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1. INTRODUCTION 

For real numbers X, a and b with x > e , we write 

Lx[a, b] = exp(b(logxt(1oglogx)l-a). 

The main result of the present paper is as follows. 

Theorem. There exists a probabilistic algorithm that factors any given positive 
integer n completely into prime factors, and that takes expected time at most 
LnH, 1 +0(1)] for n ~ 00. 

For a discussion of the notions "probabilistic algorithm" and "expected time" 
we refer to § 12. The proof of the theorem is given in § 10. 

There are many factoring algorithms that are conjectured to have expected 
running time at most LnH, 1 + 0(1)], including the quite practical quadratic 
sieve and elliptic curve methods. However, for none of these methods has this 
conjecture been proved, and for one of them it must be withdrawn, as we shall 
see below. 

The best prior results on rigorously analyzed probabilistic factoring algo-
rithms were a time bound of Ln H ' v'2 + o( 1)] obtained by Pomerance [28] 
and a time bound of L n[!, J4/3 + 0(1)] by Vallee [33]. These algorithms are 
refinements of the random squares method of Dixon [10]. 

The algorithm on which the proof of our theorem is based is rather less el-
ementary, and depends on the use of class groups of binary quadratic forms. 
More precisely, let .::\ be a negative integer with .::\ == 0 or 1 mod 4, and de-
note by C tJ. the set of SL2 Z-equivalence classes of positive definite, primitive, 
binary quadratic forms of discriminant .::\, where SL2 Z denotes the group of 
2 x 2-matrices of determinant 1 with coefficients in the ring Z of rational inte-
gers. Gaussian composition makes CtJ. into a finite abelian group; we shall call 
its elements simply "forms." In §2 we recall the main properties of CtJ.. In par-
ticular, we shall see that there is an explicit correspondence between elements 
of order dividing 2 in CtJ.' the so-called ambiguous forms, and factorizations 
of 1.::\1 into two coprime factors. There are several factoring algorithms that 
exploit this correspondence. Thus to factor an odd number n that is not a 
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prime power, one could choose a negative number L\ with L\ == 0 or 1 mod 4 
that is a multiple of n, and then somehow find elements of order 2 in C,:1. 

One such algorithm, the class group relations method, is due to Seysen [32]. 
Under the assumption of the generalized Riemann hypothesis (GRH) for L-
functions of abelian characters of imaginary quadratic fields, Seysen showed 
that his method runs in expected time at most LnH, ..)5/4 + 0(1)]. A. K. 
Lenstra [20] improved one of the ingredients of Seysen's algorithm, obtaining 
the bound LnH, 1 + 0(1)] for the expected running time, but still under the 
assumption of the GRH. 

In the present paper we remove the GRH assumption from the analysis of 
the Seysen-Lenstra class group relations algorithm. This enables us to prove the 
theorem. 

It may very well be that some variant of the class group relations algorithm 
has practical value. However, any choices and recommendations we make in 
this paper are inspired only by the desire to give a valid and efficient proof of 
our theorem, and not by any practical considerations. 

Another algorithm that exploits the connection between ambiguous forms and 
factorizations of IL\I is the random class groups method proposed by Schnorr 
and Lenstra [29]. This algorithm sometimes goes under the name "SPAR," after 
Shanks, Pollard, Atkin and Rickert. This was the first factoring algorithm of 
which the expected running time was conjectured to be L n[!, 1 + 0(1)], and 
it is now also the first algorithm for which that conjecture must be withdrawn. 
Namely, we shall show in the present paper that there is a fairly dense sequence 
of positive integers n for which the assumption underlying the conjectural run-
ning time analysis is incorrect. There is no reason to think that the random 
class groups method can factor those numbers in time L n[!, 1 + 0(1)]. 

With our theorem, we hoped to bridge the gap between rigorously analyzed 
factoring algorithms and heuristically analyzed factoring algorithms. Our vic-
tory has turned out to be an empty one, however, since in 1989 factoring broke 
through the L n[!, 1] barrier in a rather dramatic fashion. The number field 
sieve (see [23; 4]) is conjectured to run in time at most Ln[j, c + 0(1)], where 
the current best value for c, due to Coppersmith [6], is ((92+26JT3)/27) 1/3 == 
1.90188. This method is practical for numbers of a special form, and may in 
fact prove to be practical for all numbers. 

We now provide a brief description of the tools that we use for avoiding 
the GRH assumption. The main idea is the use of a multiplier d; that is, 
instead of working with a single discriminant L\ = -n or L\ = -3n, whichever 
is 1 mod 4, we work with the four discriminants L\ = -dn, where d ranges 
over the set {3, 4, 7, 8} if n == 1 mod 4 and over the set {1, 5, 8, 12} if 
n == 3 mod 4; for our purposes, any set of four positive integers d for which 
-d n == 0 or 1 mod 4 will do, provided that the product of no two of them is 
a square and that d is bounded independently of n. 

To see how this helps us, let us consider at which points the GRH enters into 
the proofs in [32] and [20]. It turns out that the GRH is used twice. First, it 
is needed to guarantee the existence of sufficiently many smooth forms in C,:1. 
For the definition of smooth forms we refer to (2.9); roughly speaking, they 
are defined in terms of smooth numbers, that is, numbers built up from small 
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prime factors. Proving that there are sufficiently many smooth forms comes 
down to proving that there are sufficiently many smooth numbers that are built 
up from prime numbers p for which the Kronecker symbol (~) equals 1. It 
is to guarantee the existence of sufficiently many such primes that the GRH is 
used. We show that for our purposes it suffices that each of two key intervals 
contains enough such primes p. It is not difficult to see that each of these 
intervals contains, for all but at most one of the four multipliers d, enough 
primes p with (-;n) = 1; but the possible exception d depends on the interval. 
Sacrificing at most two values of d , we conclude that at least two multipliers 
d are left for which there do exist enough smooth forms in C -dn . 

The second use of the generalized Riemann hypothesis in [32; 20] is that 
it makes it possible to construct a small set of generators of C a' namely the 
set of prime forms fp (see (2.7)) for all prime numbers p :::; co(log 1~1)2 with 
(~) = 1 ; here Co is some absolute positive constant. In our algorithm we obtain 
generators in a different way, namely by choosing (log 1~1)°(1) random prime 
forms fp for prime numbers p with (~) = 1 that range up to the much larger 
bound exp(c4(log 1~1)2) ; here c4 is another absolute positive constant. To prove 
that this works, it would suffice to show (a) that there are sufficiently many such 
p , and (b) that the corresponding prime forms fp are approximately uniformly 
distributed over C a ' so that choosing sufficiently many of them at random, one 
is very likely to obtain a set of generators for Ca' Both (a) and (b) are valid if 
GRH is true. 

Actually, we can neither show (a) nor (b). For (a), we get around this by 
again sacrificing one of our four multipliers, so that at least one is left. Once 
(a) is valid, the only obstruction towards a proof of (b) is the possible existence 
of exceptional zeros of certain Dirichlet L-functions. Since these cannot be 
avoided by the use of a multiplier, it is fortunate that exceptional zeros actually 
help us: their presence makes it more likely that the randomly chosen prime 
forms generate Ca than if (b) were true (see the proof of Theorem 4.1). 

Our ideas for removing the GRH assumption do not appear likely to work 
in the context of [13], where a probabilistic algorithm is given to compute the 
invariants of the group Ca' This algorithm, which is also based on Seysen's class 
group relations method, is proved to run in expected time Llal[~' V2 + 0(1)] 
for ~ --+ -00 on assumption of GRH. If one tries using a multiplier d, say, to 
avoid the need for the GRH, then the group Ca is changed to the group Cda . 
If d is not a square, then but for the parts annihilated by 2, these groups need 
bear little resemblance. 

The structure of this paper is as follows. In §2 we recall the basic results on 
class groups that we need. In § 3 we prove an estimate of certain character sums 
for Dirichlet characters of algebraic number fields, with an explicit dependence 
on possible exceptional zeros of the corresponding L-functions. This result 
is not new, but it does not appear explicitly in the literature in the form we 
wish to use, so we give a new proof here. Section 4 is devoted to an algorithm 
for finding generators of the class group Ca' The analysis of this algorithm 
depends on the result of §3. In particular we show that the algorithm is very 
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likely to find a set of generators of Cll provided that a certain interval contains 
enough primes p with (~) = 1. In §5 we show how a set of generators can 
be used to draw random elements from Cll , with an approximately uniform 
distribution. Section 6 contains a result about the distribution of smooth num-
bers with restricted prime factors. In §7 we discuss the method by which we 
recognize smooth numbers, which is the elliptic curve factoring method [24]. 
Unfortunately we are not able to prove that the elliptic curve method can rec-
ognize all smooth numbers efficiently. For this reason we introduce the notion 
of a recognizable smooth number. A result from [28] shows that not only do 
recognizable smooth numbers have a good probability of being recognized as 
smooth by the elliptic curve method, but a fair fraction of smooth numbers are 
recognizable. The corresponding notion of recognizable smooth forms is stud-
ied in §8. In particular, we shall see that there are sufficiently many recognizable 
smooth forms provided that each of two particular intervals contains enough 
primes p with (~) = 1. In this section we also present a supplement to [20], 
as communicated to us by the author of [20]. In §9 we prove by an elementary 
argument that the conditions on which §§4 and 8 depend can be achieved by 
means of a multiplier. In § 10 we formulate the basic factoring algorithm, and 
we show how it leads to a proof of our main result. The reader who just wants 
to see the algorithm, and is not interested in the proof, can tum directly to § 1 0 
after §2 and a glance at Algorithms 4.4 and 7.2. 

In § 11 we exhibit a serious flaw in the heuristic analysis of the random class 
groups method, as announced above. Finally, in § 12 we indicate, by lack of a 
suitable reference, what we mean by a probabilistic algorithm and its expected 
running time. Logically, this section precedes all others, and we assume famil-
iarity with its contents throughout the paper. 

All algorithms in this paper are probabilistic, and their running time is mea-
sured in bit operations. 

Except for § 11, when we write "constant" in this paper, we mean an effec-
tively computable, absolute, positive constant, even when this is not explicitly 
mentioned. The same applies to all constants that are implicit in the O-symbol. 

In several algorithms in this paper we need to round real numbers t to inte-
gers. For example, in Step 3 of Algorithm 7.2 the number t = exp((logy)6/7) is 
rounded down to an integer. We do not mean by this to round it to its integer 
part [t], since for all we know that might be very hard to compute, namely if 
t lies very close to an integer. It will be sufficient to round it to an integer m 
with 0 ::; t - m < 2. It is left to the reader to show that, in all cases when 
this is done, such an integer m can be efficiently calculated (cf. [3]). A similar 
convention applies to rounding up. 

2. CLASS GROUPS 

In this section we review a few basic facts about class groups of positive 
definite quadratic forms. For more theoretical and algorithmic information the 
reader may consult [2; 7; 9; 15; 25; 30]. 

Let tl be a negative integer with tl == 0 or 1 mod 4. Such an integer will 
be called a negative discriminant. A positive definite primitive binary quadratic 
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form of discriminant ~ is a polynomial aX2 +bXY +cy2 E Z[X, Y] for which 
2 (2.1) gcd(a,b,c)=I, b -4ac=~, a>O. 

The group SL2 Z acts in a natural way on the set of such forms, and each orbit 
contains exactly one form that satisfies 

(2.2) o :::::; b :::::; a :::::; c or 0 < -b < a < c. 

A form satisfying (2.2) is called reduced. There is a reduction algorithm that, 
given any form aX2 + bXY + cy2 as in (2.1), finds the unique reduced form 
in the same SL2Z-orbit in time O(log(lbl + 1) + (logl~I)2)log(a + 1)). 

We denote by Ca the set of SL2 Z-orbits of forms. For algorithmic purposes, 
we identify Ca with the set of triples of integers (a, b, c) satisfying (2.1) and 
(2.2). The elements of Ca will simply be called forms. 

Each form (a, b, c) satisfies Ibl :::::; a :::::; JI~I/3, and since c is determined 
by a, b and ~ it follows that Ca is finite. Its cardinality is called the class 
number belonging to ~. 

To obtain an explicit upper bound for the class number, note that for each 
value of a the number of integers b with -a < b :::::; a and b == ~ mod 2 
equals a. Therefore 

[y'iW31 
(2.3) #Ca :::::; La:::::; i(I~1 +~) :::::; !I~I. 

a=1 

Observing that a is a divisor of b2 + I~I and using an upper bound for the 
divisor function one can prove that #Ca :::::; 1~11/2+0(1) for ~ ---+ -00. By using 
a more complicated argument involving the average order of a function similar 
to the divisor function, one can prove that #Ca = O(I~II/210g I~I). In (2.13) we 
give an explicit upper bound for #Ca of this nature, derived by other means. 
Siegel's theorem, which states that #Ca = 1~11/2+o(l) for ~ ---+ -00, will not be 
needed in this paper; the lower bound in Siegel's theorem is not effective. 

Gaussian composition makes Ca into an abelian group, which is called the 
class group corresponding to ~. The neutral element of Ca will be denoted by 
la; it is the unique form (a, b, c) E Ca with a = 1. There is an algorithm 
that performs the group operation-which will be written as multiplication-in 
Ca in time o ((log 1~1)3). The inverse of (a, b, c) is (a, -b, c) if the latter 
is reduced, and (a, b, c) otherwise. 

(2.4) Ambiguous forms. An ambiguous form is an element f E Ca of order 
dividing 2. The ambiguous forms form a subgroup of Ca , which is denoted 
by Ca,2' A form (a, b, c) is ambiguous if and only if it is equal to its own 
inverse, which by the above is equivalent to 

b = 0 or b = a or a = c. 

In these three cases we see from (2.1) that 

~ = -4a· c or a· (a - 4c) or (b - 2a) . (b + 2a), 
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respectively, where the gcd of the two factors on the right divides 4. Hence, 
removing factors 2 and passing to absolute values, we see that each element 
of C,l 2 gives rise to a coprime factorization of the largest odd divisor of Ll. 
Let :7 be the set of these factorizations; so an element of :T is an unordered 
pair do, d l of odd coprime positive integers with -2k .do·dl = Ll for some 
k E Z?o' 

Theorem 2.5. Let t be the number of distinct prime factors of Ll. The order of 
C,l 2 is equal to i if Ll == 0 mod 32, to i-2 if Ll == 4 mod 16, and to i-I 

in ~ll remaining cases. Further, the map C,l 2 --+:T defined above is surjective, 
and the number of elements of C,l 2 mapping to any given element of :T is 
equal to 1 if Ll is odd or Ll == 4 m~d 16, to 4 if Ll == 0 mod 32, and to 2 in 
all remaining cases. 

Proof. This is a classical result, which is proved by a straightforward computa-
tion. See [7, Proposition 3.11] and the references given there. 

Remark. It can be shown that the map C,l 2 --+:T is a group homomorphism if 
one makes :T into a group by letting the p~oduct of the factorizations do·dl and 
eo·el be the factorization (lcm(do , eo)/gcd(do' eo))·(lcm(do , el)/gcd(do' el)). 

(2.6) The Kronecker symbol. For any integer d that is 0 or 1 mod 4 and any 
positive integer a, the Kronecker symbol (%) is defined as follows. First let p 
be prime. If p divides d then (~) = O. If p does not divide d, then (~) 
is 1 if d is a square modulo 4p and -1 otherwise. Finally, the definition 
is extended to nonprime numbers by the rule (it) = (%) (%). Note that the 
Kronecker symbol is equal to the Jacobi symbol when both are defined. 

(2.7) Prime forms. We write 

9',l = {p: p is prime, (~) = 1}. 

If p is even, then p E 9',l if and only if p = 2 and Ll == 1 mod 8, by (2.6). If p 
is odd, then p E 9',l if and only if Ll (p-I )/2 == 1 mod p and p passes a primality 
test, for example the Jacobi sum test [1; 26]. It follows that a positive integer p 
can be tested for membership in 9',l in time O((log ILlI) 10gp)+(logp)O(logloglogP) 
(for p > ee). 

Let p E 9',l' We claim that there is a unique integer b = bp for which 
o < b < p and b2 == Ll mod 4p. For p = 2 this is obvious. For p > 2, it 
follows from (~) = 1 that there are exactly two integers b for which 0 < b < p 

and b2 == Ll mod p , and that they add up to p ; the one that has the same parity 
as Ll is bp • 

Let p E 9',l and bp be as just defined. Then pX2 +bpXY +((b~ _Ll)/(4p))y2 
is a positive definite primitive binary quadratic form of discriminant Ll. We 
denote its SL2 Z-orbit by ip, which is an element of C/';. We call ip the prime 
form corresponding to p. 
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Given p E 9'Ll ' the prime form fp can be computed by means of a proba-
bilistic algorithm that runs in expected time O((logmax{p, 1.::11} )3); namely, one 
first calculates bp using a probabilistic algorithm for factoring X 2 - (.::1 modp) 
over ZjpZ (see [19]), and next one applies the reduction algorithm mentioned 
above to (p, bp ' (b~ - .::1)j(4p)). 

(2.8) Factoring forms into prime forms. Let (a, b, c) E CLl be such that 
gcd(a,.::1) = 1. From b2 == .::1 mod 4a it follows that each prime divisor p 
of a belongs to 9'Ll' Moreover, if t(p) denotes the number of factors p in a, 
then we have 

(a, b, c) = II.t;(P)t(P) , 

pia 

where e(p) E {I, -I} is such that b == e(p)bp mod 2p. Note that from a ::; 
JI.::1lj3 it follows that the number of primes p appearing in the product is less 
than log 1.::11 • 

(2.9) Smooth forms. Let y be a real number. A positive integer a is called 
y-smooth if a does not have any prime factors exceeding y. An element 
(a, b, c) E CLl is called y-smooth if a is y-smooth and gcd(a,.::1) = 1. The 
following result will be used to estimate the number of smooth forms. 

Lemma 2.10. Let a be an integer with 1 ::; a ::; t.JfL\l all of whose primefaetors 
belong to 9'Ll' Then there exist b, e E Z such that (a, b, c) E CLl . 
Proof. Since all prime factors of a belong to 9'Ll' there exists b E Z with 
b2 == .::1 mod 4a; note that gcd(a, b) = 1 for any such b. Adding multiples 
of 2a to b we can achieve that -a < b ::; a. The integer e = (b2 - .::1)j(4a) 
satisfies 4ae = b2 + 1.::11 2: 1.::11 2: 4a2 , and equality is possible only if b"= O. It 
follows that (2.1) and (2.2) hold, so (a, b, c) E CLl' This proves Lemma 2.10. 

(2.11) Class number formula. Let the character x: Z>o --? { -1 , 0, I} be defined 
by x(a) = (~) (see (2.6)). For a complex number s with Res> 0 we put 

L(s, X) = f: X(~) , 
a=l a 

which for Res> 1 equals TIp (l-x(P)p-S)-I, where p runs through the prime 
numbers. Then we have 

(2.12) #C = w.JfL\l ·L(1 X) 
Ll 271: " 

where w = 6 for .::1 = -3, w = 4 for .::1 = -4, and w = 2 for .::1 < -4. It 
was proved by Schur [31] that 

L(l, X) < t log 1.::11 + log log 1.::11 + 1. 

From this it follows that 

(2.13) 
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3. A CHAR.ACTER SUM ESTIMATE 

In this section we prove a character sum estimate for Dirichlet characters 
of algebraic number fields. This estimate is essentially known (see [17] and 
the references cited there), but we have not been able to find a statement in 
the literature that gives an explicit and effective dependence on all parameters 
involved. Since that is what we need, we present a proof in this section. 

By C we denote the field of complex numbers, and by C* its multiplicative 
group. For background on algebraic number theory we refer to [18]. 

Let K be an algebraic number field; i.e., a field extension of finite degree 
of the field Q of rational numbers. We write &' for the ring of integers of K 
and J for the group of fractional ideals of &'. By a cycle m of K we mean 
a formal product I1 pm(p) extending over all primes p of K, where the m(p) 
are nonnegative integers that are almost all 0, with m(p) = 0 for complex p 
and m(p) :::; 1 for real p. If m = I1 pm(p) is a cycle, then J(m) denotes the 
subgroup of J generated by the finite primes p for which m(p) = 0, and 
Pm c J(m) is the subgroup generated by the nonzero ideals of the form &'a, 
where a E &' is such that a == 1 mod pm(p) for each finite prime p, and a> 0 
under each embedding of K in the field of real numbers corresponding to a real 
prime p with m(p) = 1. The norm lJ1(m) of a cycle m = I1 pm(p) is defined to 
be the number I11J1(p)m(p) , where p in the latter product ranges only over the 
finite primes, and lJ1(p) denotes the norm of p. 

By a Dirichlet character of K we mean a pair consisting of a cycle m of K 
and a group homomorphism x:J(m) ---+ C* such that Pm is contained in the 
kernel of X. We shall, by abuse of language, simply refer to X as a Dirichlet 
character, and call m the modulus of X. A character is called principal if it 
maps all elements of J(m) to 1. We extend any Dirichlet character X to 
a map J ---+ C, also denoted by X, by putting x(a) = 0 whenever a E J, 
a ¢. J(m). The Dirichlet L-series L(s, X) of a Dirichlet character X is 
defined by 

'"' x(a) 
L(s, X) = ~ lJ1(a)S , 

the sum ranging over the set of nonzero ideals a of &' , and lJ1(a) denoting the 
norm of a. This series is absolutely convergent for all SEC with Re s > 1 . 
It can be analytically continued to a meromorphic function on C; it is entire 
if X is nonprincipal, and it has a single pole, which is simple, at s = 1 if X is 
principal. 

Let X and x' be Dirichlet characters of K with moduli m = I1 pm(p) and 
m' = I1pm'(p) , respectively. Then X is said to be induced by x' if m' divides 
m-that is, m' (p) :::; m(p) for all p-and X is the composition of the inclusion 
J(m) c J(m') and the map x':J(m') ---+ C* . A Dirichlet character is called 
primitive if it is not induced by any character different from itself. Each Dirich-
let character X is induced by exactly one primitive character, and the modulus 
of the latter is called the conductor of X. 

By class field theory, the primitive characters of an algebraic number field 
K can be identified with the one-dimensional continuous characters of the Ga-
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lois group of the algebraic closure of Kover K. The Dirichlet L-series of a 
primitive character X coincides with the Artin L-series of X when viewed as 
a character of the Galois group. These are the L-series that occur in [17]; so 
when we make use of [17], as we shall frequently do in this section, we have to 
restrict to primitive characters. In [16] this restriction is dropped; what is called 
"Heeke character" and "conductor" in that paper is called "Dirichlet character" 
and "modulus" here. 

For a nonzero ideal a of &', we define A(a) = 10g'Jl(p) if a = pk for some 
prime ideal p and some positive integer k , and A( a) = ° otherwise. The main 
result of this section is an estimate for the sum 

If/(X, X) = L x(a)A(a) , 
'.n(a)::;x 

the sum ranging over nonzero ideals a of &' . 
We introduce some additional notation. For an algebraic number field K, 

we write nK for the degree of Kover Q and 11K for the discriminant of K 
over Q. When X is a Dirichlet character of a number field K, with modulus 
m, then we write 

A(X) = II1KI'Jl(m), 
L(x, X) = 10gA(X) + nK log(x + 2), 

for any nonnegative real number x . 
Theorem 3.1. There are effectively computable positive constants c1 and c2 such 
that for all algebraic number fields K, all Dirichlet characters X of K and all 
real numbers x ;::: 2 one has 

I If/(x , X) - t5(X)x + L x P I 
pES(X) P 

::; c2xL(x, x)(logx)A(X)1/(2nK ) exp ( - V :~ log x ). 

Here we write t5(X) = 1 or ° according as X is principal or not, and SeX) 
denotes the set of real zeros of L(s, X) that exceed 1 - c1/L(O, X). 

Remark. The set SeX) in this theorem consists of the "Siegel zeros" of L(s, X), 
and it satisfies #S(X) ::; 1 (by Lemma 3.5). 

Proof. In this proof, we abbreviate L(x, X) to L(x). We first give the proof 
with the additional assumption that X is primitive. This assumption will be 
removed at the end. Our proof leans heavily on arguments from [17]. 

Let x ;::: 2. We begin by approximating If/(x, X) with the negative of the 
truncated inverse Mellin transform 

1 l Go+iT X S L' Ix(x,T)=-2· --L(s,x)ds, 
1tl Go-iT s 

where ao = 1 + (logx)-1 and T;::: 2, and the path of integration is a vertical 
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line segment. We have 

_ L' ( ) = ~ x(a)A(a) 
L s, X ~ !J1(a)S , 

where the sum is over nonzero ideals a of &' . The convergence is uniform for 
Res = 0"0 > I, so 

1 l(To+iT 1 X S 

I>/x, T) = --2 . Lx(a)A(a) --( )S ds. 
1C l a;tO (To-iT s!J1 a 

Applying Lemma 3.1 from [17] to each of the integrals, we find that 

IIx(x, T) + IfI(X, x)1 ::; ( L (! + 0"0T-1)A(a») + Ro(x, T), 
a, 'Jl(a)=x 

where the error term Ro(x, T) is given by [17, (3.9) (p. 424)]. The sum on 
the right, which corresponds to a term that is incorrectly given in [17, (3.8)], is 
easily seen to be O(nK logx) for x ~ 2, T ~ 2 and 0"0 as above. From the 
estimate [17, (3.17) (p. 428)] for Ro(x, T) we find 

(3.2) Ix(x, T) + lfI(x, X) = O( nK log X + n; x(logx)2) 

for x ~ 2, T ~ 2, which is our approximation of IfI(X, X) by -Ix (x , T) . 
To estimate Ix (x , T) we use the last displayed equation on p. 450 of [17]. 

Correcting a sign error, we find that 
x P 

Ix (x , T) + t5(X)x - L - + L 
p,IImpl<T p p,lpl<I/2 P (3.3) 

= 0 (L (x) + L ~T) x log x) 

for x ~ 2, T ~ 2, if T does not coincide with the absolute value of the 
imaginary part of any zero of L(s, X). The sum over p, here and below, 
extends over the zeros of L(s, X) for which 0 < Re p < 1, with the proper 
multiplicities. It is for the proof of (3.3), given in [17], that we need X to be 
primitive; this assumption is needed for the existence of the functional equation 
for L(s, X). 

We now quote two results about the zeros p of L(s, X) . 
Lemma 3.4. There is an effectively computable constant c3 such that for any 
Dirichlet character X of any algebraic number field, and any real number t, the 
number of zeros p of L(s, x) with 0 < Re p < 1, It - 1m pi ::; 1, counting 
multiplicities, is at most c3L (It I) . 
Proof. This is Lemma 5.4 of [17] in the case that X is primitive, which is the 
only case that we shall need; for the general case, see [16, Lemma 2.1]. 
Lemma 3.5. There is an effectively computable positive constant c1 < 1/3 with 
the following properties. For each algebraic number field K and each Dirichlet 
character X of K the Dirichlet L-function L(s, X) has at most one zero p with 

c1 c1 
Rep> 1 - L(O) , I Impl ::; L(O)" 
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If this zero exists, then it is real and simple and / is principal. Every other zero 
p of L(s, X) satisfies 

C1 
Rep ~ 1 - L(IImpl). 

Proof. This is Lemma 2.3 in [16]. 
We remark that 0 < c1 < 1/3 implies that 

c1 c1 c1 1 
L(T) ~ L(O) ~ log2 < 2 

for every real number T 2:: 0, a fact that we shall use several times. 
Let T 2:: 2. From Lemma 3.4, we have 

1 L: -I I = O(L(T) log T). 
p,lpl?:I/2 P 
IImpl<T 

Denote by .L:' a sum over zeros p of L(s, X) with 0 < Re p < 1 and p ft 
S(X) , where S(X) is as in Theorem 3.1. Combining the estimate just proved 
with the last assertion of Lemma 3.5 we find that 

p 
(3.6) L:' ~ = O(XI-C1/L(T)L(T) log T). 

p,lpl?:I/2 p 
IImpl<T 

By Lemma 3.4 there are at most c3L(O) zeros p of L(s, X) with Re p > 0 
and Ipl < !. For each of these zeros we have 

IxP - 11 = IfoP x\logx) dsl < Iplx l / 2 Iogx. 

Hence 

L: (-X p +.!.) = O(XI/2(lOgx)L(O)) = O(XI-CdL(T)L(T)). 
p,lpl<I/2 p P 

Combining this estimate with (3.6), we obtain 

L:' x P + L: .!. = O(xl-c1/L(T)L(T)logT). 
p,IImpl<T p p,lpl<1/2 P 

Putting this into (3.3) we conclude from (3.2) that if x, T are real numbers 
with 2 ~ T ~ x ,and T is not the absolute value of the imaginary part of any 
zero of L(s, X), then we have 

x P -I -c /L(T) (3.7) lfI(x, X) - J(X)x + L: - = O(xL(x)(logx)(T + x I )). 

pES(x) p 

Since the left side does not depend on T, we can now drop the restriction that 
T is not the absolute value of the imaginary part of any zero of L(s, X) . 

Let 

T = A(X)-I/(2nK ) exp (J ~~ logx) - 2. 
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If T < 2 , then we have 

A(x//(2nK ) exp ( - J ;~ logx) > ~. 

In this case the inequality in the theorem holds with a suitable c2 ' because 
lfI(x, X) = O(nKx) for x ~ 2. Assume now that T ~ 2. From 

L (T) = ! log A (X) + J C 1 n K log x 

and an easy calculation one sees that L(T) 10g(T + 2) :::; c1logx, and therefore 

(3.8) 

so that we may use this value of T in (3.7). But (3.8) shows that the right-hand 
side of (3.7) is O(2xL(x)(1ogx)/T) , which implies the theorem, in the case 
that X is primitive. 

In the general case, let x' be the primitive character that induces X , and m' 
the modulus of x' . Then we have 

lfI(x, X') = lfI(x, X) + L X' (a)A(a), 
'.n(a)::::;x 

with a ranging only over those ideals of &' that are powers of prime ideals p 
that divide m but not m'. Since each such p contributes [(log x) flog !J1(p)] 
terms to the sum, we find that 

lfI(x, X') - IfI(X, X) = o( LIogx) = O((1og!J1(m/m')) logx). 
p 

Now we apply (3.7) for the primitive character X' . Note that 

A(X')!J1(m/m') = A(X), L(x, X') + 10g!J1(m/m') = L(x, X), 

c5(X') = c5(X) , SeX') :J Sex) 

(cf. [16, (2.9) (p. 276)]). From Lemma 3.5 we see that 
p L ~ = O(x· x -cdoL(D,x)). 

PES(x') , p f!. Sex) p 

It follows that (3.7) also holds for X , for 2 :::; T :::; x, and we obtain the desired 
inequality in the same way. 

This proves Theorem 3.1. 

4. GENERATORS OF THE CLASS GROUP 

Let ~ be a negative discriminant. This section is devoted to an algorithm 
for finding a set of generators of eJl. We prove that it is likely to be successful 
provided that the set 9'Jl (see (2.7)) contains enough prime numbers up to a 
certain bound z (condition (4.3)). We write n(x; 9'Jl) = #{p E 9'Jl : p :::; x} 
for a positive real number x. 
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Theorem 4.1. There is an effectively computable positive constant c4 with the 
following property. Let .::1 be a negative discriminant and z a real number 
satisfying 

(4.2) 

(4.3) 

Further let H be a subgroup of Cd with H =1= Cd' Then we have 
z 

#{p E.9d : p ~ z, fp ¢. H} 2': 2010gz' 

Proof. We begin by recalling the connection between Cd and the ideal groups 
of the previous section. 

Let K be the field Q(~) and & the ring of integers of K . Denote by .::1K 
the discriminant of Kover Q. It is well known that there is a positive integer 
f with .::1 = .::1Kf2; namely, f is the index of Z[(.::1 + ~)/2] in &. Let m 
be the &-ideal f&; replacing m by its prime ideal factorization, we shall view 
m as a cycle of K. Let J(m), Pm be as in §3. There is a surjective group 
homomorphism J(m) -- Cd' the kernel of which is generated by the set of 
nonzero ideals of the form &0., where 0. E & is such that 0. == k mod f& for 
some k E Z with gcd(k, f) = 1; see [7, Proposition 7.22]. Note that Pm is 
contained in this kernel. Checking the definition of the map one finds that for 
each prime number p with (~) = 1 the two prime ideals of norm p in J(m) 
are sent to the elements fp± I of Cd' 

Let H be as in the theorem, and choose a nontrivial group homomorphism 
A: Cd --+ C* with He ked. Denote by X the composed map J(m) -- Cd --
c* . By the above, this is a nonprincipal Dirichlet character of K with modulus 
m. 

Now let z be as in the theorem, with c4 sufficiently large, as dictated by 
the proof. We compare two expressions for 'II(z, X). The first is found from 
Theorem 3.1, with x = z. We have 

A(X) = 1.::11, L(z, X) = log 1.::11 + 210g(z + 2), o(X) = 0, 

and from z > exp(c4 (log 3)2) it follows that the condition z 2': 2 of Theorem 
3.1 is satisfied for c4 sufficiently large. Hence we find 

I'II(Z,X)+ I: ~I 
pES(X) 

~ c2 z (log 1.::11 + 210g(z + 2)) (logz)I.::1I I/ 4 exp ( - vi 10gZ). 

Using that 1.::11 < exp(J(logz)/c4 ) one easily sees that the right-hand side is 
less than z /100, for c4 sufficiently large. Therefore 

zp z 
'II(z, X) = So - I: Ii' where ISol < 100' 

pES(X) 
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The second expression for IfI(Z, X) is obtained from its definition: 

IfI(Z, X) = L x(a)A(a) = s, + S2 + S3' 
'Jt(a):-:;z 

Here s, is the sum over those a for which ~(a) = pa for some prime number 
p ~ z'/2 and some integer a ~ 1, and S2' S3 are the sums over those prime 
ideals a = p whose norm is a prime number p satisfying z'/2 < p ~ Z and 
for which the image of p under the map J(m) --+ CA is or is not in H, 
respectively. 

For each prime number p ~ z'/2 , the ideals a of p-power norm contribute 
at most 2 log Z to s, ,so Is,1 ~ 2z'/2 10g z. Note that for c4 sufficiently large 
all primes p dividing ~ are subsumed in s, ' as we shall now assume. 

The norm of each a = p occurring in s3 belongs to the set 

Jf' = {p : p E .9A' z'/2 < P ~ Z, fp ¢. H}. 

Conversely, each p E Jf' gives rise to two p 's in s3' Therefore IS31 ~ 2· #Jf' . 
logz. 

By construction, we have X(P) = 1 for each a = p that appears in S2' so S2 

is a nonnegative real number. Each prime number p E.9A with Z'/2 < P ~ Z, 
P ¢. Jf' , gives rise to two p 's in S2' Using (4.3) we thus find 

s ~ 2 (_Z _ _ z'/2 - #Jf') .log(z'/2). 
2 610gz 

The two expressions for lfI(z, X) combine to show that 
zP 

S2 + L - = So - s, - S3' 
pES(x) P 

Using the inequalities for the Si' and noticing that the sum over S(X) is a 
nonnegative real number, we find that 

( _Z _ _ z'/2 _ #Jf') . log Z < ~ + 2z'/2 10g Z + 2· #Jf' . log z, 
610gz - 100 

For c4 sufficiently large, this implies that #Jf' ~ z/(20Iogz). From the defini-
tion of Jf' given above we see that this estimate proves Theorem 4.1. 

Algorithm 4.4. We describe an algorithm that, given a negative discriminant 
~ and a positive integer z, produces a set Jl of elements of CA that, under 
suitable hypotheses, is likely to generate CA (see Theorem 4.5). Initially, Jl is 
empty. 

Draw a random positive integer p with p ~ Z , from a uniform distribution. 
Test whether p belongs to .9.1' as in (2.7). If it does, determine the prime 
form fp E CA as in (2.7), and add it to the set Jl . 

Repeat the above 60(log I~I) log Z times (rounded up to an integer). This 
completes the description of the algorithm. 

Remark. We will apply this algorithm with logz = O((logl~1)2) (cf. (4.2)). 



A RIGOROUS TIME BOUND FOR FACTORING INTEGERS 497 

Theorem 4.5. If z satisfies (4.2), then the expected running time of Algorithm 4.4 
is (1og z)O(logloglogz) , and the set Jf determined by the algorithm satisfies #Jf < 
2 + 60(log I~I) log z. If in addition (4.3) is satisfied, then the set Jf determined 
by the algorithm generates Ct,. with probability at least!. 
Proof. The running time estimate is straightforward from (2.7), and the upper 
bound for #Jf is obvious. 

To estimate the success probability of the algorithm, let us first consider the 
variant of the algorithm that does not stop after having processed 60(1ogl~1 )log z 
values of p. Let, at each stage of that algorithm, H denote the subgroup of Ct,. 
generated by Jf; so initially H = {1t,.}. As long as H is different from Ct,., 
the next p that is drawn will enlarge H with probability at least 1/ (20 log z) , 
by Theorem 4.1. Hence the expected number of p 's that one needs to draw 
until H changes is at most 20 log z. Adding up expectations, one finds that 
the expected number of p 's that one needs to draw until H either becomes 
equal to Ct,. or has changed k times is at most 20k log z , for any nonnegative 
integer k. 

From #Ct,. < I~I (see (2.3» it follows that the longest strictly increasing 
chain of proper subgroups of C t,. has length at most [(log I~I) / log 2]. Thus the 
expected number of p 's that one needs to draw until H = Ct,. is at most 

20(1og z)(1og 1~I)/log2 < 30(1og z) log I~I. 

We conclude that drawing twice as many p 's-as the actual algorithm does-
will guarantee that in the end H equals Ct,. with probability at least! . 

This proves Theorem 4.5. 

Remark. One obtains a more efficient algorithm, running in expected time 
(logz)O(I) , by omitting the Jacobi sum primality test in (2.7), and discarding p 
if the construction of fp is unsuccessful within a reasonable amount of time. 

Remark. We know of no efficient way to test whether or not the set Jf de-
termined by the algorithm actually generates Ct,.. If it does not, then a later 
algorithm that depends on 4.4 may fail; this provides an indirect test. 

Remark. To achieve success probability at least 1 - rk , for a positive integer 
k , it suffices to investigate k times as many values of p. To prove this, apply 
Theorem 4.5 to k successive independent runs of the algorithm. 

5. RANDOM FORMS 

In the present section we prove that, given a set Jf of generators of a class 
group Ct,., we can find random elements of Ct,. with an approximately uniform 
distribution. 

Lemma 5.1. Let m, h, d, b be positive integers with d ~ b, and A c Zm a 
subgroup of index h with (dZ)m cA. Further let ~ c Zm be a coset of A. 
Then 

m bm 
#( {I , 2, ... , b} n~) = h exp E 
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for some real number f satisfying 

I I min{h - 1, m(d - I)} 
f ::; b-d+l . 

Proof. By Lemma (4.1) in [20] and its proof, there are positive integers hI' 
... , hm dividing d for which n:1 hi = hand 

rrm( h.-I) h m rrm( h.-I) 1 - T ::; bm . #( {I , 2, . .. , b} n~)::; 1 + T . 
~I ~I 

Combining this with the inequalities 10g(1 + x) ::; x (for x 2: 0) and 
Ilog(1 - x)1 = 10g(1 + x/(1 - x)) ::; x/(1 - x) (for 0::; x < 1) we obtain 

m ( h. _ 1) 1 m 
Ifl::;L b-1h.+l ::;b_d+l L (h i -l), 

i=1 I i=1 

and the lemma follows easily. 
Theorem 5.2. Let Ll be a negative discriminant, Jl a set of generators of Cll , 

and f E Cll . Then the number of vectors r = (r(g))gE~ in {I, 2, ... , ILlI}~ 
satisfying ngE~ gr(g) = f equals 

I LlI#~ --·expf #Cll 

for some real number f satisfying 
#Cll 

If I < ILlI- #Cll < 1. 

Proof. Let L be the kernel of the group homomorphism rp: Z~ -+ Cll sending 
(r(g))gE~ to ngE~ gr(g). By hypothesis, this map is surjective. The theorem 
follows from the lemma applied to m = #Jl, h = d = #Cll , b = ILlI, A = L 
and ~ = rp -I f; note that d < !b by (2.3). 

In the following lemma, let Ll and Jl be as in Theorem 5.2, and let L = ker rp 
be as in the proof just given. We remark that there is a group isomorphism 

(5.3) ((2Z)~ n L)/2L -+ Cll ,2 

sending r to rp(!r); here Cll 2 is as in (2.4). 

Lemma 5.4. With the above notation, let .91 C Z~ be a coset of 2L and ~ c Z~ 
the coset of (2Z)~ n L containing .91. Then 

# ( {I , 2, . .. , ILlI} ~ n.9l) 1 
~ =~.expf 

#({1, 2, ... ,ILlI} n~) 1l,2 

for some real number f satisfying 
4·#Jl·#C 

If I < ILlI- 2#C:· 
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Proof. One proves this by applying Lemma 5.1 twice, once with A = 2L and 
once with A = (2Z{ n L, and both times with b = 1.11 and d = 2· #Ce,; note 
that d < b by (2.3). By (5.3), the index of 2L in Z:§' is #Ce, 2 times as large 
as the index of (2Z):§' n L in Z:§' . This proves Lemma 5.4. ' 

(5.5) Remark. We shall apply Lemma 5.4 with #:§ = O((log 1.11/) (see Theo-
rem 4.5). From (2.13) we then see that lEI S 10g2 if 1.11 is sufficiently large. 

6. SMOOTH NUMBERS WITH RESTRICTED PRIME FACTORS 

For positive real numbers v, x, y, and any set of prime numbers ,9l, we 
let ",(x, y;,9l) denote the number of positive integers S x all of whose prime 
factors are at most y and belong to ,9l , and 

n(x; ,9l) = #{p : p E ,9l, P S x} , 
1 

S(v, y;,9l) = L P 
PE9", v<p-:S;y 

This section is devoted to the proof of the following theorem. 

Theorem 6.1. There is an effectively computable positive constant c5 with the 
following property. Let ,9l be any set of prime numbers, 11 a real number with 
o S 11 S 1, and x, y real numbers satisfying 

(6.2) x 2: c5 , 2 S Y S exp((10gx//2 (loglogx)rJ). 
Let 

(6.3) logx 
u=--, logy 

I-lflogu 
V =y , 

(logu)-~ 
W =V . 

Suppose that there are real numbers a 2: 1, P 2: 1 for which 
1 w 

(6.4) S(v, y; ,9l) 2: -1-' n(w; ,9l) 2: Pl' a ogu ogw 
Then we have 
",(x, y; ,9l) 2: x.exp( -u(log u+ 12(10g u)rJ +loglog u+2(log u)rJ-1logP +loga)). 

Proof. From (6.2) we have logu 2: poglogx -11logloglogx. We let c5 be so 
large that this implies 
(6.5) logu 2: ~loglogx 2: 3. 

Let L denote the set of integers that are the product of [u] not necessarily 
distinct primes p E,9l with v < p S y. Since w S v , we have 

(6.6) ",(x, y; ,9l) 2: L ",(x/m, w; ,9l). 

Let mEL. We estimate ",(x/m, w;,9l) from below. From v u- 1 < m S 
yu = x we have 

(6.7) 1 < xx u/((logu)-l)+l 2uflogu 
--<--I=V <v, m v u-
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the last inequality being a consequence of (6.5). Let l(m) = (log ~)flogw. 
From (6.7) we have 

(6.8) o ~ l(m) < 2u(log U)'1-I. 

With (6.5) this gives 

(6.9) l(m) loglog(xjm) < 2u(10gu)'1-lloglogx ~ 5u(10gu)'1. 

Assume, for the moment, that /(m) ~ 1. One obtains a lower bound for 
I{f(xjm, w;.9) by considering all products of [/(m)] not necessarily distinct 
primes P E.9 with P ~ w. Since no integer has more than [/(m)]! represen-
tations as such a product, we find 

n(w' .9)[I(m)) 
I{f(xjm, w; .9) ~ d(m)]! 

~ n(w; .9),(m)-I I (m)-I(m) 

1 ( w )l(m) 
~ w p/(m) logw 

x ( 1 )l(m) 
= mw p log(xjm) 

= ~ exp( -l(m)(loglog(xjm) + 10gP»), 
mw 

where in the last inequality we use that n(w;.9) ~ w. Combining this with 
(6.8) and (6.9) we obtain 

(6.10) I{f(x/m, w; .9) > ~ exp( -5u(10g u)'1 - 2u(log u)'1- l log P) , 
mw 

which is our lower bound for I{f(xjm, w;.9). It is also valid if l(m) < 1, 
since in that case I{f(xjm, w;.9) ~ 1 > xj(mw) . 

Since no element of L has more than [u]! representations as a product of 
[u] primes P E .9, v < P ~ Y , we have 

'" m1 > 1 S( .9)[U) 1 ( 1 )[U) 
W [u]! v,y; ~[u]!alogu 

mEL 

> exp( -u(log u + log log u + log a». 
Using this and (6.10) in (6.6), we have 

(6.11) I{f(x, y; .9) > ~ exp( -u(log u + 5 (log u)'1 + log log u 
w 

+ 2(10gu)'1- l log p + loga». 

It remains to estimate w. From (6.2) and (6.5) we see that 

logy 1/2 (lOg log X) '1 5 1/2 logw ~ ~ (logx) ~ -(logx) (log u)'1 log u 2 

~ ~u(loglogx)'1 ~ 21u(10gu)'1. 

Putting this into (6.11) we obtain the theorem. 
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7. THE ELLIPTIC CURVE SMOOTHNESS TEST 

The elliptic curve method, as described in [24], is a probabilistic algorithm 
that, given four integers a, y, w, h exceeding 1, attempts to find a non-
trivial divisor of a. The number y may be thought of as an upper bound for 
the divisor that one is trying to find, h is an upper bound for the number of 
elliptic curves that one tries, and w is proportional to the time spent on a single 
elliptic curve. The following theorem summarizes the results that we shall need 
about the elliptic curve method. 

Let lfIo(x, w) denote the number of w-smooth integers in the interval 
(x - v'x, x + v'x) . 
Theorem 7.1. There is an effectively computable constant c6 with 0 < c6 < 1 
such that the following holds. Let a, y, w, h be integers exceeding 1 such that 
a has at least two distinct prime factors, and such that the least prime factor p of 
a satisfies 3 < p ::; y. Suppose further that lfIo(p, w) ~ 3. Then the probability 
that the elliptic curve method, given a, y, w, h, succeeds in finding a nontrivial 
factor of a, is at least 

1 _ c:lflo(P, w)/(y'Plogy) 

The running time of the method is O(hw(logy)(loga)2). 
Proof. The first assertion is [24, Corollary (2.8)], up to a harmless change in 
the definition of lfIo(p, w). For the running time, see [24, (2.9)]. This proves 
Theorem 7.1. 

Theorem 7.1 asserts that the elliptic curve method will probably be effective 
in splitting a if the least prime factor p of a is such that there are many 
w-smooth numbers in (p - ,fP, p + ,fP). Let Y denote the set of primes p 
for which 

lfIo(p, exp(logp)6/7)) > vp.exp(-t(logp)If7loglogp) ~ 3. 
For a positive real number y, let a recognizable y-smooth number be a positive 
integer all of whose prime factors are at most y and belong to Y . 
Algorithm 7.2. Given integers a and y, with a > 0, y > 1, this algorithm 
attempts to factor a completely into primes. It is designed to be very likely to 
succeed if a is a recognizable y-smooth number. 

Step 1. Remove all factors 2 and 3 from a, and replace a by the quotient. 
If now a = 1 , the algorithm terminates at this point. 

Step 2. Find the largest integer k such that a = m k for some positive integer 
m (cf. [22, §2]), and replace a by m. 

Step 3. If a ::; y, test a for primality using the Jacobi sum test [1]. If a is 
composite or a > y , run the elliptic curve method with parameters a, y, w, 
h , where wand h are the numbers 

exp(logy)6/7) , 

(1 - c6 ) -I (logy)(loga) exp( t(logy) 1f7loglogy) , 
rounded down to integers, with c6 as in Theorem 7.1. When a proper splitting 
of a is achieved, perform Steps 2 and 3 recursively with a replaced by each 
factor that is discovered. This completes the description of the algorithm. 
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Theorem 7.3. If a is a recognizable y-smooth number, then the probability that 
Algorithm 7.2factors a completely into primes is at least 1- (loga)ja. Further, 
the running time of the algorithm is O((log(a + 1»4. exp(2(logy)6/7») . 
Proof. This is a straightforward consequence of Theorem 7.1 and the definition 
of .9 . For a fuller discussion of a similar result, see [28], in particular Theorem 
2.1 in that paper. This proves Theorem 7.3. 

The following result provides an upper bound for the number of primes not 
in .9 . Denote by .9' the set of primes that are not in .9 , and let n(x; .9') 
be the number of primes in .9' up to x, as in §6. 

Theorem 7.4. There is an effectively computable constant c7 such that for all 
real numbers x 2: 2 we have 

n(x; .9') ::; c7x· eXP(-!(logx)I/6). 

Proof. This follows from Theorem B' in [28], which in turn relies heavily on 
the work of Friedlander and Lagarias [12]. The fact that c7 is effectively com-
putable was not stated in [28; 12], but follows from the proof in [12] and the 
effective computability of the constants in the Vinogradov-Korobov zero-free 
region a> l-c(logltl)-2/3(loglogltl)-I/3, It I 2: to for the Riemann zeta func-
tion C(a + it), see [11, Theoreme 11.2 (p. 423)]. This proves Theorem 7.4. 

The notation S(v, y; .9') in the following result was introduced in §6. 

Corollary 7.5. For any two real numbers v, y with 2::; v < y we have 

S(v, y; .9') < c7 exp( -!(log V)I/6) . (1 + log(y jv») , 

with c7 as in Theorem 7.4. 
Proof. Using partial summation and Theorem 7.4 we find 

, 1 ( , ') /,y 1 (' , ) S(v, y; .9 ) = - n(y;.9) - n(v;.9) + "2 n(t;.9) - n(v; .9) dt 
y v t 

< c7exp(-!(logv)I/6). (1 + Ivy +dt) 
= c7exp(-!(logv)I/6). (1 +log(yjv»). 

This proves Corollary 7.5. 

Remark. It is clear that combining Theorem 6.1 with Theorem 7.4 and Corollary 
7.5, one can obtain for certain ranges of x and y the lower bound estimate 
lJI(x,y;.9) 2: x.exp(-(1 +o(I»ulogu) for u = (logx)flogy --+ 00, where 
lJI(x, y;.9) is the number of recognizable y-smooth integers up to x. It is 
known ([5]) that lJI(x, y) = X· exp(-(1 + o(1»ulogu) , in these ranges of x 
and y, where lJI(x, y) is the number of all y-smooth integers up to x. Thus 
in some sense there are essentially just as many recognizable y-smooth numbers 
in the ranges we consider as there are y-smooth numbers. 
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8. RECOGNIZABLE SMOOTH FORMS 

If d is a negative discriminant and y is a positivI;; real number, then by a 
recognizable y-smooth form in CIl we mean a form (a, b, c) E CIl for which 
a is a recognizable y-smooth number (see §7) with gcd(a, d) = 1. 

In this section we prove that if the set 9'1l defined in (2.7) has sufficiently 
many elements in each of two particular intervals (condition (8.2)), then CIl 
has a fair proportion of recognizable y-smooth elements. 

The role of the additional parameter d in Theorem 8.1 will become clear in 
§ 9. For the moment, the reader may think of d = 1 , so that x = ! M. The 
notation n(x; 9'), S(v, y; 9') is from §6. 

Theorem S.l. There are effectively computable positive constants cs ' c9 with the 
following property. Let d be a negative discriminant, and let d, x, y be real 
numbers satisfying 

x = h/ldlld, 1 ::; d ::; 12, x> c9 ' 

exp(csloglogx) ::; y ::; exp((10gx)1/2(10glogx)1/2). 

Suppose that the numbers 

satisfy 

(8.2) 

logx 
u=--logy' 

l-lflogu v=y , 

1 
S(v, y; 9'1l) 2:: -61 ' ogu 

(logU)-1/2 
W =v 

Then the number of recognizable y-smooth forms in C Il is at least 

#CIl • exp(-u(logu + 13(1ogU)1/2)). 

Proof. We begin by applying Theorem 6.1, with 9' = 9'1l nY and 11 = !. We 
take c9 2:: cs ' with cs as in Theorem 6.1, and we assume that (6.5) holds. The 
lower bound on y implies that 

w = exp ((1- -1_1_)(10gU)-1/2 l0gy) 2:: exp (ics 10glOgl;2) 2:: exp(ics). 
ogu (logu) 

Combining this with Theorem 7.4 we see that 
, w 

n(w; Y) ::; 42logw 

if Cs is taken large enough. With (8.2) this gives 
w 

n(w; 9'1l nY) 2:: 71 ' ogw 

which is the second condition of (6.4), with P = 7. 
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Next we apply Corollary 7.5. We have 
1 (/ logy csloglogx 
og y v) = logu > log log x = cs ' 

logv = (1- lo~u)logy:;::: ~logy, 

using (6.5), so from Corollary 7.5 we obtain 
• eLl' ( 1 2 1/6) (-I ) logy 1 S(v,y,J ):::;c7 exp -2(3 logy) . Cs +1 ·-1-:::; 421 ' ogu ogu 

the last inequality by increasing c9 ' if necessary. With (8.2) this yields 
1 

S(V,y;9'od n9):;::: -71 ' ogu 
which is the first condition of (6.4), with a = 7. 

Theorem 6.1 now implies that 'I'(x, y ; 9'od n 9) is at least 

x . exp( -u(log u + 12(10g U)I/2 + log log u + 2 (log u) -1/2 log 7 + log 7)) 

:;::: x . exp( -u(log u + 21 (log U)I/2)) , 

where again we may have to increase c9 • From x :::; ! M and Lemma 2.10 
it follows that this is also a lower bound for the number of recognizable y-
smooth forms in Cod. To prove the theorem, it remains to find an upper bound 
for #Cod . From (2.13) and Idl :::; 48x2 we obtain 

#Cod < J48. x .10g(48x2) 

= x· exp(10glog(48x2) + ! 10g48) 

:::; x· exp (!u(lOgU)I/2) , 

by (6.5). This proves Theorem 8.1. 
Remark. If the generalized Riemann hypothesis is correct, then (8.2) is satisfied 
if c9 is sufficiently large; cf. [32, Theorem 5.3] (in which one should read ! Li(x) 
for Li(x)). So in that case there are sufficiently many y-smooth forms in Cod. 
The corresponding point was not satisfactorily dealt with in [20, eq. (2.10)]. 
To correct this, one can either apply Theorem 8.1, or, as the author of [20] 
communicated to us, follow the proof of [32, Theorem 5.2] to estimate the 
number of smooth integers built up from the primes in 9'od n 9; this requires 
Theorem 7.4 in addition to [32, Theorem 5.3]. 

9. THE CHOICE OF A MULTIPLIER 

In this section we show that the conditions (4.3) and (8.2) of Theorems 4.1 
and 8.1 can be achieved by means of a small multiplier. 
Theorem 9.1. There is an effectively computable positive constant clO with the 
following property. Let n be an odd integer with n > 1 , and let u, v, w, y, 
z be real numbers satisfoing 

w :;::: c lO logn, 
(9.2) 1 logy 1 0 og-- > -- > logv - logu ' log v :;::: C 10 log u , v:;:::logn. 
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Further let [g = {3, 4, 7, 8} if n == 1 mod 4 and [g = {I, 5, 8, 12} if n == 
3 mod 4. Then there exists an integer d E [g for which the number il = -dn 
is a negative discriminant satisfying the conditions 

z 
(9.3) n(z; 9'~) 2: -61 ' ogz 

w 
(9.4) n(w;9'~)2:61 ' ogw 

1 
(9.5) S(v, y; 9'~) 2: -61-. ogu 

Proof. For each d E [g, the number il = -dn is a negative discriminant. It 
will thus suffice to show that each of the three conditions (9.3), (9.4), (9.5) is 
violated by at most one d E [g . 

Let d l , d2 E g be two distinct elements of [g, put ill = -dl n, il2 = 
-d2n, and 9' = {p : p is prime, (¥) = -I}. Writing ./Y for the set of prime 
divisors of n, we have from the multiplicativity of the Kronecker symbol 

9' c 9'~ u 9'~ u./Y. 
1 2 

It follows that for all x we have 

n(x; 9'~ ) + n(x; 9'~ ) 2: n(x; 9') - #./Y. 
1 2 

We have #./Y = O((logn)jloglogn), so for clO sufficiently large we have #./Y < 
/2xjlogx whenever x 2: clOlogn. Also, because d l d2 is not a square, we have 
n(x; 9') '" !xjlogx for x -+ 00, so n(x; 9') 2: t2xjlogx for all x beyond 
some effectively computable constant; this constant is absolute because [g is 
finite (see [8, Chapter 20]). Hence, increasing clO if necessary, we have 

x 
n(x; 9'~ ) + n(x ; 9'~ ) 2: -31--

1 2 ogx 
whenever x > clO log n. Applying this to x = z we conclude that ill and il2 
cannot both violate (9.3), and likewise for (9.4). 

For (9.5), we have 

S(v, y; 9'~ ) + S(v, y; 9'~ ) 2: S(v, y; 9') - S(v, y; ./Y). 
1 2 

Since n has at most (log n) / log v prime divisors > v , we have 
logn 

S(v,y;'/y)<-l-:S 1 . v ogv clO ogu 

Further, since d l d2 is not a square, we have 

S(v, y; 9') = !log logy - ! log log v + O(ljlogv), 

with an effectively computable, absolute O-constant (again, see [8]). It follows 
that, for clO sufficiently large, we have 

1 1 1 
S(v,y;9'~ )+S(v,y;9'~) 2: -21 - -61 = -31-' 

1 2 og U og u og u 
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which shows that Lll and Ll2 cannot both violate (9.5). This concludes the 
proof of Theorem 9.1. 
Remark. We shall apply Theorem 9.1 with u, v, W, Y as in Theorem 8.1, 
with x = 1Vn, and z as in (4.2). One verifies in a straightforward manner 
that these numbers satisfy (9.2) if 

y ~ exp(cll (loglogx)3/2) 
for some absolute constant cll . 

10. THE FACTORING ALGORITHM 

Algorithm 10.1. Given an odd positive integer n, this algorithm attempts to 
find a nontrivial factorization of n. 

Step 1. Choose a multiplier. Let g = {3, 4, 7, 8} if n == 1 mod 4 and 
g = {I, 5, 8, 12} if n == 3mod4. Select d E g at random, with the 
uniform distribution. Put Ll = -dn. (Note that Ll is a negative discriminant, 
in the sense of §2.) , 

Step 2. Find a generating set. Run Algorithm 4.4 on Ll and z, where z is the 
number exp(c4 (log(12n))2), rounded up to an integer, with c4 as in Theorem 
4.1. This yields a set J1 of elements of C",. (Note that #J1 = O((log ILlI)\) 

Step 3. Construct thefactor base. Let y be the number L x [1, 1V2], rounded 
down to an integer, where x = 1 Vn. Find the prime numbers q :S y with 
(~) = 1. We write (ff for the set of these q. Construct the prime forms fq for 
q E (ff, as in (2.7). (Note that #(ff:S y = L n [1, 1 + 0(1)] for n ----+ 00.) 

Step 4. Collect relations. In this step, one attempts to produce a sequence of 
#J1 + #(ff + 1 relations between J1 and {Iq : q E (ff}. Such a relation is, by 
definition, an element (r, t) E Z? x Ziff satisfying 

(10.2) (II gr(g)) . (II ;:(q)) = 1 '" ' 
gE? qEiff 

where r = (r(g))gE?' t = (t(q))qEiff' Initially, the sequence of relations is 
empty. 

Draw a random vector r = (r(g))gE,'q' E {I, 2, ... ,ILlI}?, with the uni-
form distribution. Calculate TIgE? gr(g); let it be (a, b, c). Test whether 
gcd(a, Ll) = 1 , and if so, attempt to factor a into prime numbers :S y using 
Algorithm 7.2. If this attempt is successful, use the method of (2.8) to find a 
vector t = (t( q) ) qEiff E Ziff such that 

(a, b, c) = II fq-t(q). 
qEiff 

Then (r, t) E Z? x Z12' is clearly a relation between J1 and {Iq : q E (ff}; it is 
the next term in the sequence of relations. 

Repeat the above until a sequence of #J1 + #(ff + 1 relations has been found, 
or until at least 

2(#J1 + #(ff + 1) . exp( u(log u + 13(log u) 1/2) + 2) 
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(rounded up to an integer) vectors r have been drawn and inspected, whatever 
happens first; here u = (log(! JIl)) flog y is as in Theorem 8.1. (Thus at most 
L n [!, 1 + 0(1)] vectors r are processed, for n -+ 00.) 

If in this way fewer than #JJ +#& + 1 relations are found, then Algorithm 10.1 
terminates unsuccessfully at this point. Suppose now that Step 4 is successful, 
and denote by (ri' ti) the ith relation that is found, for 1 :::; i :::; #JJ + #& + I . 

Step 5. Solve the linear system. For 1 :::; i :::; #JJ + #& + 1, let Vi E Ff x ~ 
be the vector that one obtains by reducing the coordinates of (ri' t) modulo 
2; here we put F 2 = Z/2Z. Use the coordinate recurrence method [34; 21, 
§2.19] to find a nonempty subset f c {I, 2, . .. ,#JJ + #& + I} for which 
L:iEf Vi = o. (Note that such a f exists, since #JJ +#& + 1 > dimF2 (Ff x ~).) 

Step 6. Construct an ambiguous form. Compute the components s(g), u(q) 
( g E JJ, q E & ) of the vector ! L:iEf(ri ' ti) E Z:9' x ztff . Compute the form 

f = (ITl(g))· (ITI;(q))· 
gE:9' qEtff 

This is an ambiguous form. Calculate the corresponding factorization of Ll (see 
(2.4)) and, by taking a gcd, the resulting factorization of n. This factorization 
is the output of the algorithm. This completes the description of Algorithm 
10.1. 

Remark. The fact that, in the last step, ! L:iEf(ri , ti) is an integer vector 
follows from L:iEf Vi = o. To see that f is ambiguous note that 

l = IT ((IT g',(g)). (IT ~i(q))) = Ill' 
iEf gE:9' qEtff 

by (10.2). 

Remark. The factorization of n obtained in Step 6 is a coprime factorization 
of n, see (2.4). It may, however, be the trivial factorization 1· n . 
Theorem 10.3. The expected running time of Algorithm 10.1 is at most 
L n[!, 1 + 0(1)] for n -+ 00. There is an effectively computable constant C12 ' 
such that if n is an odd number and n > C12 ' then the probability that Algorithm 
10.1 succeeds in finding a nontrivial factorization of n is at least l2 (1 - 2 -h+ 1) , 
where h is the number of distinct prime factors of n ; this is at least i4 if n is 
not a power of a prime number. 
Proof. We first estimate the time; o( 1) will always be for n -+ 00. Steps 1 and 
2 take only time (log n)O(10g log log n) , by Theorem 4.5, and Step 3 takes expected 
time at most yl+0(1) = L n [!, ! + 0(1)]. Processing a single vector r in Step 
4 can be done in expected time (log ILllf(l) exp(2(logy)6/7) , by Theorem 7.3. 
This is absorbed in the upper bound of L n[!, 1 + 0(1)] for the number of 
vectors r to be considered in Step 4. In Step 5, we solve a system of m linear 
equations in m + 1 variables over F2 , where m :::; L n [!, ! + 0(1)]. From 
(2.8) it follows that each of the vectors Vi has less than #JJ + log ILlI nonzero 
coordinates. Therefore the number of nonzero coefficients in the system of 
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linear equations is at most L n [!-, !- +0(1)]. Thus from [34] it follows that Step 
5 takes expected time at most L n [!-, 1 + 0(1)]. Finally, Step 6 takes time at 
most L n[!-, !- + 0(1)]. This concludes the running time analysis. 

Next we estimate the probability that a nontrivial factorization is obtained. 
We shall suppose that n ~ C12 ' with c12 sufficiently large, as dictated by the 
proof. 

By Theorem 9.1, the discriminant d = -dn constructed in Step 1 satisfies 
(9.3), (9.4) and (9.5) with probability at least *; and if this is the case, then 
by Theorem 4.5 the set #Jf' found in Step 2 generates Ca with probability at 
least !-. 

Suppose now that d satisfies (9.3), (9.4) and (9.5), and that Jf' generates 
Ca' We first show that the conditional probability that Step 4 of the algorithm 
is successful is at least !-. First consider the variant of Step 4 that stops only 
when #Jf' + #c2' + 1 relations have been found. From Theorem 8.1 and Theorem 
5.2 it follows that whenever a vector r is drawn, the form (a, b, c) computed 
by the algorithm is a recognizable y-smooth form with probability at least 

exp(-u(logu + 13(logU)I/2) - 1). 

If (a, b, c) is a recognizable y-smooth form, then the probability that Algo-
rithm 7.2 factors a into primes ::; y is at least 1 - (log a) / a > exp( -1). It 
follows that a random r gives a relation with probability at least 

exp( -u(log u + 13(log u) 1/2) - 2) , 

so that the expected number of vectors r that one needs to draw until one has 
#Jf' + #c2' + 1 relations is at most 

(#Jf' + #c2' + 1)· exp(u(logu + 13(logU)I/2) + 2). 

Hence if one draws twice as many vectors r, one is successful with probability 
at least !-. This implies that the actual Step 4 has success probability at least 
!- ' as asserted. 

We now restrict attention to those runs of the algorithm for which d assumes 
a given value satisfying (9.3), (9.4) and (9.5), the set Jf' is a given set of less 
than 2 + 60(log Idl) log z generators of Ca (see Theorem 4.5), and Step 4 is 
successful. It will suffice to prove that the conditional probability of obtaining 
a nontrivial factorization of n is at least !-(1 - rh+I). We do this by an 
argument that is similar to the one presented in [20]. 

The number n has 2h- 1 coprime factorizations, and only one of them is 
trivial. Hence Theorem 2.5 implies that the number of ambiguous forms that 
yield a nontrivial factorization of n is (1 - 2-h+ l ) • #Ca 2' Thus it suffices to 
prove that the ambiguous form f constructed in Step 6 is equal to a given am-
biguous form with probability at least !-. (#Ca 2)-1 . Note that f is completely 
determined by f and by the r j , since each tj is determined by r j • 

Put J = {I , 2, . .. , #Jf' + #c2' + I} , and let f be any nonempty subset of 
J. The probability that f is the subset found by the coordinate recurrence 
method in Step 5 depends only on the vectors v j ' which in turn depend only 
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on the vectors ti and the co sets of the vectors 'i modulo (2zl. Further, ti 
depends only on the coset of 'i modulo the lattice L (defined in §5) of vectors 
, E z~ with ngE~ gr(g) = Ill' We conclude that the probability of finding a 
particular f in Step 5 depends only on the cosets of the vectors 'i modulo 
(2Z)~ nL. 

Consider a pair consisting of a sequence of vectors ('i)iEJ and a nonempty 
subset f c J , and suppose that this pair can be produced by the algorithm. 
One such pair is called equivalent to another such pair (,;) , f' if, first of 
all, we have f = f' ; and, second, if j denotes the smallest element of f, 
then 'i = ,; for all i E J, i =I j; and, finally, 'j and ,~ lie in the same 
coset, ~ (say), of Z~ modulo (2Z)~ n L. It is obvious that this is indeed an 
equivalence relation, and from what we said in the previous paragraph it follows 
that any two equivalent pairs have the same probability of being produced by 
the algorithm. Hence we may now fix f and the vectors 'i for i =I j , as well 
as the coset ~ of Z~ modulo (2Z)~ n L. It is to be proved that the fraction 
of elements 'j E ~ n {I , 2, . .. , 1L11} ~ that give rise to a given ambiguous form 
is at least! . (#CLl 2)-1 . 

Note that one of the terms in the sum LiE)"('i' ti ) computed in Step 6 is 
equal to ('j' t). From this it follows that the ambiguous form f is equal to a 
given ambiguous form if and only if 'j belongs to a certain coset .9¥' modulo 
2L contained in ~ . Thus the fraction to be estimated is 

#(.9¥' n {I, 2, ... , 1L11}~) 
#(~ n {I, 2, ... , 1L11}~)' 

By Lemma 5.4 this is at least !,(#CLl 2)-1 ,if el2 is sufficiently large (cf. (5.5)), 
as required. ' 

The last assertion of the theorem is obvious. This concludes the proof of 
Theorem 10.3. 

Rema,k. It can be shown that the expected running time of Algorithm 10.1 is 
actually equal to L n [!, 1 +o( 1)], for n ---+ 00 , and that one cannot improve this 
by choosing the parameter y differently. The storage needed by the algorithm 
is at most L n [!, ! + 0(1)], for n ---+ 00. This follows easily from [34]. 

To obtain an algorithm for the complete prime factorization of positive in-
tegers it now suffices to add a few embellishments to Algorithm 10.1. In §7 
we saw the elliptic curve method similarly transformed into a smoothness test 
(Algorithm 7.2). 

Algorithm 10.4. This is an algorithm that factors a given positive integer n into 
prime factors. 

Step 1. Remove all factors 2 from n, and replace n by the quotient. Stop 
if n = 1. 

Step 2. Find the largest integer k such that n = m k for some positive integer 
m , and replace n by m. 
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Step 3. If n :::; cl2 , with Cl2 as in Theorem 10.3, factor n into primes by 
trial division. 

Step 4. If n > C12 ' first test n for primality using the Jacobi sum test [1]. 
Stop if n is prime. Next suppose that n is composite. Apply Algorithm 10.1 
repeatedly, until it finds a nontrivial factorization of n. Apply Steps 2, 3 and 4 
recursively to both factors of n that are found. This completes the description 
of the algorithm. 

Theorem 10.5. Algorithm 10.4 completely factors any positive integer n into 
prime factors in expected time at most Ln [!, 1 + o( 1)], for n -+ 00 . 

Proof. The running time estimate for Steps 1, 2 and 3 is left to the reader. It 
is easy to see that the total number of divisors of n to which Steps 2, 3 and 4 
are applied is at most the number of distinct odd prime factors of n, which is 
at most logn. In Step 4, the primality test takes time (logn)o(lOgloglogn) (for 
n > ee), by [1]. Algorithm 10.1 is applied only to odd integers larger than 
cl2 that are not prime powers. For each such number, the expected number of 
applications of Algorithm 10.1 that is necessary to find a nontrivial factorization 
is at most 64, by Theorem 10.3. Hence all applications of Algorithm 10.1 
together take expected time at most L n [!, 1 + 0(1)] for n -+ 00. This proves 
Theorem 10.5. 

The theorem stated in the introduction is a direct consequence of Theorem 
10.5. 

11. THE RANDOM CLASS GROUPS METHOD 

It is the purpose of this section to point out a serious flaw in the heuristic 
running time analysis of the random class groups method that was proposed 
in [29]. We refer to [29; 21, §4.A] for a description of this method. For our 
purposes it suffices to know that, in order to factor n, the random class groups 
method needs a "small" positive integer d for which ~ = -dn is a negative 
discriminant with the property that #C/j. is y-smooth for some "small" value of 
y. The dominating contribution to the expected running time is then, roughly, 
the upper bound for d multiplied by y. The heuristic running time analysis 
assumes that, for fixed n and variable d , the class number #C -dn is essentially 
just as likely to be smooth as a random number of the same approximate size. 
This assumption implies that one can take both d and y to be no larger than 
L n [!, ! + 0(1)], leading to an upper bound L n [!, 1 + 0(1)] for the expected 
running time of the random class groups algorithm, for n -+ 00. 

In this section we prove that the assumption just stated is incorrect for a fairly 
dense sequence of integers n. Theorem 11.1 shows that for many integers n 
there is not even a single multiplier d for which #C -dn is smooth, for a very 
wide range of smoothness bounds. For example, if the smoothness bound is 
taken to be XI/9, then the number of such n up to x is at least CX2/ 3/ logx 
for some positive constant c; there is no reason to suppose that the random 
class groups method can find a nontrivial factor of any of those n in time less 
than n 1/ 9 • 
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Theorem 11.1. There is a positive constant Cl3 with the following property. Let 
./Y (x , y) be the set of positive integers n :$ x such that for every negative dis-
criminant ~ == 0 mod n, the class number #C'" has a prime factor exceeding y. 
Then for all x, y with c13 < y :$ X I / 9 we have 

x 
#./Y(x, y) 2: --=-3--

40y logy 

Remark. Due to the use of the Bombieri-Vinogradov theorem in the proof of 
Lemma 11.3, the constant c13 in the theorem is ineffective. 

Before we give the proof we treat a few lemmas. First we describe the "bad" 
integers n. Let the greatest prime factor of an integer m 2: 2 be denoted by 
P(m), and put P(I) = 1. We write !T for the set of prime numbers p with 
the property that min{P(p - 1), P(p + I)} > pl/3 > 3. 

Lemma 11.2. Let n be an integer that is divisible by p2 for some prime number 
p E!T with p 2: y3. Further let ~ be a negative discriminant that is divisible 
by n. Then the class number #C'" has a prime factor exceeding y. 

Proof. We can write ~ = p2~' , where ~' is also a negative discriminant. Di-
viding the class number formula (2.12) by the same formula for ~' we find that 
#C'" = :!J(p - (f))·#C"" , where w' E {2, 4, 6}. Hence 6.#C", is divisible by 
one of the prime numbers P(p - 1), p, P(p + 1) , depending on the value of 
(f) . By hypothesis, each of these primes is larger than 3 and exceeds y. This 
implies Lemma 11.2. 

In the following lemma, !T is as above and 1C(X;!T) is as in §6. The lemma 
asserts that, asymptotically, at least one third of all primes belong to !T . 

Lemma 11.3. We have 
1· . f 1C(X ; !T) 1 Imm >-. 

x ..... co xllogx - 3 
Proof. It suffices to show that 

(11.4) ~ logp 2: (! + o(I))x, for x - 00. 

pE!T, p"Sx 

This sum is at least 

( 11.5) ~ logp- logp - logp. 

The first sum is (1 + o( 1))x for x - 00, by the prime number theorem. The 
other two sums in (11.5) can be estimated with one argument. Let a E {I , -I} . 
Then 

( 11.6) 
p"Sx 

P(p+a)"Sx l / J 

logp = 
p'5.x 

P(p+a)'5.x l / J 

log(p + a) + O(loglogx). 
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log(p + a) = L A(d) 
p~x dlp+a 

P(p+a)~xl/3 

:::; L A(d)7C(X; d, -a) + L A(d)7C(X; d, -a) , 
d>XI/3 

p(d)~XI/3 

where A is the von Mangoldt function and 7C(X; d, -a) is the number of 
primes p :::; x with p == -a mod d. Trivially, we have 7C(X; d, -a) :::; ~ + 1, 
so the second sum is at most 

L A(d)(J + 1) = O(x516) , 
x l/3<d<x+a 
p(d)~~1/3 

which we can see by noting that the sum is dominated by those d that are 
squares of primes. By the Bombieri-Vinogradov theorem (see [8, Chapter 28]), 
the first sum is 

(1 + 0(1)) L A(d) qJ(d~Ogx = U + o(I))x 
d~XI/3 

for x -+ 00. Assembling these calculations in (11.6), we have 

L logp:::; (! + o(I))x, 
p~x 

P(p+a)~xl/3 

which when put in (11.5) gives (11.4). This proves Lemma 11.3. 

Remark. The same proof shows that for each c with 0 < c < 1 the set of 
primes p for which min{P(p - 1), P(p + I)} > pC has lower density at least 
1 - 2c. 

We now prove Theorem 11.1. Let x, y be as in the theorem. We write 
t = y3 . By Lemma 11.2, each integer n :::; x that is divisible by the square of 
a prime p ~ t, P E!T , belongs to ./Y(x, y) . Therefore 

#./Y(x, y) ~ L 

The second sum is at most 

The first sum is at least 

pEST 
t~p~XI/2 

( 1 )2 2 
X L"2 = O(x/t ). 

p?t P 

x (1/2) "2- 7CX . 
P 
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It remains to note that n(x'/2) = o(x/(tlogt)) for x -+ 00 and that 

L 1 n(6t;!T)-n(t;!T) (1 (1)) 1 -> > -+0 --p2 - (6t)2 - 36 tlogt 
pE.'7 

t~p~Xl/2 

for t -+ 00. This last inequality follows from Lemma 11.3 and an upper bound 
for n(t;!T) afforded by the prime number theorem. Thus if c13 is taken 
sufficiently large, we have Theorem 11.1. 

Remark. Let n, p, ~ be as in Lemma 11.2. If the number of factors p in 
~ is odd, then the large prime factor that we show to exist in #CIl is p itself, 
hence divides n. We can protect the random class groups method against 
such large prime divisors by working only with nth powers of elements in CIl • 

If the random class groups method is modified in this way, we should only 
consider integers n in Lemma 11.2 that have an even number of factors p , and 
restrict to discriminants ~ = -dn for which the multiplier d is not divisible 
by p. The arguments in this section then go through with very few changes, 
and the conclusion is that the modified random class groups method has the 
same shortcoming as the original method. 

12. PROBABILISTIC ALGORITHMS 

In this section we discuss briefly what we mean by a "probabilistic" algorithm 
and by the "expected" running time of such an algorithm. Several definitions 
have been proposed for these notions, and the fact that they are not all mathe-
matically equivalent is not generally appreciated. We have chosen the definitions 
below because they are natural and convenient to use. See [14] for a further 
discussion. 

By a probabilistic algorithm we mean an algorithm that is allowed to employ 
a random number generator. Every time the random number generator is called 
it outputs 0 or 1, each with probability !. Any collection of calls is supposed 
to be independent; this also applies to calls that are made in different runs of 
the algorithm. It will be supposed that a call to the random number generator 
takes unit time. We are not concerned with the question of how the random 
number generator is to be implemented, or indeed whether this is possible at 
all. 

It is easy to see that a random number generator can be used to draw, for a 
given positive integer m, a random number from {O, 1, ... , m - I} with the 
uniform distribution, in expected time O(log m) . 

The course of a probabilistic algorithm is determined, not only by its input 
(for example, the number n to be factored, in the case of a factoring algorithm), 
but also by the random bits that are drawn. This means that, for a given value 
of the input, the running time of the algorithm may not be constant; instead, it 
has a distribution. The same applies to the output of the algorithm; for example, 
which factor of n is found by a factoring algorithm. Also, the correctness of 
the output of the algorithm may be subject to a distribution, as is the case for 
certain primality tests. 
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The "expected running time" of a probabilistic algorithm, for a given value 
of the input, is defined as the expectation of the running time. Note that we 
average only over the possible outputs of the random number generator, not 
over different values of the input of the algorithm. For example, when we say 
that a factoring algorithm has expected running time f(n) , then this is true for 
each individual value of n, without a single exception. 

We mention a few rules that are helpful in computing expected running times. 
If a probabilistic algorithm consists of performing several other probabilistic 
algorithms, one after the other, and all with the same input, then its expected 
running time is simply the sum of the expected running times of the component 
algorithms. This obvious rule would not have been worth mentioning had its 
analogue not been incorrect for other definitions that have been proposed. The 
rule is even valid if one of the algorithms involved can in principle run forever; 
of course, if the expected running time is finite, this happens with probability 
zero. 

The situation is a little more complicated if the component algorithms do 
not all have the same input. This occurs, for example, if the output of each 
algorithm is the input of the next one. In such a case it is often possible to 
find an upper bound for the input of each algorithm, and hence for its expected 
running time; the sum of the latter upper bounds is then a valid upper bound 
for the expected running time of the entire algorithm. 

Another convenient rule is the following. Suppose that some of the outputs of 
a probabilistic algorithm are pronounced "successes" and the others "failures"; 
for example, finding the factor 1 or n in a factoring algorithm is a failure, 
or finding a nonsmooth number if it is the purpose of the algorithm to find a 
smooth one. Let p be the success probability, and suppose that p > O. Then 
the expected number of times that one has to perform the algorithm until the 
first success occurs equals p -1 , and the expected time that this takes is p-1 
times the expected running time of the algorithm itself; this is even true if the 
average running time of a successful run of the algorithm is different from the 
average running time of an unsuccessful run. If one needs k successes one has 
to replace p -1 by k P -1 . In the examples just given one can tell the successes 
from the failures, but this is not always the case (see Algorithm 4.4). For an 
algorithm for which we cannot easily recognize when we are successful we have 
the option of bounding the number of iterations in advance. If this bound is at 
least 2p -1 , then the probability that at least one iteration of the algorithm is 
successful is at least! (see, for example, the proof of Theorem 4.5). 
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ABSTRACT. In this paper a probabilistic algorithm is exhibited that factors any 
positive integer n into prime factors in expected time at most Lnl!, 1 +0(1)] 
for n -> 00, where Lx[a, b] = exp(b(logx)a(loglogx)l-a). Many practical 
factoring algorithms, including the quadratic sieve and the elliptic curve method, 
are conjectured to have an expected running time that satisfies the same bound, 
but this is the first algorithm for which the bound can be rigorously proved. 
Nevertheless, this does not close the gap between rigorously established time 
bounds and merely conjectural ones for factoring algorithms. This is due to the 
advent of a new factoring algorithm, the number field sieve, which is conjectured 
to factor any positive integer n in time Ln [! ' O( 1)] . 

The algorithm analyzed in this paper is a variant of the class group relations 
method, which makes use of class groups of binary quadratic forms of negative 
discriminant. This algorithm was first suggested by Seysen, and later improved 
by A. K. Lenstra, who showed that the algorithm runs in expected time at most 
Ln[! ' 1+0(1)] if one assumes the generalized Riemann hypothesis. The main 
device for removing the use of the generalized Riemann hypothesis from the 
proof is the use of multipliers. In addition a character sum estimate for algebraic 
number fields is used, with an explicit dependence on possible exceptional zeros 
of the corresponding L-functions. 

Another factoring algorithm using class groups that has been proposed is 
the random class groups method. It is shown that there is a fairly large set of 
numbers that this algorithm cannot be expected to factor as efficiently as had 
previously been thought. 
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