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WHEN IS an + 1 THE SUM OF TWO SQUARES?

GREG DRESDEN, KYLIE HESS, SAIMON ISLAM, JEREMY ROUSE, AARON SCHMITT,
EMILY STAMM, TERRIN WARREN, AND PAN YUE

Abstract. Using Fermat’s two squares theorem and properties of cyclotomic polynomials, we
prove assertions about when numbers of the form an + 1 can be expressed as the sum of two
integer squares. We prove that an +1 is the sum of two squares for all n ∈ N if and only if a is
a perfect square. We also prove that for a ≡ 0, 1, 2 (mod 4), if an+1 is the sum of two squares,
then aδ + 1 is the sum of two squares for all δ|n, δ > 1. Using Aurifeuillian factorization, we
show that if a is a prime and a ≡ 1 (mod 4), then there are either zero or infinitely many odd
n such that an + 1 is the sum of two squares. When a ≡ 3 (mod 4), we define m to be the
least positive integer such that a+1

m
is the sum of two squares, and prove that if an + 1 is the

sum of two squares for any odd integer n, then m|n, and both am + 1 and n

m
are sums of two

squares.

1. Introduction

Many facets of number theory revolve around investigating terms of a sequence that are inter-
esting. For example, if an = 2n − 1 is prime (called a Mersenne prime), then n itself must be
prime (Theorem 18 of [5, p. 15]). In this case, the property that is interesting is primality.
Ramanujan was interested in the terms of the sequence an = 2n − 7 that are perfect squares.
He conjectured that the only such terms are those with n = 3, 4, 5, 7 and 15, and Nagell proved
this in 1948 (see [10]; a modern reference is [13, p. 96]). Finally, if the Fibonacci sequence is
defined by F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 2, then Fn is prime if and only if n
is prime or n = 4 (Theorem 179 of [5, p. 148]), and the only perfect powers in the Fibonacci
sequence are 0, 1, 8 and 144, which was proven by Bugeaud, Mignotte, and Siksek [2] in 2006
using similar tools to the proof of Fermat’s Last Theorem.

In this paper, we will consider a number to be interesting if it can be expressed as the sum of
two squares. The earliest work on this topic relates to Pythagorean triples, which are integer
solutions to a2+ b2 = c2. Euclid supplied an infinite family of solutions: a = m2−n2, b = 2mn
and c = m2 + n2.

Fermat’s two squares theorem classifies which numbers can be written as the sum of two squares.
Fermat claimed to have proven this theorem in his 1640 letter to Mersenne, but never shared
the proof. The first published proof is attributed to Euler and was completed in 1749 (see [3,
p. 11]).
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Theorem (Fermat’s two squares theorem). A positive integer N can be written as the sum of
two squares if and only if in the prime factorization of N ,

N =

k
∏

i=1

peii ,

we have pi ≡ 3 (mod 4) if and only if ei is even.

In light of Fermat’s theorem, integers that can be expressed as the sum of two squares be-
come increasingly rare. In particular, if S(x) denotes the number of integers n ≤ x that are
expressible as a sum of two squares, then Landau proved [7] in 1908 that

lim
x→∞

S(x)

x/
√

ln(x)
= K ≈ 0.764.

This can be stated more colloquially as “the probability that a number n is the sum of two
squares is K√

ln(n)
.”

We are interested in which terms in sequences of the form an + 1 can be written as a sum of
two squares. In [4], Curtis showed that 2n +1 is the sum of two squares if and only if n is even
or n = 3. Additionally, if n is odd and 3n + 1 is the sum of two squares then n must be the
sum of two squares, and 3p + 1 is the sum of two squares for all prime numbers p|n.
The focus of the present paper is to say as much as possible about when an + 1 is the sum
of two squares for a general positive integer a. This paper is the result of two undergraduate
research teams working simultaneously and independently over two months in the summer of
2016. The first team, from Wake Forest University, consisted of students Hess, Stamm, and
Warren, and was led by Jeremy Rouse; the second team, from Washington & Lee University,
consisted of students Islam, Schmitt, and Yue, and was led by Greg Dresden. Remarkably, the
two teams ended up covering many of the same topics. Some of the results are unique to the
Wake Forest team, while other results were proved by both teams using different methods. We
carefully assign credit to the theorems in the first section by using the tags WF and W&L in
each result, with remarks as necessary.

In the case that n = 2k is even, then an + 1 =
(

ak
)2

+ 12 is trivially the sum of two squares.
For this reason, we focus on cases when n is odd. Our first result is the following.

Theorem 1.1 (WF). The number an+1 is the sum of two squares for every n ∈ N if and only
if a is a perfect square.

Example.

(1) If a = 9, then 9n + 1 = (3n)2 + 12.
(2) If a = 7, then there is some odd n such that 7n + 1 is not the sum of two squares. For

example, 73 + 1 is not the sum of two squares.

Our next result gives specific criteria that handle the case when a is even.
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Theorem 1.2 (WF, W&L). Suppose a is even, n is odd, and an+1 is the sum of two squares.
Then

• If a+1 is the sum of two squares, then aδ +1 is the sum of two squares for all δ|n, and
• If a+ 1 is not the sum of two squares, then there is a unique prime number
p ≡ 3 (mod 4), such that pr||a+ 1 for some odd r, and n = p.

Example.

(1) For a ≡ 2 (mod 4), then a + 1 is not the sum of two squares and so there is at most
one odd exponent n such that an + 1 is the sum of two squares. For example, with
a = 6, since a + 1 = 7 is divisible by the unique prime p = 7 ≡ 3 (mod 4), then
n = 7 is the only possible odd n for which an + 1 is the sum of two squares. Indeed,
67 + 1 = 4762 + 2312.

(2) For a ≡ 0 (mod 4), there are more options. If we let a = 20, then since a + 1 = 3 · 7
has two prime factors ≡ 3 (mod 4) that divide it to an odd power, we conclude that
20n + 1 is not the sum of two squares for any odd n. On the other hand, for a = 24,
then since 2477 + 1 is the sum of two squares (by observation), we must also have that
2411 + 1, 247 + 1, and 241 + 1 are each the sum of two squares.

Additionally we consider a special case when a is a multiple of 4.

Theorem 1.3 (WF). Let a = 4x where x ≡ 3 (mod 4) and x is squarefree. If n is odd, then
anx + 1 is not the sum of two squares.

Example.

(1) Let a = 12 = 4 ·3. Then 123n+1 is not the sum of two squares for any odd n. Note that
Theorem 1.2 implies that since 123 + 1 is not the sum of two squares, then 123n + 1 is
not the sum of two squares for any odd n. However, Theorem 1.3 guaranatees, without
any computation necessary, that 123 + 1 is not the sum of two squares.

(2) Let a = 28 = 4 · 7. Then 287n + 1 is not the sum of two squares for any odd n.

The factorization tables for 12n+1 ([1, 14]) imply that there are sixteen exponents 1 ≤ n < 293
for which 12n + 1 is the sum of two squares, which are all prime except for n = 1. For two
smallest composite exponents n for which 12n+1 could possibly be the sum of two squares are
n = 473 = 11 · 43 and n = 545 = 5 · 109; so far, of those two, we have have confirmed only that
12545 + 1 is the sum of two squares.

We now consider the case when a is odd. It’s helpful to split this into three subcases, for a ≡ 1
(mod 8), for a ≡ 5 (mod 8), and for a ≡ 3 (mod 4).

Theorem 1.4 (WF, W&L). Let a ≡ 1 (mod 8). If an +1 is the sum of two squares for n odd,
then aδ + 1 is the sum of two squares for all δ|n.

Example.
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(1) Let a = 33. Since 33119+1 is the sum of two squares, then 331+1, 337+1, and 3317+1
must also be sum of two squares. Since 333 +1 is not the sum of two squares, we know
333n + 1 is not the sum of two squares for any odd n.

(2) Let a = 41. Since 42 = 2 · 3 · 7 is not the sum of two squares, then 411 + 1 is not the
sum of two squares, and hence 41n + 1 is not the sum of two squares for any odd n.

Note that (as seen in the example with a = 41) the above theorem implies that if a ≡ 1
(mod 8) and a+1 is not the sum of two squares, then an + 1 is not the sum of two squares for
any odd n. The next theorem addresses the case that a ≡ 5 (mod 8).

Theorem 1.5 (WF, W&L). Let a ≡ 5 (mod 8). Then, an+1 is never the sum of two squares
for n odd.

Example.

(1) Since 13 ≡ 5 (mod 8), then 13n + 1 is not the sum of two squares for any odd n.

Finally, we consider a ≡ 3 (mod 4), as covered in three separate results. These first two place
considerable restrictions on the values of n for which an + 1 can be a sum of two squares

Lemma 1.6 (WF, W&L). Let a ≡ 3 (mod 4), and let m be the smallest integer such that a+1
m

is the sum of two squares. If an + 1 is the sum of two squares, then n ≡ m (mod 4).

Theorem 1.7 (WF, W&L). Let a ≡ 3 (mod 4), and let m be the smallest integer such that
a+1
m

is the sum of two squares. If an + 1 is a sum of two squares for some odd n, then

• n
m

is a sum of two squares, and
• am + 1 is the sum of two squares, and
• if δ | n

m
and δ is the sum of two squares, then amδ + 1 is the sum of two squares.

• Moreover, if anp
2
+ 1 is the sum of two squares for some p ≡ 3 (mod 4), then p|an + 1.

Theorem 1.7 showcases the advantages of having two teams working independently. When we
first shared our results in late July, the Wake Forest group had only the first two parts of the
above theorem, and the W&L group had a weaker version of the third part that was restricted
to m = 1 and to δ being a prime equivalent to 1 (mod 4). Two weeks later, both teams had
improved their results, with Wake Forest coming up with both the fourth part and the stronger
version of the third part, as seen here. The proof that resulted from this collaboration is a nice
combination of ideas from both teams.

Example.

(1) Let a = 11. Then m = 3, and since 113 + 1 is the sum of two squares, then if 11n + 1 is
the sum of two squares, then 3j||n, j odd.

(2) Let a = 43. Then m = 11, and since 4311+1 is not the sum of two squares, we conclude
that 43n + 1 is not the sum of two squares for any odd n.

(3) If a = 4713575, then m = 21. It turns out that a21 + 1 is the sum of two squares, and
so if an + 1 is the sum of two squares, then 21|n. Sure enough, a105 + 1 is the sum of
two squares (and has 701 decimal digits).
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We pause for a moment to remind the reader that Theorem 1.1 states that if a is not a perfect
square, then there exists some odd n such that an + 1 is not the sum of two squares. We
can now extend this theorem and demonstrate that in fact there will be infinitely many such
exponents.

• If a is even with a+1 not the sum of two squares, or if a ≡ 5 (mod 8), then Theorems 1.2
and 1.5 tell us that an + 1 fails to be the sum of two squares for infinitely many odd n
(in fact, for all but at most one odd exponent n).

• If a is even with a + 1 the sum of two squares, or if a ≡ 1 (mod 8), then we can use
Theorems 1.2 or 1.4 to state that if aδ + 1 is not the sum of two squares for some odd
exponent δ, then so also does aδN + 1 fail to be the sum of two squares for all odd
integers N .

• Finally, if a ≡ 3 (mod 4), we call upon Lemma 1.6 to state that an + 1 can only be a
sum of two squares for n ≡ m (mod 4).

This next result allows one to state that for certain special values of a, there is an infinite
collection of odd values of n for which an + 1 is the sum of two squares.

Theorem 1.8 (WF). Suppose n is odd, p ≡ 1 (mod 4) is a prime number and a = px2. Then
an + 1 is the sum of two squares if and only if anp + 1 is the sum of two squares.

The above theorem implies that for those specific values of a, then there are either no odd n,
or an infinite number of odd n, for which an + 1 is the sum of two squares.

Example.

(1) Let a = 17, where p = 17 and x = 1. Since 18 is the sum of two squares, 1717
n
+ 1 is

the sum of two squares for any n.
(2) Let a = 117, where p = 13 and x = 3. Since a+1 = 2 ·59 is not the sum of two squares,

11713
n
+ 1 is not the sum of two squares for any n.

Remark. In light of the above theorem, it is natural to ask if there are infinitely many a ≡ 1
(mod 8) so that an + 1 is the sum of two squares for infinitely many odd n. This is indeed
the case. In particular, the main theorem of [6] implies that if x is a real number ≥ 17, then
the number of primes p ≤ x with p ≡ 1 (mod 8) for which p + 1 is the sum of two squares is
≥ c x

log(x)3/2
for some positive constant c.

We can use the ideas from Theorem 1.8 to construct an infinite family of numbers a so that
ap + 1 is the sum of two squares. This is our next result.

Theorem 1.9 (WF). If p ≡ 1 (mod 4) is prime, there is a degree 4 polynomial f(X) with
integer coefficients so that f(X)p + 1 = g(X)2 + h(X)2 for some g(X) and h(X) with integer
coefficients. Moreover, there is no positive integer n so that f(n) is a perfect square.

Example.

(1) If p = 13, then f(X) = 13(13X2+3X)2. Then f(n)13 +1 is the sum of two squares for
every n ∈ N.
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We end with a conjecture about the number of odd n for which an+1 is the sum of two squares.

Conjecture 1.10 (WF). Suppose a is a positive integer and a 6= ck for any positive integer c
and k > 1. Let m be the smallest positive so that a+1

m
is the sum of two squares.

• If m = 1, then there are infinitely many odd n so that an +1 is the sum of two squares.
• If a ≡ 3 (mod 4), am + 1 is the sum of two squares, and m is prime, then there are
infinitely many odd n so that an +1 is the sum of two squares. (In fact, there should be
infinitely many p ≡ 1 (mod 4) so that amp + 1 is the sum of two squares.)

• If a ≡ 3 (mod 4) and m is composite, then there are only finitely many odd n so that
an + 1 is the sum of two squares.

The main theoretical tools we use in this paper are the theory of cyclotomic polynomials, and
in particular, a classification of which primes divide Φn(a) (see Theorem 2.1). For Theorem 1.3
and Theorem 1.8 also use the identity Φn(x) = F (x)2 − kxqG(x)2 that arises in Aurifeuillian
factorization.

The rest of the paper will proceed as follows. In Section 2, we review previous results which we
will use. In Section 3, we prove a few facts that will be used in the remainder of the proofs. In
Section 4, we prove Theorem 1.1. In Section 5, we prove Theorems 1.2 and 1.3. In Section 6, we
prove Theorems 1.4, 1.5, and 1.7, along with Lemma 1.6, and we include a heuristic supporting
Conjecture 1.10. In Section 7, we prove Theorems 1.8 and 1.9. We conclude with a chart listing
all a ≤ 50 and the first few odd integers n such that an + 1 is the sum of two squares, as well
as a reference to one our theorems.

2. Background

If n is a positive integer and p is a prime number, we write pr‖n if pr|n but pr+1 ∤ n. If n is
a positive integer and we write that n is not a sum of two squares because of the prime p, we
mean that p ≡ 3 (mod 4) and there is an odd r so that pr‖n. If a and m are integers with
gcd(a,m) = 1, we define ordm(a) to be the smallest positive integer k so that ak ≡ 1 (mod m).
It is well-known that ar ≡ 1 (mod m) if and only if ordm(a)|r. Fermat’s little theorem states
that if gcd(a, p) = 1, then ap−1 ≡ 1 (mod p); it follows that ordp(a)|p− 1.

We will make use of the identity (originally due to Diophantus) that

(a2 + b2)(c2 + d2) = (ac+ bd)2 + (ad− bc)2.

This applies if the a, b, c, d ∈ Z, and also if the a, b, c and d are polynomials.

Let Φn(x) denote the nth cyclotomic polynomial; recall that Φn(x) is the unique irreducible
factor of xn − 1 with integer coefficients that does not divide xk − 1 for any proper divisor k of
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n. We have that
∏

d|n
Φd(x) = xn − 1 and from this it follows that when n is odd,

xn + 1 =
x2n − 1

xn − 1
=

∏

d|2n
d∤n

Φd(x) =
∏

δ|n
Φ2δ(x).

We will make use of the facts that for n odd, Φ2n(x) = Φn(−x) and also that if n = pk is prime,

then Φpk(1) = limx→1
xpk−1

xpk−1−1
= p.

The following theorem classifies prime divisors of Φn(a).

Theorem 2.1. Assume that a ≥ 2 and n ≥ 2.

• If p is a prime and p ∤ n, then p|Φn(a) if and only if n = ordp(a).
• If p is a prime and p|n, then p|Φn(a) if and only if n = ordp(a) · pk. In this case, when
n ≥ 3, then p2 ∤ Φn(a).

This theorem arises in connection with Zsigmondy’s work showing that for any a, n ≥ 2 there is
a prime p for which ordp(a) = n unless n = 2 and a+1 is a power of 2. A proof of Theorem 2.1
is given in [11] (see Proposition 2), but Roitman indicates that this theorem was stated and
proved earlier by Lüneberg (see Satz 1 of [9]).

We will also make use of certain identities for cyclotomic polynomials that arise in Aurifeuillian
factorization. If k is a squarefree positive integer, let d(k) be the discriminant of Q(

√
k), that

is,

d(k) =

{

k if k ≡ 1 (mod 4)

4k if k ≡ 2, 3 (mod 4).

Suppose that n ≡ 2 (mod 4), and d(k) ∤ n but d(k)|2n. Write the prime factorization of n as

n = 2

k
∏

i=1

peii and define q =

k
∏

i=1

pei−1
i . Then Theorem 2.1 of [12] states that

Φn(x) = F (x)2 − kxqG(x)2

for some polynomials F (x), G(x) ∈ Z[x]. In the case that x = −kv2 for some integer v we get
that

Φn(−kv2) = F (−kv2)2 +
(

k
q+1
2 vqG(−kv2)

)2

is the sum of two squares. In the case that x = kv2 for some integer v, we get a factorization

Φn(kv
2) = F (kv2)2 − k(kv2)qG(kv2)2

=
(

F (kv2) + k
q+1
2 vqG(kv2)

)(

F (kv2)− k
q+1
2 vqG(kv2)

)

.

Theorem 2.7 of [12] states that these two factors are relatively prime.
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We will also require some basic facts about quadratic residues. If p is an odd prime, we define
(

a
p

)

to be 1 if gcd(a, p) = 1 and there is some x ∈ Z so that x2 ≡ a (mod p). We define
(

a
p

)

to

be −1 if gcd(a, p) = 1 and there is no such x, and we set
(

a
p

)

= 0 if p|a. Euler’s criterion gives

the congruence
(

a
p

)

≡ a
p−1
2 (mod p). We will also use the law of quadratic reciprocity, which

states that if p and q are distinct odd primes, then
(

p
q

)(

q
p

)

= (−1)
p−1
2

· q−1
2 .

The definition of the quadratic residue symbol can be extended. If n is an odd integer with

prime factorization n =
k
∏

i=1

peii , define

(

a

n

)

=
k
∏

i=1

(

a

p

)ei

.

3. General Results

The following general lemmas pertain primarily to how the divisors of n affect the divisors of
an + 1, and are used in rest of the sections of the paper.

Lemma 3.1. Let b, n ∈ Z, and n be odd and suppose b|x+1. Then b|(xn−1−xn−2+xn−3−· · ·+1)
if and only if b|n.

Proof. Let b|x+ 1. Then x+ 1 ≡ 0 (mod b), so x ≡ −1 (mod b). Then,

xn−1 − xn−2 + xn−3− · · · − x+ 1

≡ (−1)n−1 − (−1)n−2 + (−1)n−3 − · · · − (−1) + 1 (mod b)

≡ 1 + 1 + 1 + · · ·+ 1 + 1 (mod b)

≡ n (mod b).

Therefore b|xn−1 − xn−2 + xn−3 − · · · − x+ 1 if and only if n ≡ 0 (mod b), or equivalently, b|n.
�

We obtain the following corollary as a result of the above lemma.

Corollary 3.2. Suppose δ|n and xδ + 1 is not the sum of two squares because of some prime
p. If p ∤ n, then xn + 1 is not the sum of two squares.

Proof. Consider

xn + 1 = (xδ + 1)(xn−δ − xn−2δ + xn−3δ − · · · − xδ + 1).

Since xδ + 1 is not the sum of two squares because of p, we have p ≡ 3 (mod 4), r odd and
pr||xδ + 1. Then p ∤ n implies p ∤ xn−δ − xn−2δ + xn−3δ − · · · − xδ + 1 by Lemma 3.1, and thus
pr||xn + 1 and implying that xn + 1 is not the sum of two squares. �

Lemma 3.3. Let p be a prime such that pe||am + 1 for some e ∈ N, and let n = mcpk with
gcd(c, p) = 1 and k ≥ 0. Then pe+k||an + 1.
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Proof. Using notation from the statement of the theorem, we can write:

an + 1 = (am + 1) ·
(

an + 1

am + 1

)

.

Then, recalling how am + 1 factors into cyclotomics, we let d be the smallest divisor of m
such that p|Φ2d(a). Thanks to Theorem 2.1, we know that p||Φ2dp(a), p||Φ2dp2(a), and so on,
yet p does not divide into any other cyclotomic expressions not of that form. Now, choose
i as large as possible such that 2dpi|m. Then, by our definition of n, we know that ev-
erything in the set {dpi+1, dpi+2, . . . , dpi+k} divides into n yet none of them divide into m,
and we also know from Theorem 2.1 (as mentioned above) that each of the k expressions
Φ2dpi+1(a),Φ2dpi+2(a), . . . ,Φ2dpi+k(a) contains exactly one copy of the prime p and that no other
cyclotomic divisors of an+1

am+1
contain this prime p. Hence, since pe||am+1, then pe+k||an+1. �

4. Proof of Theorem 1.1

This section will begin with the proofs of several lemmas, from which the proof of Theorem 1.1
is constructed.

Lemma 4.1. Suppose there exists a prime p ≡ 3 (mod 4) such that
(

a
p

)

= −1. Then either

a
p−1
2 + 1 or a

p(p−1)
2 + 1 is not a sum of two squares.

Proof. If a
p−1
2 + 1 is not a sum of two squares, then we are done. Suppose a

p−1
2 + 1 is a sum

of two squares. By Euler’s criterion, we have that a
p−1
2 ≡ −1 (mod p), and it follows therefore

that for some k ∈ N, p2k ‖ a
p−1
2 + 1. By Lemma 3.3, letting m = p−1

2
and n = p(p−1)

2
, we know

that p2k+1 ‖ a
p(p−1)

2 + 1. Thus, by Fermat’s two squares theorem, a
p(p−1)

2 + 1 is not the sum of
two squares. �

As an example, we examine 148n+1. We can conclude from the prime factorization of 148n+1
that 148n + 1 is a sum of two squares for all odd n < 9. Note that 9 = 19−1

2
and that 19 is

the smallest prime p ≡ 3 (mod 4) for which the Legendre symbol
(

148
p

)

= −1. Calculation and

Fermat’s two square theorem reveal that 148
19−1

2 + 1 = 1489 + 1 is not a sum of two squares.

Before we continue on to the next lemma, we need to define the following function for an integer
a:

χa(n) =

{

(

a
n

)

if n is odd, and

0 if n is even.

Lemma 4.2. If p is an odd prime, define

p∗ =

{

p if p ≡ 1 (mod 4)

−p if p ≡ 3 (mod 4).
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If q is an odd prime, then χp∗(q) =
(

q
p

)

. Additionally, there is some δ ∈ {1,−1, 2,−2} such

that for each n with gcd(a, n) = 1,

χa(n) = χδ(n)
∏

pr‖a with r odd

χp∗(n).

Proof. Because p and q are both prime,

χp∗(q) =

(

p∗

q

)

=











(

p
q

)

if p ≡ 1 (mod 4)

(

p
q

)(−1
q

)

if p ≡ 3 (mod 4).

If p ≡ 1 (mod 4) or q ≡ 1 (mod 4), then
(

p
q

)

=
(

q
p

)

by the law of quadratic reciprocity.

If p ≡ 3 (mod 4) and q ≡ 3 (mod 4), then by the law of quadratic reciprocity
(

p
q

)

= −
(

q
p

)

. In

addition,
(−1

q

)

= (−1)
q−1
2 = −1. Then

(

p∗

q

)

=
(

p
q

)(−1
q

)

= −
(

q
p

)

(−1) =
(

q
p

)

. Thus χp∗(q) =
(

q
p

)

.

If n is even, then χa(n) = 0. Looking at odd n, we note
∏

pr‖a
ql‖n

(

p

q

)

= (−1)d
∏

pr‖a
ql‖n

(

q

p

)

, where

the exponent d depends on n and a. From the law of quadratic reciprocity, we know that
(

p
q

)

= −
(

q
p

)

only if both p and q are congruent to 3 (mod 4). Then d is the product of the

number of primes p ≡ 3 (mod 4) which, to an odd power, exactly divide a, and the number
of primes q ≡ 3 (mod 4) which, to an odd power, exactly divide n. Thus, if 2b ‖ a, then d is

even if
a

2b
≡ 1 (mod 4) or n ≡ 1 (mod 4) and d is odd if both

a

2b
and n are congruent to 3

(mod 4). This is equivalent to writing d =
n− 1

2

a

2b
− 1

2
. Then

χa(n) =
(

a
n

)

=

(

2b

n

)

∏

pr‖a
ql‖n

(

p

q

)rl

=

(

2b

n

)

(−1)
n−1
2

a
2b

−1

2

∏

pr‖a
ql‖n

(

q

p

)rl

=





(−1)
a
2b

−1

2 2b

n





∏

pr‖a
ql‖n

(

q

p

)rl

= χδ(n)
∏

pr‖a
χp∗(n),

where δ ∈ {−1, 1,−2, 2}. �
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In the following lemma, we examine the case where a is twice a square.

Lemma 4.3. If a is twice a square, then there is a prime q ≡ 3 (mod 8) so that χδ(q) = −1,
and hence χa(q) = −1.

Proof. Since there are infinitely many primes congruent to 3 (mod 8), it is always possible to
pick such a prime q which does not divide a and has the property χ2(q) = −1. Because q ∤ a
and a is twice a square, by Lemma 4.2 we can write

χa(q) = χ2(q)
∏

p2k‖a

χp∗(q) = χ2(q)(1) = −1.

�

To be complete, we must now examine the case where a is neither a square nor twice a square.

Lemma 4.4. If a is not a square and not twice a square, then there is a prime q ≡ 3 (mod 4)
so that χa(q) = −1.

Proof. Suppose δ = −1. Then for all ri such that r2k+1
i ‖ a for some k ∈ Z, there is a set of

congruences q ≡ 1 (mod ri) and q ≡ 3 (mod 4), which can be solved for a prime q that has
the property χri(q) = 1 for all ri and χδ(q) = −1. Then

χa(q) = χδ(q)
∏

r2k+1
i ‖a

χr∗i
(q) = (−1)(1) = −1.

Alternatively, suppose δ 6= −1. Then there is a congruence class (mod 8) so that if q ≡ c
(mod 8), then q ≡ 3 (mod 4) and χδ(q) = 1. Then for all ri such that r2k+1

i ‖ a, there is a set
of congruences

q ≡ quadratic non-residue (mod rj) for some set rj

q ≡ 1 (mod ri) for all i 6= j

q ≡ c (mod 8)

which can be solved for a prime q that has the property χri(q) = 1 for all i 6= j and χrj (q) = −1.
Then

χa(q) = χδ(q)
∏

r2k+1
i ‖a

χr∗i
(q) = (1)(−1) = −1.

Thus it is always possible to find some prime q ≡ 3 (mod 4) such that χa(q) = −1. �

Using these lemmas, we can now prove Theorem 1.1.

Proof of Theorem 1.1. Note that any number that is not a square is either twice a square or
not twice a square. Lemmas 4.3 and 4.4 show that for any number that is not a square, it is
possible to pick a prime q ≡ 3 (mod 4) such that χa(q) = −1. Hence

(

a
q

)

= −1 and so by

Lemma 4.1, either a
p−1
2 + 1 or a

p(p−1)
2 + 1 is not a sum of two squares and so there is at least

one value of n for which an + 1 is not a sum of two squares. �
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5. Even

Now we consider the case when a is even. We prove Theorems 1.2 and 1.3.

Proof of Theorem 1.2. Suppose that an +1 is the sum of two squares. If aδ +1 is also the sum
of two squares for every divisor δ of n, then we are done. If not, then let δ be the largest divisor
of n so that aδ + 1 is not the sum of two squares. Thus, δ < n and so there is a prime p that
divides n/δ. By assumption, we have that aδp + 1 is the sum of two squares and

aδp + 1 = (aδ + 1)(aδ(p−1) − aδ(p−2) + · · ·+ 1).

Lemma 3.1 implies that gcd
(

aδ + 1, aδp+1
aδ+1

)

divides p. Since aδ+1 is not the sum of two squares,

the gcd cannot be 1 and so it must be p. Moreover,

aδp + 1

p2
=

(

aδ + 1

p

)(

aδp + 1

p(aδ + 1)

)

is a sum of two squares and the product of two relatively prime integers. Thus, aδ+1
p

is the sum

of two squares. It follows that p ≡ 3 (mod 4) and since aδ + 1 is odd, we get

aδ + 1 = p× sum of two squares ≡ 3 (mod 4).

However, since a is even, we must have that δ = 1 and the previous equation implies that p is
the unique prime ≡ 3 (mod 4) that divides a+ 1 to an odd power. �

Let us consider a special case of even a, where a is a multiple of 4.

Proof of Theorem 1.3. First, we show that ax + 1 is not the sum of two squares. We have that

ax + 1 =
∏

d|2x
d∤x

Φd(a).

We apply Theorem 2.1 of [12] to Φ2x(y) ∈ Z[y]. We set n = 2x, k = x, d(k) = 4x. Then
d(k) ∤ n but d(k) | 2n. We have that

Φ2x(y) = F (y)2 − xyG(y)2.

Assume without loss of generality that the leading coefficient of F (y) is positive. Note that
since Φ2x(y) has even degree, the degree of F (y) is larger than that of G(y).

Replacing y with xy2 we get

Φ2x(xy
2) = F (xy2)2 − x(xy2)G(xy2) =

(

F (xy2) + xyG(xy2)
) (

F (xy2)− xyG(xy2)
)

.

Let f(y) and g(y) be the first and second factors above, respectively. We have Φ2x(a) =
Φ2x(4x) = f(2)g(2). From Theorem 2.7 of [12] we know that gcd(f(2), g(2)) = 1. We claim
that f(2) ≡ g(2) ≡ 3 (mod 4). This will follow if we show that the constant coefficients of f(y)
and g(y) are both 1, and the linear coefficients of f(y) and g(y) are both odd.
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We have that f(y) = a0+a1y+a2y
2+ · · · and g(y) = a0−a1y+a2y

2+ · · · . Since the constant
coefficient of Φ2x(y) is 1, we have that a

2
0 = 1 and so a0 = ±1. If a0 = −1, then since the leading

coefficient of F (y) is positive, f(y) and g(y) have positive leading coefficients. However, then
limy→∞ f(y) = limy→∞ g(y) = ∞ but f(0) = g(0) = −1. This implies that f(y) and g(y) both
have a positive real root, but f(y)g(y) = Φ2x(xy

2) has no real roots. This is a contradiction
and so a0 = 1.

It is well-known that if n > 1, the coefficient of y in Φn(y) is −µ(n) (see for example, the last
equation on page 107 of [8]). Multiplying f(y) and g(y), we get

Φ2x(xy
2) = 1− µ(2x)xy2 + · · · = a20 + (2a0a2 − a21)y

2 + · · · .
We have that µ(2x) = ±1 is odd and −µ(2x) = 2a0a2 − a21. Thus, a

2
1 ≡ µ(2x) (mod 2) and so

a1 is odd. Thus, f(2) ≡ a0+2a1 ≡ 1+2 ≡ 3 (mod 4) and likewise g(2) ≡ a0−2a1 ≡ 1−2 ≡ 3
(mod 4).

Thus, there is a prime p ≡ 3 (mod 4) and an odd j so that pj‖f(2) and a prime q ≡ 3 (mod 4)
and an odd k so that qk‖g(2). Since gcd(f(2), g(2)) = 1, we have p 6= q.

We claim that at most one of p or q divides x. Suppose to the contrary that p|x and q|x.
Since p|Φ2x(a), Theorem 2.1 implies that 2x = p · ordp(a) and since q|Φ2x(a), we get that
2x = q ·ordq(a). This implies that ordp(a) =

2x
p
is a multiple of q and ordq(a) =

2x
q
is a multiple

of p. This is a contradiction, because either p < q (in which case q ≤ ordp(a) ≤ p− 1) or q < p
(in which case p ≤ ordq(a) ≤ q − 1).

Thus, at most one of p or q divides x. Assume without loss of generality that p ∤ x. Then we
have that pj‖Φ2x(a) and Theorem 2.1 gives that ordp(a) = 2x. This implies that p ∤ Φ2δ(a) for
δ|x with δ 6= x. As a consequence, pj‖ax + 1 and so ax + 1 is not the sum of two squares.

Now, let A = ax. Then A + 1 is not the sum of two squares, and A + 1 ≡ 1 (mod 4). Thus,
there are at least two primes ≡ 3 (mod 4) that divides A + 1 to an odd power, and Theorem
1.2 implies that An + 1 is never the sum of two squares for n odd.

�

6. odd

This section contains proofs of Theorems 1.4, 1.5, and 1.7, along with Lemma 1.6, which pertain
to when an+1 can be written as a sum of two squares when a is an odd integer. In this section,
we define m to be the least positive integer such that a+1

m
is the sum of two squares.

We begin with a ≡ 1 (mod 4). We prove Theorem 1.4 which handles the case a ≡ 1 (mod 8),
and Theorem 1.5 which handles a ≡ 5 (mod 8).

Proof of Theorem 1.4. Let a ≡ 1 (mod 8). Then an + 1 ≡ 2 (mod 8) for all n, so an+1
2

≡ 1
(mod 4). Suppose an + 1 is the sum of two squares, and assume by contradiction that δ is the

largest divisor of n such that aδ + 1 is not the sum of two squares. Since aδ+1
2

≡ 1 (mod 4),
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then there exist distinct primes q1 ≡ q2 ≡ 3 (mod 4) such that qj11 ||aδ +1 and qj22 ||aδ +1, j1, j2
odd.

We know from Lemma 3.3 that since an + 1 is the sum of two squares, ql11 ‖ n and ql22 ‖ n for
some odd l1 and l2. Without loss of generality, suppose q1 > q2, and consider:

aδq1 + 1 =
(

aδ + 1
)

∏

δx|δq1
δx∤δ

Φ2δx(a).

Since q1 > q2, we know q1 ∤ ordq2(a), and Theorem 2.1 implies that q2 ∤
aδq1+1
aδ+1

. Then qj22 ||aδq1+1,

so aδq1 + 1 is not the sum of two squares. This is a contradiction because δq1 > δ and δq1|n.
Thus aδ + 1 is the sum of two squares for all δ|n. �

Proof of Theorem 1.5. Suppose a ≡ 5 (mod 8) and n is odd. Then:

an + 1 = a2k+1 + 1

≡ 52k · 5 + 1 (mod 8)

≡ 6 (mod 8).

This implies that an+1
2

≡ 3 (mod 4), so by Fermat’s two squares theorem we know that an + 1
is never the sum of two squares when n is odd. �

Next, the following lemmas will be useful in forming contradictions in the proof of Theorem 1.7
because of the restrictions they place on n in order for an + 1 to be the sum of two squares,
where a ≡ 3 (mod 4) and n odd.

We begin with two lemmas that cover the modulus of permissible exponents n when a ≡ 3
(mod 4).

Lemma 6.1. For a = 4 · 2i · (4j + 1)− 1 with i, j ≥ 0, then an + 1 can only be written as the
sum of two squares (for n odd) if n ≡ 1 mod 4.

Note that this covers values of a such as a = 3, 7, 15, 19, 31, and 35. This explains why 359+1
is a sum of two squares but 353 + 1 is not.

Proof. Let us argue by contradiction. Suppose n ≡ 3 mod 4. Write n = 4k + 3, and note that
a ≡ 4 · 2i−1 mod 16 · 2i. Then, making liberal use of the binomial theorem on a3 ≡ (4 · 2i−1)3

and a4 ≡ (4 · 2i − 1)4, we have:

an + 1 = a4k+3 + 1

= (a3) · (a4)k + 1

≡
(

· · ·+ 3 · (4 · 2i)− 1
)

·
(

· · · − 4 · (4 · 2i) + 1
)k

+ 1 mod 16 · 2i

≡
(

3 · 4 · 2i − 1
)

· (1)k + 1 mod 16 · 2i

≡ 12 · 2i mod 16 · 2i.
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This implies that an+1
4·2i is equivalent to 3 mod 4. Then there must be at least one prime

equivalent to 3 mod 4 that appears in the factorization of an+1
4·2i an odd number of times. This

implies the same for an + 1 and thus by Fermat, an + 1 is not the sum of two squares. This is
a contradiction to our assumption and thus n cannot be equivalent to 3 mod 4. �

Lemma 6.2. For a = 4 · 2i · (4j + 3)− 1 with i, j ≥ 0, then an + 1 can only be written as the
sum of two squares (for n odd) if n ≡ 3 mod 4.

Note that this covers values of a such as a = 11, 23, 27, 43, and so on, including 191 which
gives us two values n = 3 and n = 15 such that 191n + 1 is the sum of two squares. Both 3
and 15, of course, are equivalent to 3 mod 4.

Proof. Keeping in mind that a ≡ −1 mod 4, we have:

an + 1 = (a+ 1) · (an−1 − an−2 + · · ·+ 1)

= 4 · 2i · (4j + 3) · (an−1 − an−2 + · · ·+ 1)

Since a ≡ −1 mod 4, then that last expression, (an−1 − an−2 + · · ·+ 1), is equivalent to n mod
4. The only hope, then, for an +1 to be the sum of two squares is for n to be 3 mod 4, as then
an+1
4·2i will be the product of two expressions both equivalent to 3 mod 4, resulting in an+1

4·2i being
equivalent to 1 mod 4. �

The last two lemmas allow us to now prove one of our earlier lemmas:

Proof of Lemma 1.6. For a ≡ 3 (mod 4), we can write a = 4K − 1, where K can be split into
an even part (which we write as 2i) and an odd part (which we write as either 4j+1 or 4j+3).
In the first case, a+1 equals 4 · 2i · (4j+1) and since m is the smallest integer such that a+1

m
is

the sum of two squares, then m must be equivalent to 1 (mod 4), and by Lemma 6.1 we have
n ≡ 1 (mod 4) in this case, and so n ≡ m (mod 4). A similar argument applies to the second
case. �

This lemma places further restrictions on n. Recall that m is the smallest positive integer so
that a+1

m
is the sum of two squares.

Lemma 6.3. Let a ≡ 3 (mod 4). If an+1 is the sum of two squares, then for all primes p ≡ 3
(mod 4) such that pe||a+ 1, e odd, we have pk||n, k odd. In particular, if an + 1 is the sum of
two squares, then m|n.

Proof. Let an + 1 be the sum of two squares and suppose pe||a+ 1, e odd, and p ≡ 3 (mod 4).
Select k such that pk||n. Then, Lemma 3.3 implies that pe+k||an + 1. Since an + 1 is the sum
of two squares, we know e+ k is even, which makes k odd. It follows that since m =

∏

p for p
such primes of this type, then if an + 1 is the sum of two squares, then m|n. �

We will now prove Theorem 1.7, which applies to all a ≡ 3 (mod 4).
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Proof of Theorem 1.7. First we will prove that n
m
is the sum of two squares. Suppose that an+1

is the sum of two squares and recall that by Lemma 6.3 that m|n. Assume by contradiction
that n

m
is not the sum of two squares. Then let q be the greatest prime such that q ≡ 3 (mod 4)

and qj ‖ n
m
, j odd. If q|m, then Lemma 3.3 implies that an even power of q divides am + 1,

and so if an odd power of q divides an + 1, then qr ‖ n, r odd. But m is squarefree, so q ‖ m.
Then qr−1 ‖ n

m
, r− 1 even, which is a contradiction. Therefore we can assume q ∤ m, so qj ‖ n.

We know that Φ2qj (a) divides an + 1. We have that Φ2qj (a) ≡ Φ2qj (−1) ≡ Φqj (1) ≡ q ≡ 3
(mod 4). This implies that there exists a prime p ≡ 3 (mod 4) such that pk ‖ Φ2qj (a), k odd.
We can consider two cases: when p 6= q, and when p = q.

Suppose p 6= q. Then p ∤ qj, so ordp(a) = 2qj, which implies p > q. Since an + 1 is the sum of
two squares, Lemma 3.3 implies that pl ‖ n, l odd. Since ordp(a) > 2, p ∤ a+1, so p ∤ m. Then
p is a prime congruent to 3 (mod 4) that divides n

m
to an odd power, and p > q, which is a

contradiction because we assume q is the largest such prime.

Now suppose p = q. Since p|Φ2pj(a) it follows that a
pj + 1 ≡ 0 (mod p). Repeatedly applying

Fermat’s little theorem, that ap ≡ a (mod p), we find that p|a + 1. Since p ∤ m, pk‖a + 1, k
even. Then Lemma 3.3 implies that pk+j ‖ an+1, where k+ j is odd, which is a contradiction.
Thus if an + 1 is the sum of two squares, then n

m
is also the sum of two squares.

Next we’ll prove that am + 1 is the sum of two squares. Suppose an + 1 is the sum of two
squares, where n = ms, and assume by contradiction that am+1 is not the sum of two squares.
Then there exists some prime q ≡ 3 (mod 4) such that qj||am + 1, j odd. Since s = n

m
is

the sum of two squares, we know qk||s, k even. Then n = mqks′, where gcd(s′, q) = 1, so
qk+j||an +1, k+ j odd (Lemma 3.3). This is a contradiction because we assumed an +1 is the
sum of two squares. Therefore if an + 1 is the sum of two squares for some odd n, then am + 1
is also the sum of two squares.

Let δ | n
m
, where δ is the sum of two squares, and suppose an+1 is the sum of two squares. We

will show that amδ + 1 is the sum of two squares. Assume by contradiction that there exists a
prime q ≡ 3 (mod 4) such that qj ‖ amδ + 1, j odd.

Since δ is the sum of two squares, we know qk ‖ δ, k even, k ≥ 0. Because q must divide an +1
to an even power, Lemma 3.3 implies that ql ‖ n

mδ
, l odd, so ql+k ‖ n

m
, l + k odd, which is a

contradiction because n
m

is the sum of two squares. Thus if an + 1 is the sum of two squares,
amδ + 1 is the sum of two squares for all δ | n

m
such that δ is the sum of two squares.

Finally, we will show that if anp
2
+ 1 is the sum of two squares for some p ≡ 3 (mod 4), then

p|an + 1. By Lemma 1.6 we know anp + 1 is not the sum of two squares, so there exists some

q ≡ 3 (mod 4) with qj ||anp + 1, j odd. If q 6= p, then by Lemma 3.3 we have qj||anp2 + 1, j

odd, which contradicts anp
2
+1 being the sum of two squares. Hence q = p, and since p|anp+1

and anp ≡ an (mod p), we have that p|an + 1, as desired. �

We conclude this section with a heuristic giving evidence for Conjecture 1.10. Suppose first
that a ≡ 0 or 1 mod 4. In this case, if an + 1 is the sum of two squares for any n, then a+ 1 is
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the sum of two squares. Let Ap be the event that Φ2p(a) is the sum of two squares. It seems
plausible that the probability that this even occurs is ≈ K√

ln(Φ2p(a))
≈ K√

p
. Since

∑

p≡1 (mod 4)
1√
p

diverges, we should expect an infinite number of the events Ap to occur, and this would yield
infinitely many primes p for which ap + 1 is the sum of two squares.

If a ≡ 2 (mod 4), then Theorem 1.2 implies there is at most one n so that an + 1 is the sum
of two squares.

In the case that a ≡ 3 (mod 4), let m denote the smallest positive integer so that a+1
m

is the
sum of two squares. First, consider primes p ≡ 1 (mod 4) so that amp + 1 is the sum of two
squares. We have

amp + 1

am + 1
=

∏

d|2mp
d∤2m

Φd(a).

Theorem 2.1 implies that if we write Φd(a) = gcd(Φd(a), m)cd, then the cd are pairwise coprime
and this implies that cd is the sum of two squares for all d. It seems plausible that the cd being
the sum of two squares are independent, and so the probability that amp + 1 is the sum of
two squares is ≈

∏

d
1√
ln(cd)

≈ p−τ(m)/2, where τ(m) is the number of divisors of m. This sum

diverges if m = 1 or m is prime, and converges if m is composite. In particular, in the case
that m is composite, there are only finitely many primes p so that amp + 1 is the sum of two
squares.

Then, Theorem 1.7 then implies that there are only finitely many primes that can divide some
number n so that an + 1 is the sum of two squares. If there are infinitely many n so that
an + 1 is the sum of two squares, it follows then that there is a prime p so that ap

r
+ 1 is

the sum of two squares for infinitely many r. We have that ap
r
+ 1 =

∏r
i=0Φ2pi(a). If we

write ri =
Φ2pi (a)

gcd(Φ
2pi

(a),p)
, then Theorem 2.1 implies that gcd(ri, rj) = 1. It follows from this that

ri is the sum of two squares for all i ≥ 1. Assuming that these events are independent, the
probability this occurs is

∑

i
K√
log(ri)

. But this sum converges. Therefore the “probability is

zero” that there are infinitely many n so that an+1 is the sum of two squares in the case when
a ≡ 3 (mod 4) and m is composite.

As an example, we consider a = 4713575, with a composite m value of m = 21. We conjecture
that there are finitely many n so that an + 1 is the sum of two squares. So far, we know only
of n = 21 and n = 105.

7. p ≡ 1 (mod 4)

The previous theorems put constraints on when an + 1 can be the sum of two squares for
different categories of a. The following proof of Theorem 1.8 uses Aurifeuillian factorization to
show that when a = pv2, where p ≡ 1 (mod 4) is a prime and p ∤ v, there are either zero or
infinitely many odd integers n such that an + 1 is the sum of two squares.
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Proof of Theorem 1.8. Let a = pv2, where p ≡ 1 (mod 4) is prime and p ∤ v. Suppose an + 1 is
the sum of two squares and consider:

anp + 1 =
∏

δ|n
Φ2δ(a)

∏

δ|np
δ∤n

Φ2δ(a).

We know
∏

δ|n
Φ2δ(a) = an+1 is the sum of two squares. Consider the Aurifeuillian factorization

of Φ2δ(a), where δ|np, δ ∤ n, x = −kv2, k = −p ≡ 3 (mod 4), and q is odd:

Φ2δ(x) =
(

F (x)
)2 − kxq

(

G(x)
)2

Φ2δ(−kv2) =
(

F (−kv2)
)2 − k(−kv2)q

(

G(−kv2)
)2

=
(

F (−kv2)
)2

+ kq+1v2q
(

G(−kv2)
)2

=
(

F (−kv2)
)2

+
(

k
q+1
2 vqG(−kv2)

)2

= Φ2δ(a).

Therefore Φ2δ(a) is the sum of two squares for any δ|n. Thus anp+1 is the sum of two squares.
Conversely, suppose that anp+1 is the sum of two squares. Then we can see again that Φ2δp(a)

is the sum of two squares for any factor δ. This implies that
∏

δ|n
Φ2δ(a) = an + 1 is the sum of

two squares. �

Now, we will construct an infinite family of number a = f(X) so that ap + 1 is the sum of two
squares.

Proof of Theorem 1.9. Suppose p ≡ 1 (mod 4), then there exists an even integer u and an odd
integer v such that p = u2 + v2. Then consider the following polynomials:

A(X) =
u

2
pX2 + vX,

B(X) =
u2

2
pX2 − 1, and

C(X) =
uv

2
pX2 + pX.

Let f(X) = pA(X)2, then we have

f(X)p + 1 = (f(X) + 1)Φ2p(f(X))

= (pA(X)2 + 1)Φ2p(pA(X)2).

It is straightforward to check that f(X)+1 can be written as the sum of two squares: pA(X)2+
1 = B(X)2 + C(X)2. Then consider the Aurifeuillian factorization of Φ2p(x), where we let
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k = −p and x = pA(X)2, then we get the following:

Φ2p(x) = F (x)2 − kxG(x)2

Φ2p

(

pA(X)2
)

=
(

F
(

pA(X)2
))2 − p

(

−pA(X)2
) (

G
(

pA(X)2
))2

=
(

F
(

pA(X)2
))2

+
(

p2A(X)2
) ((

G(pA(X)2
))2

=
(

F
(

pA(X)2
))2

+
(

pA(X)
(

G
(

pA(X)2
)))2

= F (x)2 + (−kxG(x))2

Therefore, Φ2p (f(X)) can be written as the sum of two squares as well. This implies that
f(X)p + 1 is the product of two terms, each of which can be written as the sum of two
squares. �
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8. Chart

Here is a chart that illustrates the first few odd integers n such that an + 1 is the sum of two
squares for all integers a ∈ [1, 50].

a n Property a n Property

1 all Thm 1.1 26 - Thm 1.2

2 3 Thm 1.2 27 - Thm 1.7

3 1, 5, 13, 65,. . . Thm 1.7 28 1, 3, 11, 19,. . . Thm 1.2

4 all Thm 1.1 29 - Thm 1.5

5 - Thm 1.5 30 31 Thm 1.2

6 7 Thm 1.2 31 1, 5, 25, 41,. . . Thm 1.7

7 1, 13, 17, 29,. . . Thm 1.7 32 - Thm 1.2

8 1 Thm 1.2 33 1, 5, 7, 17,. . . Thm 1.4

9 all Thm 1.1 34 - Thm 1.2

10 - Thm 1.2 35 1, 9, 13, 29,. . . Thm 1.7

11 3, 159,. . . Thm 1.7 36 all Thm 1.1

12 1, 5, 11, 23,. . . Thm 1.2 37 - Thm 1.5

13 - Thm 1.5 38 - Thm 1.2

14 3 Thm 1.2 39 1, 13, 37, 61,. . . Thm 1.7

15 1, 29, 89, 97,. . . Thm 1.7 40 1, 5, 13, 53,. . . Thm 1.2

16 all Thm 1.1 41 - Thm 1.4

17 1, 7, 17, 23,. . . Thm 1.8 42 - Thm 1.2

18 19 Thm 1.2 43 - Thm 1.7

19 1, 17, 29, 37,. . . Thm 1.7 44 1, 5, 7, 17,. . . Thm 1.2

20 - Thm 1.2 45 - Thm 1.5

21 - Thm 1.5 46 - Thm 1.2

22 - Thm 1.2 47 - Thm 1.7

23 3, 123,. . . Thm 1.7 48 1, 3, 5, 17,. . . Thm 1.2

24 1, 7, 11, 19,. . . Thm 1.2 49 all Thm 1.1

25 all Thm 1.1 50 - Thm 1.2
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