(77417)/313991497376559420151 16159 c77 2020 Lucas cofactor, ECPP 3479 (2^53381-1)/15588960193/38922536168186976769/1559912715971690629450336\ 68006103 16008 c84 2017 Mersenne cofactor, ECPP 3480 -E(5186)/(704695260558899*578291717*726274378546751504461) 15954 c63 2018 Euler irregular, ECPP 3481 primV(121227) 15890 c77 2019 Lucas primitive part, ECPP 3482 Phi(2949,-100000000) 15713 c47 2013 Unique, ECPP 3483 primU(131481) 15695 c77 2019 Fibonacci primitive part, ECPP 3484 primV(120258) 15649 c77 2019 Lucas primitive part, ECPP 3485 (U(9275,1,3961)+U(9275,1,3960))/(U(9275,1,45)+U(9275,1,44)) 15537 x38 2009 Lehmer primitive part 3486 (2^51487-1)/57410994232247/17292148963401772464767849635553 15455 c77 2018 Mersenne cofactor, ECPP 3487 primB(183835) 15368 c77 2019 Lucas Aurifeuillian primitive part, ECPP 3488 primU(77387) 15319 c77 2019 Fibonacci primitive part, ECPP 3489 primB(181705) 15189 c77 2019 Lucas Aurifeuillian primitive part, ECPP 3490 primV(76568) 15034 c74 2015 Lucas primitive part, ECPP 3491 U(71983)/5614673/363946049 15028 c77 2018 Fibonacci cofactor, ECPP 3492 2494779036241*2^49800+13 15004 c93 2022 Consecutive primes arithmetic progression (3,d=6) 3493 2494779036241*2^49800+7 15004 c93 2022 Consecutive primes arithmetic progression (2,d=6) 3494 2494779036241*2^49800+1 15004 p408 2022 Consecutive primes arithmetic progression (1,d=6) 3495 primB(268665) 14972 c77 2019 Lucas Aurifeuillian primitive part, ECPP 3496 primV(75316) 14897 c74 2015 Lucas primitive part, ECPP 3497 Phi(5015,-10000) 14848 c47 2013 Unique, ECPP 3498 primV(91322) 14847 c74 2016 Lucas primitive part, ECPP 3499 2^49207-2^24604+1 14813 x16 2000 Gaussian Mersenne norm 29, generalized unique 3500 primV(110676) 14713 c74 2016 Lucas primitive part, ECPP 3501 primA(284895) 14626 c77 2019 Lucas Aurifeuillian primitive part, ECPP 3502 U(69239)/1384781 14464 c77 2018 Fibonacci cofactor, ECPP 3503 primV(112914) 14446 c74 2016 Lucas primitive part, ECPP 3504 primA(170575) 14258 c77 2018 Lucas Aurifeuillian primitive part, ECPP 3505 V(68213)/7290202116115634431 14237 c77 2018 Lucas cofactor, ECPP 3506 p(158375386) 14011 E1 2022 Partitions, ECPP 3507 p(158295265) 14007 E1 2022 Partitions, ECPP 3508 p(158221457) 14004 E1 2022 Partitions, ECPP 3509 primU(67703) 13954 c77 2018 Fibonacci primitive part, ECPP 3510 U(66947)/12485272838388758877279873712131648167413 13951 c77 2017 Fibonacci cofactor, ECPP 3511 V(66533)/2128184670585621839884209100279 13875 c77 2018 Lucas cofactor, ECPP 3512 6*Bern(5534)/(89651360098907*22027790155387*114866371) 13862 c71 2014 Irregular, ECPP 3513 4410546*Bern(5526)/(4931516285027*1969415121333695957254369297) 13840 c63 2018 Irregular,ECPP 3514 primV(82630) 13814 c74 2014 Lucas primitive part, ECPP 3515 primB(163595) 13675 c77 2018 Lucas Aurifeuillian primitive part, ECPP 3516 6*Bern(5462)/(724389557*8572589*3742097186099) 13657 c64 2013 Irregular, ECPP 3517 56667641271*2^44441+5 13389 c99 2022 Triplet (3), ECPP 3518 56667641271*2^44441+1 13389 p426 2022 Triplet (2) 3519 56667641271*2^44441-1 13389 p426 2022 Triplet (1) 3520 512792361*30941#+1 13338 p364 2022 Arithmetic progression (5,d=18195056*30941#) 3521 1815615642825*2^44046-1 13272 p395 2016 Cunningham chain (4p+3) 3522 1815615642825*2^44045-1 13272 p395 2016 Cunningham chain (2p+1) 3523 1815615642825*2^44044-1 13271 p395 2016 Cunningham chain (p) 3524 p(141528106) 13244 E6 2022 Partitions, ECPP 3525 p(141513546) 13244 E6 2022 Partitions, ECPP 3526 p(141512238) 13244 E6 2022 Partitions, ECPP 3527 p(141255053) 13232 E6 2022 Partitions, ECPP 3528 p(141150528) 13227 E6 2022 Partitions, ECPP 3529 p(141112026) 13225 E6 2022 Partitions, ECPP 3530 p(141111278) 13225 E6 2022 Partitions, ECPP 3531 p(140859260) 13213 E6 2022 Partitions, ECPP 3532 p(140807155) 13211 E6 2022 Partitions, ECPP 3533 p(140791396) 13210 E6 2022 Partitions, ECPP 3534 primU(94551) 13174 c77 2018 Fibonacci primitive part, ECPP 3535 primB(242295) 13014 c77 2018 Lucas Aurifeuillian primitive part, ECPP 3536 U(61813)/594517433/3761274442997 12897 c77 2018 Fibonacci cofactor, ECPP 3537 (2^42737+1)/3 12865 M 2007 ECPP, generalized Lucas number, Wagstaff 3538 primU(62771) 12791 c77 2018 Fibonacci primitive part, ECPP 3539 primA(154415) 12728 c77 2018 Lucas Aurifeuillian primitive part, ECPP 3540 primA(263865) 12570 c77 2018 Lucas Aurifeuillian primitive part, ECPP 3541 6*Bern(5078)/(64424527603*9985070580644364287) 12533 c63 2013 Irregular, ECPP 3542 (2^41681-1)/1052945423/16647332713153/2853686272534246492102086015457 12495 c77 2015 Mersenne cofactor, ECPP 3543 (2^41521-1)/41602235382028197528613357724450752065089 12459 c54 2012 Mersenne cofactor, ECPP 3544 (2^41263-1)/(1402943*983437775590306674647) 12395 c59 2012 Mersenne cofactor, ECPP 3545 U(59369)/2442423669148466039458303756169988568809269383644075940757020\ 9763004757 12337 c79 2015 Fibonacci cofactor, ECPP 3546 primV(73549) 12324 c74 2015 Lucas primitive part, ECPP 3547 742478255901*2^40069+1 12074 p395 2016 Cunningham chain 2nd kind (4p-3) 3548 996824343*2^40074+1 12073 p395 2016 Cunningham chain 2nd kind (4p-3) 3549 664342014133*2^39840+1 12005 p408 2020 Consecutive primes arithmetic progression (3,d=30) 3550 664342014133*2^39840-29 12005 c93 2020 Consecutive primes arithmetic progression (2,d=30), ECPP 3551 664342014133*2^39840-59 12005 c93 2020 Consecutive primes arithmetic progression (1,d=30), ECPP 3552 V(56003) 11704 p193 2006 Lucas number 3553 primA(143705) 11703 c77 2017 Lucas Aurifeuillian primitive part, ECPP 3554 4207993863*2^38624+5 11637 L5354 2021 Triplet (3), ECPP 3555 4207993863*2^38624+1 11637 L5354 2021 Triplet (2) 3556 4207993863*2^38624-1 11637 L5354 2021 Triplet (1) 3557 primU(73025) 11587 c77 2015 Fibonacci primitive part, ECPP 3558 primU(67781) 11587 c77 2015 Fibonacci primitive part, ECPP 3559 primB(219165) 11557 c77 2015 Lucas Aurifeuillian primitive part, ECPP 3560 198429723072*11^11005+1 11472 L3323 2016 Cunningham chain 2nd kind (4p-3) 3561 U(54799)/4661437953906084533621577211561 11422 c8 2015 Fibonacci cofactor, ECPP 3562 U(54521)/6403194135342743624071073 11370 c8 2015 Fibonacci cofactor, ECPP 3563 primU(67825) 11336 x23 2007 Fibonacci primitive part 3564 3610!-1 11277 C 1993 Factorial 3565 U(53189)/69431662887136064191105625570683133711989 11075 c8 2014 Fibonacci cofactor, ECPP 3566 primU(61733) 11058 c77 2015 Fibonacci primitive part, ECPP 3567 14059969053*2^36672+1 11050 p364 2018 Triplet (3) 3568 14059969053*2^36672-1 11050 p364 2018 Triplet (2) 3569 14059969053*2^36672-5 11050 c67 2018 Triplet (1), ECPP 3570 778965587811*2^36627-1 11038 p395 2016 Cunningham chain (4p+3) 3571 778965587811*2^36626-1 11038 p395 2016 Cunningham chain (2p+1) 3572 778965587811*2^36625-1 11038 p395 2016 Cunningham chain (p) 3573 272879344275*2^36622-1 11036 p395 2016 Cunningham chain (4p+3) 3574 272879344275*2^36621-1 11036 p395 2016 Cunningham chain (2p+1) 3575 272879344275*2^36620-1 11036 p395 2016 Cunningham chain (p) 3576 V(52859)/1124137922466041911 11029 c8 2014 Lucas cofactor, ECPP 3577 3507!-1 10912 C 1992 Factorial 3578 V(52201)/70585804042896975505694709575919458733851279868446609 10857 c8 2015 Lucas cofactor, ECPP 3579 V(52009)/39772636393178951550299332730909 10838 c8 2015 Lucas cofactor, ECPP 3580 V(51941)/2808052157610902114547210696868337380250300924116591143641642\ 866931 10789 c8 2015 Lucas cofactor, ECPP 3581 1258566*Bern(4462)/(2231*596141126178107*4970022131749) 10763 c64 2013 Irregular, ECPP 3582 3428602715439*2^35678+13 10753 c93 2020 Consecutive primes arithmetic progression (3,d=6), ECPP 3583 3428602715439*2^35678+7 10753 c93 2020 Consecutive primes arithmetic progression (2,d=6), ECPP 3584 3428602715439*2^35678+1 10753 p408 2020 Consecutive primes arithmetic progression (1,d=6) 3585 333645655005*2^35549-1 10713 p364 2015 Cunningham chain (4p+3) 3586 333645655005*2^35548-1 10713 p364 2015 Cunningham chain (2p+1) 3587 333645655005*2^35547-1 10713 p364 2015 Cunningham chain (p) 3588 V(51349)/224417260052884218046541 10708 c8 2014 Lucas cofactor, ECPP 3589 V(51169) 10694 p54 2001 Lucas number 3590 U(51031)/95846689435051369 10648 c8 2014 Fibonacci cofactor, ECPP 3591 V(50989)/69818796119453411 10640 c8 2014 Lucas cofactor, ECPP 3592 Phi(13285,-10) 10625 c47 2012 Unique, ECPP 3593 U(50833) 10624 CH4 2005 Fibonacci number 3594 2683143625525*2^35176+13 10602 c92 2019 Consecutive primes arithmetic progression (3,d=6),ECPP 3595 2683143625525*2^35176+1 10602 p407 2019 Consecutive primes arithmetic progression (1,d=6) 3596 3020616601*24499#+1 10593 p422 2021 Arithmetic progression (6,d=56497325*24499#) 3597 2964119276*24499#+1 10593 p422 2021 Arithmetic progression (5,d=56497325*24499#) 3598 (2^35339-1)/4909884303849890402839544048623503366767426783548098123390\ 4512709297747031041 10562 c77 2015 Mersenne cofactor, ECPP 3599 1213266377*2^35000+4859 10546 c4 2014 ECPP, consecutive primes arithmetic progression (3,d=2430) 3600 1213266377*2^35000-1 10546 p44 2014 Consecutive primes arithmetic progression (1,d=2430) 3601 primU(55297) 10483 c8 2014 Fibonacci primitive part, ECPP 3602 primA(219135) 10462 c8 2014 Lucas Aurifeuillian primitive part, ECPP 3603 24029#+1 10387 C 1993 Primorial 3604 400791048*24001#+1 10378 p155 2018 Arithmetic progression (5,d=59874860*24001#) 3605 393142614*24001#+1 10378 p155 2018 Arithmetic progression (5,d=54840724*24001#) 3606 221488788*24001#+1 10377 p155 2018 Arithmetic progression (5,d=22703701*24001#) 3607 6*Bern(4306)/2153 10342 FE8 2009 Irregular, ECPP 3608 V(49391)/298414424560419239 10305 c8 2013 Lucas cofactor, ECPP 3609 23801#+1 10273 C 1993 Primorial 3610 667674063382677*2^33608+7 10132 c88 2019 Quadruplet (4), ECPP 3611 667674063382677*2^33608+5 10132 c88 2019 Quadruplet (3), ECPP 3612 667674063382677*2^33608+1 10132 L4808 2019 Quadruplet (2) 3613 667674063382677*2^33608-1 10132 L4808 2019 Quadruplet (1) 3614 Phi(427,-10^28) 10081 FE9 2009 Unique, ECPP 3615 9649755890145*2^33335+1 10048 p364 2015 Cunningham chain 2nd kind (4p-3) 3616 15162914750865*2^33219+1 10014 p364 2015 Cunningham chain 2nd kind (4p-3) 3617 32469*2^32469+1 9779 MM 1997 Cullen 3618 (2^32531-1)/(65063*25225122959) 9778 c60 2012 Mersenne cofactor, ECPP 3619 (2^32611-1)/1514800731246429921091778748731899943932296901864652928732\ 838910515860494755367311 9736 c90 2018 Mersenne cofactor, ECPP 3620 8073*2^32294+1 9726 MM 1997 Cullen 3621 V(45953)/4561241750239 9591 c56 2012 Lucas cofactor, ECPP 3622 E(3308)/39308792292493140803643373186476368389461245 9516 c8 2014 Euler irregular, ECPP 3623 Phi(5161,-100) 9505 c47 2012 Unique, ECPP 3624 primA(196035) 9359 c8 2014 Lucas Aurifeuillian primitive part, ECPP 3625 V(44507) 9302 CH3 2005 Lucas number 3626 V(43987)/175949 9188 c8 2014 Lucas cofactor, ECPP 3627 U(43399)/470400609575881344601538056264109423291827366228494341196421 9010 c8 2013 Fibonacci cofactor, ECPP 3628 primU(44113) 8916 c8 2014 Fibonacci primitive part, ECPP 3629 U(42829)/107130175995197969243646842778153077 8916 c8 2014 Fibonacci cofactor, ECPP 3630 primA(159165) 8803 c8 2013 Lucas Aurifeuillian primitive part, ECPP 3631 U(42043)/1681721 8780 c56 2012 Fibonacci cofactor, ECPP 3632 Phi(6105,-1000) 8641 c47 2010 Unique, ECPP 3633 Phi(4667,-100) 8593 c47 2009 Unique, ECPP 3634 U(40763)/643247084652261620737 8498 c8 2013 Fibonacci cofactor, ECPP 3635 primU(46711) 8367 c8 2013 Fibonacci primitive part, ECPP 3636 V(39769)/18139109172816581 8295 c8 2013 Lucas cofactor, ECPP 3637 2^27529-2^13765+1 8288 O 2000 Gaussian Mersenne norm 28, generalized unique 3638 primB(148605) 8282 c8 2013 Lucas Aurifeuillian primitive part, ECPP 3639 V(39607)/158429 8273 c46 2011 Lucas cofactor, ECPP 3640 primB(103645) 8202 c8 2013 Lucas Aurifeuillian primitive part, ECPP 3641 primU(62373) 8173 c8 2013 Fibonacci primitive part, ECPP 3642 18523#+1 8002 D 1990 Primorial 3643 primU(43121) 7975 c8 2013 Fibonacci primitive part, ECPP 3644 6*Bern(3458)/28329084584758278770932715893606309 7945 c8 2013 Irregular, ECPP 3645 U(37987)/(16117960073*94533840409*1202815961509) 7906 c39 2012 Fibonacci cofactor, ECPP 3646 U(37511) 7839 x13 2005 Fibonacci number 3647 V(37357)/20210113386303842894568629 7782 c8 2013 Lucas cofactor, ECPP 3648 U(37217)/4466041 7771 c46 2011 Fibonacci cofactor, ECPP 3649 -E(2762)/2670541 7760 c11 2004 Euler irregular, ECPP 3650 V(36779) 7687 CH3 2005 Lucas number 3651 U(35999) 7523 p54 2001 Fibonacci number, cyclotomy 3652 Phi(4029,-1000) 7488 c47 2009 Unique, ECPP 3653 V(35449) 7409 p12 2001 Lucas number 3654 V(35107)/525110138418084707309 7317 c8 2013 Lucas cofactor, ECPP 3655 U(34897)/4599458691503517435329 7272 c8 2013 Fibonacci cofactor, ECPP 3656 U(34807)/551750980997908879677508732866536453 7239 c8 2013 Fibonacci cofactor, ECPP 3657 U(34607)/13088506284255296513 7213 c8 2013 Fibonacci cofactor, ECPP 3658 -30*Bern(3176)/(169908471493279*905130251538800883547330531*4349908093\ 09147283469396721753169) 7138 c63 2016 Irregular, ECPP 3659 2154675239*16301#+1 7036 p155 2018 Arithmetic progression (6,d=141836149*16301#) 3660 primU(48965) 7012 c8 2013 Fibonacci primitive part, ECPP 3661 -10365630*Bern(3100)/(140592076277*66260150981141825531862457*17930747\ 9508256366206520177467103) 6943 c63 2016 Irregular ECPP 3662 23005*2^23005-1 6930 Y 1997 Woodall 3663 22971*2^22971-1 6920 Y 1997 Woodall 3664 15877#-1 6845 CD 1992 Primorial 3665 primU(58773) 6822 c8 2013 Fibonacci primitive part, ECPP 3666 6*Bern(2974)/19622040971147542470479091157507 6637 c8 2013 Irregular, ECPP 3667 U(30757) 6428 p54 2001 Fibonacci number, cyclotomy 3668 E(2220)/392431891068600713525 6011 c8 2013 Euler irregular, ECPP 3669 -E(2202)/53781055550934778283104432814129020709 5938 c8 2013 Euler irregular, ECPP 3670 13649#+1 5862 D 1988 Primorial 3671 274386*Bern(2622)/8518594882415401157891061256276973722693 5701 c8 2013 Irregular, ECPP 3672 18885*2^18885-1 5690 K 1988 Woodall 3673 1963!-1 5614 CD 1992 Factorial 3674 13033#-1 5610 CD 1992 Primorial 3675 289*2^18502+1 5573 K 1985 Cullen, generalized Fermat 3676 E(2028)/11246153954845684745 5412 c55 2011 Euler irregular, ECPP 3677 -30*Bern(2504)/(313*424524649821233650433*117180678030577350578887*801\ 6621720796146291948744439) 5354 c63 2013 Irregular ECPP 3678 U(25561) 5342 p54 2001 Fibonacci number 3679 -E(1990)/8338208577950624722417016286765473477033741642105671913 5258 c8 2013 Euler irregular, ECPP 3680 33957462*Bern(2370)/40685 5083 c11 2003 Irregular, ECPP 3681 4122429552750669*2^16567+7 5003 c83 2016 Quadruplet (4), ECPP 3682 4122429552750669*2^16567+5 5003 c83 2016 Quadruplet (3), ECPP 3683 4122429552750669*2^16567+1 5003 L4342 2016 Quadruplet (2) 3684 4122429552750669*2^16567-1 5003 L4342 2016 Quadruplet (1) 3685 11549#+1 4951 D 1987 Primorial 3686 E(1840)/31237282053878368942060412182384934425 4812 c4 2011 Euler irregular, ECPP 3687 7911*2^15823-1 4768 K 1988 Woodall 3688 E(1736)/(55695515*75284987831*3222089324971117) 4498 c4 2004 Euler irregular, ECPP 3689 2^14699+2^7350+1 4425 O 2000 Gaussian Mersenne norm 27, generalized unique 3690 (2^14479+1)/3 4359 c4 2004 Generalized Lucas number, Wagstaff, ECPP 3691 62399583639*9923#-3399421517 4285 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 3692 49325406476*9811#*8+1 4234 p382 2019 Cunningham chain 2nd kind (8p-7) 3693 276474*Bern(2030)/(19426085*24191786327543) 4200 c8 2003 Irregular, ECPP 3694 V(19469) 4069 x25 2002 Lucas number, cyclotomy, APR-CL assisted 3695 1477!+1 4042 D 1985 Factorial 3696 -2730*Bern(1884)/100983617849 3844 c8 2003 Irregular, ECPP 3697 2840178*Bern(1870)/85 3821 c8 2003 Irregular, ECPP 3698b (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+9 3753 c101 2023 Quadruplet (4),ECPP 3699b (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+7 3753 c101 2023 Quadruplet (3),ECPP 3700b (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+3 3753 c101 2023 Quadruplet (2),ECPP 3701b (1049713153083*2917#*(567*2917#+1)+2310)*(567*2917#-1)/210+1 3753 c101 2023 Quadruplet (1),ECPP 3702 12379*2^12379-1 3731 K 1985 Woodall 3703 (2^12391+1)/3 3730 M 1996 Generalized Lucas number, Wagstaff 3704 -E(1466)/167900532276654417372106952612534399239 3682 c8 2013 Euler irregular, ECPP 3705 E(1468)/(95*217158949445380764696306893*597712879321361736404369071) 3671 c4 2003 Euler irregular, ECPP 3706 101406820312263*2^12042+7 3640 c67 2018 Quadruplet (4) 3707 101406820312263*2^12042+5 3640 c67 2018 Quadruplet (3) 3708 101406820312263*2^12042+1 3640 p364 2018 Quadruplet (2) 3709 101406820312263*2^12042-1 3640 p364 2018 Quadruplet (1) 3710 2673092556681*15^3048+4 3598 c67 2015 Quadruplet (4) 3711 2673092556681*15^3048+2 3598 c67 2015 Quadruplet (3) 3712 2673092556681*15^3048-2 3598 c67 2015 Quadruplet (2) 3713 2673092556681*15^3048-4 3598 c67 2015 Quadruplet (1) 3714 6016459977*7927#-1 3407 p364 2022 Arithmetic progression (7,d=577051223*7927#) 3715 5439408754*7927#-1 3407 p364 2022 Arithmetic progression (6,d=577051223*7927#) 3716 62753735335*7919#+3399421667 3404 c98 2021 Consecutive primes arithmetic progression (4,d=30), ECPP 3717 (2^11279+1)/3 3395 PM 1998 Cyclotomy, generalized Lucas number, Wagstaff 3718 109766820328*7877#-1 3385 p395 2016 Cunningham chain (8p+7) 3719 585150568069684836*7757#/85085+17 3344 c88 2022 Quintuplet (5), ECPP 3720 585150568069684836*7757#/85085+13 3344 c88 2022 Quintuplet (4), ECPP 3721 585150568069684836*7757#/85085+11 3344 c88 2022 Quintuplet (3), ECPP 3722 585150568069684836*7757#/85085+7 3344 c88 2022 Quintuplet (2), ECPP 3723 585150568069684836*7757#/85085+5 3344 c88 2022 Quintuplet (1), ECPP 3724 104052837*7759#-1 3343 p398 2017 Arithmetic progression (6,d=12009836*7759#) 3725 2072453060816*7699#+1 3316 p364 2019 Cunningham chain 2nd kind (8p-7) 3726 (2^10691+1)/3 3218 c4 2004 Generalized Lucas number, Wagstaff, ECPP 3727 231692481512*7517#-1 3218 p395 2016 Cunningham chain (8p+7) 3728b (1021328211729*2521#*(483*2521#+1)+2310)*(483*2521#-1)/210+19 3207 c100 2023 Consecutive primes arithmetic progression (4,d=6),ECPP 3729 (2^10501+1)/3 3161 M 1996 Generalized Lucas number, Wagstaff 3730 2^10141+2^5071+1 3053 O 2000 Gaussian Mersenne norm 26, generalized unique 3731 121152729080*7019#/1729+19 3025 c92 2019 Consecutive primes arithmetic progression (4,d=6), ECPP 3732 62037039993*7001#+7811555813 3021 x38 2013 Consecutive primes arithmetic progression (4,d=30), ECPP 3733 V(14449) 3020 DK 1995 Lucas number 3734 3124777373*7001#+1 3019 p155 2012 Arithmetic progression (7,d=481789017*7001#) 3735 2996180304*7001#+1 3019 p155 2012 Arithmetic progression (6,d=46793757*7001#) 3736 U(14431) 3016 p54 2001 Fibonacci number 3737 138281163736*6977#+1 3006 p395 2016 Cunningham chain 2nd kind (8p-7) 3738 375967981369*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 3739 354362289656*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 3740 285993323512*6907#*8-1 2972 p382 2017 Cunningham chain (8p+7) 3741 V(13963) 2919 c11 2002 Lucas number, ECPP 3742 284787490256*6701#+1 2879 p364 2015 Cunningham chain 2nd kind (8p-7) 3743 9531*2^9531-1 2874 K 1985 Woodall 3744 -E(1174)/50550511342697072710795058639332351763 2829 c8 2013 Euler irregular, ECPP 3745 6569#-1 2811 D 1992 Primorial 3746 -E(1142)/6233437695283865492412648122953349079446935570718422828539863\ 59013986902240869 2697 c77 2015 Euler irregular, ECPP 3747 -E(1078)/361898544439043 2578 c4 2002 Euler irregular, ECPP 3748 V(12251) 2561 p54 2001 Lucas number 3749 974!-1 2490 CD 1992 Factorial 3750 E(1028)/(6415*56837916301577) 2433 c4 2002 Euler irregular, ECPP 3751 7755*2^7755-1 2339 K 1985 Woodall 3752 772463767240*5303#+1 2272 p308 2019 Cunningham chain 2nd kind (8p-7) 3753 116814018316*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10892863626*5303#) 3754 116746086504*5303#+1 2271 p406 2019 Arithmetic progression (7,d=9726011684*5303#) 3755 116242725347*5303#+1 2271 p406 2019 Arithmetic progression (7,d=10388428124*5303#) 3756 69285767989*5303#+1 2271 p406 2019 Arithmetic progression (8,d=3026809034*5303#) 3757 V(10691) 2235 DK 1996 Lucas number 3758 872!+1 2188 D 1984 Factorial 3759 4787#+1 2038 D 1985 Primorial 3760 566761969187*4733#/2+4 2034 c67 2020 Quintuplet (5) 3761 566761969187*4733#/2+2 2034 c67 2020 Quintuplet (4) 3762 566761969187*4733#/2-2 2034 c67 2020 Quintuplet (3) 3763 566761969187*4733#/2-4 2034 c67 2020 Quintuplet (2) 3764 566761969187*4733#/2-8 2034 c67 2020 Quintuplet (1) 3765 U(9677) 2023 c2 2000 Fibonacci number, ECPP 3766 126831252923413*4657#/273+13 2002 c88 2020 Quintuplet (5) 3767 126831252923413*4657#/273+9 2002 c88 2020 Quintuplet (4) 3768 126831252923413*4657#/273+7 2002 c88 2020 Quintuplet (3) 3769 126831252923413*4657#/273+3 2002 c88 2020 Quintuplet (2) 3770 126831252923413*4657#/273+1 2002 c88 2020 Quintuplet (1) 3771 6611*2^6611+1 1994 K 1985 Cullen 3772 4583#-1 1953 D 1992 Primorial 3773 U(9311) 1946 DK 1995 Fibonacci number 3774 4547#+1 1939 D 1985 Primorial 3775 4297#-1 1844 D 1992 Primorial 3776 2738129459017*4211#+3399421637 1805 c98 2022 Consecutive primes arithmetic progression (5,d=30) 3777 V(8467) 1770 c2 2000 Lucas number, ECPP 3778 4093#-1 1750 CD 1992 Primorial 3779 5795*2^5795+1 1749 K 1985 Cullen 3780 (2^5807+1)/3 1748 PM 1999 Cyclotomy, generalized Lucas number, Wagstaff 3781 54201838768*3917#-1 1681 p395 2016 Cunningham chain (16p+15) 3782 102619722624*3797#+1 1631 p395 2016 Cunningham chain 2nd kind (16p-15) 3783 V(7741) 1618 DK 1995 Lucas number 3784 394254311495*3733#/2+4 1606 c67 2017 Quintuplet (5) 3785 394254311495*3733#/2+2 1606 c67 2017 Quintuplet (4) 3786 394254311495*3733#/2-2 1606 c67 2017 Quintuplet (3) 3787 394254311495*3733#/2-4 1606 c67 2017 Quintuplet (2) 3788 394254311495*3733#/2-8 1606 c67 2017 Quintuplet (1) 3789 83*2^5318-1 1603 K 1985 Woodall 3790 2316765173284*3593#+16073 1543 c18 2016 Quintuplet (5), ECPP 3791 2316765173284*3593#+16069 1543 c18 2016 Quintuplet (4), ECPP 3792 2316765173284*3593#+16067 1543 c18 2016 Quintuplet (3), ECPP 3793 2316765173284*3593#+16063 1543 c18 2016 Quintuplet (2), ECPP 3794 2316765173284*3593#+16061 1543 c18 2016 Quintuplet (1), ECPP 3795 652229318541*3527#+3399421637 1504 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 3796 16*199949435137*3499#-1 1494 p382 2016 Cunningham chain (16p+15) 3797 4713*2^4713+1 1423 K 1985 Cullen 3798 449209457832*3307#+1633050403 1408 c98 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 3799 5780736564512*3023#-1 1301 p364 2015 Cunningham chain (16p+15) 3800 2746496109133*3001#+27011 1290 c97 2021 Consecutive primes arithmetic progression (5,d=30), ECPP 3801 898966996992*3001#+1 1289 p364 2015 Cunningham chain 2nd kind (16p-15) 3802 16*2658132486528*2969#+1 1281 p382 2017 Cunningham chain 2nd kind (16p-15) 3803 16*1413951139648*2969#+1 1280 p382 2017 Cunningham chain 2nd kind (16p-15) 3804 V(5851) 1223 DK 1995 Lucas number 3805 406463527990*2801#+1633050403 1209 x38 2013 Consecutive primes arithmetic progression (5,d=30) 3806f 16*(257578748915*2777#-1)+15 1197 p429 2023 Cunningham chain (16p+15) 3807f 16*(205743162092*2777#-1)+15 1197 p429 2023 Cunningham chain (16p+15) 3808 1290733709840*2677#+1 1141 p295 2011 Cunningham chain 2nd kind (16p-15) 3809 U(5387) 1126 WM 1991 Fibonacci number 3810 1176100079*2591#+1 1101 p252 2019 Arithmetic progression (8,d=60355670*2591#) 3811 (2^3539+1)/3 1065 M 1990 First titanic by ECPP, generalized Lucas number, Wagstaff 3812 2968802755*2459#+1 1057 p155 2009 Arithmetic progression (8,d=359463429*2459#) 3813 28993093368077*2399#+19433 1037 c18 2016 Sextuplet (6), ECPP 3814 28993093368077*2399#+19429 1037 c18 2016 Sextuplet (5), ECPP 3815 28993093368077*2399#+19427 1037 c18 2016 Sextuplet (4), ECPP 3816 28993093368077*2399#+19423 1037 c18 2016 Sextuplet (3), ECPP 3817 28993093368077*2399#+19421 1037 c18 2016 Sextuplet (2), ECPP 3818 6179783529*2411#+1 1037 p102 2003 Arithmetic progression (8,d=176836494*2411#) 3819 R(1031) 1031 WD 1986 Repunit 3820 89595955370432*2371#-1 1017 p364 2015 Cunningham chain (32p+31) 3821 116040452086*2371#+1 1014 p308 2012 Arithmetic progression (9,d=6317280828*2371#) 3822 115248484057*2371#+1 1014 p308 2013 Arithmetic progression (8,d=7327002535*2371#) 3823 97336164242*2371#+1 1014 p308 2013 Arithmetic progression (9,d=6350457699*2371#) 3824 93537753980*2371#+1 1014 p308 2013 Arithmetic progression (9,d=3388165411*2371#) 3825 92836168856*2371#+1 1014 p308 2013 Arithmetic progression (9,d=127155673*2371#) 3826 69318339141*2371#+1 1014 p308 2011 Arithmetic progression (9,d=1298717501*2371#) 3827 533098369554*2357#+3399421667 1012 c98 2021 Consecutive primes arithmetic progression (6,d=30), ECPP 3828 V(4793) 1002 DK 1995 Lucas number 3829 113225039190926127209*2339#/57057+21 1002 c88 2021 Septuplet (7) 3830 113225039190926127209*2339#/57057+19 1002 c88 2021 Septuplet (6) 3831 113225039190926127209*2339#/57057+13 1002 c88 2021 Septuplet (5) 3832 113225039190926127209*2339#/57057+9 1002 c88 2021 Septuplet (4) 3833 113225039190926127209*2339#/57057+7 1002 c88 2021 Septuplet (3) 3834 V(4787) 1001 DK 1995 Lucas number ----- ------------------------------- -------- ----- ---- -------------- KEY TO PROOF-CODES (primality provers): A1 Propper, Srsieve, PrimeGrid, PRST C Caldwell, Cruncher c2 Water, Primo c4 Broadhurst, Primo c8 Broadhurst, Water, Primo c11 Oakes, Primo c18 Luhn, Primo c39 Minovic, OpenPFGW, Primo c46 Boncompagni, Primo c47 Chandler, Primo c54 Wu_T, Primo c55 Gramolin, Primo c56 Soule, Minovic, OpenPFGW, Primo c58 Kaiser1, NewPGen, OpenPFGW, Primo c59 Metcalfe, OpenPFGW, Primo c60 Lemsafer, Primo c63 Ritschel, TOPS, Primo c64 Metcalfe, Minovic, Ritschel, TOPS, Primo c66 Steine, Primo c67 Batalov, NewPGen, OpenPFGW, Primo c69 Jacobsen, Primo c70 Underwood, Dubner, Primo c71 Metcalfe, Ritschel, Andersen, TOPS, Primo c73 Underwood, Lifchitz, Primo c74 Lasher, Dubner, Primo c76 Kaiser1, Water, Underwood, Primo c77 Batalov, Primo c79 Batalov, Broadhurst, Water, Primo c81 Water, Underwood, Primo c82 Steine, Water, Primo c83 Kaiser1, PolySieve, NewPGen, Primo c84 Underwood, Primo c87 Kaiser1, OpenPFGW, Primo c88 Kaiser1, PolySieve, Primo c89 Broadhurst, Underwood, Primo c90 Palameta, Batalov, Primo c92 Lamprecht, Luhn, Primo c93 Batalov, PolySieve, Primo c94 Gelhar, Ritschel, TOPS, Primo c95 Gelhar, Primo c97 Lamprecht, Luhn, APSieve, OpenPFGW, Primo c98 Batalov, EMsieve, Primo c99 Kruse, Schoeler, Primo c100 DavisK, APTreeSieve, NewPGen, OpenPFGW, Primo c101 DavisK, APTreeSieve, OpenPFGW, Primo CD Caldwell, Dubner, Cruncher CH10 Batalov, OpenPFGW, Primo, CHG CH12 Propper, Batalov, OpenPFGW, Primo, CHG CH13 Propper, Batalov, EMsieve, OpenPFGW, CHG CH2 Wu_T, OpenPFGW, Primo, CHG CH3 Broadhurst, Water, OpenPFGW, Primo, CHG CH4 Irvine, Broadhurst, Water, OpenPFGW, Primo, CHG CH9 Zhou, OpenPFGW, CHG D Dubner, Cruncher DK Dubner, Keller, Cruncher DS Smith_Darren, Proth.exe E1 Batalov, CM E2 Propper, CM E3 Enge, CM E4 Childers, CM E5 Underwood, CM E6 Lasher, Broadhurst, Underwood, CM E7 Lasher, CM E8 Broadhurst, Underwood, CM E9 Mock, CM E10 Doornink, CM FE8 Oakes, Broadhurst, Water, Morain, FastECPP FE9 Broadhurst, Water, Morain, FastECPP g1 Caldwell, Proth.exe G1 Armengaud, GIMPS, Prime95 G2 Spence, GIMPS, Prime95 G3 Clarkson, Kurowski, GIMPS, Prime95 G4 Hajratwala, Kurowski, GIMPS, Prime95 G5 Cameron, Kurowski, GIMPS, Prime95 G6 Shafer, GIMPS, Prime95 G7 Findley_J, GIMPS, Prime95 G8 Nowak, GIMPS, Prime95 G9 Boone, Cooper, GIMPS, Prime95 G10 Smith_E, GIMPS, Prime95 G11 Elvenich, GIMPS, Prime95 G12 Strindmo, GIMPS, Prime95 G13 Cooper, GIMPS, Prime95 G14 Cooper, GIMPS, Prime95 G15 Pace, GIMPS, Prime95 G16 Laroche, GIMPS, Prime95 g23 Ballinger, Proth.exe g25 OHare, Proth.exe g55 Toplic, Proth.exe g236 Heuer, GFN17Sieve, GFNSearch, Proth.exe g245 Cosgrave, NewPGen, PRP, Proth.exe g259 Papp, Proth.exe g267 Grobstich, NewPGen, PRP, Proth.exe g277 Eaton, NewPGen, PRP, Proth.exe g279 Cooper, NewPGen, PRP, Proth.exe g300 Zilmer, Proth.exe g337 Hsieh, NewPGen, PRP, Proth.exe g403 Yoshimura, ProthSieve, PrimeSierpinski, LLR, Proth.exe g407 HermleGC, MultiSieve, PRP, Proth.exe g413 Scott, AthGFNSieve, Proth.exe g414 Gilvey, Srsieve, PrimeGrid, PrimeSierpinski, LLR, Proth.exe g424 Broadhurst, NewPGen, OpenPFGW, Proth.exe g427 Batalov, Srsieve, LLR, Proth.exe gm Morii, Proth.exe K Keller L95 Urushi, LLR L99 Underbakke, TwinGen, LLR L124 Rodenkirch, MultiSieve, LLR L129 Snyder, LLR L137 Jaworski, Rieselprime, LLR L181 Siegert, LLR L185 Hassler, NewPGen, LLR L192 Jaworski, LLR L201 Siemelink, LLR L202 Vautier, McKibbon, Gribenko, NewPGen, PrimeGrid, TPS, LLR L256 Underwood, Srsieve, NewPGen, 321search, LLR L381 Mate, Siemelink, Rodenkirch, MultiSieve, LLR L384 Pinho, Srsieve, Rieselprime, LLR L426 Jaworski, Srsieve, Rieselprime, LLR L436 Andersen2, Gcwsieve, MultiSieve, PrimeGrid, LLR L447 Kohlman, Gcwsieve, MultiSieve, PrimeGrid, LLR L466 Zhou, NewPGen, LLR L503 Benson, Srsieve, LLR L521 Thompson1, Gcwsieve, MultiSieve, PrimeGrid, LLR L527 Tornberg, TwinGen, LLR L541 Barnes, Srsieve, CRUS, LLR L591 Penne, Srsieve, CRUS, LLR L606 Bennett, Srsieve, NewPGen, PrimeGrid, 321search, LLR L613 Keogh, Srsieve, ProthSieve, RieselSieve, LLR L622 Cardall, Srsieve, ProthSieve, RieselSieve, LLR L671 Wong, Srsieve, PrimeGrid, LLR L689 Brown1, Srsieve, PrimeGrid, LLR L690 Cholt, Srsieve, PrimeGrid, LLR L753 Wolfram, Srsieve, PrimeGrid, LLR L760 Riesen, Srsieve, Rieselprime, LLR L780 Brady, Srsieve, PrimeGrid, LLR L801 Gesker, Gcwsieve, MultiSieve, PrimeGrid, LLR L802 Zachariassen, Srsieve, NPLB, LLR L875 Hatland, LLR2, PSieve, Srsieve, PrimeGrid, LLR L917 Bergman1, Gcwsieve, MultiSieve, PrimeGrid, LLR L923 Kaiser1, Klahn, NewPGen, PrimeGrid, TPS, SunGard, LLR L927 Brown1, TwinGen, PrimeGrid, LLR L983 Wu_T, LLR L1056 Schwieger, Srsieve, PrimeGrid, LLR L1115 Splain, PSieve, Srsieve, PrimeGrid, LLR L1125 Laluk, PSieve, Srsieve, PrimeGrid, LLR L1129 Slomma, PSieve, Srsieve, PrimeGrid, LLR L1134 Ogawa, Srsieve, NewPGen, LLR L1141 Ogawa, NewPGen, LLR L1160 Sunderland, PSieve, Srsieve, PrimeGrid, LLR L1188 Faith, PSieve, Srsieve, PrimeGrid, LLR L1203 Mauno, PSieve, Srsieve, PrimeGrid, LLR L1204 Brown1, PSieve, Srsieve, PrimeGrid, LLR L1209 Wong, PSieve, Srsieve, PrimeGrid, LLR L1223 Courty, PSieve, Srsieve, PrimeGrid, LLR L1300 Yama, PSieve, Srsieve, PrimeGrid, LLR L1301 Sorbera, Srsieve, CRUS, LLR L1349 Wallace, Srsieve, NewPGen, PrimeGrid, LLR L1353 Mumper, Srsieve, PrimeGrid, LLR L1355 Beck, PSieve, Srsieve, PrimeGrid, LLR L1372 Glennie, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L1422 Steichen, PSieve, Srsieve, PrimeGrid, LLR L1444 Davies, PSieve, Srsieve, PrimeGrid, LLR L1448 Hron, PSieve, Srsieve, PrimeGrid, LLR L1455 Heikkila, PSieve, Srsieve, PrimeGrid, LLR L1460 Salah, Srsieve, PrimeGrid, PrimeSierpinski, LLR L1474 Brown6, PSieve, Srsieve, PrimeGrid, LLR L1486 Dinkel, PSieve, Srsieve, PrimeGrid, LLR L1502 Champ, PSieve, Srsieve, PrimeGrid, LLR L1576 Craig, PSieve, Srsieve, PrimeGrid, LLR L1675 Schwieger, PSieve, Srsieve, PrimeGrid, LLR L1728 Gasewicz, PSieve, Srsieve, PrimeGrid, LLR L1741 Granowski, PSieve, Srsieve, PrimeGrid, LLR L1745 Cholt, PSieve, Srsieve, PrimeGrid, LLR L1754 Hubbard, PSieve, Srsieve, PrimeGrid, LLR L1774 Schoefer, PSieve, Srsieve, PrimeGrid, LLR L1780 Ming, PSieve, Srsieve, PrimeGrid, LLR L1792 Tang, PSieve, Srsieve, PrimeGrid, LLR L1808 Reynolds1, PSieve, Srsieve, PrimeGrid, LLR L1817 Barnes, PSieve, Srsieve, NPLB, LLR L1823 Larsson, PSieve, Srsieve, PrimeGrid, LLR L1828 Benson, PSieve, Srsieve, Rieselprime, LLR L1862 Curtis, PSieve, Srsieve, Rieselprime, LLR L1884 Jaworski, PSieve, Srsieve, Rieselprime, LLR L1885 Ostaszewski, PSieve, Srsieve, PrimeGrid, LLR L1921 Winslow, TwinGen, PrimeGrid, LLR L1932 Dragnev, PSieve, Srsieve, PrimeGrid, LLR L1935 Channing, PSieve, Srsieve, PrimeGrid, LLR L1949 Pritchard, Srsieve, PrimeGrid, RieselSieve, LLR L1957 Hemsley, PSieve, Srsieve, PrimeGrid, LLR L1959 Metcalfe, PSieve, Srsieve, Rieselprime, LLR L1979 Tibbott, PSieve, Srsieve, PrimeGrid, LLR L2012 Pedersen_K, Srsieve, CRUS, OpenPFGW, LLR L2035 Greer, TwinGen, PrimeGrid, LLR L2042 Lachance, PSieve, Srsieve, PrimeGrid, LLR L2046 Melvold, Srsieve, PrimeGrid, LLR L2054 Kaiser1, Srsieve, CRUS, LLR L2055 Soule, PSieve, Srsieve, Rieselprime, LLR L2085 Dodson1, PSieve, Srsieve, PrimeGrid, LLR L2086 Sveen, PSieve, Srsieve, PrimeGrid, LLR L2103 Schmidt1, PSieve, Srsieve, PrimeGrid, LLR L2117 Karlsteen, PSieve, Srsieve, PrimeGrid, LLR L2121 VanRangelrooij, PSieve, Srsieve, PrimeGrid, LLR L2125 Greer, PSieve, Srsieve, PrimeGrid, LLR L2137 Hayashi1, PSieve, Srsieve, PrimeGrid, LLR L2142 Hajek, PSieve, Srsieve, PrimeGrid, LLR L2158 Krauss, PSieve, Srsieve, PrimeGrid, LLR L2163 VanRooijen1, PSieve, Srsieve, PrimeGrid, LLR L2233 Herder, Srsieve, PrimeGrid, LLR L2235 Mullage, PSieve, Srsieve, NPLB, LLR L2257 Dettweiler, PSieve, Srsieve, NPLB, LLR L2269 Schori, Srsieve, PrimeGrid, LLR L2322 Szafranski, PSieve, Srsieve, PrimeGrid, LLR L2366 Satoh, PSieve, Srsieve, PrimeGrid, LLR L2371 Luszczek, Srsieve, PrimeGrid, LLR L2373 Tarasov1, Srsieve, PrimeGrid, LLR L2408 Reinman, Srsieve, PrimeGrid, LLR L2425 DallOsto, LLR L2429 Bliedung, TwinGen, PrimeGrid, LLR L2484 Ritschel, PSieve, Srsieve, Rieselprime, LLR L2518 Karevik, PSieve, Srsieve, PrimeGrid, LLR L2520 Mamanakis, PSieve, Srsieve, PrimeGrid, LLR L2526 Martinik, PSieve, Srsieve, PrimeGrid, LLR L2549 McKay, PSieve, Srsieve, PrimeGrid, LLR L2552 Foulher, PSieve, Srsieve, PrimeGrid, LLR L2561 Vinklat, PSieve, Srsieve, PrimeGrid, LLR L2564 Bravin, PSieve, Srsieve, PrimeGrid, LLR L2583 Nakamura, PSieve, Srsieve, PrimeGrid, LLR L2602 Mueller4, PSieve, Srsieve, PrimeGrid, LLR L2603 Hoffman, PSieve, Srsieve, PrimeGrid, LLR L2629 Becker2, PSieve, Srsieve, PrimeGrid, LLR L2659 Reber, PSieve, Srsieve, PrimeGrid, LLR L2664 Koluvere, PSieve, Srsieve, PrimeGrid, LLR L2676 Cox2, PSieve, Srsieve, PrimeGrid, LLR L2714 Piotrowski, PSieve, Srsieve, PrimeGrid, LLR L2715 Donovan, PSieve, Srsieve, PrimeGrid, LLR L2719 Yost, PSieve, Srsieve, PrimeGrid, LLR L2777 Ritschel, Gcwsieve, TOPS, LLR L2785 Meili, PSieve, Srsieve, PrimeGrid, LLR L2805 Barr, PSieve, Srsieve, PrimeGrid, LLR L2840 Santana, PSieve, Srsieve, PrimeGrid, LLR L2841 Minovic, Gcwsieve, MultiSieve, TOPS, LLR L2842 English1, PSieve, Srsieve, PrimeGrid, LLR L2873 Jurach, PSieve, Srsieve, PrimeGrid, LLR L2885 Busacker, PSieve, Srsieve, PrimeGrid, LLR L2891 Lacroix, PSieve, Srsieve, PrimeGrid, LLR L2914 Merrylees, PSieve, Srsieve, PrimeGrid, LLR L2959 Derrera, PSieve, Srsieve, PrimeGrid, LLR L2973 Kurtovic, Srsieve, PrimeGrid, LLR L2975 Loureiro, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L2992 Boehm, PSieve, Srsieve, PrimeGrid, LLR L2997 Williams2, PSieve, Srsieve, PrimeGrid, LLR L3023 Winslow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3029 Walsh, PSieve, Srsieve, PrimeGrid, LLR L3033 Snow, PSieve, Srsieve, PrimeGrid, 12121search, LLR L3035 Scalise, PSieve, Srsieve, PrimeGrid, LLR L3048 Breslin, PSieve, Srsieve, PrimeGrid, LLR L3091 Ridgway, PSieve, Srsieve, PrimeGrid, LLR L3101 Reichard, PSieve, Srsieve, PrimeGrid, LLR L3118 Yama, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3141 Kus, PSieve, Srsieve, PrimeGrid, LLR L3168 Schwegler, PSieve, Srsieve, PrimeGrid, LLR L3171 Bergelt, PSieve, Srsieve, PrimeGrid, LLR L3173 Zhou2, PSieve, Srsieve, PrimeGrid, LLR L3174 Boniecki, PSieve, Srsieve, PrimeGrid, LLR L3183 Haller, Srsieve, PrimeGrid, LLR L3184 Hayslette, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3200 Athanas, PSieve, Srsieve, PrimeGrid, LLR L3203 Scalise, TwinGen, PrimeGrid, LLR L3209 McArdle, GenefX64, AthGFNSieve, PrimeGrid, LLR L3222 Yamamoto, PSieve, Srsieve, PrimeGrid, LLR L3223 Yurgandzhiev, PSieve, Srsieve, PrimeGrid, LLR L3230 Kumagai, GeneferCUDA, AthGFNSieve, PrimeGrid, LLR L3234 Parangalan, PSieve, Srsieve, PrimeGrid, LLR L3260 Stanko, PSieve, Srsieve, PrimeGrid, LLR L3261 Batalov, PSieve, Srsieve, PrimeGrid, LLR L3262 Molder, PSieve, Srsieve, PrimeGrid, LLR L3278 Fischer1, PSieve, Srsieve, PrimeGrid, LLR L3323 Ritschel, NewPGen, TOPS, LLR L3325 Elvy, PSieve, Srsieve, PrimeGrid, LLR L3329 Tatearka, PSieve, Srsieve, PrimeGrid, LLR L3345 Domanov1, PSieve, Rieselprime, LLR L3372 Ryan, PSieve, Srsieve, PrimeGrid, LLR L3430 Durstewitz, PSieve, Srsieve, PrimeGrid, LLR L3431 Gahan, PSieve, Srsieve, PrimeGrid, LLR L3432 Batalov, Srsieve, LLR L3458 Jia, PSieve, Srsieve, PrimeGrid, LLR L3460 Ottusch, PSieve, Srsieve, PrimeGrid, LLR L3483 Farrow, PSieve, Srsieve, PrimeGrid, LLR L3494 Batalov, NewPGen, LLR L3502 Ristic, PSieve, Srsieve, PrimeGrid, LLR L3512 Tsuji, PSieve, Srsieve, PrimeGrid, LLR L3514 Bishop1, PSieve, Srsieve, PrimeGrid, OpenPFGW, LLR L3519 Kurtovic, PSieve, Srsieve, Rieselprime, LLR L3523 Brown1, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3532 Batalov, Gcwsieve, LLR L3539 Jacobs, PSieve, Srsieve, PrimeGrid, LLR L3545 Eskam1, PSieve, Srsieve, PrimeGrid, LLR L3547 Ready, Srsieve, PrimeGrid, LLR L3548 Ready, PSieve, Srsieve, PrimeGrid, LLR L3553 Cilliers, Srsieve, PrimeGrid, LLR L3562 Schouten, Srsieve, PrimeGrid, LLR L3564 Jaworski, Srsieve, CRUS, LLR L3566 Slakans, Srsieve, PrimeGrid, LLR L3567 Meili, Srsieve, PrimeGrid, LLR L3573 Batalov, TwinGen, PrimeGrid, LLR L3593 Veit, PSieve, Srsieve, PrimeGrid, LLR L3606 Sander, TwinGen, PrimeGrid, LLR L3610 Batalov, Srsieve, CRUS, LLR L3659 Volynsky, Srsieve, PrimeGrid, LLR L3662 Schawe, PSieve, Srsieve, PrimeGrid, LLR L3665 Kelava1, PSieve, Srsieve, Rieselprime, LLR L3686 Yost, Srsieve, PrimeGrid, LLR L3719 Skinner, PSieve, Srsieve, PrimeGrid, LLR L3720 Ohno, Srsieve, PrimeGrid, LLR L3735 Kurtovic, Srsieve, LLR L3749 Meador, Srsieve, PrimeGrid, LLR L3760 Okazaki, PSieve, Srsieve, PrimeGrid, LLR L3763 Martin4, PSieve, Srsieve, PrimeGrid, LLR L3764 Diepeveen, PSieve, Srsieve, Rieselprime, LLR L3770 Tang, Srsieve, PrimeGrid, LLR L3772 Ottusch, Srsieve, PrimeGrid, LLR L3784 Cavnaugh, PSieve, Srsieve, PrimeGrid, LLR L3789 Toda, Srsieve, PrimeGrid, LLR L3802 Aggarwal, Srsieve, LLR L3803 Bredl, PSieve, Srsieve, PrimeGrid, LLR L3813 Chambers2, PSieve, Srsieve, PrimeGrid, LLR L3824 Mazzucato, PSieve, Srsieve, PrimeGrid, LLR L3829 Abrahmi, TwinGen, PrimeGrid, LLR L3839 Batalov, EMsieve, LLR L3849 Smith10, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3859 Clifton, PSieve, Srsieve, PrimeGrid, LLR L3865 Silva, PSieve, Srsieve, PrimeGrid, LLR L3869 Cholt, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3877 Jarne, PSieve, Srsieve, PrimeGrid, LLR L3887 Byerly, PSieve, Rieselprime, LLR L3895 Englehard, PSieve, Srsieve, PrimeGrid, LLR L3898 Christy, PSieve, Srsieve, PrimeGrid, LLR L3903 Miao, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3904 Darimont, Srsieve, PrimeGrid, SierpinskiRiesel, LLR L3917 Rodenkirch, PSieve, Srsieve, LLR L3919 Pickering, PSieve, Srsieve, PrimeGrid, LLR L3924 Kim5, PSieve, Srsieve, PrimeGrid, LLR L3925 Okazaki, Srsieve, PrimeGrid, LLR L3933 Batalov, PSieve, Srsieve, CRUS, Rieselprime, LLR L3941 Lee8, PSieve, Srsieve, PrimeGrid, LLR L3961 Darimont, Srsieve, PrimeGrid, LLR L3964 Iakovlev, Srsieve, PrimeGrid, LLR L3993 Gushchak, Srsieve, PrimeGrid, LLR L4001 Willig, Srsieve, CRUS, LLR L4031 Darney, PSieve, Srsieve, PrimeGrid, LLR L4034 Vanc, Srsieve, PrimeGrid, LLR L4036 Domanov1, PSieve, Srsieve, CRUS, LLR L4045 Chew, PSieve, Srsieve, PrimeGrid, LLR L4064 Davies, Srsieve, CRUS, LLR L4082 Zimmerman, PSieve, Srsieve, PrimeGrid, LLR L4083 Charrondiere, PSieve, Srsieve, PrimeGrid, LLR L4087 Kecic, PSieve, Srsieve, PrimeGrid, LLR L4099 Nietering, PSieve, Srsieve, PrimeGrid, LLR L4103 Klopffleisch, Srsieve, PrimeGrid, LLR L4108 Yoshioka, PSieve, Srsieve, PrimeGrid, LLR L4113 Batalov, PSieve, Srsieve, LLR L4114 Bubloski, PSieve, Srsieve, PrimeGrid, LLR L4119 Nelson3, PSieve, Srsieve, PrimeGrid, LLR L4139 Hawker, Srsieve, CRUS, LLR L4146 Schmidt1, Srsieve, PrimeGrid, LLR L4147 Mohacsy, PSieve, Srsieve, PrimeGrid, LLR L4155 Jones4, PSieve, Srsieve, PrimeGrid, LLR L4159 Schulz5, Srsieve, PrimeGrid, LLR L4166 Kwok, PSieve, LLR L4185 Hoefliger, PSieve, Srsieve, PrimeGrid, LLR L4187 Schmidt2, Srsieve, CRUS, LLR L4189 Lawrence, Powell, Srsieve, CRUS, LLR L4190 Fnasek, PSieve, Srsieve, PrimeGrid, LLR L4197 Kumagai1, Srsieve, PrimeGrid, LLR L4198 Rawles, PSieve, Srsieve, PrimeGrid, LLR L4200 Harste, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4201 Brown1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4203 Azarenko, PSieve, Srsieve, PrimeGrid, LLR L4204 Winslow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4205 Bischof, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4207 Jaamann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4208 Farrow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4210 Cholt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4226 Heath, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4231 Schneider1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4245 Greer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4249 Larsson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4250 Vogt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4252 Nietering, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4256 Gniesmer, PSieve, Srsieve, PrimeGrid, LLR L4267 Batalov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4273 Rangelrooij, Srsieve, CRUS, LLR L4274 AhlforsDahl, Srsieve, PrimeGrid, LLR L4276 Borbely, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4285 Bravin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4286 Zimmerman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4289 Ito2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4293 Trunov, PSieve, Srsieve, PrimeGrid, LLR L4294 Kurtovic, Srsieve, CRUS, Prime95, LLR L4295 Splain, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4303 Thorson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4307 Keller1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4308 Matillek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4309 Kecic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4314 DeThomas, PSieve, Srsieve, PrimeGrid, LLR L4316 Nilsson1, PSieve, Srsieve, PrimeGrid, LLR L4326 Steel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4329 Okon, Srsieve, LLR L4334 Miller5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4340 Becker4, Srsieve, PrimeGrid, LLR L4342 Kaiser1, PolySieve, NewPGen, LLR L4343 Norton, PSieve, Srsieve, PrimeGrid, LLR L4348 Burridge, Srsieve, PrimeGrid, LLR L4359 Andou, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4362 Mochizuki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4364 Steinbach, PSieve, Srsieve, PrimeGrid, LLR L4380 Rix, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4387 Davies, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4393 Veit1, Srsieve, CRUS, LLR L4395 Nilsson1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4398 Greer, Srsieve, PrimeGrid, LLR L4405 Eckhard, Srsieve, LLR L4406 Mathers, PSieve, Srsieve, PrimeGrid, LLR L4408 Fricke, PSieve, Srsieve, PrimeGrid, LLR L4410 Andresson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4414 Falk, PSieve, Srsieve, PrimeGrid, LLR L4424 Miyauchi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4435 Larsson, Srsieve, PrimeGrid, LLR L4444 Terber, Srsieve, CRUS, LLR L4454 Clark5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4456 Chambers2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4457 Geiger, PSieve, Srsieve, PrimeGrid, LLR L4459 Biscop, PSieve, Srsieve, PrimeGrid, LLR L4466 Falk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4472 Harvanek, Gcwsieve, MultiSieve, PrimeGrid, LLR L4476 Shane, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4477 Tennant, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4482 Mena, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4488 Vrontakis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4490 Mazumdar, PSieve, Srsieve, PrimeGrid, LLR L4499 Ohsugi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4501 Eskam1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4504 Sesok, NewPGen, LLR L4505 Lind, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4506 Propper, Batalov, CycloSv, EMsieve, PIES, Prime95, LLR L4510 Ming, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4511 Donovan1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4518 Primecrunch.com, Hedges, Srsieve, LLR L4525 Kong1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4526 Schoefer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4527 Fruzynski, PSieve, Srsieve, PrimeGrid, LLR L4530 Reynolds1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4544 Krauss, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4548 Sydekum, Srsieve, CRUS, Prime95, LLR L4550 Terry, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4552 Koski, PSieve, Srsieve, PrimeGrid, LLR L4559 Okazaki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4561 Propper, Batalov, CycloSv, Cyclo, EMsieve, PIES, LLR L4562 Donovan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4564 DeThomas, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4568 Vrontakis, PSieve, Srsieve, PrimeGrid, LLR L4582 Kinney, PSieve, Srsieve, PrimeGrid, LLR L4583 Rohmann, PSieve, Srsieve, PrimeGrid, LLR L4584 Goforth, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4585 Schawe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4591 Schwieger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4595 Mangio, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4609 Elgetz, PSieve, Srsieve, PrimeGrid, LLR L4620 Kinney, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4622 Jurach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4623 Dugger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4626 Iltus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4645 McKibbon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4649 Humphries, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4654 Voskoboynikov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4656 Beck, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4658 Maguin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4659 AverayJones, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4660 Snow, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4664 Toledo, PSieve, Srsieve, PrimeGrid, LLR L4665 Szeluga, Kupidura, Banka, LLR L4666 Slade, PSieve, Srsieve, PrimeGrid, LLR L4667 Morelli, LLR L4668 Okazaki, Gcwsieve, MultiSieve, PrimeGrid, LLR L4669 Schwegler, Srsieve, PrimeGrid, LLR L4670 Drumm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4672 Slade, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4673 Okhrimouk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4675 Lind, Srsieve, PrimeGrid, LLR L4676 Maloney, Srsieve, PrimeGrid, PrimeSierpinski, LLR L4677 Provencher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4684 Sveen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4685 Masser, Srsieve, CRUS, LLR L4687 Campbell1, PSieve, Srsieve, PrimeGrid, LLR L4689 Gordon2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4690 Brandt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4691 Fruzynski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4692 Hajek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4694 Schapendonk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4695 Goudie, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4697 Sellsted, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4699 Parsonnet, PSieve, Srsieve, PrimeGrid, LLR L4700 Liu4, Srsieve, CRUS, LLR L4701 Kalus, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4702 Charette, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4704 Kurtovic, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4706 Kraemer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4711 Closs, PSieve, Srsieve, PrimeGrid, LLR L4715 Skinner1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4717 Wypych, PSieve, Srsieve, PrimeGrid, LLR L4718 Brown1, Gcwsieve, MultiSieve, PrimeGrid, LLR L4720 Gahan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4723 Lexut, PSieve, Srsieve, PrimeGrid, LLR L4724 Thonon, PSieve, Srsieve, PrimeGrid, LLR L4726 Miller7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4729 Wimmer1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4730 Bowe, PSieve, Srsieve, PrimeGrid, LLR L4732 Miller7, PSieve, Srsieve, PrimeGrid, LLR L4737 Reinhardt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4738 Gelhar, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4740 Silva1, PSieve, Srsieve, PrimeGrid, LLR L4741 Wong, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4742 Schlereth, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4743 Plsak, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4745 Cavnaugh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4746 Brech, PSieve, Srsieve, PrimeGrid, LLR L4747 Brech, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4752 Harvey2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4753 Riemann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4754 Calvin, PSieve, Srsieve, PrimeGrid, LLR L4755 Glatte, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4757 Johnson9, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4758 Walling, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4760 Sipes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4761 Romaidis, PSieve, Srsieve, PrimeGrid, LLR L4763 Guilleminot, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4764 McLean2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4765 Kumsta, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4773 Tohmola, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4774 Boehm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4775 Steinbach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4776 Lee7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4783 Marini, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4784 Bertolotti, Gcwsieve, MultiSieve, PrimeGrid, LLR L4786 Sydekum, Srsieve, CRUS, LLR L4787 Sunderland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4789 Kurtovic, Srsieve, Prime95, LLR L4791 Vaisanen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4793 Koski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4795 Lawson2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4799 Vanderveen1, LLR L4800 Doenges, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4802 Jones5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4806 Rajala, Srsieve, CRUS, LLR L4807 Tsuji, Srsieve, PrimeGrid, LLR L4808 Kaiser1, PolySieve, LLR L4809 Bocan, Srsieve, PrimeGrid, LLR L4810 Dhuyvetters, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4814 Telesz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4815 Kozisek, PSieve, Srsieve, PrimeGrid, LLR L4819 Inci, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4823 Helm, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4826 Soraku, PSieve, Srsieve, PrimeGrid, LLR L4832 Meekins, Srsieve, CRUS, LLR L4834 Helm, PSieve, Srsieve, PrimeGrid, LLR L4835 Katzur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4840 Ylijoki, PSieve, Srsieve, PrimeGrid, LLR L4841 Baur, PSieve, Srsieve, PrimeGrid, LLR L4842 Smith11, PSieve, Srsieve, PrimeGrid, LLR L4843 Hutchins, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4844 Valentino, PSieve, Srsieve, PrimeGrid, LLR L4848 Adamec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4849 Burt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4850 Jones5, PSieve, Srsieve, PrimeGrid, LLR L4851 Schioler, PSieve, Srsieve, PrimeGrid, LLR L4854 Gory, PSieve, Srsieve, PrimeGrid, LLR L4858 Koriabine, PSieve, Srsieve, PrimeGrid, LLR L4859 Wang4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4861 Thonon, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4864 Freihube, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4868 Bergmann, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4869 Ogata, PSieve, Srsieve, PrimeGrid, LLR L4870 Wharton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4871 Gory, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4875 Parsonnet, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4877 Cherenkov, Srsieve, CRUS, LLR L4879 Propper, Batalov, Srsieve, LLR L4880 Goossens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4884 Somer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4889 Hundhausen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4892 Hewitt1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4893 Little, PSieve, Srsieve, PrimeGrid, LLR L4898 Kozisek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4903 Laurent1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4904 Dunchouk, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4905 Niegocki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4907 Reinhardt, PSieve, Srsieve, PrimeGrid, LLR L4909 Hall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4914 Bishop_D, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4917 Corlatti, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4918 Weiss1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4920 Walsh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4922 Bulba, Sesok, LLR L4923 Koriabine, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4925 Korolev, Srsieve, CRUS, LLR L4926 Shenton, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4928 Doornink, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4929 Givoni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4930 Shintani, PSieve, Srsieve, PrimeGrid, LLR L4932 Schroeder2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4933 Jacques, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4935 Simard, PSieve, Srsieve, PrimeGrid, LLR L4937 Ito2, Srsieve, PrimeGrid, LLR L4939 Coscia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4942 Matheis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4944 Schori, LLR2, PSieve, Srsieve, PrimeGrid, LLR L4945 Meili, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4948 SchwartzLowe, PSieve, Srsieve, PrimeGrid, LLR L4951 Niegocki, PSieve, Srsieve, PrimeGrid, LLR L4954 Romaidis, Srsieve, PrimeGrid, LLR L4955 Grosvenor, Srsieve, CRUS, LLR L4956 Merrylees, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4958 Shenton, PSieve, Srsieve, PrimeGrid, LLR L4959 Deakin, PSieve, Srsieve, PrimeGrid, LLR L4960 Kaiser1, NewPGen, TPS, LLR L4963 Mortimore, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4964 Doescher, GFNSvCUDA, GeneFer, LLR L4965 Propper, LLR L4970 Michael, PSieve, Srsieve, PrimeGrid, LLR L4972 Greer, Gcwsieve, MultiSieve, PrimeGrid, LLR L4973 Landrum, PSieve, Srsieve, PrimeGrid, LLR L4975 Thompson5, Srsieve, CRUS, LLR L4976 Propper, Batalov, Gcwsieve, LLR L4977 Miller8, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4979 Matheis, PSieve, Srsieve, PrimeGrid, LLR L4980 Poon1, PSieve, Srsieve, PrimeGrid, LLR L4981 MartinezCucalon, PSieve, Srsieve, PrimeGrid, LLR L4984 Hemsley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4985 Veit, Srsieve, CRUS, LLR L4987 Canossi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4988 Harris3, PSieve, Srsieve, PrimeGrid, LLR L4990 Heindl, PSieve, Srsieve, PrimeGrid, LLR L4997 Gardner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L4999 Andrews1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5001 Mamonov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5002 Kato, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5005 Hass, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5007 Faith, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5008 Niegocki, Srsieve, PrimeGrid, LLR L5009 Jungmann, Srsieve, LLR L5011 Strajt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5013 Wypych, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5014 Strokov, PSieve, Srsieve, PrimeGrid, LLR L5018 Nielsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5019 Ayiomamitis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5020 Eikelenboom, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5021 Svantner, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5022 Manz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5023 Schulz6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5024 Schumacher, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5025 Lexut, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5027 Moudy, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5029 Krompolc, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5030 Calvin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5031 Schumacher, PSieve, Srsieve, PrimeGrid, LLR L5033 Ni, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5036 Jung2, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5037 Diepeveen, Underwood, PSieve, Srsieve, Rieselprime, LLR L5039 Gilliland, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5041 Wallbaum, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5043 Vanderveen1, Propper, LLR L5044 Bergelt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5047 Little, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5051 Veit, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5053 Yoshigoe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5056 Chu, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5057 Hauhia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5061 Cooper5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5063 Wendelboe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5067 Tirkkonen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5068 Silva1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5069 Friedrichsen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5070 Millerick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5071 McLean2, Srsieve, CRUS, LLR L5072 Romaidis, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5076 Atnashev, Srsieve, PrimeGrid, LLR L5078 McDonald4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5079 Meditz, PSieve, Srsieve, PrimeGrid, LLR L5080 Gahan, GFNSvCUDA, PrivGfnServer, LLR L5081 Howell, Srsieve, PrimeGrid, LLR L5083 Pickering, Srsieve, PrimeGrid, LLR L5084 Yagi, PSieve, Srsieve, PrimeGrid, LLR L5085 Strajt, PSieve, Srsieve, PrimeGrid, LLR L5087 Coscia, PSieve, Srsieve, PrimeGrid, LLR L5088 Hall1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5090 Jourdan, PSieve, Srsieve, PrimeGrid, LLR L5094 Th�mmler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5099 Lobring, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5100 Stephens, PSieve, Srsieve, PrimeGrid, LLR L5102 Liu6, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5104 Gahan, LLR2, NewPGen, LLR L5105 Helm, LLR2, Srsieve, PrivGfnServer, LLR L5106 Glennie, PSieve, Srsieve, PrimeGrid, LLR L5110 Provencher, PSieve, Srsieve, PrimeGrid, LLR L5112 Vanderveen1, Srsieve, CRUS, LLR L5115 Doescher, LLR L5116 Schoeler, MultiSieve, LLR L5120 Greer, LLR2, PrivGfnServer, LLR L5122 Tennant, LLR2, PrivGfnServer, LLR L5123 Propper, Batalov, EMsieve, LLR L5125 Tirkkonen, PSieve, Srsieve, PrimeGrid, LLR L5126 Warach, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5127 Kemenes, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5129 Veit, Srsieve, PrimeGrid, LLR L5130 Jourdan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5134 Cooper5, PSieve, Srsieve, PrimeGrid, LLR L5139 Belozersky, PSieve, Srsieve, PrimeGrid, LLR L5143 Dickinson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5144 McNary, PSieve, Srsieve, PrimeGrid, LLR L5155 Harju, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5156 Dinkel, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5157 Asano, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5158 Zuschlag, PSieve, Srsieve, PrimeGrid, LLR L5159 Huetter, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5161 Greer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5162 Th�mmler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5166 Jaros1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5167 Gelhar, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5168 Hawkinson, PSieve, Srsieve, PrimeGrid, LLR L5169 Atnashev, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5171 Brown1, LLR2, Srsieve, PrimeGrid, LLR L5172 McNary, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5173 Bishop_D, PSieve, Srsieve, PrimeGrid, LLR L5174 Scalise, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5175 Liiv, PSieve, Srsieve, Rieselprime, LLR L5176 Early, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5177 Tapper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5178 Larsson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5179 Okazaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5180 Laluk, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5181 Atnashev, LLR2, Srsieve, PrimeGrid, LLR L5183 Winskill1, PSieve, Srsieve, PrimeGrid, 12121search, LLR L5184 Byerly, PSieve, Srsieve, NPLB, LLR L5185 Elgetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5186 Anonymous, GFNSvCUDA, GeneFer, AthGFNSieve, United, PrimeGrid, LLR L5188 Wong, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5189 Jackson1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5191 Kaiser1, NewPGen, LLR L5192 Anonymous, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5194 Jonas, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5195 Ridgway, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5196 Sielemann, Srsieve, CRUS, LLR L5197 Propper, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5198 Elgetz, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5199 Romaidis, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5200 Terry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5201 Ford, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5202 Molne, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5203 Topham, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5206 Wiseler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5207 Atnashev, LLR2, PrivGfnServer, LLR L5208 Schnur, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5210 Brech, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5214 Dinkel, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5215 Hawkinson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5216 Brazier, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5217 Wiseler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5220 Jones4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5223 Vera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5226 Brown1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5228 Jacques, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5229 Karpenko, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5230 Tapper, LLR2, Srsieve, PrimeGrid, LLR L5231 Veit, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5232 Bliedung, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5233 Sipes, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5235 Karpinski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5236 Shenton, LLR2, PSieve, Srsieve, PrivGfnServer, PrimeGrid, LLR L5237 Schwieger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5238 Jourdan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5239 Strajt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5242 Krompolc, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5246 Vaisanen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5248 Delgado, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5249 Racanelli, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5250 Nakamura, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5253 Burt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5254 Gerstenberger, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5256 Snow, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5260 Ostaszewski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5261 Kim5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5262 Clark5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5263 Ito2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5264 Cholt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5265 Fleischman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5266 Sheridan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5267 Schnur, LLR2, Srsieve, PrimeGrid, LLR L5269 Clemence, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5270 Hennebert, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5272 Conner, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5273 McGonegal, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5276 Schawe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5277 McDevitt, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5278 Nose, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5279 Schick, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5282 Somer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5283 Hua, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5284 Fischer1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5285 Merrylees, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5286 Reynolds1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5287 Thonon, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5288 Heindl, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5290 Cooper5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5294 Hewitt1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5295 Gilliland, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5296 Piaive, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5297 Nakamura, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5298 Kaczmarek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5299 Corlatti, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5300 Hajek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5301 Harju, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5302 Davies, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5305 Thanry, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5307 Bauer2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5308 Krauss, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5309 Bishop_D, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5310 Hubbard, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5311 Reich, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5312 Tyndall, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5313 Barnes, PSieve, Srsieve, Rieselprime, LLR L5314 Satoh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5315 Dec, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5316 Walsh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5317 Freeze, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5318 Ruber, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5319 Abbey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5320 Niegocki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5321 Dark, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5323 Chan1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5324 Boehm, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5325 Drager, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5326 Deakin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5332 Mizusawa, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5334 Jones6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5335 Harvey1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5336 Leblanc, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5337 Kawamura1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5338 Deakin, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5343 Tajika, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5344 Lowe1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5345 Johnson8, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5346 Polansky, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5348 Adam, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5350 McDevitt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5352 Eklof, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5353 Belolipetskiy, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5354 Doornink, NewPGen, OpenPFGW, LLR L5356 Hsu2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5358 Gmirkin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5359 Ridgway, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5360 Leitch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5362 Domanov1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5364 Blyth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5366 Michael, Srsieve, CRUS, LLR L5368 Valentino, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5372 Vitiello, Srsieve, CRUS, LLR L5373 Baranchikov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5375 Blanchard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5376 Ranch, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5377 Yasuhisa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5378 Seeley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5379 Smith4, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5380 Campulka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5381 Meppiel, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5382 Bulanov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5384 Riemann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5387 Johns, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5389 Doornink, TwinGen, LLR L5392 McDonald4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5393 Lu, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5395 Early, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5399 Kolesov, LLR L5400 Hefer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5401 Champ, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5402 Greer, LLR2, Gcwsieve, MultiSieve, PrimeGrid, LLR L5403 Slade1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5404 Wiseler, LLR2, Srsieve, PrimeGrid, LLR L5405 Gerstenberger, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5406 Jaros, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5407 Mahnken, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5408 Kreth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5410 Anonymous, Srsieve, CRUS, LLR L5414 Mollerus, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5416 Anonymous, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5418 Pollak, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5421 Iwasaki, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5425 Lichtenwimmer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5426 Gilliland, Srsieve, CRUS, LLR L5427 Hewitt1, LLR2, Srsieve, PrimeGrid, LLR L5429 Meditz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5433 Hatanaka, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5434 Parsonnet, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5435 Murphy, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5437 Rijfers, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5438 Tang, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5439 Batalov, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5440 McGonegal, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5441 Cherenkov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5442 Moreira, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5443 Venjakob, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5444 Platz, LLR2, Srsieve, PrimeGrid, LLR L5448 Rubin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5449 Reinhardt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5450 Mizusawa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5451 Wilkins, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5452 Morera, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5453 Slaets, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5456 Gundermann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5459 Sekanina, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5460 Headrick, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5461 Anonymous, LLR2, Srsieve, PrimeGrid, LLR L5462 Raimist, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5463 Goforth, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5464 Pickering, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5465 Hubbard, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5466 Furushima, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5467 Tamai1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5469 Bishopp, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5471 Dunchouk, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5472 Ready, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5476 Steinbach, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5477 Meador, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5480 Boddener, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5482 Raimist, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5485 Mahnken, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5488 Kecic, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5492 Slaets, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5493 Liu6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5497 Goetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5499 Osada, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5500 Racanelli, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5501 Seeley, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5502 Floyd, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5503 Soule, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5504 Cerny, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5505 Chovanec, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5507 Brandt2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5508 Gauch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5509 Nietering, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5512 Akesson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5514 Cavnaugh, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5517 Cavecchia, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5518 Eisler1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5523 Sekanina, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5524 Matillek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5527 Doornink, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5529 Baur1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5530 Matillek, LLR2, Srsieve, PrimeGrid, LLR L5531 Koci, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5532 Morera, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5534 Cervelle, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5535 Skahill, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5536 Bennett1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5537 Schafer, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5540 Brown6, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5541 Parker, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5543 Lucendo, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5544 Byerly, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5545 Kruse, PSieve, Srsieve, NPLB, LLR L5546 Steinwedel, PSieve, Srsieve, NPLB, LLR L5547 Hoonoki, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5548 Steinberg, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5549 Zhang, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5550 Provencher, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5553 DAmico, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5554 Lucendo, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5555 Parangalan, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5556 Javens, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5557 Drake, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5558 Lee7, LLR2, Srsieve, PrimeGrid, LLR L5559 Roberts, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5560 Amberg, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5562 Cheung, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5563 Akesson, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5564 Lee7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5565 Bailey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5566 Latge, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5567 Marshall1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5568 Schioler, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5569 Michael, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5570 Arnold, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5571 Williams7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5572 Sveen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5573 Friedrichsen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5574 Laboisne, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5575 Blanchard, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5576 Amorim, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5578 Jablonski1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5579 Cox2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5581 Pickles, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5582 Einvik, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5583 Tanaka3, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5584 Barr, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5585 Faith, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5586 Vultur, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5587 AverayJones, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5588 Shi, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5589 Kupka, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5590 Schumacher, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5592 Shintani, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5594 Brown7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5595 Hyvonen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5596 Kozisek, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5600 Steinberg, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5601 Sato1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5606 Clark, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5607 Rodermond, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5608 Pieritz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5609 Sielemann, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5610 Katzur, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5611 Smith13, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5612 Lugowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5613 Delisle, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5614 Becker2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5615 Dodd, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5616 Miller7, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5618 Wilson4, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5619 Piotrowski, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5621 Millerick, LLR2, Srsieve, PrimeGrid, LLR L5624 Farrow, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5625 Sellsted, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5626 Clark, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5627 Bulanov, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5629 Dickinson, Srsieve, CRUS, LLR L5631 Mittelstadt, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5632 Marler, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5634 Gao, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5636 Santosa, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5637 Bestor, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5638 Piskun, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5639 Cavecchia, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5640 Xu2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5641 Kwok, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5645 Orpen1, SRBase, LLR L5646 Dickey, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5647 Soraku, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5648 York, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5649 Dietsch, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5650 Ketamino, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5651 Lexut, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5652 Wilson5, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5653 Beck1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5655 Hoffman, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5656 McAdams, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5657 Alden, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5658 Sloan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5662 OMalley, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5663 Li5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5666 Wendelboe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5668 Finn, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5670 Heindl1, Srsieve, CRUS, LLR L5671 Rauh, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5676 Fnasek, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5679 Shane, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5683 Glatte, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5685 Bestor, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5686 Pistorius, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5693 Huan, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5694 Petersen, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5695 Steinberg, NewPGen, LLR L5698 Stenschke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5703 Koudelka, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5704 Hampicke, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5705 Wharton, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5706 Wallbaum, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5710 Hass, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5714 Loucks, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5715 Calvin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5720 Trigueiro, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5724 Pilz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5725 Gingrich1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5726 Noxe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5727 Headrick, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5732 Monroe, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5735 Kobrzynski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5736 Riva, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5738 Schaeffer, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5740 Chu, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5742 Steinmetz, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5745 Saladin, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5746 Meister1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5748 Norbert, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5749 Gahan, LLR2, LLR L5750 Shi, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5754 Abad, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5755 Kwiatkowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5756 Wei, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5758 Bishop1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5763 Williams7, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5764 Tirkkonen, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5765 Propper, Gcwsieve, LLR L5766 Takahashi2, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5769 Welsh1, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5770 Silva1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5772 Tarson, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5773 Lugowski, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5774 Chambers, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5775 Garambois, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5776 Anonymous, LLR2, PSieve, Srsieve, United, PrimeGrid, LLR L5778 Sarok, Srsieve, CRUS, LLR L5780 Blanchard, Srsieve, CRUS, LLR L5782 Kang, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5783 Bishop1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5787 Johnson10, Srsieve, CRUS, LLR L5793 Wang5, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5796 Hall1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5798 Schoeberl, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5799 Lehmann1, LLR2, Srsieve, PrimeGrid, LLR L5802 Borgerding, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5803 Kwok, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5804 Bowe, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5807 Krauss, Srsieve, PrimeGrid, PRST, LLR L5808 Propper, Batalov, PSieve, Srsieve, LLR L5809 Zhao, GFNSvCUDA, GeneFer, AthGFNSieve, PrimeGrid, LLR L5810 Meister1, LLR2, PSieve, Srsieve, PrimeGrid, LLR L5811 Dettweiler, LLR2, Srsieve, CRUS, LLR M Morain MM Morii O Oakes p3 Dohmen, OpenPFGW p8 Caldwell, OpenPFGW p12 Water, OpenPFGW p16 Heuer, OpenPFGW p21 Anderson, Robinson, OpenPFGW p44 Broadhurst, OpenPFGW p49 Berg, OpenPFGW p54 Broadhurst, Water, OpenPFGW p58 Glover, Oakes, OpenPFGW p65 DavisK, Kuosa, OpenPFGW p85 Marchal, Carmody, Kuosa, OpenPFGW p102 Frind, Underwood, OpenPFGW p148 Yama, Noda, Nohara, NewPGen, MatGFN, PRP, OpenPFGW p155 DavisK, NewPGen, OpenPFGW p158 Paridon, NewPGen, OpenPFGW p170 Wu_T, Primo, OpenPFGW p189 Bohanon, LLR, OpenPFGW p193 Irvine, Broadhurst, Primo, OpenPFGW p235 Bedwell, OpenPFGW p236 Cooper, NewPGen, PRP, OpenPFGW p247 Bonath, Srsieve, CRUS, LLR, OpenPFGW p252 Oakes, NewPGen, OpenPFGW p262 Vogel, Gcwsieve, MultiSieve, PrimeGrid, OpenPFGW p268 Rodenkirch, Srsieve, CRUS, OpenPFGW p279 Domanov1, Srsieve, Rieselprime, Prime95, OpenPFGW p286 Batalov, Srsieve, OpenPFGW p290 Domanov1, Fpsieve, PrimeGrid, OpenPFGW p295 Angel, NewPGen, OpenPFGW p296 Kaiser1, Srsieve, LLR, OpenPFGW p301 Winskill1, Fpsieve, PrimeGrid, OpenPFGW p302 Gasewicz, Fpsieve, PrimeGrid, OpenPFGW p308 DavisK, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p309 Yama, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p310 Hubbard, Gcwsieve, MultiSieve, PrimeGrid, OpenPFGW p312 Doggart, Fpsieve, PrimeGrid, OpenPFGW p314 Hubbard, GenefX64, AthGFNSieve, PrimeGrid, OpenPFGW p332 Johnson6, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p334 Goetz, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p338 Tomecko, GeneferCUDA, AthGFNSieve, PrimeGrid, OpenPFGW p342 Trice, OpenPFGW p346 Burt, Fpsieve, PrimeGrid, OpenPFGW p350 Koen, Gcwsieve, GenWoodall, OpenPFGW p355 Domanov1, Srsieve, CRUS, OpenPFGW p362 Snow, Fpsieve, PrimeGrid, OpenPFGW p363 Batalov, OpenPFGW p364 Batalov, NewPGen, OpenPFGW p373 Morelli, OpenPFGW p378 Batalov, Srsieve, CRUS, LLR, OpenPFGW p379 Batalov, CycloSv, Cyclo, EMsieve, PIES, OpenPFGW p382 Oestlin, NewPGen, OpenPFGW p384 Booker, OpenPFGW p391 Keiser, NewPGen, OpenPFGW p394 Fukui, MultiSieve, OpenPFGW p395 Angel, Augustin, NewPGen, OpenPFGW p398 Stocker, OpenPFGW p399 Kebbaj, OpenPFGW p405 Propper, Cksieve, OpenPFGW p406 DavisK, Luhn, Underwood, NewPGen, PrimeForm_egroup, OpenPFGW p407 Lamprecht, Luhn, OpenPFGW p408 Batalov, PolySieve, OpenPFGW p409 Nielsen1, OpenPFGW p411 Larsson, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p413 Morimoto, OpenPFGW p414 Naimi, OpenPFGW p415 Doornink, TwinGen, OpenPFGW p416 Monnin, LLR2, PrivGfnServer, OpenPFGW p417 Tennant, LLR2, PrivGfnServer, OpenPFGW p418 Sielemann, LLR2, PrivGfnServer, OpenPFGW p419 Bird1, LLR2, PrivGfnServer, OpenPFGW p421 Gahan, LLR2, PrivGfnServer, OpenPFGW p422 Kaiser1, PolySieve, OpenPFGW p423 Propper, Batalov, EMsieve, OpenPFGW p425 Propper, MultiSieve, OpenPFGW p426 Schoeler, NewPGen, OpenPFGW p427 Niegocki, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p428 Trunov, GeneFer, AthGFNSieve, PrivGfnServer, OpenPFGW p429 Steinberg, MultiSieve, OpenPFGW p430 Propper, Batalov, NewPGen, OpenPFGW p431 Piesker, Srsieve, CRUS, OpenPFGW PM Mihailescu SB10 Agafonov, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB11 Sunde, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB12 Szabolcs, Srsieve, SoBSieve, ProthSieve, Ksieve, PrimeGrid, LLR, SB SB6 Sundquist, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB7 Team_Prime_Rib, SoBSieve, ProthSieve, Ksieve, PRP, SB SB8 Gordon, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SB9 Hassler, SoBSieve, ProthSieve, Ksieve, PRP, Proth.exe, SB SG Slowinski, Gage WD Williams, Dubner, Cruncher WM Morain, Williams x13 Renze x16 Doumen, Beelen, Unknown x20 Irvine, Broadhurst, Water x23 Broadhurst, Water, Renze, OpenPFGW, Primo x24 Jarai_Z, Farkas, Csajbok, Kasza, Jarai, Unknown x25 Broadhurst, Water, OpenPFGW, Primo x28 Iskra x33 Carmody, Broadhurst, Water, Renze, OpenPFGW, Primo x36 Irvine, Carmody, Broadhurst, Water, Renze, OpenPFGW, Primo x38 Broadhurst, OpenPFGW, Primo x39 Broadhurst, Dubner, Keller, OpenPFGW, Primo x44 Zhou, Unknown x45 Batalov, OpenPFGW, Primo, Unknown x47 Szekeres, Magyar, Gevay, Farkas, Jarai, Unknown x48 Asuncion, Allombert, Unknown x49 Facq, Asuncion, Allombert, Unknown x50 Propper, GFNSvCUDA, GeneFer, Unknown Y Young