Base | Conjectured Riesel k | Covering set | k's that make a full covering set with all or partial algebraic factors | Trivial k's (factor) | Remaining k to find prime (n testing limit) |
Top 10 k's with largest first primes: k (n) | Comments / accounting of all k's |
---|---|---|---|---|---|---|---|
3 | 63064644938 | 5, 7, 13, 17, 19, 37, 41, 193, 757 | k = = 1 mod 2 (2) | 100714 k's remaining at n>=100K. See k's and test limits at Riesel Base 3 remain. |
676373272 (1072675) 1068687512 (1067484) 1483575692 (1067339) 780548926 (1064065) 1776322388 (1053069) 587137424 (1047373) 1818135848 (1044237) 688002298 (1043910) 1755742784 (1043692) 1328444066 (1039025) |
See all primes for n>25K at prime-riesel-base3-gt-25K.zip. | |
5 | 346802 | 3, 7, 13, 31, 601 | k = = 1 mod 2 (2) | 56 k's remaining at n=4.3M. See k's at Riesel Base 5 remain. |
3622 (7558139) 213988 (4138363) 63838 (3887851) 64598 (3769854) 273662 (3493296) 102818 (3440382) 109838 (3168862) 207494 (3017502) 238694 (2979422) 146264 (2953282) |
All k's are being worked on by PrimeGrid's
Sierpinski/Riesel Base 5 project. See k's and test limits at
Sierpinski/Riesel Base 5
project stats. all-ks-riesel-base5.zip |
|
6 | 84687 | 7, 13, 31, 37, 97 | k = = 1 mod 5 (5) | 1597 (5.6M) | 36772 (1723287) 43994 (569498) 77743 (560745) 51017 (528803) 57023 (483561) 78959 (458114) 59095 (171929) 48950 (143236) 29847 (141526) 9577 (121099) |
all-ks-riesel-base6.txt | |
7 | 408034255082 | 5, 13, 19, 43, 73, 181, 193, 1201 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) |
16399 k's remaining for k<=1G at n>=25K. See k's and test limits at Riesel Base 7 remain. |
1620198 (684923) 7030248 (483691) 7320606 (464761) 5646066 (460533) 9012942 (425310) 3885264 (419940) 5333174 (380887) 4780002 (368053) 9871172 (367701) 328226 (298243) |
See all primes for n>25K at prime-riesel-base7-gt-25K.txt. | |
9 | 74 | 5, 7, 13, 73 | All k = m^2 for all n; factors to: (m*3^n - 1) * (m*3^n + 1) |
k = = 1 mod 2 (2) | none - proven | 24 (8) 14 (8) 60 (5) 42 (5) 44 (4) 46 (3) 38 (3) 18 (3) 70 (2) 68 (2) |
k = 4, 16, 36, and 64 proven composite by full algebraic
factors. all-ks-riesel-base9.txt |
10 | 10176 | 7, 11, 13, 37 | k = = 1 mod 3 (3) | 4421 (3M) | 7019 (881309) 8579 (373260) 6665 (60248) 1935 (51836) 1803 (45882) 1343 (29711) 3356 (13323) 450 (11958) 6588 (5846) 4478 (4817) |
all-ks-riesel-base10.txt | |
11 | 862 | 3, 7, 19, 37 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) |
none - proven | 62 (26202) 308 (444) 172 (187) 284 (186) 518 (78) 464 (78) 728 (76) 448 (69) 494 (60) 100 (59) |
all-ks-riesel-base11.txt | |
12 | 376 | 5, 13, 29 | (Condition 1): All k where k = m^2 and m = = 5 or 8 mod 13: for even n let k = m^2 and let n = 2*q; factors to: (m*12^q - 1) * (m*12^q + 1) odd n: factor of 13 (Condition 2): All k where k = 3*m^2 and m = = 3 or 10 mod 13: even n: factor of 13 for odd n let k = 3*m^2 and let n=2*q-1; factors to: [m*2^n*3^q - 1] * [m*2^n*3^q + 1] |
k = = 1 mod 11 (11) | none - proven | 157 (285) 46 (194) 304 (40) 259 (40) 94 (36) 292 (30) 147 (28) 301 (27) 349 (25) 58 (23) |
k = 25, 64 and 324 proven composite by condition 1. k = 27 and 300 proven composite by condition 2. all-ks-riesel-base12.txt |
13 | 302 | 5, 7, 17 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) |
none - proven | 288 (109217) 146 (30) 92 (23) 102 (20) 300 (10) 216 (10) 20 (10) 174 (8) 152 (8) 224 (7) |
all-ks-riesel-base13.txt | |
14 | 4 | 3, 5 | k = = 1 mod 13 (13) | none - proven | 2 (4) 3 (1) |
all-ks-riesel-base14.txt | |
15 | 36370321851498 | 13, 17, 113, 211, 241, 1489, 3877 | k = = 1 mod 2 (2) k = = 1 mod 7 (7) |
14 k's remaining for k<=20M at n>=250K. See k's and test limits at Riesel Base 15 remain. |
4242104 (728840) 9756404 (527590) 9105446 (496499) 5854146 (428616) 9535278 (375675) 3347624 (347109) 3889018 (275603) 5255502 (257491) 5149158 (249605) 11592838 (214537) |
See all primes for n>25K at Riesel Base 15 primes. | |
17 | 86 | 3, 5, 29 | k = = 1 mod 2 (2) | none - proven | 44 (6488) 36 (243) 10 (117) 26 (110) 58 (35) 46 (25) 70 (19) 54 (16) 74 (12) 42 (12) |
all-ks-riesel-base17.txt | |
18 | 246 | 5, 13, 19 | k = = 1 mod 17 (17) | none - proven | 151 (418) 78 (172) 50 (110) 79 (63) 237 (44) 184 (44) 75 (44) 215 (36) 203 (32) 93 (32) |
all-ks-riesel-base18.txt | |
19 | 1119866 | 5, 7, 13, 127, 181 | (Condition 1): All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*19^q - 1) * (m*19^q + 1) odd n: factor of 5 (Condition 2): All k where k = 19*m^2 and m = = 2 or 3 mod 5: [Reverse condition 1] |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) |
947 k's remaining at n>=100K. See k's and test limits at Riesel Base 19 remain. |
3224 (217758) 3314 (121512) 899576 (99899) 520266 (99757) 572886 (99635) 916026 (99517) 703454 (99478) 668474 (99400) 1037544 (98582) 680546 (98509) |
k = 12^2, 18^2, 42^2, 48^2, 72^2, 78^2, (etc. pattern repeating every 30m)
proven composite by condition 1. k = 19*12^2, 19*18^2, 19*42^2, 19*48^2, 19*72^2, 19*78^2, (etc. pattern repeating every 30m) proven composite by condition 2. all-ks-riesel-base19.zip |
20 | 8 | 3, 7 | k = = 1 mod 19 (19) | none - proven | 2 (10) 6 (2) 5 (2) 7 (1) 4 (1) 3 (1) |
all-ks-riesel-base20.txt | |
21 | 560 | 11, 13, 17 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) |
none - proven | 64 (2867) 494 (978) 154 (103) 84 (88) 142 (48) 450 (34) 342 (23) 362 (20) 34 (17) 474 (11) |
all-ks-riesel-base21.txt | |
22 | 4461 | 5, 23, 97 | k = = 1 mod 3 (3) k = = 1 mod 7 (7) |
3656 (5M) | 3104 (161188) 4001 (36614) 2853 (27975) 1013 (26067) 4118 (12347) 185 (11433) 1335 (11155) 4302 (7653) 3426 (7586) 4440 (5999) |
all-ks-riesel-base22.txt | |
23 | 476 | 3, 5, 53 | k = = 1 mod 2 (2) k = = 1 mod 11 (11) |
404 (2M) | 194 (211140) 134 (27932) 394 (20169) 314 (17268) 464 (7548) 230 (6228) 328 (5001) 472 (2379) 326 (1598) 374 (1452) |
all-ks-riesel-base23.txt | |
24 | 32336 | 5, 7, 13, 73, 577 | (Condition 1): All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*24^q - 1) * (m*24^q + 1) odd n: factor of 5 (Condition 2): All k where k = 6*m^2 and m = = 1 or 4 mod 5: even n: factor of 5 for odd n let k = 6*m^2 and let n=2*q-1; factors to: [m*2^n*6^q - 1] * [m*2^n*6^q + 1] |
k = = 1 mod 23 (23) | 68 k's remaining at n=260K. See k's at Riesel Base 24 remain. |
10171 (259815) 11906 (252629) 23059 (252514) 21411 (252303) 28554 (239686) 20804 (233296) 8894 (210624) 2844 (203856) 25379 (175842) 22604 (169372) |
k = 2^2, 3^2, 7^2, 8^2. 12^2, 13^2, (etc. pattern repeating every
5m where k not = = 1 mod 23) proven composite by condition 1. k = 6*1^2, 6*4^2, 6*6^2, 6*9^2, 6*11^2, 6*14^2, (etc. pattern repeating every 5m where k not = = 1 mod 23) proven composite by condition 2. all-ks-riesel-base24.txt |
25 | 346802 | 7, 13, 31, 601 | All k = m^2 for all n; factors to: (m*5^n - 1) * (m*5^n + 1) |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) |
100 k's remaining at n>=300K. See k's and test limits at Riesel Base 25 remain. |
18110 (3779069) 319190 (1943925) 64598 (1884927) 273662 (1746648) 102818 (1720191) 109838 (1584431) 207494 (1508751) 238694 (1489711) 146264 (1476641) 35816 (1472647) |
k = 6^2, 12^2, 18^2, (etc. repeating every 6m) proven composite by full
algebraic factors. k's where k = = 2 mod 3 are being worked on by PrimeGrid's Sierpinski/Riesel Base 5 project. k's and primes are converted from base 5. all-ks-riesel-base25.zip |
26 | 149 | 3, 7, 31, 37 | k = = 1 mod 5 (5) | none - proven | 115 (520277) 32 (9812) 73 (537) 80 (382) 128 (300) 124 (249) 37 (233) 25 (133) 65 (100) 30 (72) |
all-ks-riesel-base26.txt | |
27 | 804 | 5, 7, 73 | All k = m^3 for all n; factors to: (m*3^n - 1) * (m^2*9^n + m*3^n + 1) |
k = = 1 mod 2 (2) k = = 1 mod 13 (13) |
706 (5M) | 258 (69942) 594 (36624) 684 (6393) 580 (1096) 302 (697) 218 (579) 510 (388) 582 (345) 78 (227) 454 (172) |
k = 8, 64, 216, and 512 proven composite by full algebraic factors. all-ks-riesel-base27.txt |
28 | 9078 | 5, 29, 157 | (Condition 1): All k where k = m^2 and m = = 12 or 17 mod 29: for even n let k = m^2 and let n = 2*q; factors to: (m*28^q - 1) * (m*28^q + 1) odd n: factor of 29 (Condition 2): All k where k = 28*m^2 and m = = 12 or 17 mod 29: [Reverse condition 1] |
k = = 1 mod 3 (3) | 233 (1M) 1422 (1M) 4322 (1M) 4871 (1M) |
6207 (430803) 5886 (206482) 2319 (65184) 4001 (56146) 5076 (29557) 7367 (23099) 5306 (20994) 8991 (16799) 5133 (7958) 4436 (6242) |
k = 144 and 5625 proven composite by condition 1. k = 4032 proven composite by condition 2. all-ks-riesel-base28.txt |
29 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 1 mod 7 (7) |
none - proven | 2 (136) | all-ks-riesel-base29.txt | |
30 | 4928 | 13, 19, 31, 67 | k = 1369: for even n let n=2*q; factors to: (37*30^q - 1) * (37*30^q + 1) odd n: covering set 7, 13, 19 |
k = = 1 mod 29 (29) | 659 (500K) 1024 (500K) 1580 (500K) 1936 (500K) 2293 (500K) 2916 (500K) 3719 (500K) 4372 (500K) 4897 (500K) |
1642 (346592) 239 (337990) 2538 (262614) 249 (199355) 3256 (160619) 225 (158755) 774 (148344) 1873 (50427) 3253 (43291) 25 (34205) |
all-ks-riesel-base30.txt |
31 | 134718 | 7, 13, 19, 37, 331 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 5 (5) |
55758 (3M) | 6962 (2863120) 126072 (374323) 43902 (251859) 55940 (197599) 101022 (133208) 37328 (129973) 117690 (108349) 74924 (81381) 131994 (68109) 131240 (46714) |
||
33 | 764 | 5, 17, 109 | (Condition 1): All k where k = m^2 and m = = 4 or 13 mod 17: for even n let k = m^2 and let n = 2*q; factors to: (m*33^q - 1) * (m*33^q + 1) odd n: factor of 17 (Condition 2): All k where k = 33*m^2 and m = = 4 or 13 mod 17: [Reverse condition 1] |
k = = 1 mod 2 (2) | none - proven | 732 (19011) 186 (16770) 254 (3112) 562 (3087) 142 (2568) 370 (1628) 272 (1418) 222 (919) 108 (360) 698 (357) |
k = 16 proven composite by condition 1. k = 528 proven composite by condition 2. |
34 | 6 | 5, 7 | k = = 1 mod 3 (3) k = = 1 mod 11 (11) |
none - proven | 5 (2) 3 (1) 2 (1) |
||
35 | 287860 | 3, 13, 97, 397 | k = = 1 mod 2 (2) k = = 1 mod 17 (17) |
423 k's remaining at n=100K. See k's at Riesel Base 35 remain. |
112514 (99908) 212806 (97767) 129428 (97598) 83144 (97498) 250064 (96676) 141466 (96359) 239014 (95455) 56494 (94551) 161554 (94043) 187916 (93860) |
||
36 | 116364 | 13, 37, 43, 97 | All k = m^2 for all n; factors to: (m*6^n - 1) * (m*6^n + 1) |
k = = 1 mod 5 (5) k = = 1 mod 7 (7) |
30 k's remaining at n>=430K. See k's and test limits at Riesel Base 36 remain. |
102088 (379506) 43809 (340997) 56093 (321585) 73187 (309619) 80883 (297571) 43994 (284749) 33877 (255852) 42623 (245426) 68535 (243900) 92943 (238914) |
k = 2^2, 3^2, 5^2, 7^2, 10^2, 12^2, 17^2, 18^2, 23^2, 25^2, 28^2, 30^2, 32^2, 33^2, 35^2, 37^2, 38^2, 40^2, 42^2, 45^2, 47^2, 52^2, 53^2, 58^2, 60^2, 63^2, 65^2, 67^2, 68^2, 70^2, (etc. pattern repeating every 35m) proven composite by full algebraic factors. |
37 | 7772 | 5, 19, 137 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) |
522 (500K) 816 (500K) 1578 (500K) 1614 (500K) 2148 (500K) 2640 (500K) 3972 (500K) 4428 (500K) 5910 (500K) 6752 (500K) 7088 (500K) 7352 (500K) |
4806 (364466) 5376 (289738) 6792 (181029) 284 (128864) 4356 (75913) 5262 (60498) 1842 (41606) 3336 (39794) 3480 (39565) 2606 (39006) |
||
38 | 13 | 3, 5, 17 | k = = 1 mod 37 (37) | none - proven | 11 (766) 9 (43) 7 (7) 12 (2) 8 (2) 5 (2) 2 (2) 10 (1) 6 (1) 4 (1) |
||
39 | 1352534 | 5, 7, 223, 1483 | (Condition 1): All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*39^q - 1) * (m*39^q + 1) odd n: factor of 5 (Condition 2): All k where k = 39*m^2 and m = = 2 or 3 mod 5: [Reverse condition 1] |
k = = 1 mod 2 (2) k = = 1 mod 19 (19) |
2134 k's remaining at n>=100K. See k's and test limits at Riesel Base 39 remain. |
1225996 (99983) 1164356 (99981) 834506 (99733) 104836 (99645) 903844 (99636) 710586 (99519) 1231836 (99477) 702566 (99381) 432786 (99285) 473068 (99023) |
k = 2^2, 8^2, 12^2, 18^2, 22^2, 28^2, (etc. pattern repeating every
10m where k not = = 1 mod 19) proven composite by condition 1. k = 39*2^2, 39*8^2, 39*12^2, 39*18^2, 39*22^2, 39*28^2, (etc. pattern repeating every 10m where k not = = 1 mod 19) proven composite by condition 2. |
40 | 3386517 | 7, 41, 223, 547 | (Condition 1): All k where k = m^2 and m = = 9 or 32 mod 41: for even n let k = m^2 and let n = 2*q; factors to: (m*40^q - 1) * (m*40^q + 1) odd n: factor of 41 (Condition 2): All k where k = 40*m^2 and m = = 9 or 32 mod 41: [Reverse condition 1] (Condition 3): All k where k = 10*m^2 and m = = 18 or 23 mod 41: even n: factor of 41 for odd n let k = 10*m^2 and let n=2*q-1; factors to: [m*2^n*10^q - 1] * [m*2^n*10^q + 1] |
k = = 1 mod 3 (3) k = = 1 mod 13 (13) |
1117 k's remaining at n=100K. See k's at Riesel Base 40 remain. |
2672094 (99993) 2391251 (99269) 2076116 (99266) 1003148 (99185) 90488 (98849) 647555 (98803) 1423601 (98702) 1076126 (98628) 1667676 (97433) 2404362 (97146) |
k = 9^2, 114^2, 132^2, 237^2, 255^2, 360^2, (etc. pattern repeating every
123m where k not = = 1 mod 13) proven composite by condition 1. k = 40*9^2, 40*114^2, 40*132^2, 40*237^2, and 40*255^2 proven composite by condition 2. k = 10*105^2, 10*351^2, and 10*387^2 proven composite by condition 3. |
41 | 8 | 3, 7 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) |
none - proven | 2 (2) 4 (1) |
||
42 | 15137 | 5, 43, 353 | k = = 1 mod 41 (41) | 603 (300K) 1049 (300K) 2538 (300K) 4903 (300K) 5118 (300K) 5978 (300K) 6836 (300K) 6964 (300K) 7309 (300K) 8297 (300K) 8341 (300K) 9029 (300K) 9201 (300K) 9633 (300K) 9848 (300K) 11267 (300K) 11781 (300K) 11911 (300K) 11996 (300K) 12125 (300K) 12213 (300K) 12598 (300K) 13288 (300K) 13347 (300K) |
4299 (246132) 12127 (203477) 7051 (188034) 5417 (179220) 13898 (152983) 1633 (128734) 13757 (126934) 7913 (108747) 15024 (104613) 8453 (89184) |
||
43 | 672 | 5, 11, 37 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 7 (7) |
none - proven | 308 (624) 12 (203) 450 (162) 494 (148) 476 (101) 104 (77) 560 (70) 384 (48) 188 (37) 230 (34) |
||
44 | 4 | 3, 5 | k == 1 mod 43 (43) | none - proven | 2 (4) 3 (1) |
||
45 | 22564 | 7, 19, 23, 109 | k = = 1 mod 2 (2) k = = 1 mod 11 (11) |
2804 (500K) 6094 (500K) 10096 (500K) 15432 (500K) 17918 (500K) |
372 (278559) 10518 (251579) 4210 (235749) 13548 (158941) 24 (153355) 21274 (128858) 1312 (104779) 1264 (64666) 2500 (64011) 7246 (59101) |
||
46 | 8177 | 29, 47, 73 | k = = 1 mod 3 (3) k = = 1 mod 5 (5) |
800 (500K) 1317 (500K) 3812 (500K) 4419 (500K) 6060 (500K) 6062 (500K) 7472 (500K) |
6297 (330940) 4580 (225356) 7157 (221981) 7520 (137207) 7848 (103180) 7284 (73716) 3383 (69524) 870 (51699) 2819 (33458) 3147 (27916) |
||
47 | 14 | 3, 5, 13 | k = = 1 mod 2 (2) k = = 1 mod 23 (23) |
none - proven | 4 (1555) 10 (51) 8 (32) 2 (4) 12 (1) 6 (1) |
||
48 | 3226 | 5, 7, 461 | k = = 1 mod 47 (47) | 313 (500K) 384 (500K) 909 (500K) 916 (500K) 1093 (500K) 1457 (500K) 1686 (500K) 1877 (500K) 1896 (500K) 1898 (500K) 2071 (500K) 2148 (500K) 2172 (500K) 2402 (500K) 2589 (500K) 2682 (500K) 2927 (500K) 2939 (500K) 3044 (500K) 3067 (500K) |
708 (445477) 2157 (169491) 2549 (169453) 1478 (167541) 2822 (129611) 2379 (116204) 118 (107422) 692 (103056) 1842 (87175) 953 (81493) |
||
49 | 2414 | 5, 13, 19, 43 | All k = m^2 for all n; factors to: (m*7^n - 1) * (m*7^n + 1) |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) |
none - proven | 2186 (369737) 1394 (52698) 1266 (36191) 230 (24824) 1706 (16337) 1784 (13480) 786 (6393) 896 (3563) 1314 (3076) 1544 (3026) |
k = 36, 144, 324, 576, 900, 1296, 1764, and 2304 proven composite by full algebraic factors. |
50 | 16 | 3, 17 | k == 1 mod 7 (7) | none - proven | 14 (66) 13 (19) 5 (12) 11 (6) 6 (6) 2 (2) 12 (1) 10 (1) 9 (1) 7 (1) |
||
51 | 8632534 | 7, 13, 379, 2551 | (Condition 1): All k where k = m^2 and m = = 5 or 8 mod 13: for even n let k = m^2 and let n = 2*q; factors to: (m*51^q - 1) * (m*51^q + 1) odd n: factor of 13 (Condition 2): All k where k = 51*m^2 and m = = 5 or 8 mod 13: [Reverse condition 1] |
k = = 1 mod 2 (2) k = = 1 mod 5 (5) |
10432 k's remaining at n>=25K. See k's and test limits at Riesel Base 51 remain. |
1498550 (49955) 759942 (49811) 1873470 (49791) 1947438 (49754) 2568668 (49707) 2117064 (49607) 1561834 (49583) 160850 (49515) 877070 (49322) 2702894 (49106) |
k = 8^2, 18^2, 60^2, 70^2, 112^2, 122^2, 138^2, 148^2, 190^2, 200^2,
242^2, 252^2, (etc. pattern repeating every
130m) proven composite by condition 1. k = 51*8^2, 51*18^2, 51*60^2, 51*70^2, 51*112^2, 51*122^2, 51*138^2, 51*148^2, 51*190^2, 51*200^2, 51*242^2, 51*252^2, (etc. pattern repeating every 130m) proven composite by condition 2. |
52 | 85967 | 5, 53, 541 | (Condition 1): All k where k = m^2 and m = = 23 or 30 mod 53: for even n let k = m^2 and let n = 2*q; factors to: (m*52^q - 1) * (m*52^q + 1) odd n: factor of 53 (Condition 2): All k where k = 52*m^2 and m = = 23 or 30 mod 53: [Reverse condition 1] |
k = = 1 mod 3 (3) k = = 1 mod 17 (17) |
99 k's remaining at n=100K. See k's at Riesel Base 52 remain. |
3870 (99193) 8693 (95515) 11394 (94360) 70703 (93799) 39168 (91095) 55119 (90896) 12401 (84322) 71763 (84127) 58407 (81857) 47913 (81807) |
k = 900, 16641, and 35721 proven composite by condition 1. k = 46800 proven composite by condition 2. |
53 | 5392 | 3, 5, 281 | k = = 1 mod 2 (2) k = = 1 mod 13 (13) |
64 k's remaining at n=250K. See k's at Riesel Base 53 remain. |
4404 (235589) 478 (220497) 5174 (199016) 3802 (179867) 208 (158365) 5140 (145173) 3958 (140565) 1628 (138940) 4882 (128251) 2338 (128165) |
||
54 | 21 | 5, 11 | (Condition 1): All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*54^q - 1) * (m*54^q + 1) odd n: factor of 5 (Condition 2): All k where k = 6*m^2 and m = = 1 or 4 mod 5: even n: factor of 5 for odd n let k = 6*m^2 and let n=2*q-1; factors to: [m*3^n*6^q - 1] * [m*3^n*6^q + 1] |
k = = 1 mod 53 (53) | none - proven | 20 (8) 19 (6) 10 (4) 17 (3) 14 (2) 7 (2) 3 (2) 18 (1) 16 (1) 15 (1) |
k = 4 and 9 proven composite by condition 1. k = 6 proven composite by condition 2. |
55 | 6852 | 7, 17, 89 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) |
2330 (500K) 3158 (500K) 3578 (500K) 4878 (500K) 6098 (500K) |
3942 (423771) 5354 (244064) 4640 (201708) 3240 (150226) 5690 (75216) 5286 (56479) 3060 (41775) 608 (25062) 2022 (19568) 1254 (11243) |
||
56 | 20 | 3, 19 | k = = 1 mod 5 (5) k = = 1 mod 11 (11) |
none - proven | 14 (26) 10 (23) 18 (4) 17 (4) 7 (3) 8 (2) 5 (2) 2 (2) 19 (1) 15 (1) |
||
57 | 144 | 5, 13, 29 | k = = 1 mod 2 (2) k = = 1 mod 7 (7) |
none - proven | 54 (157) 100 (109) 124 (31) 88 (27) 38 (20) 128 (16) 34 (12) 94 (7) 80 (7) 98 (6) |
||
58 | 105788 | 5, 7, 13, 59, 163 | k = = 1 mod 3 (3) k = = 1 mod 19 (19) |
255 k's remaining at n=100K. See k's at Riesel Base 58 remain. |
43838 (99905) 9696 (98918) 93314 (98883) 30563 (98861) 98366 (95763) 19394 (95453) 29184 (94709) 17463 (93226) 103307 (92620) 49163 (92545) |
||
59 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 1 mod 29 (29) |
none - proven | 2 (2) | ||
60 | 20558 | 13, 61, 277 | (Condition 1): All k where k = m^2 and m = = 11 or 50 mod 61: for even n let k = m^2 and let n = 2*q; factors to: (m*60^q - 1) * (m*60^q + 1) odd n: factor of 61 (Condition 2): All k where k = 60*m^2 and m = = 11 or 50 mod 61: [Reverse condition 1] |
k = = 1 mod 59 (59) | 36 (250K) 1770 (250K) 4708 (250K) 5317 (250K) 6162 (250K) 6274 (250K) 7060 (250K) 7870 (250K) 8722 (250K) 9454 (250K) 9881 (250K) 11101 (250K) 12061 (250K) 12072 (250K) 12098 (250K) 13297 (250K) 13480 (250K) 14275 (250K) 14851 (250K) 15800 (250K) 17620 (250K) 18972 (250K) 19336 (250K) 19394 (250K) |
12996 (241023) 9212 (199777) 10249 (192067) 19397 (163090) 18965 (150468) 12479 (145725) 5611 (129082) 17185 (116884) 6101 (100167) 1024 (90701) |
k = 121, 2500, 5184, 12321, and 17689 proven composite by condition 1. k = 7260 proven composite by condition 2. |
61 | 13484 | 7, 13, 31, 97 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 5 (5) |
9642 (1M) 10572 (1M) |
1520 (287837) 10968 (102738) 198 (41855) 1644 (31715) 6168 (29180) 404 (18637) 8958 (17644) 11150 (13014) 6230 (12684) 12450 (12564) |
||
62 | 8 | 3, 7 | k = = 1 mod 61 (61) | none - proven | 3 (59) 4 (9) 6 (2) 5 (2) 2 (2) 7 (1) |
||
63 | 187258666 | 5, 13, 37, 109, 3907 | k = = 1 mod 2 (2) k = = 1 mod 31 (31) |
177330 k's remaining at n=25K. See k's at Riesel Base 63 remain. |
5189954 (25000) 1625398 (25000) 164097056 (24999) 105140986 (24999) 74448672 (24999) 49821932 (24999) 39348182 (24999) 136482716 (24998) 91621778 (24998) 78114558 (24998) |
||
65 | 10 | 3, 11 | k = = 1 mod 2 (2) | none - proven | 8 (10) 4 (9) 2 (4) 6 (1) |
||
66 | 101954772 | 7, 17, 37, 67, 73, 613 | k = = 1 mod 5 (5) k = = 1 mod 13 (13) |
66553 k's remaining at n=25K. See k's and test limits at Riesel Base 66 remain. |
37114584 (25005) 62598184 (24999) 31164044 (24998) 80012272 (24997) 833823 (24997) 91875750 (24995) 58804628 (24995) 14547242 (24993) 95244855 (24991) 67306928 (24991) |
||
67 | 3144 | 5, 17, 449 | All k where k = m^2 and m = = 4 or 13 mod 17: for even n let k = m^2 and let n = 2*q; factors to: (m*67^q - 1) * (m*67^q + 1) odd n: factor of 17 |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 11 (11) |
1274 (400K) 2228 (400K) 2846 (400K) |
1886 (177962) 242 (105312) 2906 (41890) 128 (10592) 2244 (6600) 902 (3669) 1070 (3006) 494 (2953) 2492 (2730) 2922 (1932) |
k = 900 proven composite by partial algebraic factors. |
68 | 22 | 3, 23 | k = = 1 mod 67 (67) | none - proven | 7 (25395) 5 (13574) 11 (198) 8 (62) 10 (53) 3 (10) 14 (4) 2 (4) 9 (3) 20 (2) |
||
69 | 6 | 5, 7 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*69^q - 1) * (m*69^q + 1) odd n: factor of 5 |
k = = 1 mod 2 (2) k = = 1 mod 17 (17) |
none - proven | 2 (1) | k = 4 proven composite by partial algebraic factors. |
70 | 6176 | 13, 29, 71 | k = = 1 mod 3 (3) k = = 1 mod 23 (23) |
1776 (1M) 2202 (1M) |
5468 (864479) 729 (28625) 2699 (15455) 5925 (8850) 2621 (6247) 1461 (4034) 434 (3820) 2859 (3627) 5537 (3448) 6107 (3043) |
||
71 | 1132052528 | 3, 13, 37, 73, 109, 1657, 2521 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 7 (7) |
8960 k's remaining for k<=1M at n=2.5K. To be shown later. | 630014 (2500) 934054 (2499) 477574 (2499) 580814 (2496) 6260 (2496) 449392 (2495) 346234 (2495) 86518 (2495) 409792 (2493) 613550 (2492) |
||
72 | 293 | 5, 17, 73 | k = = 1 mod 71 (71) | none - proven | 4 (1119849) 79 (28009) 291 (26322) 116 (13887) 118 (4599) 67 (4308) 197 (3256) 24 (2648) 11 (2445) 18 (1494) |
||
73 | 408 | 5, 13, 37 | All k where k = m^2 and m = = 6 or 31 mod 37: for even n let k = m^2 and let n = 2*q; factors to: (m*73^q - 1) * (m*73^q + 1) odd n: factor of 37 |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) |
none - proven | 242 (2280) 302 (874) 122 (196) 200 (162) 48 (73) 404 (69) 54 (63) 222 (62) 42 (50) 26 (50) |
k = 36 proven composite by partial algebraic factors. |
74 | 4 | 3, 5 | k = = 1 mod 73 (73) | none - proven | 2 (132) 3 (2) |
||
75 | 4086 | 7, 13, 19, 61 | k = = 1 mod 2 (2) k = = 1 mod 37 (37) |
856 (500K) 968 (500K) 1388 (500K) 1538 (500K) 3320 (500K) 3592 (500K) 3628 (500K) 3742 (500K) |
2490 (209649) 3708 (137166) 3362 (105670) 2854 (47919) 1312 (45281) 3284 (36123) 2148 (33163) 2336 (26174) 2304 (11585) 2500 (9629) |
||
76 | 120 | 7, 11 | k = = 1 mod 3 (3) k = = 1 mod 5 (5) |
none - proven | 83 (1354) 90 (190) 113 (113) 27 (40) 87 (24) 20 (22) 102 (16) 15 (11) 65 (10) 54 (10) |
||
77 | 14 | 3, 13 | k = = 1 mod 2 (2) k = = 1 mod 19 (19) |
none - proven | 2 (14) 12 (2) 8 (2) 10 (1) 6 (1) 4 (1) |
||
78 | 90059 | 5, 79, 1217 | k = = 1 mod 7 (7) k = = 1 mod 11 (11) |
63 k's remaining at n=100K. See k's at Riesel Base 78 remain. |
3633 (94500) 68571 (91386) 51476 (88677) 78053 (84433) 58412 (83824) 45661 (73022) 11412 (72798) 72638 (70230) 23462 (69162) 23543 (62677) |
||
79 | 1965996 | 5, 7, 43, 6163 | (Condition 1): All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*79^q - 1) * (m*79^q + 1) odd n: factor of 5 (Condition 2): All k where k = 79*m^2 and m = = 2 or 3 mod 5: [Reverse condition 1] |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 13 (13) |
4993 k's remaining at n=100K. See k's at Riesel Base 79 remain. |
265616 (99911) 1318598 (99763) 587234 (99744) 1632864 (99736) 458588 (99519) 749774 (99290) 1306286 (99243) 403134 (99218) 1360556 (99097) 1133436 (99085) |
k = 12^2, 18^2, 42^2, 48^2, 72^2, 78^2, (etc. pattern repeating every
30m where k not = = 1 mod 13) proven composite by condition 1. k = 79*18^2, 79*42^2, 79*48^2, 79*72^2, 79*78^2, 79*102^2, 79*108^2, 79*132^2, and 79*138^2 proven composite by condition 2. |
80 | 253 | 3, 37, 173 | k = = 1 mod 79 (79) | 31 (500K) 214 (500K) |
10 (423715) 170 (148256) 106 (16237) 154 (9753) 46 (5337) 232 (2997) 157 (2613) 169 (1959) 45 (1156) 218 (776) |
||
81 | 74 | 7, 13, 73 | All k = m^2 for all n; factors to: (m*9^n - 1) * (m*9^n + 1) |
k = = 1 mod 2 (2) k = = 1 mod 5 (5) |
none - proven | 42 (99) 18 (15) 30 (12) 60 (4) 40 (4) 24 (4) 14 (4) 58 (3) 72 (2) 48 (2) |
k = 4 and 64 proven composite by full algebraic factors. |
82 | 22326 | 5, 83, 269 | k = = 1 mod 3 (3) | 66 k's remaining at n=100K. See k's at Riesel Base 82 remain. |
15978 (99999) 21429 (96772) 18989 (96049) 17592 (83837) 22233 (75716) 12912 (74869) 5811 (72615) 16091 (65850) 18576 (64927) 4482 (63245) |
||
83 | 8 | 3, 7 | k = = 1 mod 2 (2) k = = 1 mod 41 (41) |
none - proven | 2 (8) 6 (2) 4 (1) |
||
84 | 16 | 5, 17 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*84^q - 1) * (m*84^q + 1) odd n: factor of 5 |
k = = 1 mod 83 (83) | none - proven | 14 (8) 11 (7) 8 (4) 12 (3) 15 (1) 13 (1) 10 (1) 7 (1) 6 (1) 5 (1) |
k = 4 and 9 proven composite by partial algebraic factors. |
85 | 398534880 | 37, 43, 193, 2437 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 7 (7) |
449684 k's remaining at n=2.5K. To be shown later. | 396487112 (2500) 393117938 (2500) 392266922 (2500) 388605318 (2500) 386794730 (2500) 386014482 (2500) 385829696 (2500) 383492532 (2500) 379989594 (2500) 377578226 (2500) |
||
86 | 28 | 3, 29 | k = = 1 mod 5 (5) k = = 1 mod 17 (17) |
none - proven | 23 (112) 14 (38) 27 (14) 2 (10) 25 (9) 22 (5) 19 (5) 4 (5) 20 (2) 17 (2) |
||
87 | 1660 | 7, 11, 13, 19 | k = = 1 mod 2 (2) k = = 1 mod 43 (43) |
172 (500K) 384 (500K) 562 (500K) 672 (500K) 714 (500K) 848 (500K) 862 (500K) 1132 (500K) 1154 (500K) 1418 (500K) |
1112 (143809) 1004 (76524) 1628 (42252) 472 (33116) 186 (30922) 536 (21534) 958 (17047) 898 (14455) 758 (13638) 508 (9016) |
||
88 | 9702 | 13, 19, 31, 89 | All k where k = m^2 and m = = 34 or 55 mod 89: for even n let k = m^2 and let n = 2*q; factors to: (m*88^q - 1) * (m*88^q + 1) odd n: factor of 89 |
k = = 1 mod 3 (3) k = = 1 mod 29 (29) |
1247 (500K) 2010 (500K) 2258 (500K) 2493 (500K) 2744 (500K) 3641 (500K) 4572 (500K) 5112 (500K) 5121 (500K) 5307 (500K) 6101 (500K) 6329 (500K) 6353 (500K) 6498 (500K) 6759 (500K) 7842 (500K) 7911 (500K) 7968 (500K) 8990 (500K) |
9326 (209654) 3168 (205764) 6393 (170870) 2013 (159972) 5606 (139558) 7386 (133598) 3773 (129945) 1782 (124030) 3819 (110272) 8810 (106956) |
No k's proven composite by algebraic factors. |
89 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 1 mod 11 (11) |
none - proven | 2 (60) | ||
90 | 27 | 7, 13 | All k where k = m^2 and m = = 5 or 8 mod 13: for even n let k = m^2 and let n = 2*q; factors to: (m*90^q - 1) * (m*90^q + 1) odd n: factor of 13 |
k = = 1 mod 89 (89) | none - proven | 6 (20) 11 (10) 10 (10) 13 (6) 15 (5) 12 (4) 7 (4) 24 (3) 20 (2) 17 (2) |
k = 25 proven composite by partial algebraic factors. |
91 | 229058 | 23, 41, 101 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 5 (5) |
35 k's remaining at n=200K. See k's at Riesel Base 91 remain. |
28340 (195704) 85860 (177483) 219582 (169845) 189174 (165374) 199334 (162612) 5544 (146013) 197778 (125101) 146304 (124389) 97868 (121877) 103524 (121187) |
||
92 | 32 | 3, 31 | k = = 1 mod 7 (7) k = = 1 mod 13 (13) |
none - proven | 28 (99) 13 (35) 18 (26) 20 (6) 6 (6) 17 (4) 5 (4) 25 (3) 30 (2) 26 (2) |
||
93 | 612 | 5, 47, 173 | k = = 1 mod 2 (2) k = = 1 mod 23 (23) |
424 (1M) | 452 (65264) 284 (1863) 234 (1132) 92 (476) 46 (434) 270 (408) 474 (357) 212 (270) 518 (153) 122 (126) |
||
94 | 39 | 5, 19 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*94^q - 1) * (m*94^q + 1) odd n: factor of 5 |
k = = 1 mod 3 (3) k = = 1 mod 31 (31) |
29 (1M) | 14 (154) 24 (12) 26 (9) 36 (7) 18 (6) 33 (5) 27 (5) 2 (5) 35 (2) 12 (2) |
k = 9 proven composite by partial algebraic factors. |
95 | 2510 | 3, 7, 13, 1303 | k = 324: for even n let n=2*q; factors to: (18*95^q - 1) * (18*95^q + 1) odd n: covering set 7, 13, 229 |
k = = 1 mod 2 (2) k = = 1 mod 47 (47) |
632 (500K) 844 (500K) 1268 (500K) 1408 (500K) 1516 (500K) 1562 (500K) 1780 (500K) 1876 (500K) |
1414 (482691) 692 (316400) 1234 (300749) 448 (180933) 400 (174167) 46 (162025) 1628 (117720) 1336 (50225) 148 (41269) 1640 (29978) |
|
96 | 38995 | 7, 67, 97, 1303 | All k where k = m^2 and m = = 22 or 75 mod 97: for even n let k = m^2 and let n = 2*q; factors to: (m*96^q - 1) * (m*96^q + 1) odd n: factor of 97 |
k = = 1 mod 5 (5) k = = 1 mod 19 (19) |
30 k's remaining at n=100K. See k's at Riesel Base 96 remain. |
3769 (92879) 28907 (89447) 13528 (86114) 19882 (82073) 37155 (76817) 9160 (71178) 5179 (66965) 32960 (60312) 7565 (59052) 4754 (56909) |
k = 484 proven composite by partial algebraic factors. |
97 | 26354 | 5, 7, 13, 37, 73 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) |
132 k's remaining at n=100K. See k's at Riesel Base 97 remain. |
8 (192335) 15152 (97082) 4346 (96442) 12132 (94245) 19424 (89672) 18914 (87535) 16122 (87073) 17402 (86494) 4892 (86458) 22274 (85941) |
||
98 | 10 | 3, 11 | k = = 1 mod 97 (97) | none - proven | 5 (10) 7 (3) 4 (3) 8 (2) 2 (2) 9 (1) 6 (1) 3 (1) |
||
99 | 144 | 5, 13, 129 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*99^q - 1) * (m*99^q + 1) odd n: factor of 5 |
k = = 1 mod 2 (2) k = = 1 mod 7 (7) |
none - proven | 124 (302) 90 (300) 28 (108) 14 (106) 40 (70) 24 (62) 100 (25) 66 (11) 104 (8) 132 (7) |
k = 4 proven composite by partial algebraic factors. |
100 | 750 | 7, 13, 37 | All k = m^2 for all n; factors to: (m*10^n - 1) * (m*10^n + 1) |
k = = 1 mod 3 (3) k = = 1 mod 11 (11) |
none - proven | 653 (717513) 74 (44709) 450 (5979) 302 (2132) 470 (1957) 630 (1691) 690 (1310) 557 (332) 467 (263) 666 (224) |
k = 9, 36, 81, 225, 324, 576, and 729 proven composite by full algebraic factors. |
101 | 118 | 3, 17 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) |
none - proven | 108 (28320) 68 (5410) 74 (966) 64 (559) 28 (113) 8 (112) 14 (104) 82 (87) 114 (61) 2 (42) |
||
102 | 1635 | 7, 19, 79 | k = = 1 mod 101 (101) | 191 (500K) 207 (500K) 1082 (500K) 1369 (500K) |
1451 (188973) 1208 (178632) 653 (117255) 1607 (82644) 254 (58908) 1527 (49462) 1037 (43460) 32 (43302) 1296 (37715) 142 (22025) |
||
103 | 1158 | 5, 7, 13, 19, 97 | All k where k = m^2 and m = = 5 or 8 mod 13: for even n let k = m^2 and let n = 2*q; factors to: (m*103^q - 1) * (m*103^q + 1) odd n: factor of 13 |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 17 (17) |
924 (1M) | 584 (131076) 906 (77843) 612 (6047) 248 (3833) 234 (3705) 866 (2391) 1148 (2090) 300 (1805) 726 (1599) 636 (1166) |
No k's proven composite by algebraic factors. |
104 | 4 | 3, 5 | k = = 1 mod 103 (103) | none - proven | 2 (68) 3 (1) |
||
105 | 170606 | 37, 53, 149 | (Condition 1): All k where k = m^2 and m = = 23 or 30 mod 53: for even n let k = m^2 and let n = 2*q; factors to: (m*105^q - 1) * (m*105^q + 1) odd n: factor of 53 (Condition 2): All k where k = 105*m^2 and m = = 23 or 30 mod 53: [Reverse condition 1] |
k = = 1 mod 2 (2) k = = 1 mod 13 (13) |
47 k's remaining at n=100K. See k's at Riesel Base 105 remain. |
106582 (92330) 67186 (89208) 97292 (86636) 47872 (85065) 96088 (84744) 158418 (83223) 13302 (79410) 133194 (77197) 158404 (74353) 63672 (73281) |
k = 900, 5776, 18496, 33124, 58564, 82944, 121104 and 155236 proven
composite by condition 1. k = 94500 proven composite by condition 2. |
106 | 1626615 | 17, 107, 661 | k = = 1 mod 3 (3) k = = 1 mod 5 (5) k = = 1 mod 7 (7) |
590 k's remaining at n=100K. See k's at Riesel Base 106 remain. |
1473362 (99999) 131823 (99664) 1270110 (99656) 1146185 (99225) 353315 (98717) 1221834 (98651) 464487 (98583) 305484 (98120) 575463 (98015) 1062639 (97718) |
||
107 | 686 | 3, 5, 229 | k = = 1 mod 2 (2) k = = 1 mod 53 (53) |
100 (500K) 200 (500K) 208 (500K) 250 (500K) 358 (500K) 382 (500K) 404 (500K) 436 (500K) 508 (500K) 536 (500K) 568 (500K) 596 (500K) 632 (500K) |
116 (455562) 118 (314663) 88 (273915) 172 (242649) 614 (129616) 104 (102608) 592 (66989) 130 (56601) 356 (31002) 2 (21910) |
||
108 | 13406 | 7, 13, 61, 109 | (Condition 1): All k where k = m^2 and m = = 33 or 76 mod 109: for even n let k = m^2 and let n = 2*q; factors to: (m*108^q - 1) * (m*108^q + 1) odd n: factor of 109 (Condition 2): All k where k = 3*m^2 and m = = 20 or 89 mod 109: even n: factor of 109 for odd n let k = 3*m^2 and let n=2*q-1; factors to: [m*6^n*3^q - 1] * [m*6^n*3^q + 1] |
k = = 1 mod 107 (107) | 75 k's remaining at n=100K. See k's at Riesel Base 108 remain. |
10322 (88080) 1999 (85188) 7557 (84180) 11882 (81547) 3439 (79524) 4686 (79010) 1159 (77107) 3573 (76352) 1465 (75209) 2148 (75018) |
k = 1089 and 5776 proven composite by condition 1. k = 1200 proven composite by condition 2. |
109 | 144 | 5, 11 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) |
84 (1M) | 60 (3883) 92 (167) 128 (96) 38 (91) 18 (90) 98 (26) 126 (25) 8 (19) 56 (15) 114 (12) |
||
110 | 38 | 3, 37 | All k where k = m^2 and m = = 6 or 31 mod 37: for even n let k = m^2 and let n = 2*q; factors to: (m*110^q - 1) * (m*110^q + 1) odd n: factor of 37 |
k = = 1 mod 109 (109) | none - proven | 23 (78120) 17 (2598) 37 (1689) 9 (77) 11 (42) 10 (17) 2 (16) 31 (9) 5 (6) 22 (5) |
k = 36 proven composite by partial algebraic factors. |
111 | 12018 | 7, 61, 101 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 11 (11) |
2024 (479K) 2612 (479K) 3244 (479K) 4320 (479K) 7622 (479K) 7748 (479K) |
2582 (338032) 9710 (248035) 3438 (189659) 8884 (75375) 9444 (72601) 9344 (71404) 11374 (69540) 2092 (41902) 6972 (41496) 11272 (37082) |
||
112 | 3843 | 5, 13, 113 | All k where k = m^2 and m = = 15 or 98 mod 113: for even n let k = m^2 and let n = 2*q; factors to: (m*112^q - 1) * (m*112^q + 1) odd n: factor of 113 |
k = = 1 mod 3 (3) k = = 1 mod 37 (37) |
1662 (500K) 3327 (500K) |
948 (173968) 1268 (50536) 3414 (46200) 2319 (39352) 758 (35878) 3389 (24768) 3528 (20066) 1353 (7751) 498 (6038) 9 (5717) |
k = 225 proven composite by partial algebraic factors. |
113 | 20 | 3, 19 | k = = 1 mod 2 (2) k = = 1 mod 7 (7) |
none - proven | 14 (308) 16 (5) 12 (3) 4 (3) 18 (2) 2 (2) 10 (1) 6 (1) |
||
114 | 24 | 5, 23 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*114^q - 1) * (m*114^q + 1) odd n: factor of 5 |
k = = 1 mod 113 (113) | none - proven | 3 (63) 11 (27) 18 (21) 22 (20) 20 (3) 19 (2) 17 (2) 14 (2) 10 (2) 23 (1) |
k = 4 and 9 proven composite by partial algebraic factors. |
115 | 78966 | 17, 29, 389 | (Condition 1): All k where k = m^2 and m = = 12 or 17 mod 29: for even n let k = m^2 and let n = 2*q; factors to: (m*115^q - 1) * (m*115^q + 1) odd n: factor of 29 (Condition 2): All k where k = 115*m^2 and m = = 12 or 17 mod 29: [Reverse condition 1] |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 19 (19) |
48 k's remaining at n=100K. See k's at Riesel Base 115 remain. |
66488 (84399) 8322 (81658) 75662 (80051) 42450 (71826) 38540 (68594) 36686 (66631) 72266 (59649) 29958 (55851) 51882 (51815) 70152 (49377) |
k = 144, 26244, and 34596 proven composite by condition 1. k = 16560 proven composite by condition 2. |
116 | 14 | 3, 13 | k = = 1 mod 5 (5) k = = 1 mod 23 (23) |
none - proven | 9 (249) 5 (156) 2 (32) 13 (15) 10 (11) 12 (2) 8 (2) 7 (1) 4 (1) 3 (1) |
||
117 | 6432 | 5, 37, 59 | k = = 1 mod 2 (2) k = = 1 mod 29 (29) |
1358 (300K) 3128 (300K) 3440 (300K) 3480 (300K) 4476 (300K) 4898 (300K) 5014 (300K) 5486 (300K) |
5840 (96286) 3368 (53482) 1956 (32421) 6034 (30641) 222 (26806) 4306 (19706) 6214 (17248) 2888 (13796) 3154 (11963) 2112 (11296) |
||
118 | 50 | 7, 17 | k = = 1 mod 3 (3) k = = 1 mod 13 (13) |
none - proven | 29 (599) 18 (393) 6 (210) 8 (85) 42 (30) 41 (26) 48 (18) 5 (15) 39 (8) 15 (7) |
||
119 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 1 mod 59 (59) |
none - proven | 2 (28) | ||
121 | 3294 | 7, 19, 37 | All k = m^2 for all n; factors to: (m*11^n - 1) * (m*11^n + 1) |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 5 (5) |
none - proven | 2622 (810960) 3110 (48054) 174 (16667) 62 (13101) 1122 (10705) 2868 (3697) 2690 (3012) 438 (1445) 872 (1340) 2718 (838) |
k = 144, 324, 900, 1764, and 2304 proven composite by full algebraic factors. |
122 | 14 | 3, 5, 13 | k = = 1 mod 11 (11) | none - proven | 13 (43) 8 (26) 11 (10) 2 (6) 10 (3) 6 (2) 5 (2) 3 (2) 9 (1) 7 (1) |
||
123 | 154 | 5, 17, 31 | k = = 1 mod 2 (2) k = = 1 mod 61 (61) |
24 (816K) | 86 (176510) 98 (1666) 148 (1213) 102 (180) 44 (161) 142 (140) 72 (108) 16 (75) 88 (73) 108 (66) |
||
124 | 3730449 | 5, 7, 2179, 5167 | (Condition 1): All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*124^q - 1) * (m*124^q + 1) odd n: factor of 5 (Condition 2): All k where k = 31*m^2 and m = = 1 or 4 mod 5: even n: factor of 5 for odd n let k = 31*m^2 and let n=2*q-1; factors to: [m*2^n*31^q - 1] * [m*2^n*31^q + 1] |
k = = 1 mod 3 (3) k = = 1 mod 41 (41) |
54450 k's remaining at n>=10K. See k's and test limits at Riesel Base 124 remain. |
28586 (24975) 19176 (24963) 42446 (24921) 96176 (24861) 25586 (24749) 95484 (24710) 63249 (24668) 86094 (24628) 43851 (24389) 73194 (24366) |
k = 3^2, 12^2, 18^2, 27^2, 33^2, 42^2, (etc. pattern repeating every
15m where k not = = 1 mod 41) proven composite by condition 1. k = 31*6^2, 31*9^2, 31*21^2, 31*24^2, 31*36^2, 31*39^2, (etc. pattern repeating every 15m where k not = = 1 mod 41) proven composite by condition 2. |
125 | 8 | 3, 7 | k = = 1 mod 2 (2) k = = 1 mod 31 (31) |
none - proven | 6 (24) 2 (2) 4 (1) |
||
126 | 2767077 | 13, 19, 127, 829 | k = = 1 mod 5 (5) | 4532 k's remaining at n=25K. See k's at Riesel Base 126 remain. |
783948 (24993) 2010375 (24990) 2709635 (24985) 2034224 (24976) 1942803 (24971) 2529014 (24959) 2585304 (24948) 997980 (24945) 2726244 (24908) 2334075 (24908) |
||
129 | 14 | 5, 13 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*129^q - 1) * (m*129^q + 1) odd n: factor of 5 |
k = = 1 mod 2 (2) | none - proven | 12 (228) 10 (1) 8 (1) 6 (1) 2 (1) |
k = 4 proven composite by partial algebraic factors. |
130 | 2443673 | 7, 31, 131, 811 | k = = 1 mod 3 (3) k = = 1 mod 43 (43) |
4115 k's remaining at n=25K. See k's at Riesel Base 130 remain. |
403481 (24997) 1400214 (24987) 554114 (24958) 1846167 (24956) 273443 (24954) 1677812 (24949) 612417 (24949) 2204316 (24947) 200285 (24935) 2171177 (24907) |
||
131 | 10 | 3, 11 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 13 (13) |
none - proven | 8 (196) 2 (4) 4 (1) |
||
132 | 20 | 7, 19 | k = = 1 mod 131 (131) | none - proven | 18 (62) 3 (38) 8 (11) 19 (9) 4 (3) 13 (2) 7 (2) 6 (2) 17 (1) 16 (1) |
||
133 | 3684 | 5, 29, 67 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 11 (11) |
926 (600K) | 1004 (238300) 2988 (75001) 872 (50411) 1554 (19992) 2748 (9421) 2486 (6646) 2798 (6240) 2250 (5962) 1080 (5071) 282 (2571) |
||
134 | 4 | 3, 5 | k = = 1 mod 7 (7) k = = 1 mod 19 (19) |
none - proven | 2 (2) 3 (1) |
||
135 | 3112 | 7, 17, 61, 229 | (Condition 1): All k where k = m^2 and m = = 4 or 13 mod 17: for even n let k = m^2 and let n = 2*q; factors to: (m*135^q - 1) * (m*135^q + 1) odd n: factor of 17 (Condition 2): All k where k = 135*m^2 and m = = 4 or 13 mod 17: [Reverse condition 1] |
k = = 1 mod 2 (2) k = = 1 mod 67 (67) |
240 (300K) 1038 (300K) 1240 (300K) 1786 (300K) 2328 (300K) 2930 (300K) |
2060 (252066) 662 (174116) 996 (159478) 2702 (115472) 1206 (58842) 2622 (55334) 868 (44467) 2872 (40864) 2370 (18851) 928 (11538) |
k = 16, 900 and 1444 proven composite by condition 1. k = 2160 proven composite by condition 2. |
136 | 90693 | 7, 43, 61, 137 | All k where k = m^2 and m = = 37 or 100 mod 137: for even n let k = m^2 and let n = 2*q; factors to: (m*136^q - 1) * (m*136^q + 1) odd n: factor of 137 |
k = = 1 mod 3 (3) k = = 1 mod 5 (5) |
51 k's remaining at n=100K. See k's at Riesel Base 136 remain. |
64028 (97970) 17948 (93193) 12605 (84371) 14715 (79844) 88254 (76152) 9848 (74282) 63293 (63646) 34662 (60921) 83900 (58077) 66993 (53958) |
k = 56169 proven composite by partial algebraic factors. |
137 | 22 | 3, 23 | k = = 1 mod 2 (2) k = = 1 mod 17 (17) |
none - proven | 16 (231) 20 (8) 10 (5) 14 (4) 12 (2) 8 (2) 2 (2) 6 (1) 4 (1) |
||
138 | 1806 | 5, 13, 139 | k = = 1 mod 137 (137) | 408 (300K) 688 (300K) 831 (300K) 1074 (300K) 1743 (300K) |
421 (272919) 773 (249730) 372 (103160) 1368 (66926) 1087 (55582) 1258 (54256) 557 (52295) 359 (47249) 291 (35886) 9 (35685) |
||
139 | 6 | 5, 7 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 23 (23) |
none - proven | 2 (1) | ||
140 | 46 | 3, 47 | k = = 1 mod 139 (139) | none - proven | 38 (448) 11 (108) 5 (30) 29 (18) 32 (16) 14 (16) 33 (12) 40 (9) 41 (8) 17 (8) |
||
142 | 12 | 11, 13 | k = = 1 mod 3 (3) k = = 1 mod 47 (47) |
none - proven | 3 (26) 11 (14) 8 (7) 6 (3) 9 (1) 5 (1) 2 (1) |
||
143 | 1226 | 3, 5, 409 | k = = 1 mod 2 (2) k = = 1 mod 71 (71) |
206 (500K) 284 (500K) 410 (500K) 482 (500K) 494 (500K) 536 (500K) 884 (500K) 892 (500K) 968 (500K) 1094 (500K) 1124 (500K) 1162 (500K) 1186 (500K) 1198 (500K) |
682 (203335) 250 (181829) 506 (175854) 502 (171279) 656 (106282) 1004 (89560) 688 (64933) 1042 (54527) 434 (54504) 316 (22437) |
||
144 | 59 | 5, 29 | All k = m^2 for all n; factors to: (m*12^n - 1) * (m*12^n + 1) |
k = = 1 mod 11 (11) k = = 1 mod 13 (13) |
none - proven | 39 (964) 30 (519) 46 (97) 58 (35) 2 (24) 57 (20) 15 (10) 54 (8) 44 (6) 26 (5) |
k = 4, 9, 16, 25, 36, and 49 proven composite by full algebraic factors. |
145 | 257324 | 7, 19, 73, 157 | All k where k = m^2 and m = = 27 or 46 mod 73: for even n let k = m^2 and let n = 2*q; factors to: (m*145^q - 1) * (m*145^q + 1) odd n: factor of 73 |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) |
120 k's remaining at n=100K. See k's at Riesel Base 145 remain. |
11930 (99169) 142890 (98911) 145748 (97861) 120524 (96609) 147150 (96275) 226308 (85213) 88358 (81300) 244170 (80349) 51852 (80319) 65516 (79686) |
k = 36864 and 60516 proven composite by partial algebraic factors. |
146 | 8 | 3, 7 | k = = 1 mod 5 (5) k = = 1 mod 29 (29) |
none - proven | 5 (30) 2 (16) 4 (5) 3 (3) 7 (1) |
||
147 | 79956 | 5, 37, 2161 | (Condition 1): All k where k = m^2 and m = = 6 or 31 mod 37: for even n let k = m^2 and let n = 2*q; factors to: (m*147^q - 1) * (m*147^q + 1) odd n: factor of 37 (Condition 2): All k where k = 3*m^2 and m = = 5 or 32 mod 37: even n: factor of 37 for odd n let k = 3*m^2 and let n=2*q-1; factors to: [m*7^n*3^q - 1] * [m*7^n*3^q + 1] |
k = = 1 mod 2 (2) k = = 1 mod 73 (73) |
166 k's remaining at n=100K. See k's at Riesel Base 147 remain. |
26750 (97936) 6158 (96375) 15514 (96148) 6474 (92352) 946 (89286) 50516 (89146) 33928 (88946) 76484 (88361) 64172 (88086) 17204 (86716) |
k = 36, 4624, 6400, 20164, 23716, 46656, and 51984 proven composite by
condition 1. k = 3072, 5292, 33708, and 40368 proven composite by condition 2. |
148 | 5214 | 5, 13, 149 | All k where k = m^2 and m = = 44 or 105 mod 149: for even n let k = m^2 and let n = 2*q; factors to: (m*148^q - 1) * (m*148^q + 1) odd n: factor of 149 |
k = = 1 mod 3 (3) k = = 1 mod 7 (7) |
1743 (300K) 3012 (300K) 4757 (300K) 4844 (300K) |
4701 (213315) 3954 (175188) 1256 (158963) 3171 (63359) 4191 (44097) 746 (39249) 3428 (28485) 4634 (26677) 801 (23003) 1052 (20835) |
No k's proven composite by algebraic factors. |
149 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 1 mod 37 (37) |
none - proven | 2 (4) | ||
150 | 49074 | 7, 31, 103, 151 | k = = 1 mod 149 (149) | 71 k's remaining at n=100K. See k's at Riesel Base 150 remain. |
17554 (99646) 32797 (97430) 32399 (96963) 37966 (96107) 10505 (93910) 42643 (93875) 5674 (92155) 6492 (90168) 32135 (90000) 31409 (89441) |
||
151 | 349922 | 13, 19, 877 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 5 (5) |
365 k's remaining at n=320K. See k's at Riesel Base 151 remain. |
74270 (315734) 275102 (311399) 144912 (310514) 164978 (309413) 10880 (302997) 202064 (302700) 193020 (301686) 78792 (294324) 128448 (284308) 318564 (283711) |
||
152 | 16 | 3, 17 | k = = 1 mod 151 (151) | none - proven | 14 (343720) 2 (796) 13 (23) 11 (14) 5 (12) 10 (5) 3 (3) 15 (2) 8 (2) 12 (1) |
||
153 | 34 | 7, 11 | k = = 1 mod 2 (2) k = = 1 mod 19 (19) |
none - proven | 12 (21659) 22 (23) 32 (8) 4 (3) 30 (2) 26 (2) 10 (2) 6 (2) 2 (2) 28 (1) |
||
154 | 216 | 5, 31 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*154^q - 1) * (m*154^q + 1) odd n: factor of 5 |
k = = 1 mod 3 (3) k = = 1 mod 17 (17) |
none - proven | 6 (1989) 63 (1743) 39 (326) 114 (210) 24 (106) 74 (82) 14 (78) 29 (62) 54 (30) 179 (24) |
k = 9 and 144 proven composite by partial algebraic factors. |
155 | 14 | 3, 13 | k = = 1 mod 2 (2) k = = 1 mod 7 (7) k = = 1 mod 11 (11) |
none - proven | 2 (2) 10 (1) 6 (1) 4 (1) |
||
157 | 3554 | 5, 17, 79 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 13 (13) |
1026 (500K) 1296 (500K) 3098 (500K) 3104 (500K) |
1974 (118956) 1346 (102793) 2558 (31648) 2126 (30626) 2216 (21521) 2058 (16127) 3396 (13282) 2892 (12188) 2118 (11811) 3294 (9976) |
||
158 | 52 | 3, 53 | k = = 1 mod 157 (157) | 29 (500K) 44 (500K) |
47 (273942) 34 (5223) 46 (147) 41 (94) 38 (74) 39 (49) 7 (39) 9 (35) 20 (34) 8 (20) |
||
159 | 516 | 5, 7, 13, 103 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*159^q - 1) * (m*159^q + 1) odd n: factor of 5 |
k = = 1 mod 2 (2) k = = 1 mod 79 (79) |
none - proven | 172 (561319) 234 (47174) 274 (22786) 394 (7348) 376 (2997) 412 (2790) 206 (1545) 364 (1176) 44 (1140) 146 (961) |
k = 4, 64, 144, 324, and 484 proven composite by partial algebraic factors. |
160 | 183 | 7, 23 | k = = 1 mod 3 (3) k = = 1 mod 53 (53) |
116 (600K) | 149 (7715) 20 (7570) 68 (3534) 132 (656) 180 (507) 108 (320) 36 (261) 56 (116) 179 (76) 53 (73) |
||
161 | 3154 | 3, 13, 17, 41 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) |
194 (300K) 344 (300K) 378 (300K) 428 (300K) 448 (300K) 892 (300K) 1240 (300K) 1438 (300K) 1730 (300K) 1988 (300K) 2042 (300K) 2200 (300K) 2878 (300K) 3008 (300K) |
1262 (249078) 2452 (220943) 1504 (213809) 1754 (85972) 2294 (77542) 2998 (77319) 1600 (52191) 190 (51683) 800 (43732) 2572 (41617) |
||
162 | 3259 | 5, 163, 181 | k = = 1 mod 7 (7) k = = 1 mod 23 (23) |
2118 (500K) 2841 (500K) |
2018 (194314) 2954 (95124) 1308 (82803) 1607 (28018) 58 (13758) 2809 (12303) 423 (8898) 3098 (8723) 653 (8335) 1781 (8327) |
||
163 | 372 | 7, 19, 67 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) |
254 (600K) | 144 (49401) 86 (48778) 102 (6690) 146 (1418) 246 (814) 158 (797) 42 (775) 368 (368) 204 (208) 128 (174) |
||
164 | 4 | 3, 5 | k = = 1 mod 163 (163) | none - proven | 2 (2) 3 (1) |
||
165 | 646 | 7, 13, 43 | k = = 1 mod 2 (2) k = = 1 mod 41 (41) |
none - proven | 484 (22073) 400 (7105) 144 (5869) 450 (3515) 204 (1195) 582 (395) 498 (197) 326 (133) 170 (101) 588 (93) |
||
166 | 127754 | 7, 13, 43, 167 | k = = 1 mod 3 (3) k = = 1 mod 5 (5) k = = 1 mod 11 (11) |
91 k's remaining at n=100K. See k's at Riesel Base 166 remain. |
77787 (92470) 95024 (90229) 60048 (79571) 100584 (74518) 74507 (72420) 32337 (71241) 222 (67989) 31259 (67089) 126513 (65703) 22668 (63231) |
||
167 | 8 | 3, 7 | k = = 1 mod 2 (2) k = = 1 mod 83 (83) |
none - proven | 4 (1865) 6 (34) 2 (8) |
||
168 | 4744 | 5, 13, 17, 73 | (Condition 1): All k where k = m^2 and m = = 5 or 8 mod 13: for even n let k = m^2 and let n = 2*q; factors to: (m*168^q - 1) * (m*168^q + 1) odd n: factor of 13 (Condition 2): All k where k = 42*m^2 and m = = 3 or 10 mod 13: even n: factor of 13 for odd n let k = 42*m^2 and let n=2*q-1; factors to: [m*2^n*42^q - 1] * [m*2^n*42^q + 1] |
k = = 1 mod 167 (167) | 41 k's remaining at n=100K. See k's at Riesel Base 168 remain. |
1689 (68676) 3309 (63795) 4471 (54466) 4185 (53498) 2846 (50670) 1717 (38259) 1829 (34296) 2885 (34186) 2942 (33546) 2523 (31457) |
k = 25, 64, 324, 441, 961, 1156, 1936, 2209, 3249, and 3600 proven composite by
condition 1. k = 378 and 4200 proven composite by condition 2. |
169 | 186 | 5, 17 | All k = m^2 for all n; factors to: (m*13^n - 1) * (m*13^n + 1) |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 7 (7) |
none - proven | 24 (2586) 54 (1108) 26 (151) 44 (52) 30 (17) 146 (15) 102 (10) 126 (7) 84 (6) 20 (5) |
k = 144 proven composite by full algebraic factors. |
170 | 20 | 3, 19 | k = = 1 mod 13 (13) | none - proven | 2 (166428) 8 (15422) 18 (360) 11 (108) 5 (38) 13 (13) 9 (7) 7 (3) 4 (3) 17 (2) |
||
171 | 112790 | 7, 13, 37, 43, 67 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 17 (17) |
75 k's remaining at n=100K. See k's at Riesel Base 171 remain. |
55008 (93265) 112664 (92686) 31002 (90264) 55312 (89116) 53018 (86740) 39690 (86597) 31050 (77135) 39820 (71361) 57180 (70673) 32194 (65957) |
||
172 | 1262 | 7, 13, 109 | All k where k = m^2 and m = = 80 or 93 mod 173: for even n let k = m^2 and let n = 2*q; factors to: (m*172^q - 1) * (m*172^q + 1) odd n: factor of 173 |
k = = 1 mod 3 (3) k = = 1 mod 19 (19) |
219 (300K) 387 (300K) 1140 (300K) |
576 (132695) 693 (61919) 672 (12306) 1118 (8572) 632 (8400) 788 (7291) 701 (6919) 768 (6808) 864 (6228) 1158 (5755) |
No k's proven composite by algebraic factors. |
173 | 28 | 3, 29 | k = = 1 mod 2 (2) k = = 1 mod 43 (43) |
22 (1M) | 14 (172) 24 (29) 20 (4) 2 (4) 10 (3) 26 (2) 18 (2) 12 (2) 8 (2) 6 (2) |
||
174 | 6 | 5, 7 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*174^q - 1) * (m*174^q + 1) odd n: factor of 5 |
k = = 1 mod 173 (173) | none - proven | 5 (2) 3 (1) 2 (1) |
k = 4 proven composite by partial algebraic factors. |
176 | 58 | 3, 59 | k = = 1 mod 5 (5) k = = 1 mod 7 (7) |
none - proven | 34 (79) 53 (16) 32 (12) 25 (9) 4 (9) 35 (6) 20 (6) 2 (6) 54 (5) 42 (5) |
||
177 | 268 | 5, 13, 89 | k = = 1 mod 2 (2) k = = 1 mod 11 (11) |
none - proven | 64 (340147) 36 (2957) 242 (1953) 44 (1711) 266 (1270) 228 (315) 200 (288) 58 (219) 172 (200) 148 (98) |
||
178 | 87 | 13, 19, 43 | k = = 1 mod 3 (3) k = = 1 mod 59 (59) |
none - proven | 80 (3268) 11 (177) 6 (118) 21 (89) 57 (47) 14 (44) 51 (18) 3 (14) 83 (13) 66 (13) |
||
179 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 1 mod 89 (89) |
none - proven | 2 (2) | ||
180 | 7674582 | 7, 31, 181, 1051 | (Condition 1): All k where k = m^2 and m = = 19 or 162 mod 181: for even n let k = m^2 and let n = 2*q; factors to: (m*180^q - 1) * (m*180^q + 1) odd n: factor of 181 (Condition 2): All k where k = 5*m^2 and m = = 67 or 114 mod 181: even n: factor of 181 for odd n let k = 5*m^2 and let n=2*q-1; factors to: [m*6^n*5^q - 1] * [m*6^n*5^q + 1] |
k = = 1 mod 179 (179) | 110328 k's remaining at n=2.5K. To be shown later. | 6911474 (2500) 6621509 (2500) 6270700 (2500) 6152204 (2500) 5853556 (2500) 5427018 (2500) 5049031 (2500) 4753348 (2500) 4709004 (2500) 4362742 (2500) |
k = 361, 26244, 40000, 117649, 145161, 274576, 315844, 497025, 552049,
784996, 853776, 1138489, 1221025, 1557504, 1653796, 2042041, 2152089,
2715904, 3345241, 3888784, 4040100, 4635409, 4800481, 5447556, 5626384,
6325225, 6517809, 7268416, and 7474756 proven composite by condition 1. k = 22445, 64980, 307520, 435125, 920205, 1132880, 1860500, 2158245, 3128405, 3511220, 4723920, 5191805, 6647045, and 7200000 proven composite by condition 2. |
181 | 300 | 7, 13 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 5 (5) |
168 (600K) | 272 (178) 284 (123) 210 (107) 258 (38) 174 (38) 14 (29) 170 (25) 62 (24) 264 (23) 194 (22) |
||
182 | 62 | 3, 61 | k = = 1 mod 181 (181) | none - proven | 43 (502611) 26 (990) 29 (632) 54 (329) 7 (209) 44 (152) 58 (127) 47 (122) 59 (96) 40 (41) |
||
183 | 208 | 5, 17, 23 | k = = 1 mod 2 (2) k = = 1 mod 7 (7) k = = 1 mod 13 (13) |
none - proven | 114 (1116) 68 (110) 206 (78) 166 (78) 102 (40) 26 (37) 186 (21) 198 (17) 100 (13) 42 (11) |
||
184 | 36 | 5, 37 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*184^q - 1) * (m*184^q + 1) odd n: factor of 5 |
k = = 1 mod 3 (3) k = = 1 mod 61 (61) |
none - proven | 11 (15) 24 (8) 14 (8) 3 (6) 35 (2) 33 (2) 32 (2) 29 (2) 20 (2) 18 (2) |
k = 9 proven composite by partial algebraic factors. |
185 | 32 | 3, 31 | k = = 1 mod 2 (2) k = = 1 mod 23 (23) |
none - proven | 10 (6783) 30 (14) 20 (10) 12 (8) 8 (8) 26 (6) 14 (4) 22 (3) 16 (3) 2 (2) |
||
186 | 67 | 11, 17 | k = = 1 mod 5 (5) k = = 1 mod 37 (37) |
none - proven | 12 (112717) 32 (388) 43 (44) 44 (14) 35 (13) 52 (11) 58 (9) 42 (7) 49 (5) 9 (5) |
||
187 | 3524 | 5, 13, 47 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 31 (31) |
1182 (300K) 1598 (300K) 1926 (300K) 3338 (300K) |
2868 (212559) 2492 (100021) 2210 (27237) 2400 (16396) 3236 (8617) 3432 (7193) 3054 (4708) 422 (3502) 234 (2544) 2718 (2147) |
||
188 | 8 | 3, 7 | k = = 1 mod 11 (11) k = = 1 mod 17 (17) |
none - proven | 6 (950) 5 (40) 7 (7) 2 (2) 4 (1) 3 (1) |
||
189 | 56 | 5, 19 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*189^q - 1) * (m*189^q + 1) odd n: factor of 5 |
k = = 1 mod 2 (2) k = = 1 mod 47 (47) |
none - proven | 34 (2286) 50 (555) 52 (33) 38 (19) 24 (14) 54 (6) 44 (6) 14 (4) 26 (3) 6 (3) |
k = 4 proven composite by partial algebraic factors. |
190 | 626861 | 13, 89, 191, 1753 | k = = 1 mod 3 (3) k = = 1 mod 7 (7) |
554 k's remaining at n=25K. See k's at Riesel Base 190 remain. |
341672 (24869) 235721 (24827) 27312 (24808) 453725 (24761) 257607 (24704) 250925 (24652) 120992 (24533) 75617 (24413) 617897 (24310) 551280 (24219) |
||
191 | 260 | 3, 29, 37 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 19 (19) |
204 (500K) 254 (500K) |
222 (6271) 152 (5704) 212 (5068) 64 (3323) 68 (3150) 92 (1370) 2 (970) 184 (277) 190 (263) 50 (188) |
||
192 | 13897 | 5, 73, 193 | All k where k = m^2 and m = = 81 or 112 mod 193: for even n let k = m^2 and let n = 2*q; factors to: (m*192^q - 1) * (m*192^q + 1) odd n: factor of 193 |
k = = 1 mod 191 (191) | 113 k's remaining at n=100K. See k's at Riesel Base 192 remain. |
10909 (89859) 2486 (88582) 49 (88335) 2258 (86531) 7511 (85174) 12732 (85108) 12807 (84820) 9344 (83216) 1023 (78795) 2423 (77515) |
k = 6561 and 12544 proven composite by partial algebraic factors. |
193 | 80802 | 5, 97, 149 | All k where k = m^2 and m = = 22 or 75 mod 97: for even n let k = m^2 and let n = 2*q; factors to: (m*193^q - 1) * (m*193^q + 1) odd n: factor of 97 |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) |
232 k's remaining at n=100K. See k's at Riesel Base 193 remain. |
34296 (97549) 40464 (96552) 37502 (93942) 11384 (93660) 16346 (92666) 31970 (92615) 9408 (91974) 39600 (91399) 43856 (87433) 49898 (87398) |
k = 46656 proven composite by partial algebraic factors. |
194 | 4 | 3, 5 | k = = 1 mod 193 (193) | none - proven | 2 (42) 3 (3) |
||
196 | 2215067 | 41, 197, 937 | All k = m^2 for all n; factors to: (m*14^n - 1) * (m*14^n + 1) |
k = = 1 mod 3 (3) k = = 1 mod 5 (5) k = = 1 mod 13 (13) |
1992 k's remaining at n=25K. See k's at Riesel Base 196 remain. |
771732 (24939) 1480667 (24879) 891818 (24770) 496047 (24755) 1848225 (24735) 1407327 (24735) 823658 (24719) 965910 (24676) 491097 (24603) 1255679 (24589) |
k = 3^2, 15^2, 18^2, 30^2, 33^2, 42^2, 45^2, 48^2, 57^2, 60^2, 63^2, 72^2, 75^2, 78^2, 87^2, 93^2, 102^2, 108^2, 117^2, 120^2, 123^2, 132^2, 135^2, 138^2, 147^2, 150^2, 153^2, 162^2, 165^2, 177^2, 180^2, 192^2, 195^2, (etc. pattern repeating every 195m) proven composite by full algebraic factors. |
197 | 10 | 3, 11 | k = = 1 mod 2 (2) k = = 1 mod 7 (7) |
none - proven | 2 (2) 6 (1) 4 (1) |
||
198 | 3662 | 7, 13, 433 | k = = 1 mod 197 (197) | 29 k's remaining at n=100K. See k's at Riesel Base 198 remain. |
2661 (95399) 1284 (73379) 807 (50662) 2791 (48837) 2187 (43879) 2388 (43718) 848 (40132) 947 (36807) 3420 (35891) 1922 (31592) |
||
199 | 13224 | 5, 7, 13, 433 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*199^q - 1) * (m*199^q + 1) odd n: factor of 5 |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 11 (11) |
43 k's remaining at n=100K. See k's at Riesel Base 199 remain. |
656 (96495) 10304 (95542) 2756 (91263) 3176 (80841) 10566 (70197) 2204 (69888) 3714 (66858) 4044 (57548) 12644 (56436) 7544 (49834) |
k = 324, 1764, 2304, 5184, 10404, and 11664 proven composite by partial algebraic factors. |
200 | 68 | 3, 67 | k = = 1 mod 199 (199) | none - proven | 38 (131900) 58 (102363) 53 (45666) 51 (44252) 23 (31566) 19 (29809) 13 (12053) 37 (597) 62 (126) 16 (89) |
||
201 | 3669230 | 7, 19, 101, 2137 | All k where k = m^2 and m = = 10 or 91 mod 101: for even n let k = m^2 and let n = 2*q; factors to: (m*201^q - 1) * (m*201^q + 1) odd n: factor of 101 |
k = = 1 mod 2 (2) k = = 1 mod 5 (5) |
9769 k's remaining at n=25K. See k's at Riesel Base 201 remain. |
2980884 (24990) 2187724 (24968) 1460594 (24942) 2679334 (24927) 2909292 (24923) 16204 (24918) 2831558 (24915) 244120 (24915) 3269268 (24912) 2481084 (24894) |
k = 100, 36864, 44944, 636804, 669124, 1000000, 1040400, 1444804, 1493284, 3268864, and 3341584 proven composite by partial algebraic factors. |
202 | 57 | 7, 29 | k = = 1 mod 3 (3) k = = 1 mod 67 (67) |
none - proven | 8 (155771) 3 (262) 53 (260) 15 (201) 20 (70) 24 (24) 14 (17) 2 (17) 27 (16) 36 (9) |
||
203 | 14 | 3, 5, 13 | k = = 1 mod 2 (2) k = = 1 mod 101 (101) |
none - proven | 2 (4) 12 (3) 8 (2) 10 (1) 6 (1) 4 (1) |
||
204 | 81 | 5, 41 | (Condition 1): All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*204^q - 1) * (m*204^q + 1) odd n: factor of 5 (Condition 2): All k where k = 51*m^2 and m = = 1 or 4 mod 5: even n: factor of 5 for odd n let k = 51*m^2 and let n=2*q-1; factors to: [m*2^n*51^q - 1] * [m*2^n*51^q + 1] |
k = = 1 mod 7 (7) k = = 1 mod 29 (29) |
none - proven | 79 (10346) 54 (10188) 53 (1040) 46 (59) 35 (58) 16 (23) 24 (20) 74 (6) 77 (5) 70 (5) |
k = 4, 9, and 49 proven composite by condition 1. k = 51 proven composite by condition 2. |
205 | 8450016 | 7, 13, 103, 2011 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 17 (17) |
33171 k's remaining at n=2.5K. To be shown later. | 8351394 (2500) 8003408 (2500) 7246164 (2500) 5113088 (2500) 4062122 (2500) 2402976 (2500) 7677420 (2499) 6121176 (2499) 5767040 (2499) 4390962 (2499) |
||
206 | 22 | 3, 23 | k = = 1 mod 5 (5) k = = 1 mod 41 (41) |
none - proven | 5 (108) 7 (59) 20 (20) 10 (7) 19 (5) 17 (4) 12 (4) 8 (4) 18 (3) 9 (3) |
||
207 | 38572 | 5, 7, 13, 157, 181 | (Condition 1): All k where k = m^2 and m = = 5 or 8 mod 13: for even n let k = m^2 and let n = 2*q; factors to: (m*207^q - 1) * (m*207^q + 1) odd n: factor of 13 (Condition 2): All k where k = 23*m^2 and m = = 2 or 11 mod 13: even n: factor of 13 for odd n let k = 23*m^2 and let n=2*q-1; factors to: [m*3^n*23^q - 1] * [m*3^n*23^q + 1] |
k = = 1 mod 2 (2) k = = 1 mod 103 (103) |
280 k's remaining at n=100K. See k's at Riesel Base 207 remain. |
27650 (96826) 15196 (95894) 5524 (92860) 5602 (92258) 6966 (91555) 29436 (91355) 5952 (89637) 34932 (87105) 25414 (85756) 20122 (85006) |
k = 64, 324, 1156, 1936, 3600, 4900, 7396, 9216, 12544, 14884, 19044,
21904, 26896, 30276, and 36100 proven composite by condition 1. k = 92, 13248, and 18032 proven composite by condition 2. |
208 | 56 | 11, 19 | k = = 1 mod 3 (3) k = = 1 mod 23 (23) |
none - proven | 53 (80) 18 (74) 32 (24) 54 (8) 29 (7) 12 (7) 30 (6) 2 (6) 45 (5) 35 (5) |
||
209 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 1 mod 13 (13) |
none - proven | 2 (6) | ||
210 | 80176412 | 13, 73, 109, 211, 607 | k = = 1 mod 11 (11) k = = 1 mod 19 (19) |
239583 k's remaining at n=2.5K. To be shown later. | 80147083 (2500) 79436250 (2500) 78628387 (2500) 76482476 (2500) 76380897 (2500) 75608558 (2500) 75357493 (2500) 74417167 (2500) 72430760 (2500) 72220528 (2500) |
||
211 | 5058 | 13, 31, 37 | All k where k = m^2 and m = = 23 or 30 mod 53: for even n let k = m^2 and let n = 2*q; factors to: (m*211^q - 1) * (m*211^q + 1) odd n: factor of 53 |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 5 (5) k = = 1 mod 7 (7) |
2172 (300K) 2810 (300K) 3714 (300K) 4910 (300K) |
2778 (6794) 3590 (4534) 1218 (3804) 1028 (3593) 1602 (2539) 4904 (2490) 2348 (2410) 128 (1567) 2102 (1485) 32 (1469) |
k = 900 proven composite by partial algebraic factors. |
212 | 70 | 3, 71 | k = = 1 mod 211 (211) | 14 (300K) 36 (300K) 53 (300K) 67 (300K) |
44 (62692) 37 (35493) 4 (34413) 13 (2807) 28 (1507) 26 (518) 51 (355) 3 (282) 25 (161) 66 (139) |
||
213 | 534 | 5, 13, 107 | k = = 1 mod 2 (2) k = = 1 mod 53 (53) |
294 (600K) | 522 (37299) 352 (8827) 36 (6429) 368 (2797) 304 (2281) 102 (1398) 472 (860) 104 (541) 128 (533) 496 (499) |
||
214 | 44 | 5, 43 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*214^q - 1) * (m*214^q + 1) odd n: factor of 5 |
k = = 1 mod 3 (3) k = = 1 mod 71 (71) |
11 (1M) | 42 (2230) 23 (78) 29 (44) 30 (17) 33 (14) 41 (11) 38 (10) 39 (4) 32 (4) 8 (4) |
k = 9 proven composite by partial algebraic factors. |
215 | 15358 | 3, 29, 797 | k = = 1 mod 2 (2) k = = 1 mod 107 (107) |
237 k's remaining at n=100K. See k's at Riesel Base 215 remain. |
10876 (98509) 7288 (96217) 284 (95532) 11182 (93555) 13504 (93093) 2704 (90573) 10784 (90468) 4796 (88856) 14536 (87503) 3290 (83852) |
||
216 | 92 | 7, 31 | All k = m^3 for all n; factors to: (m*6^n - 1) * (m^2*36^n + m*6^n + 1) |
k = = 1 mod 5 (5) k = = 1 mod 43 (43) |
none - proven | 55 (1004) 69 (774) 83 (426) 49 (377) 48 (26) 10 (21) 79 (19) 67 (11) 57 (11) 9 (11) |
k = 8, 27, and 64 proven composite by full algebraic factors. |
217 | 4688 | 5, 17, 109 | All k where k = m^2 and m = = 33 or 76 mod 109: for even n let k = m^2 and let n = 2*q; factors to: (m*217^q - 1) * (m*217^q + 1) odd n: factor of 109 |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) |
1376 (500K) 2642 (500K) |
3792 (255934) 4416 (227937) 458 (199724) 1290 (133478) 1106 (90905) 438 (36640) 50 (36180) 2226 (27255) 1268 (27102) 3506 (15762) |
No k's proven composite by algebraic factors. |
218 | 74 | 3, 73 | k = = 1 mod 7 (7) k = = 1 mod 31 (31) |
53 (500K) 59 (500K) |
4 (23049) 72 (6352) 37 (5867) 23 (3966) 49 (2419) 35 (1734) 9 (177) 26 (170) 62 (140) 46 (67) |
||
219 | 34 | 5, 11 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*219^q - 1) * (m*219^q + 1) odd n: factor of 5 |
k = = 1 mod 2 (2) k = = 1 mod 109 (109) |
none - proven | 16 (423) 14 (32) 10 (18) 2 (15) 8 (10) 12 (9) 6 (5) 18 (3) 32 (2) 24 (2) |
k = 4 proven composite by partial algebraic factors. |
220 | 324 | 13, 17 | k = = 1 mod 3 (3) k = = 1 mod 73 (73) |
none - proven | 305 (17494) 233 (5978) 285 (3572) 186 (1828) 39 (1708) 246 (1100) 284 (816) 92 (719) 155 (490) 11 (405) |
||
221 | 38 | 3, 37 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 11 (11) |
32 (600K) | 20 (230) 2 (18) 14 (16) 10 (15) 28 (9) 18 (4) 30 (2) 8 (2) 24 (1) 22 (1) |
||
222 | 88530 | 7, 31, 43, 223 | k = = 1 mod 13 (13) k = = 1 mod 17 (17) |
258 k's remaining at n=100K. See k's at Riesel Base 222 remain. |
13681 (99483) 31886 (98783) 39024 (97844) 71359 (96932) 73959 (95983) 74009 (95875) 67054 (92945) 76039 (92791) 6831 (92698) 45687 (92012) |
||
223 | 54704 | 5, 7, 4973 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 37 (37) |
402 k's remaining at n=100K. See k's at Riesel Base 223 remain. |
52050 (99907) 47552 (98659) 27824 (98544) 13278 (98542) 33776 (98445) 20376 (97134) 39834 (96643) 12186 (95650) 372 (94855) 25782 (94747) |
||
224 | 4 | 3, 5 | k = = 1 mod 223 (223) | none - proven | 2 (108) 3 (34) |
||
225 | 168032 | 17, 113, 1489 | All k = m^2 for all n; factors to: (m*15^n - 1) * (m*15^n + 1) |
k = = 1 mod 2 (2) k = = 1 mod 7 (7) |
128 k's remaining at n=100K. See k's at Riesel Base 225 remain. |
113084 (97080) 136222 (96922) 135202 (95293) 50060 (95099) 88724 (94530) 51362 (92170) 155070 (91011) 122154 (90273) 159966 (88618) 10048 (87778) |
k = 2^2, 4^2, 10^2, 12^2, 14^2, 16^2, 18^2, 24^2, 26^2, 28^2, (etc. pattern repeating every 14m) proven composite by full algebraic factors. |
226 | 158447 | 7, 211, 227, 349 | k = = 1 mod 3 (3) k = = 1 mod 5 (5) |
509 k's remaining at n=25K. See k's at Riesel Base 226 remain. |
51765 (24739) 78114 (24217) 118934 (24183) 47225 (24097) 38735 (24096) 17594 (24053) 85632 (23999) 138840 (23697) 55560 (23644) 64979 (23325) |
||
227 | 20 | 3, 19 | k = = 1 mod 2 (2) k = = 1 mod 113 (113) |
none - proven | 14 (872) 18 (66) 2 (12) 8 (4) 12 (2) 16 (1) 10 (1) 6 (1) 4 (1) |
||
228 | 16718 | 5, 37, 229 | (Condition 1): All k where k = m^2 and m = = 107 or 122 mod 229: for even n let k = m^2 and let n = 2*q; factors to: (m*228^q - 1) * (m*228^q + 1) odd n: factor of 229 (Condition 2): All k where k = 57*m^2 and m = = 15 or 214 mod 229: even n: factor of 229 for odd n let k = 57*m^2 and let n=2*q-1; factors to: [m*2^n*57^q - 1] * [m*2^n*57^q + 1] |
k = = 1 mod 227 (227) | 121 k's remaining at n=100K. See k's at Riesel Base 228 remain. |
14177 (99474) 10041 (98461) 12211 (95815) 3773 (94689) 7827 (93095) 15173 (88888) 12048 (87086) 10849 (85593) 5766 (83570) 8701 (81210) |
k = 11449 and 14884 proven composite by condition 1. k = 12825 proven composite by condition 2. |
229 | 24 | 5, 23 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 19 (19) |
none - proven | 14 (1366) 12 (21) 18 (3) 8 (1) 6 (1) 2 (1) |
||
230 | 8 | 3, 7 | k = = 1 mod 229 (229) | none - proven | 5 (42) 2 (14) 6 (2) 3 (2) 7 (1) 4 (1) |
||
231 | 151584 | 13, 29, 61, 67 | (Condition 1): All k where k = m^2 and m = = 12 or 17 mod 29: for even n let k = m^2 and let n = 2*q; factors to: (m*231^q - 1) * (m*231^q + 1) odd n: factor of 29 (Condition 2): All k where k = 231*m^2 and m = = 12 or 17 mod 29: [Reverse condition 1] |
k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 23 (23) |
55 k's remaining at n=100K. See k's at Riesel Base 231 remain. |
150544 (96779) 130414 (83729) 70152 (80073) 21210 (78681) 97932 (78100) 69628 (77468) 98744 (75752) 12848 (71597) 107098 (71283) 77728 (70648) |
k = 144, 16384, 48400, 77284, 91204, and 129600 proven composite by
condition 1. k = 33264 proven composite by condition 2. |
232 | 501417 | 5, 233, 2153 | All k where k = m^2 and m = = 89 or 144 mod 233: for even n let k = m^2 and let n = 2*q; factors to: (m*232^q - 1) * (m*232^q + 1) odd n: factor of 233 |
k = = 1 mod 3 (3) k = = 1 mod 7 (7) k = = 1 mod 11 (11) |
884 k's remaining at n=25K. See k's at Riesel Base 232 remain. |
19901 (24982) 298644 (24932) 249233 (24880) 457719 (24839) 211959 (24733) 325148 (24728) 207491 (24685) 88937 (24674) 445031 (24673) 265929 (24628) |
k = 308025 proven composite by partial algebraic factors. |
233 | 14 | 3, 13 | k = = 1 mod 2 (2) k = = 1 mod 29 (29) |
10 (600K) | 2 (8620) 12 (22) 6 (10) 4 (3) 8 (2) |
||
234 | 46 | 5, 47 | (Condition 1): All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*234^q - 1) * (m*234^q + 1) odd n: factor of 5 (Condition 2): All k where k = 26*m^2 and m = = 1 or 4 mod 5: even n: factor of 5 for odd n let k = 26*m^2 and let n=2*q-1; factors to: [m*3^n*26^q - 1] * [m*3^n*26^q + 1] |
k = = 1 mod 233 (233) | 6 (600K) | 41 (43) 34 (36) 19 (32) 17 (24) 44 (18) 11 (15) 38 (8) 33 (8) 21 (7) 40 (6) |
k = 4 and 9 proven composite by
condition 1. k = 26 proven composite by condition 2. |
235 | 5378 | 7, 19, 139 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 13 (13) |
294 (300K) 1926 (300K) 2598 (300K) 2832 (300K) 3194 (300K) 3788 (300K) 4778 (300K) |
4998 (260170) 4190 (257371) 3336 (166287) 1136 (83633) 30 (56835) 2148 (50099) 4032 (35848) 3270 (34802) 5112 (19247) 5118 (16834) |
||
236 | 80 | 3, 79 | k = = 1 mod 5 (5) k = = 1 mod 47 (47) |
none - proven | 78 (402022) 67 (42381) 59 (1786) 4 (939) 45 (672) 65 (270) 17 (228) 25 (91) 50 (82) 72 (55) |
||
237 | 50 | 7, 17 | All k where k = m^2 and m = = 4 or 13 mod 17: for even n let k = m^2 and let n = 2*q; factors to: (m*237^q - 1) * (m*237^q + 1) odd n: factor of 17 |
k = = 1 mod 2 (2) k = = 1 mod 59 (59) |
none - proven | 22 (6053) 8 (527) 42 (322) 48 (18) 38 (10) 10 (6) 34 (4) 14 (4) 46 (3) 36 (3) |
k = 16 proven composite by partial algebraic factors. |
238 | 5415261 | 5, 239, 11329 | k = = 1 mod 3 (3) k = = 1 mod 79 (79) |
57141 k's remaining at n=2.5K. To be shown later. | 5365565 (2500) 4248917 (2500) 3485364 (2500) 2948072 (2500) 2662952 (2500) 2638013 (2500) 1892073 (2500) 1746077 (2500) 1251329 (2500) 4936337 (2499) |
||
239 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 1 mod 7 (7) k = = 1 mod 17 (17) |
none - proven | 2 (10) | ||
240 | 2952972 | 7, 13, 17, 19, 73, 241 | (Condition 1): All k where k = m^2 and m = = 64 or 177 mod 241: for even n let k = m^2 and let n = 2*q; factors to: (m*240^q - 1) * (m*240^q + 1) odd n: factor of 241 (Condition 2): All k where k = 15*m^2 and m = = 15 or 226 mod 241: even n: factor of 241 for odd n let k = 15*m^2 and let n=2*q-1; factors to: [m*4^n*15^q - 1] * [m*4^n*15^q + 1] |
k = = 1 mod 239 (239) | 56648 k's remaining at n=2.5K. To be shown later. | 2034615 (2500) 1599865 (2500) 1015975 (2500) 902553 (2500) 749303 (2500) 747613 (2500) 666939 (2500) 267261 (2500) 261655 (2500) 2481084 (2499) |
k = 4096, 31329, 93025, 174724, 298116, 434281, 619369, 810000, 1056784,
1301881, 1610361, 1909924, 2280100, and 2634129 proven composite by
condition 1. k = 3375, 766140, and 983040 proven composite by condition 2. |
241 | 15918 | 11, 113, 257 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 5 (5) |
1682 (500K) 2168 (500K) 4014 (500K) 4082 (500K) 4610 (500K) 5312 (500K) 5864 (500K) 6128 (500K) 8504 (500K) 9362 (500K) 9998 (500K) 12044 (500K) 12270 (500K) 12924 (500K) 14202 (500K) 14354 (500K) |
14772 (485468) 8460 (387047) 8700 (350384) 11210 (339153) 9602 (295318) 2960 (197729) 4520 (168994) 3488 (143451) 10284 (112678) 9822 (109156) |
||
242 | 14 | 3, 5, 13 | k = = 1 mod 241 (241) | none - proven | 11 (8386) 10 (43) 13 (11) 8 (4) 9 (3) 5 (2) 3 (2) 2 (2) 12 (1) 7 (1) |
||
243 | 11896 | 7, 13, 61, 271 | (Condition 1): All k where k = m^2 and m = = 11 or 50 mod 61: for even n let k = m^2 and let n = 2*q; factors to: (m*243^q - 1) * (m*243^q + 1) odd n: factor of 61 (Condition 2): All k where k = 3*m^2 and m = = 23 or 38 mod 61: even n: factor of 61 for odd n let k = 3*m^2 and let n=2*q-1; factors to: [m*9^n*3^q - 1] * [m*9^n*3^q + 1] (Condition 3): All k = m^5 for all n; factors to: (m*3^n - 1) * (m^4*81^n + m^3*27^n + m^2*9^n + m*3^n + 1) |
k = = 1 mod 2 (2) k = = 1 mod 11 (11) |
31 k's remaining at n=210K. See k's at Riesel Base 243 remain. |
3636 (192141) 7972 (183300) 8100 (160159) 1418 (128582) 11192 (127798) 6772 (120339) 9974 (102911) 7102 (97952) 8066 (93714) 7654 (82880) |
k = 2500 and 5184 proven composite by condition 1. k = 4332 proven composite by condition 2. k = 32 and 7776 proven composite by condition 3. |
244 | 6 | 5, 7 | k = = 1 mod 3 (3) | none - proven | 5 (7) 3 (5) 2 (1) |
||
245 | 40 | 3, 41 | k = = 1 mod 2 (2) k = = 1 mod 61 (61) |
none - proven | 8 (500) 26 (212) 28 (205) 22 (101) 38 (38) 10 (37) 14 (30) 6 (7) 4 (5) 32 (4) |
||
246 | 77 | 13, 19 | All k where k = m^2 and m = = 5 or 8 mod 13: for even n let k = m^2 and let n = 2*q; factors to: (m*246^q - 1) * (m*246^q + 1) odd n: factor of 13 |
k = = 1 mod 5 (5) k = = 1 mod 7 (7) |
none - proven | 27 (23989) 14 (203) 69 (58) 75 (38) 17 (34) 49 (29) 59 (26) 70 (25) 39 (23) 30 (17) |
k = 25 proven composite by partial algebraic factors. |
247 | 469184 | 5, 17, 31, 1009 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 41 (41) |
1913 k's remaining at n=25K. See k's at Riesel Base 247 remain. |
269916 (24990) 429504 (24968) 139302 (24892) 337434 (24692) 357372 (24641) 414810 (24624) 380772 (24618) 168422 (24594) 436958 (24558) 390216 (24530) |
||
248 | 82 | 3, 83 | k = = 1 mod 13 (13) k = = 1 mod 19 (19) |
none - proven | 56 (32638) 74 (20344) 59 (18716) 7 (3179) 10 (2793) 28 (1413) 76 (1319) 61 (1037) 52 (655) 36 (489) |
||
249 | 14256 | 5, 7, 13, 29, 37 | (Condition 1): All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*249^q - 1) * (m*249^q + 1) odd n: factor of 5 (Condition 2): All k where k = 249*m^2 and m = = 2 or 3 mod 5: [Reverse condition 1] |
k = = 1 mod 2 (2) k = = 1 mod 31 (31) |
133 k's remaining at n=100K. See k's at Riesel Base 249 remain. |
8564 (95200) 1624 (91784) 1812 (84698) 7146 (80627) 11684 (77336) 10536 (74657) 12436 (73285) 11234 (71748) 8224 (71446) 3294 (68326) |
k = 2^2, 8^2, 12^2, 18^2, 22^2, 28^2, 38^2, 42^2, 48^2, 52^2, 58^2, 62^2,
68^2, 72^2, 78^2, 82^2, 88^2, 98^2, 102^2, 108^2, 112^2, and 118^2 proven composite by condition 1. k = 249*2^2 proven composite by condition 2. |
250 | 682217 | 7, 13, 251, 1609 | k = = 1 mod 3 (3) k = = 1 mod 83 (83) |
3699 k's remaining at n=10K. See k's at Riesel Base 250 remain. |
19202 (9989) 264291 (9985) 81006 (9982) 332060 (9968) 454245 (9961) 280632 (9961) 74153 (9961) 462900 (9959) 183020 (9958) 337749 (9956) |
||
251 | 8 | 3, 7 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) |
none - proven | 4 (271) 2 (2) |
||
252 | 45 | 11, 23 | k = = 1 mod 251 (251) | none - proven | 8 (6287) 23 (399) 36 (123) 31 (62) 32 (52) 4 (7) 16 (5) 39 (4) 33 (4) 38 (3) |
||
253 | 1904 | 5, 127, 173 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 7 (7) |
1854 (1M) | 1652 (92631) 1650 (67010) 408 (34273) 578 (3428) 258 (2972) 662 (1771) 1526 (902) 1472 (782) 1844 (760) 434 (511) |
||
254 | 4 | 3, 5 | k = = 1 mod 11 (11) k = = 1 mod 23 (23) |
none - proven | 2 (2866) 3 (1) |
||
255 | 205022 | 7, 13, 19, 61, 97 | k = = 1 mod 2 (2) k = = 1 mod 127 (127) |
360 k's remaining at n=57K. See k's at Riesel Base 255 remain. |
152990 (57192) 98522 (56433) 29706 (56039) 66910 (55524) 23074 (55464) 117944 (55297) 198398 (54976) 74972 (54747) 178404 (54467) 170018 (54348) |
||
257 | 44 | 3, 43 | k = = 1 mod 2 (2) | none - proven | 42 (58) 2 (22) 18 (20) 4 (15) 28 (11) 26 (10) 14 (8) 24 (5) 20 (4) 40 (3) |
||
258 | 36 | 7, 37 | k = = 1 mod 257 (257) | none - proven | 6 (212134) 22 (8471) 14 (2624) 9 (105) 26 (59) 2 (28) 30 (27) 19 (27) 13 (20) 15 (11) |
||
259 | 14 | 5, 13 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 43 (43) |
none - proven | 12 (48) 8 (5) 2 (2) 6 (1) |
||
260 | 28 | 3, 29 | k = = 1 mod 7 (7) k = = 1 mod 37 (37) |
none - proven | 10 (2103) 7 (825) 20 (326) 2 (120) 26 (100) 24 (12) 23 (12) 21 (9) 19 (9) 25 (7) |
||
261 | 13061094 | 7, 79, 131, 859 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 13 (13) |
58155 k's remaining at n=2.5K. To be shown later. | 11634394 (2500) 10308164 (2500) 6264812 (2500) 5603550 (2500) 4933448 (2500) 2805354 (2500) 1474432 (2500) 12630452 (2499) 12000550 (2499) 10796804 (2499) |
||
262 | 27351 | 5, 7, 13, 103, 263 | k = = 1 mod 3 (3) k = = 1 mod 29 (29) |
118 k's remaining at n=100K. See k's at Riesel Base 262 remain. |
9120 (99664) 21951 (99430) 14492 (98753) 12623 (95954) 23246 (93125) 6648 (91980) 4104 (91956) 14906 (88099) 16989 (86060) 21080 (83670) |
||
263 | 10 | 3, 11 | k = = 1 mod 2 (2) k = = 1 mod 131 (131) |
none - proven | 8 (2) 6 (2) 2 (2) 4 (1) |
||
264 | 54 | 5, 53 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*264^q - 1) * (m*264^q + 1) odd n: factor of 5 |
k = = 1 mod 263 (263) | none - proven | 24 (2096) 36 (375) 16 (217) 41 (47) 50 (26) 3 (18) 28 (16) 33 (13) 44 (10) 15 (7) |
k = 4, 9, and 49 proven composite by partial algebraic factors. |
265 | 20 | 7, 19 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 11 (11) |
none - proven |
8 (71) 18 (2) 6 (2) 2 (2) 14 (1) |
||
266 | 88 | 3, 89 | k = = 1 mod 5 (5) k = = 1 mod 53 (53) |
none - proven | 64 (26843) 23 (1684) 85 (1615) 87 (354) 20 (198) 50 (114) 47 (56) 28 (23) 80 (20) 17 (20) |
||
267 | 1432662 | 5, 67, 7129 | k = = 1 mod 2 (2) k = = 1 mod 7 (7) k = = 1 mod 19 (19) |
5761 k's remaining at n=10K. See k's at Riesel Base 267 remain. |
1001236 (9998) 681726 (9997) 1091366 (9994) 462012 (9992) 1219544 (9988) 644184 (9972) 1397958 (9967) 1255596 (9963) 396926 (9963) 751048 (9958) |
||
268 | 1344 | 5, 17, 269 | k = = 1 mod 3 (3) k = = 1 mod 89 (89) |
267 (500K) 408 (500K) 599 (500K) 806 (500K) 863 (500K) 1101 (500K) 1136 (500K) 1143 (500K) 1296 (500K) |
291 (452750) 872 (251714) 1061 (229202) 632 (113226) 1194 (81459) 954 (64839) 467 (36859) 884 (36621) 720 (24307) 758 (18193) |
||
269 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 1 mod 67 (67) |
none - proven | 2 (20) | ||
270 | 21681 | 7, 13, 37, 271 | k = 3600: for even n let n=2*q; factors to: (60*270^q - 1) * (60*270^q + 1) odd n: covering set 7, 13, 37 |
k = = 1 mod 269 (269) | 69 k's remaining at n=100K. See k's at Riesel Base 270 remain. |
4573 (99828) 9296 (93802) 4 (89661) 11580 (87864) 15213 (85053) 5359 (84972) 2588 (81676) 10817 (81410) 4195 (80151) 9825 (80094) |
|
271 | 50389004 | 11, 17, 31, 41, 251, 6301 | (Condition 1): All k where k = m^2 and m = = 4 or 13 mod 17: for even n let k = m^2 and let n = 2*q; factors to: (m*271^q - 1) * (m*271^q + 1) odd n: factor of 17 (Condition 2): All k where k = 271*m^2 and m = = 4 or 13 mod 17: [Reverse condition 1] |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 5 (5) |
320252 k's remaining at n=2.5K. To be shown later. | 49475490 (2500) 49389390 (2500) 48937100 (2500) 48746510 (2500) 48741192 (2500) 48659592 (2500) 45923870 (2500) 43799904 (2500) 43405470 (2500) 43355898 (2500) |
k = 30^2, 72^2, 132^2, 378^2, 438^2, 480^2, 540^2, 582^2, 642^2, 888^2,
948^2, 990^2, (etc. pattern repeating every 510m) proven composite by condition 1. k = 271*30^2, 271*72^2, 271*132^2, and 271*378^2 proven composite by condition 2. |
272 | 8 | 3, 7 | k = = 1 mod 271 (271) | none - proven | 6 (148426) 5 (8) 2 (6) 7 (5) 3 (2) 4 (1) |
||
273 | 7262 | 5, 29, 137 | k = = 1 mod 2 (2) k = = 1 mod 17 (17) |
136 (300K) 156 (300K) 962 (300K) 1758 (300K) 2072 (300K) 3424 (300K) 3756 (300K) 5226 (300K) 5802 (300K) |
138 (224093) 4794 (135632) 4522 (129019) 3254 (122768) 6702 (96743) 4396 (87951) 6980 (72300) 4086 (60454) 4614 (60372) 488 (59024) |
||
274 | 21 | 5, 11 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*274^q - 1) * (m*274^q + 1) odd n: factor of 5 |
k = = 1 mod 3 (3) k = = 1 mod 7 (7) k = = 1 mod 13 (13) |
none - proven | 12 (51) 5 (4) 11 (3) 6 (3) 20 (1) 18 (1) 17 (1) 3 (1) 2 (1) |
k = 9 proven composite by partial algebraic factors. |
275 | 22 | 3, 23 | k = = 1 mod 2 (2) k = = 1 mod 137 (137) |
4 (600K) | 16 (54825) 20 (8) 8 (8) 18 (5) 2 (4) 6 (3) 14 (2) 12 (1) 10 (1) |
||
276 | 1552307 | 7, 13, 277, 5881 | (Condition 1): All k where k = m^2 and m = = 60 or 217 mod 277: for even n let k = m^2 and let n = 2*q; factors to: (m*276^q - 1) * (m*276^q + 1) odd n: factor of 277 (Condition 2): All k where k = 69*m^2 and m = = 120 or 157 mod 277: even n: factor of 277 for odd n let k = 69*m^2 and let n=2*q-1; factors to: [m*2^n*69^q - 1] * [m*2^n*69^q + 1] |
k = = 1 mod 5 (5) k = = 1 mod 11 (11) |
12601 k's remaining at n=2.5K. To be shown later. | 699147 (2500) 380992 (2500) 196665 (2500) 1293318 (2499) 1010902 (2499) 585260 (2499) 406347 (2499) 178207 (2499) 469763 (2498) 1387408 (2498) |
k = 3600, 47089, 113569, 1098304, and 1364224 proven composite by condition
1. k = 993600 proven composite by condition 2. |
277 | 7088 | 7, 13, 19, 139 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 23 (23) |
84 (300K) 764 (300K) 1178 (300K) 1808 (300K) 1908 (300K) 2064 (300K) 2640 (300K) 2642 (300K) 2690 (300K) 3032 (300K) 3896 (300K) 4082 (300K) 4428 (300K) 4512 (300K) 4586 (300K) 5118 (300K) 5238 (300K) 5378 (300K) 6486 (300K) 6822 (300K) |
5916 (252878) 1616 (242731) 5954 (120147) 2766 (114778) 4016 (109211) 2538 (85188) 5882 (74049) 6918 (59328) 6008 (50658) 5196 (47499) |
||
278 | 14 | 3, 5, 13 | k = = 1 mod 277 (277) | none - proven | 2 (43908) 4 (175) 5 (34) 11 (26) 3 (21) 10 (15) 9 (15) 12 (4) 7 (3) 8 (2) |
||
279 | 6 | 5, 7 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*279^q - 1) * (m*279^q + 1) odd n: factor of 5 |
k = = 1 mod 2 (2) k = = 1 mod 139 (139) |
none - proven | 2 (1) | k = 4 proven composite by partial algebraic factors. |
281 | 328 | 3, 47 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 7 (7) |
38 (500K) 314 (500K) |
272 (162232) 112 (133589) 170 (50358) 284 (1232) 252 (1106) 304 (535) 194 (340) 94 (253) 34 (209) 200 (170) |
||
282 | 19139 | 5, 7, 13, 37, 109 | k = = 1 mod 281 (281) | 229 k's remaining at n=100K. See k's at Riesel Base 282 remain. |
9027 (98973) 1999 (98840) 3617 (95568) 8659 (94640) 10419 (87352) 17278 (86908) 4384 (85848) 18965 (84625) 58 (82974) 2382 (82845) |
||
283 | 218042 | 5, 7, 71, 73, 1069 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 47 (47) |
1118 k's remaining at n=25K. See k's at Riesel Base 283 remain. |
8 (164768) 150914 (24976) 118616 (24873) 21152 (24808) 196404 (24707) 14342 (24486) 168264 (24460) 128988 (24446) 9018 (24441) 164082 (24403) |
||
284 | 4 | 3, 5 | k = = 1 mod 283 (283) | none - proven | 2 (416) 3 (30) |
||
285 | 12 | 11, 13 | k = = 1 mod 2 (2) k = = 1 mod 71 (71) |
none - proven | 4 (71) 10 (2) 8 (2) 6 (1) 2 (1) |
||
286 | 83 | 7, 41 | k = = 1 mod 3 (3) k = = 1 mod 5 (5) k = = 1 mod 19 (19) |
none - proven | 9 (163) 72 (8) 53 (6) 48 (6) 45 (4) 63 (3) 50 (3) 30 (3) 12 (3) 80 (2) |
||
287 | 14276 | 3, 5, 17, 457 | k = = 1 mod 2 (2) k = = 1 mod 11 (11) k = = 1 mod 13 (13) |
156 k's remaining at n=100K. See k's at Riesel Base 287 remain. |
12656 (98870) 4666 (98063) 1658 (91104) 5122 (90193) 3926 (88302) 7214 (78864) 5126 (76594) 11894 (73556) 4208 (73292) 1646 (72086) |
||
288 | 613 | 5, 17, 53 | (Condition 1): All k where k = m^2 and m = = 4 or 13 mod 17: for even n let k = m^2 and let n = 2*q; factors to: (m*288^q - 1) * (m*288^q + 1) odd n: factor of 17 (Condition 2): All k where k = 2*m^2 and m = = 3 or 14 mod 17: even n: factor of 17 for odd n let k = 2*m^2 and let n=2*q-1; factors to: [m*12^n*2^q - 1] * [m*12^n*2^q + 1] |
k = = 1 mod 7 (7) k = = 1 mod 41 (41) |
339 (500K) 509 (500K) |
478 (3250) 137 (2319) 207 (2251) 47 (1198) 182 (1070) 84 (972) 304 (928) 117 (878) 346 (745) 381 (621) |
k = 16 and 441 proven composite by condition 1. k = 18 and 392 proven composite by condition 2. |
289 | 86 | 5, 29 | All k = m^2 for all n; factors to: (m*17^n - 1) * (m*17^n + 1) |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) |
none - proven | 44 (3244) 26 (55) 84 (14) 54 (8) 74 (6) 60 (6) 42 (6) 24 (6) 68 (4) 38 (4) |
k = 36 proven composite by full algebraic factors. |
290 | 98 | 3, 97 | k = = 1 mod 17 (17) | none - proven | 64 (96385) 19 (51591) 71 (49360) 81 (45303) 31 (5025) 32 (4512) 74 (4270) 82 (495) 48 (415) 47 (300) |
||
291 | 16410 | 7, 61, 199 | All k where k = m^2 and m = = 27 or 46 mod 73: for even n let k = m^2 and let n = 2*q; factors to: (m*291^q - 1) * (m*291^q + 1) odd n: factor of 73 |
k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 29 (29) |
32 k's remaining at n=100K. See k's at Riesel Base 291 remain. |
5630 (82805) 8292 (81139) 7912 (78780) 13360 (72937) 4454 (70811) 5608 (70369) 2410 (65589) 12552 (50923) 11250 (50912) 8514 (49961) |
k = 10000 proven composite by partial algebraic factors. |
292 | 34682 | 5, 7, 13, 19, 79 | All k where k = m^2 and m = = 138 or 155 mod 293: for even n let k = m^2 and let n = 2*q; factors to: (m*292^q - 1) * (m*292^q + 1) odd n: factor of 293 |
k = = 1 mod 3 (3) k = = 1 mod 97 (97) |
219 k's remaining at n=100K. See k's at Riesel Base 292 remain. |
6381 (95011) 5963 (91183) 26343 (89838) 6639 (89757) 22854 (89052) 9824 (88733) 19904 (88371) 10314 (86704) 32558 (86618) 12893 (86099) |
k = 19044 proven composite by partial algebraic factors. |
293 | 8 | 3, 7 | k = = 1 mod 2 (2) k = = 1 mod 73 (73) |
none - proven | 6 (6) 2 (2) 4 (1) |
||
294 | 119 | 5, 59 | (Condition 1): All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*294^q - 1) * (m*294^q + 1) odd n: factor of 5 (Condition 2): All k where k = 6*m^2 and m = = 1 or 4 mod 5: even n: factor of 5 for odd n let k = 6*m^2 and let n=2*q-1; factors to: [m*7^n*6^q - 1] * [m*7^n*6^q + 1] |
k = = 1 mod 293 (293) | none - proven | 60 (5973) 116 (1605) 31 (743) 44 (466) 84 (268) 92 (182) 109 (130) 36 (69) 112 (42) 99 (42) |
k = 4, 9, 49, and 64 proven composite by condition 1. k = 6 and 96 proven composite by condition 2. |
295 | 664484 | 37, 53, 821 | All k where k = m^2 and m = = 6 or 31 mod 37: for even n let k = m^2 and let n = 2*q; factors to: (m*295^q - 1) * (m*295^q + 1) odd n: factor of 37 |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 7 (7) |
880 k's remaining at n=25K. See k's at Riesel Base 295 remain. |
229940 (24963) 9806 (24853) 390956 (24829) 11136 (24774) 12548 (24689) 280608 (24683) 627596 (24674) 660708 (24600) 354006 (24596) 18788 (24567) |
k = 51984, 191844, 202500, 435600, and 451584 proven composite by partial algebraic factors. |
296 | 10 | 3, 11 | k = = 1 mod 5 (5) k = = 1 mod 59 (59) |
none - proven | 2 (36) 4 (27) 8 (16) 5 (8) 7 (3) 9 (1) 3 (1) |
||
297 | 130076 | 5, 7, 67, 97, 149 | All k where k = m^2 and m = = 44 or 105 mod 149: for even n let k = m^2 and let n = 2*q; factors to: (m*297^q - 1) * (m*297^q + 1) odd n: factor of 149 |
k = = 1 mod 2 (2) k = = 1 mod 37 (37) |
678 k's remaining at n=25K. See k's at Riesel Base 297 remain. |
87864 (24988) 127042 (24922) 32764 (24772) 54388 (24632) 82472 (24548) 10744 (24516) 64574 (24445) 52352 (24412) 84334 (24375) 121988 (24322) |
k = 1936, 64516, and 116964 proven composite by partial algebraic factors. |
298 | 116 | 13, 23 | k = = 1 mod 3 (3) k = = 1 mod 11 (11) |
27 (300K) 92 (300K) 105 (300K) |
66 (62275) 30 (10338) 36 (6571) 2 (4202) 9 (93) 38 (92) 44 (83) 102 (70) 60 (48) 53 (37) |
||
299 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 1 mod 149 (149) |
none - proven | 2 (4) | ||
300 | 85 | 7, 43 | k = = 1 mod 13 (13) k = = 1 mod 23 (23) |
none - proven | 81 (12793) 83 (624) 42 (516) 75 (174) 74 (106) 13 (98) 6 (96) 62 (52) 33 (29) 3 (26) |
||
301 | 1152584 | 89, 151, 509 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 5 (5) |
734 k's remaining at n=25K. See k's at Riesel Base 301 remain. |
103434 (24924) 756584 (24868) 821268 (24824) 1094328 (24800) 582408 (24787) 788628 (24717) 685088 (24607) 316928 (24599) 166632 (24548) 539924 (24476) |
||
302 | 13 | 3, 5, 17 | k = = 1 mod 7 (7) k = = 1 mod 43 (43) |
none - proven | 5 (98) 11 (74) 2 (6) 9 (5) 3 (4) 4 (3) 12 (1) 10 (1) 7 (1) 6 (1) |
||
303 | 85368 | 5, 17, 19, 97, 401 | k = = 1 mod 2 (2) k = = 1 mod 151 (151) |
1077 k's remaining at n=25K. See k's at Riesel Base 303 remain. |
4 (198357) 2 (40174) 65744 (24957) 47468 (24949) 40422 (24935) 24756 (24830) 39064 (24632) 85102 (24571) 45688 (24413) 59376 (24309) |
||
304 | 426 | 5, 61 | (Condition 1): All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*304^q - 1) * (m*304^q + 1) odd n: factor of 5 (Condition 2): All k where k = 19*m^2 and m = = 2 or 3 mod 5: even n: factor of 5 for odd n let k = 19*m^2 and let n=2*q-1; factors to: [m*4^n*19^q - 1] * [m*4^n*19^q + 1] |
k = = 1 mod 3 (3) k = = 1 mod 101 (101) |
131 (300K) 284 (300K) 294 (300K) 389 (300K) 404 (300K) 411 (300K) |
339 (136846) 374 (33968) 111 (22367) 341 (21621) 234 (19860) 359 (18894) 390 (17571) 194 (11540) 72 (7592) 416 (6747) |
k = 9, 144, and 324 proven composite by condition 1. k = 171 proven composite by condition 2. |
305 | 16 | 3, 17 | k = = 1 mod 2 (2) k = = 1 mod 19 (19) |
none - proven | 4 (3) 14 (2) 8 (2) 6 (2) 2 (2) 12 (1) 10 (1) |
||
306 | 39295 | 7, 37, 199, 307 | k = = 1 mod 5 (5) k = = 1 mod 61 (61) |
70 k's remaining at n=100K. See k's at Riesel Base 306 remain. |
9757 (99242) 38564 (96037) 34794 (92317) 25445 (90812) 32132 (84472) 6232 (83797) 26317 (83083) 37852 (82223) 36928 (76377) 37824 (75225) |
||
307 | 8 | 5, 7, 13 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 17 (17) |
none - proven | 6 (26262) 2 (1) |
||
308 | 104 | 3, 103 | k = = 1 mod 307 (307) | 7 (300K) 43 (300K) 67 (300K) 74 (300K) 89 (300K) |
52 (95851) 59 (63148) 94 (11543) 71 (6262) 100 (1213) 2 (990) 82 (763) 87 (670) 69 (503) 22 (259) |
||
309 | 94 | 5, 31 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*309^q - 1) * (m*309^q + 1) odd n: factor of 5 |
k = = 1 mod 2 (2) k = = 1 mod 7 (7) k = = 1 mod 11 (11) |
none - proven | 14 (2164) 74 (1298) 24 (174) 6 (73) 28 (68) 82 (51) 26 (35) 54 (30) 44 (30) 70 (27) |
k = 4 proven composite by partial algebraic factors. |
310 | 363869 | 7, 13, 17, 37, 311 | k = = 1 mod 3 (3) k = = 1 mod 103 (103) |
1470 k's remaining at n=25K. See k's at Riesel Base 310 remain. |
338741 (24999) 108893 (24922) 221990 (24841) 100878 (24812) 231144 (24809) 228429 (24796) 172391 (24790) 363563 (24713) 208230 (24574) 75161 (24570) |
||
311 | 14 | 3, 13 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 31 (31) |
none - proven | 12 (146) 4 (5) 8 (2) 2 (2) 10 (1) |
||
312 | 173401 | 5, 7, 19, 277, 313 | All k where k = m^2 and m = = 25 or 288 mod 313: for even n let k = m^2 and let n = 2*q; factors to: (m*312^q - 1) * (m*312^q + 1) odd n: factor of 313 |
k = = 1 mod 311 (311) | 3577 k's remaining at n=10K. See k's at Riesel Base 312 remain. |
4 (51565) 75254 (10000) 26614 (9984) 33856 (9979) 154829 (9968) 115892 (9949) 157457 (9945) 4358 (9942) 20504 (9929) 126981 (9926) |
k=625, 82944, and 114244 proven composite by partial algebraic factors. |
313 | 8634 | 5, 97, 157 | All k where k = m^2 and m = = 28 or 129 mod 157: for even n let k = m^2 and let n = 2*q; factors to: (m*313^q - 1) * (m*313^q + 1) odd n: factor of 157 |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 13 (13) |
188 (300K) 2298 (300K) 3924 (300K) 4280 (300K) 4338 (300K) 4358 (300K) 6086 (300K) 6428 (300K) 7976 (300K) |
7188 (245886) 5724 (232269) 7092 (202412) 4482 (201622) 5754 (155768) 7244 (142223) 5666 (132354) 2034 (90007) 4734 (69331) 366 (68982) |
No k's proven composite by algebraic factors. |
314 | 4 | 3, 5 | k = = 1 mod 313 (313) | none - proven | 2 (74) 3 (1) |
||
315 | 900 | 13, 19, 31 | k = = 1 mod 2 (2) k = = 1 mod 157 (157) |
64 (500K) 552 (500K) |
400 (225179) 256 (18845) 614 (4965) 80 (2825) 638 (2389) 710 (2304) 342 (2143) 438 (1601) 326 (865) 558 (663) |
||
316 | 287520 | 13, 19, 31, 317 | All k where k = m^2 and m = = 114 or 203 mod 317: for even n let k = m^2 and let n = 2*q; factors to: (m*316^q - 1) * (m*316^q + 1) odd n: factor of 317 |
k = = 1 mod 3 (3) k = = 1 mod 5 (5) k = = 1 mod 7 (7) |
175 k's remaining at n=100K. See k's at Riesel Base 316 remain. |
50313 (99453) 268098 (98915) 234579 (98670) 13205 (98214) 264624 (97143) 281970 (95718) 31938 (95696) 128585 (94554) 78777 (93285) 43778 (91974) |
No k's proven composite by algebraic factors. |
317 | 14 | 3, 5, 13 | k = = 1 mod 2 (2) k = = 1 mod 79 (79) |
none - proven | 4 (119) 2 (10) 8 (2) 12 (1) 10 (1) 6 (1) |
||
318 | 144 | 11, 29 | k = = 1 mod 317 (317) | 122 (1M) | 128 (131133) 78 (33813) 67 (17435) 117 (14403) 111 (1643) 54 (1432) 23 (989) 98 (198) 32 (108) 44 (68) |
||
319 | 1526 | 5, 17, 41 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*319^q - 1) * (m*319^q + 1) odd n: factor of 5 |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 53 (53) |
614 (300K) 1356 (300K) 1506 (300K) |
276 (160971) 1266 (85179) 1244 (51654) 626 (45687) 1496 (39721) 86 (19361) 944 (15678) 834 (7174) 606 (7141) 804 (7110) |
k = 144 and 324 proven composite by partial algebraic factors. |
320 | 106 | 3, 107 | k = = 1 mod 11 (11) k = = 1 mod 29 (29) |
73 (500K) 103 (500K) |
53 (115706) 42 (13743) 10 (9645) 82 (7189) 24 (1618) 74 (1524) 66 (1234) 61 (537) 58 (443) 5 (232) |
||
321 | 22 | 7, 23 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) |
8 (600K) | 20 (1406) 18 (4) 14 (1) 12 (1) 10 (1) 4 (1) 2 (1) |
||
322 | 18 | 17, 19 | k = = 1 mod 3 (3) k = = 1 mod 107 (107) |
none - proven | 8 (10) 3 (3) 17 (2) 15 (2) 14 (1) 12 (1) 11 (1) 9 (1) 6 (1) 5 (1) |
||
323 | 93896 | 3, 5, 10433 | k = = 1 mod 2 (2) k = = 1 mod 7 (7) k = = 1 mod 23 (23) |
1836 k's remaining at n=25K. See k's at Riesel Base 323 remain. |
3184 (24999) 83324 (24996) 3952 (24955) 92564 (24836) 34706 (24822) 29330 (24812) 53696 (24730) 46886 (24678) 68456 (24654) 39742 (24551) |
||
324 | 14 | 5, 13 | All k = m^2 for all n; factors to: (m*18^n - 1) * (m*18^n + 1) |
k = = 1 mod 17 (17) k = = 1 mod 19 (19) |
none - proven | 11 (149) 12 (4) 10 (3) 6 (3) 13 (1) 8 (1) 7 (1) 6 (1) 5 (1) 3 (1) |
k = 4 and 9 proven composite by full algebraic factors. |
326 | 110 | 3, 109 | k = = 1 mod 5 (5) k = = 1 mod 13 (13) |
50 (600K) | 35 (174298) 98 (4562) 74 (4278) 59 (1500) 47 (1328) 52 (1119) 99 (848) 73 (771) 64 (395) 108 (198) |
||
327 | 696 | 5, 17, 41 | k = = 1 mod 2 (2) k = = 1 mod 163 (163) |
38 (772K) 204 (772K) 370 (772K) |
346 (55078) 308 (52903) 62 (43088) 458 (30208) 664 (27823) 484 (10207) 302 (6734) 450 (5778) 276 (3245) 368 (1898) |
||
328 | 48 | 7, 47 | k = = 1 mod 3 (3) k = = 1 mod 109 (109) |
8 (1M) | 41 (31734) 20 (20962) 35 (6603) 9 (605) 42 (447) 2 (80) 32 (22) 24 (4) 47 (3) 21 (3) |
||
329 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 1 mod 41 (41) |
none - proven | 2 (2) | ||
330 | 16527822 | 13, 331, 8377 | k = = 1 mod 7 (7) k = = 1 mod 47 (47) |
99767 k's remaining at n=2.5K. To be shown later. | 16491743 (2500) 16396665 (2500) 14927167 (2500) 12191560 (2500) 10774711 (2500) 10709395 (2500) 10474264 (2500) 10094837 (2500) 8853051 (2500) 8846841 (2500) |
||
331 | 470030 | 7, 13, 19, 83, 1889 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 5 (5) k = = 1 mod 11 (11) |
486 k's remaining at n=100K. See k's at Riesel Base 331 remain. |
426444 (98961) 148514 (98406) 170232 (98332) 63918 (96544) 92030 (95621) 213132 (95611) 221708 (95085) 432492 (94916) 94760 (94328) 369048 (93526) |
||
332 | 38 | 3, 37 | All k where k = m^2 and m = = 6 or 31 mod 37: for even n let k = m^2 and let n = 2*q; factors to: (m*332^q - 1) * (m*332^q + 1) odd n: factor of 37 |
k = = 1 mod 331 (331) | 18 (600K) | 28 (66159) 37 (16001) 7 (15221) 8 (13204) 16 (4617) 14 (1208) 9 (945) 32 (822) 23 (258) 26 (106) |
k = 36 proven composite by partial algebraic factors. |
333 | 502 | 5, 13, 167 | k = = 1 mod 2 (2) k = = 1 mod 83 (83) |
16 (1M) | 302 (90815) 14 (69297) 254 (20036) 226 (14714) 258 (8969) 102 (4540) 272 (4032) 368 (2658) 246 (2389) 90 (1864) |
||
334 | 66 | 5, 67 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*334^q - 1) * (m*334^q + 1) odd n: factor of 5 |
k = = 1 mod 3 (3) k = = 1 mod 37 (37) |
14 (600K) | 26 (6027) 53 (505) 30 (136) 48 (66) 59 (60) 36 (53) 56 (47) 65 (11) 47 (10) 44 (10) |
k = 9 proven composite by partial algebraic factors. |
335 | 8 | 3, 7 | k = = 1 mod 2 (2) k = = 1 mod 167 (167) |
none - proven | 4 (3) 6 (2) 2 (2) |
||
336 | 63018 | 17, 29, 337 | All k where k = m^2 and m = = 148 or 189 mod 337: for even n let k = m^2 and let n = 2*q; factors to: (m*336^q - 1) * (m*336^q + 1) odd n: factor of 337 |
k = = 1 mod 5 (5) k = = 1 mod 67 (67) |
67 k's remaining at n=100K. See k's at Riesel Base 336 remain. |
3688 (98616) 11244 (96803) 34540 (96494) 2697 (94053) 18427 (89084) 16338 (87527) 32079 (86609) 34982 (78524) 51268 (74057) 44393 (73161) |
k = 21904 proven composite by partial algebraic factors. |
337 | 378 | 5, 13, 41 | All k where k = m^2 and m = = 5 or 8 mod 13: for even n let k = m^2 and let n = 2*q; factors to: (m*337^q - 1) * (m*337^q + 1) odd n: factor of 13 |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 7 (7) |
38 (500K) 222 (500K) |
194 (33268) 248 (9935) 350 (4454) 368 (3740) 224 (149) 296 (118) 62 (106) 170 (89) 54 (60) 216 (53) |
k = 324 proven composite by partial algebraic factors. |
338 | 74 | 3, 5, 73 | k = = 1 mod 337 (337) | 5 (300K) 22 (300K) 44 (300K) 56 (300K) |
71 (56314) 7 (42867) 40 (2603) 70 (797) 67 (407) 25 (285) 37 (175) 18 (156) 72 (144) 4 (111) |
||
339 | 16 | 5, 17 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*339^q - 1) * (m*339^q + 1) odd n: factor of 5 |
k = = 1 mod 2 (2) k = = 1 mod 13 (13) |
none - proven | 6 (121) 12 (3) 10 (1) 8 (1) 2 (1) |
k = 4 proven composite by partial algebraic factors. |
340 | 32 | 11, 31 | k = = 1 mod 3 (3) k = = 1 mod 113 (113) |
none - proven | 2 (60) 18 (22) 20 (12) 24 (4) 23 (3) 9 (3) 30 (2) 27 (2) 21 (2) 29 (1) |
||
341 | 20 | 3, 19 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 17 (17) |
none - proven | 8 (4966) 10 (447) 14 (344) 2 (36) 4 (3) 12 (1) |
||
342 | 629 | 5, 7, 157 | k = = 1 mod 11 (11) k = = 1 mod 31 (31) |
193 (300K) 267 (300K) 393 (300K) 400 (300K) 407 (300K) 477 (300K) |
216 (106298) 25 (35729) 69 (32956) 244 (29020) 288 (19567) 461 (17290) 127 (16569) 582 (13629) 321 (10314) 314 (4864) |
||
343 | 1676 | 5, 13, 43 | All k = m^3 for all n; factors to: (m*7^n - 1) * (m^2*49^n + m*7^n + 1) |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 19 (19) |
314 (300K) 1248 (300K) 1334 (300K) 1370 (300K) 1422 (300K) |
516 (68693) 1416 (24073) 636 (19713) 528 (17076) 1544 (4637) 558 (2856) 1070 (2710) 1238 (2030) 474 (1387) 1638 (1360) |
k = 8, 216, and 512 proven composite by full algebraic factors. |
344 | 4 | 3, 5 | k = = 1 mod 7 (7) | none - proven | 2 (4) 3 (1) |
||
346 | 2119475 | 7, 31, 347, 1291 | k = = 1 mod 3 (3) k = = 1 mod 5 (5) k = = 1 mod 23 (23) |
19648 k's remaining at n=2.5K. To be shown later. | 1417463 (2500) 1068345 (2500) 1914899 (2499) 1878083 (2499) 1593854 (2499) 1299492 (2499) 125508 (2499) 25433 (2499) 1999760 (2498) 1997159 (2498) |
||
347 | 28 | 3, 29 | k = = 1 mod 2 (2) k = = 1 mod 173 (173) |
22 (600K) | 14 (4616) 2 (522) 24 (384) 26 (18) 18 (10) 16 (9) 12 (5) 8 (4) 4 (3) 20 (2) |
||
348 | 18496 | 5, 53, 349 | All k where k = m^2 and m = = 136 or 213 mod 349: for even n let k = m^2 and let n = 2*q; factors to: (m*348^q - 1) * (m*348^q + 1) odd n: factor of 349 |
k = = 1 mod 347 (347) | 143 k's remaining at n=100K. See k's at Riesel Base 348 remain. |
6421 (98465) 6431 (96325) 2892 (95830) 6061 (95087) 7274 (93928) 18444 (92600) 16976 (92145) 15128 (91514) 14023 (88813) 12622 (85696) |
No k's proven composite by algebraic factors. |
349 | 6 | 5, 7 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 29 (29) |
none - proven | 2 (15) | ||
350 | 14 | 3, 13 | k = = 1 mod 349 (349) | none - proven | 5 (40) 2 (14) 11 (12) 8 (10) 7 (9) 9 (5) 12 (4) 13 (1) 10 (1) 6 (1) |
||
351 | 27708 | 11, 229, 269 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 7 (7) |
3364 (300K) 4900 (300K) 5884 (300K) 6214 (300K) 8174 (300K) 8722 (300K) 9074 (300K) 12110 (300K) 14334 (300K) 15872 (300K) 19040 (300K) 22452 (300K) 24608 (300K) 27358 (300K) 27642 (300K) |
20802 (172225) 24388 (165187) 6898 (144173) 2232 (142466) 2760 (106776) 6304 (101001) 13982 (87657) 3948 (76432) 6458 (59547) 25378 (55867) |
||
352 | 2426 | 7, 61, 97 | All k where k = m^2 and m = = 42 or 311 mod 353: for even n let k = m^2 and let n = 2*q; factors to: (m*352^q - 1) * (m*352^q + 1) odd n: factor of 353 |
k = = 1 mod 3 (3) k = = 1 mod 13 (13) |
354 (300K) 389 (300K) 414 (300K) 611 (300K) 707 (300K) 792 (300K) 977 (300K) 1026 (300K) 1178 (300K) 1413 (300K) 1653 (300K) 1919 (300K) |
1731 (237258) 2096 (212554) 596 (170089) 1343 (68846) 2319 (65272) 291 (46965) 1523 (43086) 2216 (40961) 123 (36488) 2304 (22243) |
k = 1764 proven composite by partial algebraic factors. |
353 | 58 | 3, 59 | k = = 1 mod 2 (2) k = = 1 mod 11 (11) |
none - proven | 52 (129583) 26 (1614) 20 (754) 54 (471) 22 (319) 4 (259) 38 (142) 46 (105) 36 (29) 44 (12) |
||
354 | 141 | 5, 71 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*354^q - 1) * (m*354^q + 1) odd n: factor of 5 |
k = = 1 mod 353 (353) | 71 (600K) | 19 (55480) 6 (25565) 22 (11351) 66 (9943) 116 (1543) 136 (1031) 62 (606) 65 (429) 48 (405) 124 (378) |
k = 4, 9, 49, and 64 proven composite by partial algebraic factors. |
355 | 46190 | 7, 13, 89, 103 | All k where k = m^2 and m = = 34 or 55 mod 89: for even n let k = m^2 and let n = 2*q; factors to: (m*355^q - 1) * (m*355^q + 1) odd n: factor of 89 |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 59 (59) |
56 k's remaining at n=100K. See k's at Riesel Base 355 remain. |
19848 (95459) 26790 (93371) 33840 (92385) 38768 (89019) 33368 (81218) 24170 (80670) 32652 (79817) 7958 (78596) 44522 (73239) 10734 (71316) |
k = 20736 proven composite by partial algebraic factors. |
356 | 8 | 3, 7 | k = = 1 mod 5 (5) k = = 1 mod 71 (71) |
none - proven | 5 (432) 7 (5) 2 (4) 3 (2) 4 (1) |
||
357 | 584078 | 5, 179, 2549 | k = = 1 mod 2 (2) k = = 1 mod 89 (89) |
2773 k's remaining at n=10K. See k's at Riesel Base 357 remain. |
501834 (9996) 351506 (9991) 447868 (9984) 247914 (9984) 324668 (9980) 238680 (9977) 34610 (9963) 320328 (9959) 329584 (9956) 8054 (9956) |
||
358 | 27606383 | 5, 359, 25633 | k = = 1 mod 3 (3) k = = 1 mod 7 (7) k = = 1 mod 17 (17) |
265552 k's remaining at n=2.5K. To be shown later. | 26409332 (2500) 26222298 (2500) 26117538 (2500) 25909799 (2500) 25557755 (2500) 24778049 (2500) 24658319 (2500) 23983167 (2500) 23799614 (2500) 23417915 (2500) |
||
359 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 1 mod 179 (179) |
none - proven | 2 (10) | ||
360 | 3782 | 19, 29, 109 | k = = 1 mod 359 (359) | 36 k's remaining at n=100K. See k's at Riesel Base 360 remain. |
2260 (92070) 3704 (78440) 1616 (69323) 1082 (62970) 2471 (55895) 412 (51664) 248 (46819) 40 (45644) 1250 (42348) 3511 (38065) |
||
361 | 8870 | 7, 13, 127, 181 | All k = m^2 for all n; factors to: (m*19^n - 1) * (m*19^n + 1) |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 5 (5) |
1772 (300K) 4832 (300K) 6954 (300K) 7422 (300K) |
438 (273787) 3522 (110239) 3224 (108879) 1640 (88683) 3314 (60756) 4740 (45551) 6990 (42853) 2258 (41883) 1842 (38353) 2520 (36912) |
k = 144, 324, 900, 1764, 2304, 3600, 5184, 6084, and 8100 proven composite by full algebraic factors. |
362 | 10 | 3, 11 | k = = 1 mod 19 (19) | none - proven | 7 (146341) 8 (28) 6 (26) 3 (15) 2 (4) 5 (2) 9 (1) 4 (1) |
||
363 | 64 | 7, 13 | k = = 1 mod 2 (2) k = = 1 mod 181 (181) |
none - proven | 34 (103588) 38 (228) 20 (214) 60 (28) 36 (21) 58 (17) 24 (5) 62 (4) 42 (4) 18 (4) |
||
364 | 74 | 5, 73 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*364^q - 1) * (m*364^q + 1) odd n: factor of 5 |
k = = 1 mod 3 (3) k = = 1 mod 11 (11) |
none - proven | 20 (79) 30 (73) 32 (67) 8 (59) 53 (28) 51 (17) 65 (16) 63 (16) 71 (15) 5 (8) |
k = 9 proven composite by partial algebraic factors. |
365 | 62 | 3, 61 | k = = 1 mod 2 (2) k = = 1 mod 7 (7) k = = 1 mod 13 (13) |
none - proven | 46 (18381) 28 (337) 38 (70) 56 (18) 44 (12) 20 (10) 6 (6) 10 (3) 60 (2) 32 (2) |
||
366 | 2109 | 7, 31, 619 | k = = 1 mod 5 (5) k = = 1 mod 73 (73) |
1747 (2M) | 2038 (1028507) 1983 (271591) 729 (183817) 1110 (154149) 907 (124278) 93 (60429) 2039 (45784) 767 (23501) 1059 (22401) 1563 (20157) |
||
367 | 620 | 7, 13, 23, 619 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 61 (61) |
none - proven | 456 (90682) 114 (68120) 530 (55209) 344 (35288) 302 (14890) 252 (4744) 74 (3471) 234 (2704) 120 (1299) 206 (974) |
||
368 | 40 | 3, 41 | k = = 1 mod 367 (367) | 36 (600K) | 32 (15514) 11 (10866) 39 (2404) 23 (2204) 37 (983) 35 (862) 16 (137) 10 (83) 38 (32) 18 (25) |
||
369 | 36 | 5, 37 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*369^q - 1) * (m*369^q + 1) odd n: factor of 5 |
k = = 1 mod 2 (2) k = = 1 mod 23 (23) |
none - proven | 14 (1042) 26 (991) 18 (66) 20 (35) 34 (4) 8 (4) 12 (3) 2 (3) 10 (2) 32 (1) |
k = 4 proven composite by partial algebraic factors. |
370 | 531 | 7, 53 | k = = 1 mod 3 (3) k = = 1 mod 41 (41) |
188 (300K) 225 (300K) 405 (300K) |
237 (65280) 132 (32206) 476 (9618) 209 (6400) 317 (4666) 344 (2391) 492 (2352) 107 (2137) 324 (1763) 302 (1545) |
||
371 | 32 | 3, 31 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 37 (37) |
none - proven | 28 (111) 20 (44) 30 (24) 2 (8) 18 (3) 24 (2) 14 (2) 8 (2) 22 (1) 12 (1) |
||
372 | 4477 | 5, 13, 373 | k = = 1 mod 7 (7) k = = 1 mod 53 (53) |
419 (400K) 944 (400K) 961 (400K) 1493 (400K) 1747 (400K) 1854 (400K) 2718 (400K) 2985 (400K) 3058 (400K) 3301 (400K) 3418 (400K) 4064 (400K) 4447 (400K) |
4431 (327835) 2642 (302825) 229 (217261) 2025 (179001) 1682 (177234) 3271 (119926) 2996 (94515) 3563 (76554) 577 (68130) 4423 (63494) |
||
373 | 74 | 7, 13, 73 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 31 (31) |
18 (600K) | 66 (31) 30 (15) 68 (14) 60 (11) 50 (10) 14 (8) 36 (5) 54 (4) 8 (4) 72 (3) |
||
374 | 4 | 3, 5 | k = = 1 mod 373 (373) | none - proven | 3 (3) 2 (2) |
||
375 | 836460 | 7, 47, 139, 1009 | k = = 1 mod 2 (2) k = = 1 mod 11 (11) k = = 1 mod 17 (17) |
2476 k's remaining at n=10K. See k's at Riesel Base 375 remain. |
369140 (9995) 225928 (9988) 209568 (9983) 399228 (9982) 686860 (9975) 462830 (9972) 270988 (9955) 312820 (9949) 736192 (9948) 295394 (9946) |
||
376 | 144 | 13, 29 | k = = 1 mod 3 (3) k = = 1 mod 5 (5) |
none - proven | 32 (1254) 59 (449) 90 (210) 38 (98) 8 (70) 80 (30) 132 (24) 129 (22) 123 (20) 105 (19) |
||
377 | 8 | 3, 7 | k = = 1 mod 2 (2) k = = 1 mod 47 (47) |
none - proven | 6 (6) 2 (4) 4 (3) |
||
378 | 1517 | 5, 17, 379 | k = = 1 mod 13 (13) k = = 1 mod 29 (29) |
9 (300K) 112 (300K) 317 (300K) 617 (300K) 919 (300K) 1087 (300K) |
214 (219424) 1427 (58523) 91 (27170) 949 (19413) 361 (11129) 1036 (8723) 137 (8654) 1203 (7918) 1435 (7522) 1438 (5825) |
||
379 | 56 | 5, 19 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 7 (7) |
none - proven | 18 (76) 54 (6) 24 (6) 26 (5) 20 (5) 44 (4) 32 (4) 42 (2) 14 (2) 48 (1) |
||
380 | 128 | 3, 127 | k = = 1 mod 379 (379) | 38 (300K) 50 (300K) 79 (300K) |
63 (145268) 125 (6358) 22 (4223) 122 (3792) 2 (3786) 44 (3430) 4 (2039) 113 (1874) 95 (834) 20 (710) |
||
381 | 168652 | 7, 13, 43, 191 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 19 (19) |
182 k's remaining at n=100K. See k's at Riesel Base 381 remain. |
67460 (96777) 33198 (95351) 22182 (93944) 160082 (91046) 75544 (90950) 108668 (89348) 140180 (84616) 149288 (83806) 94312 (82097) 89800 (82065) |
||
382 | 13404 | 5, 13, 383 | k = = 1 mod 3 (3) k = = 1 mod 127 (127) |
132 k's remaining at n=100K. See k's at Riesel Base 382 remain. |
1994 (97236) 422 (94640) 10158 (93824) 11664 (92511) 11223 (92408) 477 (92228) 4440 (87002) 2183 (80971) 4221 (79917) 2528 (78364) |
||
383 | 208 | 3, 5, 41, 113 | k = = 1 mod 2 (2) k = = 1 mod 191 (191) |
116 (694K) 134 (694K) 136 (694K) 148 (694K) 170 (694K) 178 (694K) |
70 (147947) 44 (143148) 82 (47643) 2 (20956) 202 (6467) 194 (2504) 14 (2084) 152 (1872) 16 (1567) 58 (1005) |
||
384 | 6 | 5, 7 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*384^q - 1) * (m*384^q + 1) odd n: factor of 5 |
k = = 1 mod 383 (383) | none - proven | 5 (2) 2 (2) 3 (1) |
k = 4 proven composite by partial algebraic factors. |
385 | 3449490 | 13, 193, 5701 | All k where k = m^2 and m = = 81 or 112 mod 193: for even n let k = m^2 and let n = 2*q; factors to: (m*385^q - 1) * (m*385^q + 1) odd n: factor of 193 |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) |
3683 k's remaining at n=10K. See k's at Riesel Base 385 remain. |
2899992 (9994) 2274698 (9985) 2561040 (9982) 3098220 (9981) 2698610 (9980) 996074 (9977) 3310922 (9971) 2158934 (9971) 1667814 (9966) 104480 (9965) |
k = 248004, 435600, 2742336, and 3305124 proven composite by partial algebraic factors. |
386 | 44 | 3, 43 | k = = 1 mod 5 (5) k = = 1 mod 7 (7) k = = 1 mod 11 (11) |
none - proven | 38 (15162) 35 (418) 9 (93) 32 (32) 10 (31) 28 (15) 5 (12) 3 (9) 24 (3) 13 (3) |
||
387 | 98 | 5, 17, 97 | k = = 1 mod 2 (2) k = = 1 mod 193 (193) |
none - proven | 96 (6658) 18 (3767) 58 (3346) 24 (735) 38 (662) 74 (423) 4 (171) 10 (60) 82 (40) 30 (21) |
||
388 | 205391 | 5, 7, 13, 19, 389 | All k where k = m^2 and m = = 115 or 274 mod 389: for even n let k = m^2 and let n = 2*q; factors to: (m*388^q - 1) * (m*388^q + 1) odd n: factor of 389 |
k = = 1 mod 3 (3) k = = 1 mod 43 (43) |
2747 k's remaining at n=10K. See k's at Riesel Base 388 remain. |
131121 (9999) 87666 (9995) 83312 (9984) 202500 (9981) 191759 (9973) 94592 (9968) 192419 (9967) 77615 (9961) 36917 (9946) 116526 (9937) |
No k's proven composite by algebraic factors. |
389 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 1 mod 97 (97) |
none - proven | 2 (20) | ||
390 | 137 | 17, 23 | All k where k = m^2 and m = = 4 or 13 mod 17: for even n let k = m^2 and let n = 2*q; factors to: (m*390^q - 1) * (m*390^q + 1) odd n: factor of 17 |
k = = 1 mod 389 (389) | none - proven | 45 (12968) 59 (218) 36 (85) 111 (36) 86 (33) 131 (30) 69 (29) 82 (22) 55 (22) 52 (21) |
k = 16 proven composite by partial algebraic factors. |
391 | 1820454 | 7, 19, 109, 2689 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 5 (5) k = = 1 mod 13 (13) |
4989 k's remaining at n=10K. See k's at Riesel Base 391 remain. |
889770 (9995) 418392 (9995) 1178892 (9989) 803832 (9983) 136424 (9983) 1463790 (9982) 224820 (9979) 951168 (9977) 490512 (9971) 1569240 (9969) |
||
392 | 74 | 3, 5, 73 | k = = 1 mod 17 (17) k = = 1 mod 23 (23) |
7 (600K) | 28 (213295) 56 (25238) 72 (2316) 32 (2234) 20 (1690) 41 (974) 19 (449) 43 (291) 59 (176) 36 (57) |
||
393 | 11358 | 13, 43, 277 | All k where k = m^2 and m = = 14 or 183 mod 197: for even n let k = m^2 and let n = 2*q; factors to: (m*393^q - 1) * (m*393^q + 1) odd n: factor of 197 |
k = = 1 mod 2 (2) k = = 1 mod 7 (7) |
35 k's remaining at n=100K. See k's at Riesel Base 393 remain. |
8238 (87770) 7604 (83811) 5710 (83023) 1444 (78835) 7406 (66842) 8472 (65939) 7784 (63112) 1634 (62613) 1766 (51066) 7112 (42184) |
k = 196 proven composite by partial algebraic factors. |
394 | 159 | 5, 79 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*394^q - 1) * (m*394^q + 1) odd n: factor of 5 |
k = = 1 mod 3 (3) k = = 1 mod 131 (131) |
none - proven | 80 (298731) 86 (220461) 81 (118571) 89 (87976) 78 (31874) 146 (25129) 141 (5107) 14 (1106) 41 (919) 57 (652) |
k = 9 and 144 proven composite by partial algebraic factors. |
395 | 10 | 3, 11 | k = = 1 mod 2 (2) k = = 1 mod 197 (197) |
none - proven | 2 (396) 6 (14) 8 (2) 4 (1) |
||
396 | 41672 | 7, 37, 607 | All k where k = m^2 and m = = 63 or 334 mod 397: for even n let k = m^2 and let n = 2*q; factors to: (m*396^q - 1) * (m*396^q + 1) odd n: factor of 397 |
k = = 1 mod 5 (5) k = = 1 mod 79 (79) |
111 k's remaining at n=100K. See k's at Riesel Base 396 remain. |
33903 (96776) 30144 (93291) 8337 (87166) 6108 (81370) 12408 (80013) 12965 (79069) 22345 (75832) 6624 (75251) 21543 (75000) 31319 (68627) |
k = 3969 proven composite by partial algebraic factors. |
397 | 172134 | 5, 7, 13, 37, 199 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 11 (11) |
688 k's remaining at n=25K. See k's at Riesel Base 397 remain. |
170442 (24877) 19722 (24658) 32364 (24428) 80594 (24420) 130170 (24337) 56238 (24203) 33956 (24082) 23022 (24052) 36354 (24009) 163764 (23988) |
||
398 | 8 | 3, 7 | k = = 1 mod 397 (397) | 7 (600K) | 2 (32) 5 (22) 4 (3) 6 (2) 3 (1) |
||
400 | 20080878 | 13, 127, 401, 421 | All k = m^2 for all n; factors to: (m*20^n - 1) * (m*20^n + 1) |
k = = 1 mod 3 (3) k = = 1 mod 7 (7) k = = 1 mod 19 (19) |
111272 k's remaining at n=2.5K. To be shown later. | 19346231 (2500) 18818888 (2500) 18788313 (2500) 18515286 (2500) 18399765 (2500) 18193146 (2500) 16561097 (2500) 16183715 (2500) 16126127 (2500) 15983174 (2500) |
k = 3^2, 9^2, 12^2, 18^2, 21^2, 24^2, 30^2, 33^2, 39^2, 42^2, (etc. pattern repeating every 21m where k not = = 1 mod 19) proven composite by full algebraic factors. |
401 | 68 | 3, 67 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) |
38 (600K) | 8 (140) 2 (112) 10 (77) 30 (61) 64 (23) 28 (21) 58 (15) 20 (10) 62 (8) 52 (7) |
||
402 | 92 | 13, 31 | All k where k = m^2 and m = = 5 or 8 mod 13: for even n let k = m^2 and let n = 2*q; factors to: (m*402^q - 1) * (m*402^q + 1) odd n: factor of 13 |
k = = 1 mod 401 (401) | 32 (600K) | 26 (5981) 61 (2310) 76 (1243) 36 (1069) 22 (542) 44 (339) 77 (286) 37 (234) 75 (93) 60 (78) |
k = 25 and 64 proven composite by partial algebraic factors. |
403 | 24744 | 5, 101, 109 | All k where k = m^2 and m = = 10 or 91 mod 101: for even n let k = m^2 and let n = 2*q; factors to: (m*403^q - 1) * (m*403^q + 1) odd n: factor of 101 |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 67 (67) |
60 k's remaining at n=100K. See k's at Riesel Base 403 remain. |
15954 (97315) 21212 (89160) 1836 (86213) 12006 (81973) 9482 (76336) 10824 (75572) 5526 (73462) 19968 (68388) 7550 (67957) 13248 (66156) |
No k's proven composite by algebraic factors. |
404 | 4 | 3, 5 | k = = 1 mod 13 (13) k = = 1 mod 31 (31) |
none - proven | 3 (12) 2 (4) |
||
405 | 146 | 7, 29 | All k where k = m^2 and m = = 12 or 17 mod 29: for even n let k = m^2 and let n = 2*q; factors to: (m*405^q - 1) * (m*405^q + 1) odd n: factor of 29 |
k = = 1 mod 2 (2) k = = 1 mod 101 (101) |
none - proven | 62 (1314) 140 (680) 44 (209) 48 (140) 104 (48) 142 (40) 120 (37) 114 (31) 8 (29) 132 (20) |
k = 144 proven composite by partial algebraic factors. |
406 | 593 | 11, 37 | k = = 1 mod 3 (3) k = = 1 mod 5 (5) |
260 (500K) 297 (500K) |
197 (23220) 417 (6574) 485 (3771) 287 (3259) 419 (3109) 527 (1706) 428 (1358) 144 (1253) 120 (582) 438 (494) |
||
407 | 16 | 3, 17 | k = = 1 mod 2 (2) k = = 1 mod 7 (7) k = = 1 mod 29 (29) |
none - proven | 14 (452) 10 (345) 2 (10) 12 (5) 6 (1) 4 (1) |
||
408 | 5316 | 5, 13, 409 | k = = 1 mod 11 (11) k = = 1 mod 37 (37) |
40 k's remaining at n=100K. See k's at Riesel Base 408 remain. |
142 (97284) 3784 (89487) 2822 (60110) 2010 (57298) 3132 (55783) 1854 (50388) 1369 (44511) 2797 (43704) 4446 (40190) 3683 (37925) |
||
409 | 534 | 5, 41 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*409^q - 1) * (m*409^q + 1) odd n: factor of 5 |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 17 (17) |
284 (500K) 344 (500K) |
230 (20579) 116 (11237) 288 (5771) 264 (1624) 122 (1376) 326 (1097) 96 (773) 128 (575) 242 (220) 254 (194) |
k = 144 proven composite by partial algebraic factors. |
410 | 136 | 3, 137 | k = = 1 mod 409 (409) | 47 (300K) 58 (300K) 64 (300K) |
95 (110710) 111 (41397) 39 (27445) 98 (26998) 67 (25659) 100 (8877) 16 (7095) 65 (5868) 106 (1951) 132 (1785) |
||
411 | 60254 | 13, 89, 103 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 41 (41) |
122 k's remaining at n=100K. See k's at Riesel Base 411 remain. |
59842 (98748) 16652 (98471) 16778 (95497) 33078 (93803) 23444 (91822) 25254 (83954) 27912 (83570) 29814 (80643) 34028 (78059) 38482 (76578) |
||
412 | 69 | 5, 7, 17 | k = = 1 mod 3 (3) k = = 1 mod 137 (137) |
6 (600K) | 8 (29791) 9 (12153) 57 (1933) 38 (776) 14 (97) 60 (77) 33 (76) 68 (59) 41 (30) 3 (20) |
||
413 | 22 | 3, 23 | k = = 1 mod 2 (2) k = = 1 mod 103 (103) |
none - proven | 4 (23) 14 (20) 2 (6) 20 (4) 8 (4) 12 (2) 18 (1) 16 (1) 10 (1) 6 (1) |
||
414 | 84 | 5, 83 | (Condition 1): All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*414^q - 1) * (m*414^q + 1) odd n: factor of 5 (Condition 2): All k where k = 46*m^2 and m = = 1 or 4 mod 5: even n: factor of 5 for odd n let k = 46*m^2 and let n=2*q-1; factors to: [m*3^n*46^q - 1] * [m*3^n*46^q + 1] |
k = = 1 mod 7 (7) k = = 1 mod 59 (59) |
none - proven | 82 (21952) 74 (5106) 25 (379) 75 (89) 66 (61) 69 (54) 16 (45) 59 (30) 40 (20) 51 (17) |
k = 4, 9, and 49 proven composite by condition 1. k = 46 proven composite by condition 2. |
416 | 140 | 3, 139 | k = = 1 mod 5 (5) k = = 1 mod 83 (83) |
55 (600K) | 53 (6640) 113 (2420) 8 (2224) 58 (1669) 133 (911) 125 (850) 62 (294) 74 (246) 139 (127) 38 (104) |
||
417 | 56 | 11, 19 | k = = 1 mod 2 (2) k = = 1 mod 13 (13) |
none - proven | 18 (45418) 16 (281) 54 (116) 48 (74) 32 (52) 44 (47) 36 (37) 6 (23) 8 (14) 42 (13) |
||
418 | 11733 | 5, 29, 419 | k = = 1 mod 3 (3) k = = 1 mod 139 (139) |
56 k's remaining at n=100K. See k's at Riesel Base 418 remain. |
6561 (89543) 9510 (81890) 11702 (65520) 521 (65021) 929 (62613) 7628 (62581) 2637 (61183) 11501 (56039) 1319 (53016) 4829 (43787) |
||
419 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 1 mod 11 (11) k = = 1 mod 19 (19) |
none - proven | 2 (2) | ||
420 | 6548233 | 13, 151, 421, 1171 | (Condition 1): All k where k = m^2 and m = = 29 or 392 mod 421: for even n let k = m^2 and let n = 2*q; factors to: (m*420^q - 1) * (m*420^q + 1) odd n: factor of 421 (Condition 2): All k where k = 105*m^2 and m = = 58 or 363 mod 421: even n: factor of 421 for odd n let k = 105*m^2 and let n=2*q-1; factors to: [m*2^n*105^q - 1] * [m*2^n*105^q + 1] |
k = = 1 mod 419 (419) | 63188 k's remaining at n=2.5K. To be shown later. | 6229527 (2500) 6128655 (2500) 5441862 (2500) 5288508 (2500) 4310144 (2500) 4112225 (2500) 2509738 (2500) 2263804 (2500) 1986937 (2500) 1927646 (2500) |
k = 841, 153664, 202500, 660969, 758641, 1522756, 1669264, 2739025,
2934369, 4309776, 4553956, 6235009, and 6528025 proven composite by
condition 1. k = 353220 proven composite by condition 2. |
421 | 73640 | 13, 17, 211 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 5 (5) k = = 1 mod 7 (7) |
50 k's remaining at n=100K. See k's at Riesel Base 421 remain. |
5864 (99477) 62054 (98670) 34848 (89339) 21312 (83093) 30408 (82078) 17334 (77784) 8958 (72815) 72788 (71038) 71952 (70703) 7790 (66082) |
||
422 | 46 | 3, 47 | k = = 1 mod 421 (421) | 11 (300K) 13 (300K) 14 (300K) 29 (300K) 37 (300K) |
41 (22802) 4 (21737) 23 (5568) 8 (2944) 26 (642) 2 (540) 16 (247) 3 (190) 42 (48) 45 (43) |
||
423 | 1536 | 5, 29, 53 | All k where k = m^2 and m = = 23 or 30 mod 53: for even n let k = m^2 and let n = 2*q; factors to: (m*423^q - 1) * (m*423^q + 1) odd n: factor of 53 |
k = = 1 mod 2 (2) k = = 1 mod 211 (211) |
264 (300K) 372 (300K) 478 (300K) 552 (300K) 998 (300K) 1074 (300K) 1324 (300K) |
302 (295123) 824 (236540) 1112 (173962) 1114 (115395) 1052 (58212) 1106 (50490) 370 (38928) 1522 (27770) 1490 (27060) 474 (25859) |
k = 900 proven composite by partial algebraic factors. |
424 | 69 | 5, 17 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*424^q - 1) * (m*424^q + 1) odd n: factor of 5 |
k = = 1 mod 3 (3) k = = 1 mod 47 (47) |
18 (300K) 21 (300K) 44 (300K) |
59 (38) 26 (31) 50 (16) 54 (12) 51 (11) 24 (10) 5 (10) 53 (9) 30 (8) 35 (7) |
k = 9 proven composite by partial algebraic factors. |
425 | 70 | 3, 71 | k = = 1 mod 2 (2) k = = 1 mod 53 (53) |
none - proven | 64 (467857) 50 (5842) 46 (3819) 40 (2047) 10 (917) 16 (255) 14 (202) 38 (100) 52 (87) 56 (24) |
||
426 | 62 | 7, 61 | k = = 1 mod 5 (5) k = = 1 mod 17 (17) |
none - proven | 55 (162) 7 (60) 29 (49) 12 (29) 40 (19) 53 (15) 45 (13) 25 (13) 60 (8) 34 (6) |
||
427 | 2080614 | 5, 17, 107, 3889 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 71 (71) |
16442 k's remaining at n=2.5K. To be shown later. | 1929920 (2500) 296772 (2500) 174282 (2500) 99374 (2500) 1430588 (2499) 162258 (2499) 1933382 (2498) 1905956 (2498) 1771808 (2498) 1150196 (2498) |
||
428 | 10 | 3, 11 | k = = 1 mod 7 (7) k = = 1 mod 61 (61) |
none - proven | 4 (55) 2 (4) 7 (3) 6 (2) 5 (2) 9 (1) 3 (1) |
||
429 | 44 | 5, 43 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*429^q - 1) * (m*429^q + 1) odd n: factor of 5 |
k = = 1 mod 2 (2) k = = 1 mod 107 (107) |
none - proven | 26 (14823) 8 (452) 34 (24) 24 (12) 6 (9) 20 (7) 30 (4) 32 (3) 42 (2) 18 (2) |
k = 4 proven composite by partial algebraic factors. |
430 | 45152 | 7, 19, 163, 379 | k = = 1 mod 3 (3) k = = 1 mod 11 (11) k = = 1 mod 13 (13) |
432 (500K) 1688 (500K) 9954 (500K) 10433 (500K) 10614 (500K) 14465 (500K) 22412 (500K) 26244 (500K) 30971 (500K) 38246 (500K) 40319 (500K) 44394 (500K) 44510 (500K) |
39653 (460397) 33300 (417849) 14844 (350980) 34910 (221380) 1383 (188603) 33570 (166163) 31235 (162872) 24153 (160500) 34301 (145309) 13254 (117326) |
||
431 | 15380 | 3, 7, 67, 163 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 43 (43) |
228 k's remaining at n=100K. See k's at Riesel Base 431 remain. |
13588 (99779) 950 (99260) 1024 (97241) 13878 (96732) 6178 (90609) 7088 (88242) 11060 (87982) 5252 (86678) 15284 (86650) 9250 (80813) |
||
432 | 192596 | 5, 7, 13, 67, 1493 | (Condition 1): All k where k = m^2 and m = = 179 or 254 mod 433: for even n let k = m^2 and let n = 2*q; factors to: (m*432^q - 1) * (m*432^q + 1) odd n: factor of 433 (Condition 2): All k where k = 3*m^2 and m = = 17 or 416 mod 433: even n: factor of 433 for odd n let k = 3*m^2 and let n=2*q-1; factors to: [m*12^n*3^q - 1] * [m*12^n*3^q + 1] |
k = = 1 mod 431 (431) | 8757 k's remaining at n=2.5K. To be shown later. | 3 (16002) 88488 (2500) 18627 (2500) 4164 (2500) 99419 (2499) 86927 (2498) 156877 (2497) 7547 (2497) 98818 (2496) 79953 (2496) |
k = 32041 and 64516 proven composite by condition 1. k = 867 proven composite by condition 2. |
433 | 92 | 7, 31 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) |
none - proven | 6 (283918) 14 (6197) 36 (635) 42 (156) 86 (81) 84 (24) 80 (20) 90 (18) 74 (13) 62 (12) |
||
434 | 4 | 3, 5 | k = = 1 mod 433 (433) | none - proven | 2 (1166) 3 (1) |
||
436 | 645 | 19, 23 | k = = 1 mod 3 (3) k = = 1 mod 5 (5) k = = 1 mod 29 (29) |
162 (500K) 344 (500K) |
512 (84560) 413 (36050) 75 (33186) 459 (32192) 173 (12829) 345 (10195) 392 (9237) 39 (4659) 113 (3790) 485 (2083) |
||
437 | 14 | 3, 5, 13 | k = = 1 mod 2 (2) k = = 1 mod 109 (109) |
none - proven | 12 (5) 8 (4) 10 (3) 2 (2) 6 (1) 4 (1) |
||
438 | 2194 | 5, 17, 439 | k = = 1 mod 19 (19) k = = 1 mod 23 (23) |
28 k's remaining at n=100K. See k's at Riesel Base 438 remain. |
1458 (95702) 2029 (88660) 211 (73142) 2012 (54439) 1647 (44328) 543 (42061) 159 (36140) 823 (35172) 1600 (30469) 1674 (30323) |
||
439 | 144 | 5, 11 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 73 (73) |
44 (500K) 120 (500K) |
96 (205245) 122 (32573) 12 (18751) 66 (9827) 32 (1598) 104 (522) 26 (361) 62 (266) 14 (86) 84 (26) |
||
440 | 8 | 3, 7 | k = = 1 mod 439 (439) | none - proven | 6 (2) 5 (2) 2 (2) 7 (1) 4 (1) 3 (1) |
||
441 | 118 | 13, 17 | All k = m^2 for all n; factors to: (m*21^n - 1) * (m*21^n + 1) |
k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 11 (11) |
none - proven | 92 (2369) 40 (113) 52 (63) 84 (44) 90 (30) 88 (9) 68 (9) 110 (4) 50 (4) 22 (4) |
k = 4 and 64 proven composite by full algebraic factors. |
442 | 54047 | 5, 41, 443 | k = = 1 mod 3 (3) k = = 1 mod 7 (7) |
71 k's remaining at n=100K. See k's at Riesel Base 442 remain. |
13706 (94765) 15068 (90122) 42737 (86138) 3944 (85976) 12044 (83104) 40619 (81656) 49508 (79678) 18129 (79635) 9062 (78006) 50484 (73160) |
||
443 | 28 | 3, 7 | k = = 1 mod 2 (2) k = = 1 mod 13 (13) k = = 1 mod 17 (17) |
none - proven | 8 (416) 16 (165) 2 (12) 22 (7) 20 (6) 12 (3) 10 (3) 4 (3) 26 (2) 24 (1) |
||
444 | 179 | 5, 89 | (Condition 1): All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*444^q - 1) * (m*444^q + 1) odd n: factor of 5 (Condition 2): All k where k = 111*m^2 and m = = 1 or 4 mod 5: even n: factor of 5 for odd n let k = 111*m^2 and let n=2*q-1; factors to: [m*2^n*111^q - 1] * [m*2^n*111^q + 1] |
k = = 1 mod 443 (443) | 11 (300K) 26 (300K) 74 (300K) 96 (300K) 114 (300K) |
123 (51913) 36 (44313) 56 (15219) 128 (7715) 100 (2407) 39 (1588) 60 (787) 41 (739) 43 (728) 174 (660) |
k = 4, 9, 49, 64, 144, and 169 proven composite by condition 1. k = 111 proven composite by condition 2. |
445 | 43338 | 7, 13, 727 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 37 (37) |
91 k's remaining at n=100K. See k's at Riesel Base 445 remain. |
31890 (95227) 34136 (92574) 33170 (91596) 22226 (91370) 31628 (90875) 39026 (81547) 22080 (79452) 15332 (78822) 27062 (70361) 15590 (62266) |
||
446 | 74 | 3, 7, 13, 73 | k = = 1 mod 5 (5) k = = 1 mod 89 (89) |
13 (300K) 55 (300K) 64 (300K) |
35 (157542) 10 (152027) 34 (50995) 3 (4850) 44 (988) 43 (409) 59 (330) 20 (330) 23 (276) 65 (210) |
||
447 | 148 | 5, 7, 13 | k = = 1 mod 2 (2) k = = 1 mod 223 (223) |
78 (500K) 118 (500K) |
146 (187198) 46 (1814) 76 (182) 104 (120) 112 (86) 74 (79) 92 (77) 18 (60) 8 (43) 48 (40) |
||
448 | 131556 | 5, 293, 449 | (Condition 1): All k where k = m^2 and m = = 67 or 382 mod 449: for even n let k = m^2 and let n = 2*q; factors to: (m*448^q - 1) * (m*448^q + 1) odd n: factor of 449 (Condition 2): All k where k = 7*m^2 and m = = 87 or 362 mod 449: even n: factor of 449 for odd n let k = 7*m^2 and let n=2*q-1; factors to: [m*8^n*7^q - 1] * [m*8^n*7^q + 1] |
k = = 1 mod 3 (3) k = = 1 mod 149 (149) |
786 k's remaining at n=25K. See k's at Riesel Base 448 remain. |
50349 (24884) 87563 (24882) 34127 (24855) 64562 (24795) 124368 (24710) 25983 (24701) 48372 (24700) 81222 (24615) 37301 (24606) 128706 (24549) |
No k's proven composite by condition 1. k = 52983 proven composite by condition 2. |
449 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 1 mod 7 (7) |
none - proven | 2 (174) | ||
450 | 122 | 11, 41 | All k where k = m^2 and m = = 9 or 32 mod 41: for even n let k = m^2 and let n = 2*q; factors to: (m*450^q - 1) * (m*450^q + 1) odd n: factor of 41 |
k = = 1 mod 449 (449) | none - proven | 57 (36788) 25 (2205) 23 (1929) 21 (920) 109 (386) 112 (353) 16 (295) 65 (258) 60 (221) 43 (208) |
k = 81 proven composite by partial algebraic factors. |
451 | 89610 | 7, 13, 79, 113 | All k where k = m^2 and m = = 15 or 98 mod 113: for even n let k = m^2 and let n = 2*q; factors to: (m*451^q - 1) * (m*451^q + 1) odd n: factor of 113 |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 5 (5) |
63 k's remaining at n=100K. See k's at Riesel Base 451 remain. |
76688 (95426) 20348 (92318) 81440 (90845) 10604 (86683) 33710 (74990) 58698 (72399) 27582 (67383) 53498 (65927) 86348 (63406) 34688 (62474) |
No k's proven composite by algebraic factors. |
452 | 59 | 3, 5, 29 | k = = 1 mod 11 (11) k = = 1 mod 41 (41) |
11 (300K) 43 (300K) 52 (300K) |
46 (153285) 47 (7406) 32 (534) 29 (412) 3 (334) 8 (266) 28 (91) 22 (85) 16 (75) 37 (41) |
||
453 | 4658266 | 5, 227, 20521 | k = = 1 mod 2 (2) k = = 1 mod 113 (113) |
96179 k's remaining at n=2.5K. To be shown later. | 4524442 (2500) 4455792 (2500) 4418728 (2500) 4384274 (2500) 3950578 (2500) 3135162 (2500) 3095682 (2500) 3036792 (2500) 2737248 (2500) 2686804 (2500) |
||
454 | 6 | 5, 7 | k = = 1 mod 3 (3) k = = 1 mod 151 (151) |
none - proven | 5 (1) 3 (1) 2 (1) |
||
455 | 20 | 3, 19 | k = = 1 mod 2 (2) k = = 1 mod 227 (227) |
none - proven | 18 (198) 14 (20) 12 (8) 16 (5) 4 (3) 8 (2) 2 (2) 10 (1) 6 (1) |
||
457 | 747684 | 5, 229, 4177 | All k where k = m^2 and m = = 107 or 122 mod 229: for even n let k = m^2 and let n = 2*q; factors to: (m*457^q - 1) * (m*457^q + 1) odd n: factor of 229 |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 19 (19) |
5773 k's remaining at n=10K. See k's at Riesel Base 457 remain. |
639984 (9999) 449234 (9999) 652394 (9988) 125432 (9984) 252722 (9980) 723228 (9975) 68136 (9974) 562038 (9971) 729414 (9968) 247322 (9968) |
k = 112896 proven composite by partial algebraic factors. |
458 | 16 | 3, 17 | k = = 1 mod 457 (457) | 11 (700K) | 10 (126261) 7 (9823) 9 (83) 12 (15) 6 (11) 5 (6) 14 (4) 8 (2) 2 (2) 15 (1) |
||
459 | 24 | 5, 23 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*459^q - 1) * (m*459^q + 1) odd n: factor of 5 |
k = = 1 mod 2 (2) k = = 1 mod 229 (229) |
none - proven | 14 (136) 22 (16) 20 (6) 16 (5) 18 (4) 10 (2) 2 (2) 12 (1) 8 (1) 6 (1) |
k = 4 proven composite by partial algebraic factors. |
460 | 56243 | 13, 41, 461 | All k where k = m^2 and m = = 48 or 413 mod 461: for even n let k = m^2 and let n = 2*q; factors to: (m*460^q - 1) * (m*460^q + 1) odd n: factor of 461 |
k = = 1 mod 3 (3) k = = 1 mod 17 (17) |
101 k's remaining at n=100K. See k's at Riesel Base 460 remain. |
28671 (97345) 21365 (89615) 47705 (89060) 125 (86680) 46661 (85446) 30116 (85332) 15800 (84494) 24948 (83174) 39287 (83169) 14067 (83097) |
k = 2304 proven composite by partial algebraic factors. |
461 | 8 | 3, 7 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 23 (23) |
none - proven | 4 (3071) 2 (6) |
||
462 | 2924772 | 5, 13, 73, 463, 571 | k = = 1 mod 461 (461) | 50851 k's remaining at n=2.5K. To be shown later. | 2720794 (2500) 2583247 (2500) 2551403 (2500) 2530092 (2500) 2256624 (2500) 2254087 (2500) 2234893 (2500) 2203589 (2500) 1898964 (2500) 1837558 (2500) |
||
463 | 668 | 5, 13, 29 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 7 (7) k = = 1 mod 11 (11) |
216 (500K) 356 (500K) |
642 (6066) 170 (1114) 242 (474) 278 (464) 402 (431) 192 (328) 438 (302) 432 (250) 404 (227) 248 (182) |
||
464 | 4 | 3, 5 | k = = 1 mod 463 (463) | none - proven | 3 (218) 2 (18) |
||
465 | 706690 | 7, 13, 233, 337 | All k where k = m^2 and m = = 89 or 144 mod 233: for even n let k = m^2 and let n = 2*q; factors to: (m*465^q - 1) * (m*465^q + 1) odd n: factor of 233 |
k = = 1 mod 2 (2) k = = 1 mod 29 (29) |
2896 k's remaining at n=10K. See k's at Riesel Base 465 remain. |
319908 (9974) 322208 (9965) 213824 (9961) 563428 (9947) 428936 (9940) 297036 (9936) 298818 (9923) 622136 (9921) 6434 (9919) 233158 (9888) |
k = 103684 and 620944 proven composite by partial algebraic factors. |
466 | 21450 | 7, 43, 241 | k = = 1 mod 3 (3) k = = 1 mod 5 (5) k = = 1 mod 31 (31) |
54 k's remaining at n=100K. See k's at Riesel Base 466 remain. |
14220 (94517) 21438 (79909) 17835 (78877) 16175 (76897) 10364 (76642) 17669 (70400) 14585 (66967) 15425 (63394) 12608 (62926) 5384 (58375) |
||
467 | 14 | 3, 13 | k = = 1 mod 2 (2) k = = 1 mod 233 (233) |
none - proven | 2 (36) 8 (20) 10 (15) 12 (2) 6 (1) 4 (1) |
||
468 | 202 | 7, 67 | k = = 1 mod 467 (467) | 56 (300K) 69 (300K) 104 (300K) 162 (300K) |
141 (89405) 20 (6790) 146 (4814) 102 (2812) 134 (1777) 200 (1210) 169 (559) 92 (487) 174 (440) 97 (340) |
||
469 | 516 | 5, 47 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*469^q - 1) * (m*469^q + 1) odd n: factor of 5 |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 13 (13) |
422 (600K) | 336 (113211) 474 (76836) 236 (1323) 174 (1168) 96 (967) 288 (362) 194 (314) 122 (258) 6 (255) 314 (136) |
k = 324 proven composite by partial algebraic factors. |
470 | 158 | 3, 157 | k = = 1 mod 7 (7) k = = 1 mod 67 (67) |
137 (600K) | 83 (61902) 88 (3215) 149 (2942) 41 (2694) 5 (630) 157 (559) 91 (301) 147 (285) 25 (251) 76 (231) |
||
471 | 750 | 7, 13, 31, 37 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 47 (47) |
302 (500K) 408 (500K) |
144 (218627) 464 (22140) 508 (10310) 648 (1590) 190 (1414) 568 (1229) 200 (996) 400 (785) 412 (744) 32 (561) |
||
472 | 87 | 11, 43 | k = = 1 mod 3 (3) k = = 1 mod 157 (157) |
none - proven | 69 (5695) 12 (1529) 78 (1467) 23 (1203) 9 (327) 72 (164) 48 (151) 21 (98) 53 (63) 63 (48) |
||
473 | 14 | 3, 5, 13 | k = = 1 mod 2 (2) k = = 1 mod 59 (59) |
none - proven | 2 (660) 8 (200) 12 (48) 4 (13) 10 (1) 6 (1) |
||
474 | 39 | 5, 19 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*474^q - 1) * (m*474^q + 1) odd n: factor of 5 |
k = = 1 mod 11 (11) k = = 1 mod 43 (43) |
none - proven | 21 (769) 29 (350) 36 (101) 25 (95) 10 (44) 17 (16) 27 (8) 35 (7) 30 (7) 11 (7) |
k = 4 and 9 proven composite by partial algebraic factors. |
475 | 50 | 7, 17 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 79 (79) |
none - proven | 18 (65) 6 (42) 8 (19) 14 (3) 48 (2) 26 (2) 20 (2) 12 (2) 2 (2) 44 (1) |
||
476 | 52 | 3, 53 | k = = 1 mod 5 (5) k = = 1 mod 19 (19) |
none - proven | 49 (72833) 43 (713) 27 (110) 38 (60) 40 (27) 2 (26) 5 (10) 37 (9) 4 (9) 30 (6) |
||
477 | 14102 | 5, 61, 239 | k = = 1 mod 2 (2) k = = 1 mod 7 (7) k = = 1 mod 17 (17) |
740 (100K) 1036 (100K) 1578 (100K) 1678 (100K) 2624 (100K) 3552 (100K) 3642 (100K) 4148 (100K) 4338 (100K) 4954 (100K) 5294 (100K) 6282 (100K) 6898 (100K) 7528 (100K) 7886 (100K) 9746 (100K) 10234 (100K) 10682 (100K) 11114 (100K) 12124 (100K) 12262 (100K) 12668 (100K) 13326 (100K) 13666 (100K) 13828 (100K) |
7248 (99452) 7198 (82440) 9694 (75892) 5502 (70937) 2114 (70833) 6236 (68802) 3948 (68190) 11834 (60299) 5534 (55864) 490 (55305) |
||
478 | 370268 | 5, 17, 41, 479 | k = = 1 mod 3 (3) k = = 1 mod 53 (53) |
12041 k's remaining at n=2.5K. To be shown later. | 12 (2902) 152634 (2499) 128919 (2497) 108957 (2496) 41778 (2496) 21912 (2496) 19442 (2496) 319635 (2495) 152057 (2495) 64817 (2495) |
||
479 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 1 mod 239 (239) |
none - proven | 2 (6) | ||
480 | 38 | 13, 37 | (Condition 1): All k where k = m^2 and m = = 5 or 8 mod 13: for even n let k = m^2 and let n = 2*q; factors to: (m*480^q - 1) * (m*480^q + 1) odd n: factor of 13 (Condition 2): All k where k = m^2 and m = = 6 or 31 mod 37: for even n let k = m^2 and let n = 2*q; factors to: (m*480^q - 1) * (m*480^q + 1) odd n: factor of 37 |
k = = 1 mod 479 (479) | none - proven | 4 (93609) 30 (12864) 2 (144) 20 (101) 35 (13) 9 (11) 18 (7) 8 (7) 33 (5) 29 (5) |
k = 25 proven composite by condition 1. k = 36 proven composite by condition 2. |
482 | 8 | 3, 7 | k = = 1 mod 13 (13) k = = 1 mod 37 (37) |
none - proven | 4 (135) 6 (6) 3 (3) 5 (2) 2 (2) 7 (1) |
||
483 | 2584 | 5, 11, 41 | k = = 1 mod 2 (2) k = = 1 mod 241 (241) |
252 (300K) 298 (300K) 474 (300K) 494 (300K) 1286 (300K) 1442 (300K) 1616 (300K) 1852 (300K) 1948 (300K) 2056 (300K) 2102 (300K) 2168 (300K) 2434 (300K) |
1662 (292719) 2166 (274670) 1398 (183653) 2074 (104445) 1528 (43858) 2562 (21014) 1812 (16939) 782 (15523) 274 (15316) 1550 (12702) |
||
484 | 96 | 5, 97 | All k = m^2 for all n; factors to: (m*22^n - 1) * (m*22^n + 1) |
k = = 1 mod 3 (3) k = = 1 mod 7 (7) k = = 1 mod 23 (23) |
none - proven | 53 (656) 74 (206) 60 (190) 84 (56) 38 (39) 89 (32) 59 (18) 65 (11) 14 (10) 66 (7) |
k = 9 and 81 proven composite by full algebraic factors. |
485 | 6952 | 3, 7, 13, 223 | k = = 1 mod 2 (2) k = = 1 mod 11 (11) |
91 k's remaining at n=100K. See k's at Riesel Base 485 remain. |
202 (99889) 6464 (96452) 88 (96195) 1830 (89178) 5108 (88830) 2132 (88716) 800 (83916) 134 (83218) 3986 (79612) 1864 (78181) |
||
486 | 1525283 | 7, 19, 151, 487 | k = = 1 mod 5 (5) k = = 1 mod 97 (97) |
27683 k's remaining at n=2.5K. To be shown later. | 12 (3341) 1077398 (2500) 787860 (2500) 731704 (2500) 313997 (2500) 200679 (2500) 1429288 (2499) 1410550 (2499) 1369142 (2499) 1062639 (2499) |
||
487 | 2256 | 5, 37, 61 | All k where k = m^2 and m = = 11 or 50 mod 61: for even n let k = m^2 and let n = 2*q; factors to: (m*487^q - 1) * (m*487^q + 1) odd n: factor of 61 |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) |
758 (300K) 914 (300K) 1110 (300K) 1128 (300K) 1646 (300K) 1688 (300K) 1728 (300K) 1968 (300K) 2234 (300K) |
900 (146907) 1908 (112659) 1046 (98506) 72 (87924) 1892 (33189) 1710 (32973) 1148 (29427) 396 (25167) 236 (23534) 2130 (22194) |
No k's proven composite by algebraic factors. |
488 | 164 | 3, 163 | k = = 1 mod 487 (487) | 28 (300K) 29 (300K) 31 (300K) 58 (300K) 74 (300K) 97 (300K) 116 (300K) 137 (300K) |
133 (279973) 86 (197778) 118 (193957) 87 (193624) 95 (84834) 37 (60063) 7 (33163) 22 (22047) 136 (12213) 11 (10230) |
||
489 | 6 | 5, 7 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*489^q - 1) * (m*489^q + 1) odd n: factor of 5 |
k = = 1 mod 2 (2) k = = 1 mod 61 (61) |
none - proven | 2 (1) | k = 4 proven composite by partial algebraic factors. |
490 | 48051 | 13, 31, 199 | k = = 1 mod 3 (3) k = = 1 mod 163 (163) |
87 k's remaining at n=100K. See k's at Riesel Base 490 remain. |
15722 (97577) 45737 (95777) 12743 (92886) 13796 (90077) 16659 (86798) 18798 (84166) 26022 (83302) 37059 (83199) 30467 (82377) 39747 (76389) |
||
491 | 40 | 3, 41 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 7 (7) |
none - proven | 4 (1683) 14 (658) 20 (174) 30 (104) 2 (26) 28 (5) 38 (4) 32 (4) 12 (2) 34 (1) |
||
492 | 86 | 17, 29 | All k where k = m^2 and m = = 4 or 13 mod 17: for even n let k = m^2 and let n = 2*q; factors to: (m*492^q - 1) * (m*492^q + 1) odd n: factor of 17 |
k = = 1 mod 491 (491) | none - proven | 81 (399095) 23 (48063) 57 (394) 37 (369) 63 (214) 50 (190) 43 (50) 33 (36) 65 (24) 28 (20) |
k = 16 proven composite by partial algebraic factors. |
493 | 170 | 13, 19 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 41 (41) |
92 (600K) | 74 (373) 38 (48) 114 (39) 96 (39) 116 (34) 146 (26) 152 (22) 104 (13) 102 (11) 14 (11) |
||
494 | 4 | 3, 5 | k = = 1 mod 17 (17) k = = 1 mod 29 (29) |
none - proven | 2 (6) 3 (1) |
||
495 | 117150 | 7, 31, 37, 101, 193 | k = = 1 mod 2 (2) k = = 1 mod 13 (13) k = = 1 mod 19 (19) |
112 k's remaining at n=100K. See k's at Riesel Base 495 remain. |
102878 (98410) 47338 (97189) 35248 (96993) 85096 (96307) 64262 (92752) 64140 (90007) 71808 (88723) 45414 (86196) 2386 (82554) 113366 (78590) |
||
496 | 638 | 7, 71 | k = = 1 mod 3 (3) k = = 1 mod 5 (5) k = = 1 mod 11 (11) |
57 (600K) | 354 (52620) 533 (51483) 633 (13827) 425 (744) 405 (606) 615 (506) 153 (274) 72 (237) 15 (171) 608 (166) |
||
497 | 82 | 3, 83 | k = = 1 mod 2 (2) k = = 1 mod 31 (31) |
14 (500K) 56 (500K) |
64 (215875) 62 (145374) 28 (61627) 38 (4930) 52 (881) 26 (766) 22 (497) 20 (402) 68 (148) 34 (105) |
||
498 | 96306 | 5, 193, 499 | k = 93025: for even n let n=2*q; factors to: (305*498^q - 1) * (305*498^q + 1) odd n: covering set 13, 67, 241 |
k = = 1 mod 7 (7) k = = 1 mod 71 (71) |
835 k's remaining at n=25K. See k's at Riesel Base 498 remain. |
29861 (24970) 21037 (24966) 48970 (24644) 1236 (24530) 66069 (24528) 74864 (24456) 82294 (24417) 59359 (24392) 75131 (24358) 71124 (24296) |
|
499 | 2354 | 5, 13, 157 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*499^q - 1) * (m*499^q + 1) odd n: factor of 5 |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 83 (83) |
36 (300K) 356 (300K) 372 (300K) 476 (300K) 674 (300K) 714 (300K) 774 (300K) 1026 (300K) 1194 (300K) 1236 (300K) 1256 (300K) 1554 (300K) 1866 (300K) 1884 (300K) 1934 (300K) 2046 (300K) 2118 (300K) |
218 (159964) 1364 (149080) 842 (118587) 2220 (97105) 1296 (93839) 1754 (81660) 1446 (65259) 1646 (58811) 1698 (45090) 486 (43957) |
k = 144, 324, 1764, and 2304 proven composite by partial algebraic factors. |
500 | 166 | 3, 167 | k = = 1 mod 499 (499) | 38 (300K) 53 (300K) 82 (300K) |
74 (218184) 107 (30954) 124 (11795) 143 (11244) 128 (10200) 61 (7535) 22 (6137) 122 (2858) 134 (2746) 58 (1959) |
||
501 | 862 | 7, 19, 31 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) |
30 (500K) 142 (500K) 324 (500K) 330 (500K) |
242 (279492) 552 (73886) 814 (36926) 752 (16358) 614 (6512) 400 (3031) 842 (2946) 844 (2884) 382 (2316) 524 (2300) |
||
502 | 7136 | 5, 7, 13, 31, 61 | k = = 1 mod 3 (3) k = = 1 mod 167 (167) |
70 k's remaining at n=100K. See k's at Riesel Base 502 remain. |
1968 (94066) 4149 (92685) 1256 (87830) 1376 (59978) 5247 (59605) 6014 (54748) 4572 (54710) 6338 (52146) 1653 (48428) 2300 (44713) |
||
503 | 8 | 3, 7 | k = = 1 mod 2 (2) k = = 1 mod 251 (251) |
none - proven | 2 (860) 6 (22) 4 (1) |
||
504 | 201 | 5, 101 | (Condition 1): All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*504^q - 1) * (m*504^q + 1) odd n: factor of 5 (Condition 2): All k where k = m^2 and m = = 10 or 91 mod 101: for even n let k = m^2 and let n = 2*q; factors to: (m*504^q - 1) * (m*504^q + 1) odd n: factor of 101 (Condition 3): All k where k = 14*m^2 and m = = 2 or 3 mod 5: even n: factor of 5 for odd n let k = 14*m^2 and let n=2*q-1; factors to: [m*6^n*14^q - 1] * [m*6^n*14^q + 1] |
k = = 1 mod 503 (503) | 94 (600K) | 116 (36571) 135 (11925) 157 (11720) 129 (8020) 86 (6427) 193 (5317) 69 (3420) 119 (1718) 131 (1343) 179 (1328) |
k = 4, 9, 49, 64, 144, and 169 proven composite by condition 1. k = 100 proven composite by condition 2. k = 56 and 126 proven composite by condition 3. |
505 | 714 | 11, 23 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 7 (7) |
68 (600K) | 318 (66148) 390 (1540) 296 (900) 452 (219) 656 (203) 32 (176) 410 (156) 552 (119) 90 (116) 324 (91) |
||
506 | 14 | 3, 13 | k = = 1 mod 5 (5) k = = 1 mod 101 (101) |
none - proven | 8 (146) 2 (16) 4 (11) 9 (3) 12 (2) 5 (2) 3 (2) 13 (1) 10 (1) 7 (1) |
||
507 | 11812 | 5, 97, 127 | k = = 1 mod 2 (2) k = = 1 mod 11 (11) k = = 1 mod 23 (23) |
618 (100K) 3936 (100K) 4096 (100K) 4244 (100K) 4740 (100K) 4996 (100K) 5462 (100K) 6402 (100K) 6476 (100K) 6908 (100K) 6962 (100K) 6984 (100K) 7262 (100K) 7270 (100K) 7746 (100K) 7796 (100K) 7944 (100K) 8510 (100K) 9064 (100K) 9334 (100K) 9528 (100K) 10546 (100K) 10648 (100K) 10736 (100K) 11138 (100K) |
4124 (98983) 9276 (95530) 4634 (80663) 2808 (71920) 5884 (64759) 7904 (51308) 10386 (50385) 5276 (46031) 2918 (45439) 10016 (44737) |
||
508 | 1225673 | 5, 7, 37, 73, 509 | All k where k = m^2 and m = = 208 or 301 mod 509: for even n let k = m^2 and let n = 2*q; factors to: (m*508^q - 1) * (m*508^q + 1) odd n: factor of 509 |
k = = 1 mod 3 (3) k = = 1 mod 13 (13) |
31004 k's remaining at n=2.5K. To be shown later. | 893054 (2500) 752879 (2500) 612018 (2500) 554072 (2500) 459689 (2500) 282762 (2500) 1034679 (2499) 976682 (2499) 945632 (2499) 819629 (2499) |
k = 514089 and 656100 proven composite by partial algebraic factors. |
509 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 1 mod 127 (127) |
none - proven | 2 (46) | ||
510 | 218 | 7, 73 | k = = 1 mod 509 (509) | 160 (500K) 202 (500K) |
48 (77480) 204 (5163) 80 (3552) 120 (1953) 22 (1835) 6 (1638) 146 (1530) 196 (1439) 9 (1115) 113 (1089) |
||
513 | 221706 | 7, 139, 271 | (Condition 1): All k where k = m^2 and m = = 16 or 241 mod 257: for even n let k = m^2 and let n = 2*q; factors to: (m*513^q - 1) * (m*513^q + 1) odd n: factor of 257 (Condition 2): All k where k = 513*m^2 and m = = 16 or 241 mod 257: [Reverse condition 1] |
k = = 1 mod 2 (2) | 2095 k's remaining at n=25K. See k's at Riesel Base 513 remain. |
4 (38031) 135412 (24963) 48724 (24951) 80072 (24874) 167890 (24870) 25602 (24850) 69976 (24726) 67484 (24663) 111738 (24624) 43012 (24566) |
k = 256 proven composite by condition 1. k = 131328 proven composite by condition 2. |
514 | 104 | 5, 103 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*514^q - 1) * (m*514^q + 1) odd n: factor of 5 |
k = = 1 mod 3 (3) k = = 1 mod 19 (19) |
none - proven | 30 (424652) 21 (5833) 41 (5747) 75 (3707) 90 (3611) 26 (1545) 44 (368) 45 (224) 14 (126) 29 (80) |
k = 9 proven composite by partial algebraic factors. |
515 | 44 | 3, 43 | k = = 1 mod 2 (2) k = = 1 mod 257 (257) |
none - proven | 2 (58466) 38 (4800) 12 (2029) 4 (1579) 42 (228) 8 (70) 30 (20) 32 (16) 14 (14) 24 (10) |
||
516 | 142 | 11, 47 | k = = 1 mod 5 (5) k = = 1 mod 103 (103) |
87 (600K) | 78 (130647) 133 (21183) 129 (5636) 122 (857) 140 (504) 107 (191) 73 (136) 43 (100) 120 (62) 34 (37) |
||
517 | 36 | 7, 37 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 43 (43) |
none - proven | 30 (47) 20 (22) 8 (11) 6 (6) 24 (5) 18 (3) 32 (2) 26 (1) 14 (1) 12 (1) |
||
518 | 172 | 3, 173 | k = = 1 mod 11 (11) k = = 1 mod 47 (47) |
7 (300K) 58 (300K) 74 (300K) 113 (300K) 139 (300K) |
94 (138071) 136 (59529) 97 (45151) 118 (33501) 71 (7430) 62 (4782) 44 (4268) 152 (3482) 115 (3369) 38 (2044) |
||
519 | 14 | 5, 13 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*519^q - 1) * (m*519^q + 1) odd n: factor of 5 |
k = = 1 mod 2 (2) k = = 1 mod 7 (7) k = = 1 mod 37 (37) |
none - proven | 6 (29) 12 (4) 2 (2) 10 (1) |
k = 4 proven composite by partial algebraic factors. |
520 | 1128 | 7, 19, 97 | k = = 1 mod 3 (3) k = = 1 mod 173 (173) |
324 (300K) 576 (300K) 1094 (300K) |
638 (243506) 216 (131563) 330 (58090) 179 (26432) 233 (18595) 312 (14483) 26 (13420) 960 (8588) 533 (7843) 1122 (4660) |
||
521 | 28 | 3, 29 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 13 (13) |
none - proven | 20 (10) 2 (8) 22 (3) 12 (2) 8 (2) 24 (1) 18 (1) 10 (1) 4 (1) |
||
522 | 9797 | 5, 7, 13, 31, 43 | k = = 1 mod 521 (521) | 149 k's remaining at n=100K. See k's at Riesel Base 522 remain. |
8712 (98793) 2076 (98070) 6832 (93418) 2304 (91345) 2107 (87581) 4202 (87012) 6853 (81398) 7756 (79342) 4536 (76334) 5248 (75866) |
||
523 | 132 | 5, 17, 131 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 29 (29) |
none - proven | 126 (222906) 120 (43047) 66 (479) 108 (188) 36 (147) 90 (49) 54 (43) 24 (33) 42 (31) 80 (30) |
||
524 | 4 | 3, 5 | k = = 1 mod 523 (523) | none - proven | 2 (164) 3 (1) |
||
525 | 8364188 | 13, 263, 10601 | k = = 1 mod 2 (2) k = = 1 mod 131 (131) |
53207 k's remaining at n=2.5K. To be shown later. | 7665514 (2500) 7222756 (2500) 5730668 (2500) 4532150 (2500) 4088832 (2500) 4034342 (2500) 3140266 (2500) 2590606 (2500) 1589634 (2500) 1579648 (2500) |
||
526 | 900 | 17, 31 | k = = 1 mod 3 (3) k = = 1 mod 5 (5) k = = 1 mod 7 (7) |
125 (300K) 273 (300K) 630 (300K) |
774 (41592) 509 (8078) 870 (4102) 342 (2949) 588 (2430) 278 (2338) 495 (2264) 119 (2036) 804 (1302) 147 (916) |
||
527 | 10 | 3, 11 | k = = 1 mod 2 (2) k = = 1 mod 263 (263) |
none - proven | 4 (46073) 6 (42) 2 (24) 8 (14) |
||
528 | 47 | 5, 13, 23 | k = = 1 mod 17 (17) k = = 1 mod 31 (31) |
none - proven | 34 (3644) 45 (1486) 22 (154) 26 (83) 27 (23) 29 (21) 37 (19) 42 (16) 7 (15) 40 (9) |
||
529 | 54 | 5, 53 | All k = m^2 for all n; factors to: (m*23^n - 1) * (m*23^n + 1) |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 11 (11) |
none - proven | 30 (500) 6 (141) 26 (107) 24 (72) 14 (26) 2 (3) 44 (2) 42 (2) 20 (2) 50 (1) |
k = 36 proven composite by full algebraic factors. |
530 | 58 | 3, 59 | k = = 1 mod 23 (23) | 10 (300K) 32 (300K) 43 (300K) 55 (300K) |
23 (2292) 53 (908) 22 (415) 26 (394) 16 (309) 29 (256) 8 (218) 14 (194) 5 (188) 44 (100) |
||
531 | 20 | 7, 19 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 53 (53) |
none - proven | 18 (6) 8 (5) 4 (5) 12 (2) 14 (1) 10 (1) 2 (1) |
||
532 | 573 | 13, 41 | (Condition 1): All k where k = m^2 and m = = 5 or 8 mod 13: for even n let k = m^2 and let n = 2*q; factors to: (m*532^q - 1) * (m*532^q + 1) odd n: factor of 13 (Condition 2): All k where k = m^2 and m = = 9 or 32 mod 41: for even n let k = m^2 and let n = 2*q; factors to: (m*532^q - 1) * (m*532^q + 1) odd n: factor of 41 |
k = = 1 mod 3 (3) k = = 1 mod 59 (59) |
none - proven | 156 (534754) 204 (454080) 378 (139463) 452 (115413) 245 (49578) 261 (40095) 38 (39410) 329 (31767) 347 (15956) 129 (8760) |
k = 324 and 441 proven composite by condition 1. k = 81 proven composite by condition 2. |
533 | 88 | 3, 89 | k = = 1 mod 2 (2) k = = 1 mod 7 (7) k = = 1 mod 19 (19) |
74 (600K) | 56 (898) 38 (356) 54 (121) 82 (91) 10 (27) 86 (22) 52 (19) 26 (14) 12 (8) 60 (7) |
||
534 | 106 | 5, 107 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*534^q - 1) * (m*534^q + 1) odd n: factor of 5 |
k = = 1 mod 13 (13) k = = 1 mod 41 (41) |
29 (500K) 59 (500K) |
11 (80327) 46 (27767) 25 (297) 74 (218) 69 (136) 44 (108) 20 (95) 19 (78) 32 (47) 81 (35) |
k = 4, 9, 49, and 64 proven composite by partial algebraic factors. |
535 | 746580 | 7, 13, 61, 67, 73 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 89 (89) |
3106 k's remaining at n=10K. See k's at Riesel Base 535 remain. |
482264 (9994) 622418 (9991) 222840 (9972) 326328 (9968) 716270 (9949) 473610 (9939) 479354 (9938) 12530 (9919) 118002 (9913) 313632 (9906) |
||
536 | 178 | 3, 179 | k = = 1 mod 5 (5) k = = 1 mod 107 (107) |
9 (300K) 29 (300K) 32 (300K) 79 (300K) 107 (300K) 144 (300K) 152 (300K) 163 (300K) 170 (300K) |
58 (296735) 53 (20026) 35 (17414) 135 (11070) 173 (5090) 43 (4397) 77 (2500) 8 (2458) 134 (1312) 2 (840) |
||
537 | 113788 | 5, 7, 13, 109, 269 | All k where k = m^2 and m = = 82 or 187 mod 269: for even n let k = m^2 and let n = 2*q; factors to: (m*537^q - 1) * (m*537^q + 1) odd n: factor of 269 |
k = = 1 mod 2 (2) k = = 1 mod 67 (67) |
1041 k's remaining at n=25K. See k's at Riesel Base 537 remain. |
45392 (24833) 25026 (24826) 76332 (24789) 93158 (24400) 59508 (24340) 49658 (24174) 56562 (24162) 92966 (24150) 91844 (24083) 111510 (24035) |
k = 6724 proven composite by partial algebraic factors. |
538 | 8 | 5, 7, 13 | k = = 1 mod 3 (3) k = = 1 mod 179 (179) |
none - proven | 6 (14) 2 (8) 5 (1) 3 (1) |
||
539 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 1 mod 269 (269) |
none - proven | 2 (2) | ||
540 | 800138 | 17, 541, 1009 | (Condition 1): All k where k = m^2 and m = = 52 or 489 mod 541: for even n let k = m^2 and let n = 2*q; factors to: (m*540^q - 1) * (m*540^q + 1) odd n: factor of 541 (Condition 2): All k where k = 15*m^2 and m = = 229 or 312 mod 541: even n: factor of 541 for odd n let k = 15*m^2 and let n=2*q-1; factors to: [m*6^n*15^q - 1] * [m*6^n*15^q + 1] (Condition 3): k = 61009: for even n let n=2*q; factors to: (247*540^q - 1) * (247*540^q + 1) odd n: covering set 17, 1009 |
k = = 1 mod 7 (7) k = = 1 mod 11 (11) |
1121 k's remaining at n=25K. See k's at Riesel Base 540 remain. |
16069 (24978) 635600 (24970) 582248 (24893) 1531 (24786) 190243 (24765) 591035 (24717) 649812 (24708) 501244 (24672) 369596 (24661) 539292 (24643) |
k = 2704 proven composite by condition 1. k = 786615 proven composite by condition 2. k = 61009 proven composite by condition 3. |
541 | 15546458 | 13, 271, 11257 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 5 (5) |
121957 k's remaining at n=2.5K. To be shown later. | 8552162 (2500) 6828540 (2500) 6726722 (2500) 6723648 (2500) 3111810 (2500) 1656572 (2500) 1612968 (2500) 13643562 (2499) 13637454 (2499) 13567122 (2499) |
||
542 | 182 | 3, 181 | k = = 1 mod 541 (541) | 11 (300K) 19 (300K) 37 (300K) 42 (300K) 74 (300K) 80 (300K) 97 (300K) 100 (300K) 131 (300K) 134 (300K) 149 (300K) |
172 (189173) 89 (141296) 71 (134230) 133 (83867) 13 (70447) 28 (66555) 104 (56400) 115 (41905) 127 (33605) 55 (29513) |
||
543 | 2500 | 7, 13, 17, 19 | All k where k = m^2 and m = = 4 or 13 mod 17: for even n let k = m^2 and let n = 2*q; factors to: (m*543^q - 1) * (m*543^q + 1) odd n: factor of 17 |
k = = 1 mod 2 (2) k = = 1 mod 271 (271) |
40 k's remaining at n=100K. See k's at Riesel Base 543 remain. |
1070 (74900) 2136 (72722) 1108 (56957) 1702 (53548) 1626 (48033) 1616 (46085) 1654 (31247) 466 (23517) 368 (23481) 1582 (23451) |
k = 16, 900, and 1444 proven composite by partial algebraic factors. |
544 | 219 | 5, 109 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*544^q - 1) * (m*544^q + 1) odd n: factor of 5 |
k = = 1 mod 3 (3) k = = 1 mod 181 (181) |
none - proven | 101 (16983) 159 (8446) 39 (4418) 6 (4411) 38 (3437) 74 (1676) 179 (1280) 171 (411) 194 (356) 65 (288) |
k = 9 and 144 proven composite by partial algebraic factors. |
545 | 8 | 3, 7 | k = = 1 mod 2 (2) k = = 1 mod 17 (17) |
none - proven | 2 (84) 6 (4) 4 (1) |
||
546 | 11732602 | 17, 89, 241, 547 | k = = 1 mod 5 (5) k = = 1 mod 109 (109) |
75963 k's remaining at n=2.5K. To be shown later. | 11296667 (2500) 10896593 (2500) 10627994 (2500) 9713050 (2500) 9503885 (2500) 9474075 (2500) 9202119 (2500) 9120327 (2500) 8585770 (2500) 7309673 (2500) |
||
547 | 1556732 | 5, 41, 113, 137 | All k where k = m^2 and m = = 37 or 100 mod 137: for even n let k = m^2 and let n = 2*q; factors to: (m*547^q - 1) * (m*547^q + 1) odd n: factor of 137 |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 7 (7) k = = 1 mod 13 (13) |
3234 k's remaining at n=25K. See k's at Riesel Base 547 remain. |
162992 (24978) 241068 (24955) 1455738 (24939) 323022 (24910) 1445486 (24906) 908562 (24905) 649794 (24836) 916388 (24830) 1391922 (24829) 325058 (24814) |
k = 419904 and 992016 proven composite by partial algebraic factors. |
548 | 13 | 3, 5, 17 | k = = 1 mod 547 (547) | 7 (600K) | 4 (45) 12 (14) 3 (14) 5 (8) 2 (4) 11 (2) 8 (2) 6 (2) 10 (1) 9 (1) |
||
549 | 34 | 5, 11 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*549^q - 1) * (m*549^q + 1) odd n: factor of 5 |
k = = 1 mod 2 (2) k = = 1 mod 137 (137) |
6 (600K) | 12 (369) 24 (78) 28 (15) 26 (15) 14 (14) 22 (5) 32 (4) 18 (4) 30 (2) 10 (2) |
k = 4 proven composite by partial algebraic factors. |
550 | 666 | 19, 29 | All k where k = m^2 and m = = 12 or 17 mod 29: for even n let k = m^2 and let n = 2*q; factors to: (m*550^q - 1) * (m*550^q + 1) odd n: factor of 29 |
k = = 1 mod 3 (3) k = = 1 mod 61 (61) |
57 (300K) 153 (300K) 225 (300K) 324 (300K) 609 (300K) |
581 (270707) 227 (159478) 639 (15821) 30 (10353) 494 (5125) 465 (4865) 189 (3654) 647 (2777) 2 (1380) 51 (1116) |
k = 144 proven composite by partial algebraic factors. |
551 | 22 | 3, 23 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 11 (11) |
10 (600K) | 14 (60134) 2 (2718) 8 (416) 20 (30) 18 (2) 4 (1) |
||
552 | 78 | 7, 79 | k = = 1 mod 19 (19) k = = 1 mod 29 (29) |
15 (400K) 34 (400K) 43 (400K) 69 (400K) |
55 (227540) 21 (1366) 13 (986) 8 (211) 18 (186) 31 (169) 33 (62) 68 (55) 62 (36) 57 (33) |
||
553 | 31854 | 5, 53, 277 | All k where k = m^2 and m = = 60 or 217 mod 277: for even n let k = m^2 and let n = 2*q; factors to: (m*553^q - 1) * (m*553^q + 1) odd n: factor of 277 |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 23 (23) |
50 k's remaining at n=100K. See k's at Riesel Base 553 remain. |
25356 (96266) 1148 (93737) 12182 (93023) 1512 (91126) 15866 (83923) 20466 (82546) 18126 (78841) 27188 (77884) 7698 (65661) 20640 (65054) |
k = 3600 proven composite by partial algebraic factors. |
554 | 4 | 3, 5 | k = = 1 mod 7 (7) k = = 1 mod 79 (79) |
none - proven | 2 (34) 3 (4) |
||
555 | 58202 | 7, 13, 3391 | k = = 1 mod 2 (2) k = = 1 mod 277 (277) |
236 k's remaining at n=100K. See k's at Riesel Base 555 remain. |
42422 (99129) 50716 (98711) 9718 (98236) 46770 (97857) 31604 (96191) 52802 (95176) 31190 (95145) 52534 (93979) 37220 (89573) 10224 (89336) |
||
557 | 32 | 3, 31 | k = = 1 mod 2 (2) k = = 1 mod 139 (139) |
none - proven | 26 (63710) 30 (22290) 28 (3207) 14 (1364) 8 (112) 4 (27) 16 (9) 12 (9) 20 (8) 2 (8) |
||
558 | 259 | 13, 43 | (Condition 1): All k where k = m^2 and m = = 5 or 8 mod 13: for even n let k = m^2 and let n = 2*q; factors to: (m*558^q - 1) * (m*558^q + 1) odd n: factor of 13 (Condition 2): All k where k = 62*m^2 and m = = 2 or 11 mod 13: even n: factor of 13 for odd n let k = 62*m^2 and let n=2*q-1; factors to: [m*3^n*62^q - 1] * [m*3^n*62^q + 1] |
k = = 1 mod 557 (557) | 121 (300K) 170 (300K) 173 (300K) 181 (300K) 194 (300K) 246 (300K) 253 (300K) |
216 (195427) 27 (117379) 242 (34134) 155 (26612) 39 (25021) 239 (6323) 231 (4222) 115 (3488) 172 (3014) 78 (2066) |
k = 25 and 64 proven composite by condition 1. k = 248 proven composite by condition 2. |
559 | 6 | 5, 7 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 31 (31) |
none - proven | 2 (1) | ||
560 | 10 | 3, 11 | k = = 1 mod 13 (13) k = = 1 mod 43 (43) |
none - proven | 8 (19904) 2 (36) 3 (6) 5 (2) 9 (1) 7 (1) 6 (1) 4 (1) |
||
561 | 5975464 | 37, 281, 4253 | All k where k = m^2 and m = = 53 or 228 mod 281: for even n let k = m^2 and let n = 2*q; factors to: (m*561^q - 1) * (m*561^q + 1) odd n: factor of 281 |
k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 7 (7) |
11851 k's remaining at n=2.5K. To be shown later. | 5641692 (2498) 5171792 (2498) 4982798 (2498) 4430792 (2498) 4115548 (2498) 3847648 (2498) 2418994 (2498) 38030 (2498) 3898400 (2496) 2323942 (2496) |
k = 51984, 2125764, and 4080400 proven composite by partial algebraic factors. |
562 | 191 | 7, 13, 19 | k = = 1 mod 3 (3) k = = 1 mod 11 (11) k = = 1 mod 17 (17) |
none - proven | 159 (2631) 39 (944) 126 (423) 29 (403) 66 (326) 81 (267) 47 (266) 140 (176) 153 (59) 101 (57) |
||
563 | 46 | 3, 47 | k = = 1 mod 2 (2) k = = 1 mod 281 (281) |
28 (600K) | 20 (16012) 26 (1714) 44 (264) 14 (68) 24 (33) 12 (24) 22 (23) 40 (15) 38 (8) 6 (5) |
||
564 | 114 | 5, 113 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*564^q - 1) * (m*564^q + 1) odd n: factor of 5 |
k = = 1 mod 563 (563) | 39 (500K) 86 (500K) |
29 (19502) 69 (1576) 94 (772) 62 (628) 96 (401) 26 (243) 81 (193) 12 (84) 72 (47) 74 (30) |
k = 4, 9, 49, and 64 proven composite by partial algebraic factors. |
565 | 20598 | 37, 43, 67 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 47 (47) |
32 k's remaining at n=200K. See k's at Riesel Base 565 remain. |
18092 (198465) 3098 (195049) 16260 (167947) 12902 (162944) 12596 (149039) 8742 (135774) 4836 (124142) 7316 (124048) 19394 (118343) 17636 (109660) |
||
566 | 8 | 3, 7 | k = = 1 mod 5 (5) k = = 1 mod 113 (113) |
none - proven | 7 (164827) 4 (23873) 2 (4) 5 (2) 3 (1) |
||
567 | 2202 | 5, 13, 71 | k = = 1 mod 2 (2) k = = 1 mod 283 (283) |
214 (300K) 296 (300K) 922 (300K) 1366 (300K) 1492 (300K) 1584 (300K) |
694 (276568) 1334 (223344) 78 (107896) 988 (47799) 1568 (33108) 772 (23724) 948 (14179) 1338 (11676) 1268 (11250) 224 (9940) |
||
568 | 19347 | 5, 89, 569 | All k where k = m^2 and m = = 86 or 483 mod 569: for even n let k = m^2 and let n = 2*q; factors to: (m*568^q - 1) * (m*568^q + 1) odd n: factor of 569 |
k = = 1 mod 3 (3) k = = 1 mod 7 (7) |
90 k's remaining at n=100K. See k's at Riesel Base 568 remain. |
17793 (94378) 14637 (90914) 18447 (87927) 6276 (85494) 13251 (84543) 17441 (83999) 9482 (82211) 1944 (80663) 12021 (79209) 6471 (78329) |
No k's proven composite by algebraic factors. |
569 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 1 mod 71 (71) |
none - proven | 2 (60) | ||
570 | 12511182 | 7, 13, 17, 61, 193, 571 | k = = 1 mod 569 (569) | 250358 k's remaining at n=2.5K. To be shown later. | 12142168 (2500) 11939442 (2500) 11854251 (2500) 11601775 (2500) 10261900 (2500) 9903484 (2500) 9432967 (2500) 9201245 (2500) 9189526 (2500) 8899258 (2500) |
||
571 | 12 | 11, 13 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 5 (5) k = = 1 mod 19 (19) |
none - proven | 2 (2) 8 (1) |
||
572 | 190 | 3, 191 | k = = 1 mod 571 (571) | 43 (300K) 76 (300K) 88 (300K) 97 (300K) 119 (300K) 134 (300K) 154 (300K) 160 (300K) |
44 (172464) 110 (61926) 82 (44557) 148 (43659) 40 (36489) 26 (31434) 181 (18121) 32 (4914) 52 (4373) 2 (3804) |
||
573 | 204 | 7, 41 | k = = 1 mod 2 (2) k = = 1 mod 11 (11) k = = 1 mod 13 (13) |
6 (600K) | 128 (67678) 104 (40080) 124 (4365) 42 (3823) 162 (1283) 120 (1269) 20 (456) 186 (323) 148 (201) 28 (152) |
||
574 | 24 | 5, 23 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*574^q - 1) * (m*574^q + 1) odd n: factor of 5 |
k = = 1 mod 3 (3) k = = 1 mod 191 (191) |
none - proven | 21 (4803) 11 (11) 14 (8) 2 (8) 6 (5) 23 (4) 12 (4) 17 (3) 20 (2) 5 (2) |
k = 9 proven composite by partial algebraic factors. |
575 | 77600 | 13, 73, 349 | k = = 1 mod 2 (2) k = = 1 mod 7 (7) k = = 1 mod 41 (41) |
979 k's remaining at n=25K. See k's at Riesel Base 575 remain. |
17276 (24944) 39274 (24935) 67142 (24816) 41906 (24762) 18188 (24674) 70240 (24583) 37048 (24487) 57148 (24427) 38026 (24407) 21422 (24404) |
||
576 | 17798 | 7, 13, 79, 349 | All k = m^2 for all n; factors to: (m*24^n - 1) * (m*24^n + 1) |
k = = 1 mod 5 (5) k = = 1 mod 23 (23) |
71 k's remaining at n>=100K. See k's and test limits at Riesel Base 576 remain. |
8894 (105312) 2844 (101928) 13757 (86784) 12665 (79945) 14877 (79200) 15950 (79124) 12063 (75846) 5555 (74739) 7680 (74612) 1824 (69284) |
k = 2^2, 3^2, 5^2, 7^2, 8^2, 10^2, 12^2, 13^2, 15^2, (etc. pattern repeating every 5m where k not = = 1 mod 23) proven composite by full algebraic factors. |
577 | 18 | 5, 13, 17 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) |
none - proven | 14 (5775) 12 (17) 8 (2) 6 (1) 2 (1) |
||
578 | 142 | 3, 5, 109 | k = = 1 mod 577 (577) | 22 (300K) 43 (300K) 52 (300K) 74 (300K) 101 (300K) 103 (300K) 106 (300K) 110 (300K) 118 (300K) 127 (300K) |
26 (199886) 2 (129468) 75 (111929) 59 (100148) 109 (46807) 137 (34626) 65 (16290) 49 (16111) 29 (11936) 71 (7306) |
||
579 | 204 | 5, 29 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*579^q - 1) * (m*579^q + 1) odd n: factor of 5 |
k = = 1 mod 2 (2) k = = 1 mod 17 (17) |
none - proven | 104 (222402) 114 (162252) 106 (112337) 96 (22899) 66 (19131) 166 (14571) 124 (11848) 94 (7238) 116 (1127) 136 (911) |
k = 4, 64, and 144 proven composite by partial algebraic factors. |
580 | 167 | 7, 83 | k = = 1 mod 3 (3) k = = 1 mod 193 (193) |
none - proven | 48 (174782) 125 (4550) 164 (2437) 90 (1888) 84 (1843) 144 (1367) 20 (616) 162 (223) 86 (209) 57 (175) |
||
581 | 98 | 3, 97 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 29 (29) |
2 (600K) | 58 (16145) 64 (2477) 14 (208) 32 (158) 4 (77) 60 (37) 20 (32) 80 (24) 70 (15) 68 (12) |
||
582 | 54 | 11, 53 | k = = 1 mod 7 (7) k = = 1 mod 83 (83) |
52 (600K) | 4 (5841) 33 (1847) 27 (1088) 3 (444) 10 (360) 53 (290) 34 (221) 44 (208) 17 (204) 23 (199) |
||
583 | 2846 | 5, 7, 13, 31, 73 | All k where k = m^2 and m = = 27 or 46 mod 73: for even n let k = m^2 and let n = 2*q; factors to: (m*583^q - 1) * (m*583^q + 1) odd n: factor of 73 |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 97 (97) |
242 (300K) 522 (300K) 536 (300K) 984 (300K) 1128 (300K) 1518 (300K) 2304 (300K) 2664 (300K) 2702 (300K) 2766 (300K) |
354 (172967) 2016 (151394) 578 (98441) 1242 (85103) 462 (77448) 114 (30196) 2118 (23589) 1376 (19397) 158 (16488) 1022 (16242) |
No k's proven composite by algebraic factors. |
584 | 4 | 3, 5 | k = = 1 mod 11 (11) k = = 1 mod 53 (53) |
none - proven | 2 (54) 3 (2) |
||
585 | 14271738 | 137, 293, 1249 | (Condition 1): All k where k = m^2 and m = = 138 or 155 mod 293: for even n let k = m^2 and let n = 2*q; factors to: (m*585^q - 1) * (m*585^q + 1) odd n: factor of 293 (Condition 2): All k where k = 65*m^2 and m = = 121 or 172 mod 293: even n: factor of 293 for odd n let k = 65*m^2 and let n=2*q-1; factors to: [m*3^n*65^q - 1] * [m*3^n*65^q + 1] |
k = = 1 mod 2 (2) k = = 1 mod 73 (73) |
138122 k's remaining at n=2.5K. To be shown later. | 13722440 (2500) 13389106 (2500) 12463252 (2500) 11660608 (2500) 10709728 (2500) 10489466 (2500) 9744710 (2500) 9580442 (2500) 8409034 (2500) 7777260 (2500) |
k = 19044, 200704, 524176, 1069156, 1716100, 2624400, 3594816, 4866436,
6160324, 7795264, 9412624, 11410884, and 13351716 proven composite by condition 1. k = 1922960 and 11140740 proven composite by condition 2. |
586 | 5906982 | 17, 37, 89, 587 | k = = 1 mod 3 (3) k = = 1 mod 5 (5) k = = 1 mod 13 (13) |
52466 k's remaining at n=2.5K. To be shown later. | 5833784 (2500) 5587728 (2500) 5187363 (2500) 4357008 (2500) 2531072 (2500) 1760528 (2500) 1692105 (2500) 842903 (2500) 5164350 (2499) 3236798 (2499) |
||
587 | 8 | 3, 7 | k = = 1 mod 2 (2) k = = 1 mod 293 (293) |
none - proven | 2 (26) 6 (2) 4 (1) |
||
588 | 94 | 19, 31 | k = = 1 mod 587 (587) | 3 (500K) 16 (500K) |
83 (1629) 22 (915) 58 (557) 77 (263) 32 (231) 24 (227) 30 (150) 62 (104) 48 (104) 55 (90) |
||
589 | 1004 | 5, 59 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*589^q - 1) * (m*589^q + 1) odd n: factor of 5 |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 7 (7) |
74 (300K) 216 (300K) 648 (300K) 926 (300K) |
174 (180580) 816 (22557) 654 (5638) 744 (4026) 566 (2785) 672 (2533) 506 (2387) 966 (2247) 354 (2172) 854 (1878) |
k = 144 and 324 proven composite by partial algebraic factors. |
590 | 196 | 3, 197 | k = = 1 mod 19 (19) k = = 1 mod 31 (31) |
98 (300K) 109 (300K) 152 (300K) |
67 (86975) 38 (43480) 2 (15526) 114 (6492) 100 (3615) 56 (2602) 146 (738) 18 (717) 124 (707) 148 (661) |
||
591 | 30820 | 17, 37, 10273 | All k where k = m^2 and m = = 6 or 31 mod 37: for even n let k = m^2 and let n = 2*q; factors to: (m*591^q - 1) * (m*591^q + 1) odd n: factor of 37 |
k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 59 (59) |
55 k's remaining at n=100K. See k's at Riesel Base 591 remain. |
21794 (98943) 28760 (98412) 27332 (95597) 19044 (92315) 2948 (90512) 19988 (89773) 16494 (85147) 28460 (82666) 24294 (82653) 17970 (75095) |
k = 4624, 6400, and 20164 proven composite by partial algebraic factors. |
592 | 17196 | 5, 29, 593 | All k where k = m^2 and m = = 77 or 516 mod 593: for even n let k = m^2 and let n = 2*q; factors to: (m*592^q - 1) * (m*592^q + 1) odd n: factor of 593 |
k = = 1 mod 3 (3) k = = 1 mod 197 (197) |
158 k's remaining at n=100K. See k's at Riesel Base 592 remain. |
5927 (96521) 4976 (95447) 12653 (91839) 10950 (88614) 3194 (85899) 12704 (85808) 11076 (84359) 8792 (82638) 7209 (82292) 10046 (81614) |
No k's proven composite by algebraic factors. |
593 | 10 | 3, 11 | k = = 1 mod 2 (2) k = = 1 mod 37 (37) |
none - proven | 2 (4) 8 (2) 6 (1) 4 (1) |
||
594 | 6 | 5, 7 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*594^q - 1) * (m*594^q + 1) odd n: factor of 5 |
k = = 1 mod 593 (593) | none - proven | 3 (2) 5 (1) 2 (1) |
k = 4 proven composite by partial algebraic factors. |
595 | 291890 | 13, 31, 43, 149 | All k where k = m^2 and m = = 44 or 105 mod 149: for even n let k = m^2 and let n = 2*q; factors to: (m*595^q - 1) * (m*595^q + 1) odd n: factor of 149 |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 11 (11) |
91 k's remaining at n=100K. See k's at Riesel Base 595 remain. |
212922 (97899) 274260 (97374) 287334 (97200) 189380 (95821) 10442 (95182) 89306 (94257) 61182 (92718) 48854 (91733) 239786 (87878) 258782 (86872) |
No k's proven composite by algebraic factors. |
596 | 200 | 3, 199 | k = = 1 mod 5 (5) k = = 1 mod 7 (7) k = = 1 mod 17 (17) |
none - proven | 40 (3327) 104 (1950) 74 (1100) 83 (588) 7 (489) 160 (465) 153 (271) 34 (225) 39 (190) 145 (171) |
||
597 | 116 | 13, 23 | All k where k = m^2 and m = = 5 or 8 mod 13: for even n let k = m^2 and let n = 2*q; factors to: (m*597^q - 1) * (m*597^q + 1) odd n: factor of 13 |
k = = 1 mod 2 (2) k = = 1 mod 149 (149) |
none - proven | 70 (44147) 58 (3655) 32 (1454) 78 (1259) 68 (730) 8 (592) 114 (232) 92 (85) 98 (51) 96 (23) |
k = 64 proven composite by partial algebraic factors. |
598 | 43728 | 5, 37, 599 | k = = 1 mod 3 (3) k = = 1 mod 199 (199) |
231 k's remaining at n=100K. See k's at Riesel Base 598 remain. |
26954 (99892) 30342 (97891) 15687 (97099) 30017 (96255) 36048 (95422) 6092 (94998) 591 (94437) 12077 (94203) 11976 (93995) 26864 (89991) |
||
599 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 1 mod 13 (13) k = = 1 mod 23 (23) |
none - proven | 2 (6) | ||
600 | 102772 | 7, 13, 19, 37, 601 | (Condition 1): All k where k = m^2 and m = = 125 or 476 mod 601: for even n let k = m^2 and let n = 2*q; factors to: (m*600^q - 1) * (m*600^q + 1) odd n: factor of 601 (Condition 2): All k where k = 6*m^2 and m = = 48 or 553 mod 601: even n: factor of 601 for odd n let k = 6*m^2 and let n=2*q-1; factors to: [m*10^n*6^q - 1] * [m*10^n*6^q + 1] |
k = = 1 mod 599 (599) | 911 k's remaining at n=25K. See k's at Riesel Base 600 remain. |
49116 (24943) 102685 (24925) 84779 (24856) 55009 (24824) 84757 (24719) 42474 (24710) 65097 (24662) 40864 (24558) 102062 (24487) 83440 (24418) |
k = 15625 proven composite by condition 1. k = 13824 proven composite by condition 2. |
601 | 818 | 7, 43 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 5 (5) |
300 (300K) 482 (300K) 744 (300K) |
624 (44279) 50 (30735) 120 (4663) 384 (1412) 750 (1133) 42 (990) 722 (825) 204 (429) 258 (356) 734 (302) |
||
602 | 68 | 3, 67 | k = = 1 mod 601 (601) | 58 (500K) 66 (500K) |
14 (53392) 67 (41049) 12 (36517) 29 (792) 25 (623) 40 (165) 33 (112) 13 (95) 35 (78) 52 (77) |
||
603 | 11324 | 5, 13, 151 | k = = 1 mod 2 (2) k = = 1 mod 7 (7) k = = 1 mod 43 (43) |
41 k's remaining at n=100K. See k's at Riesel Base 603 remain. |
5036 (85265) 10668 (72980) 168 (48485) 10778 (46302) 9512 (45638) 2498 (41694) 3608 (35838) 8796 (33642) 5822 (33563) 2282 (31784) |
||
604 | 21 | 5, 11 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*604^q - 1) * (m*604^q + 1) odd n: factor of 5 |
k = = 1 mod 3 (3) k = = 1 mod 67 (67) |
none - proven | 18 (66) 20 (7) 2 (4) 11 (3) 14 (2) 17 (1) 15 (1) 12 (1) 8 (1) 6 (1) |
k = 9 proven composite by partial algebraic factors. |
605 | 100 | 3, 101 | k = = 1 mod 2 (2) k = = 1 mod 151 (151) |
none - proven | 52 (13569) 86 (7788) 74 (5268) 44 (3210) 10 (2379) 50 (1910) 38 (1598) 80 (322) 64 (205) 2 (188) |
||
606 | 74660 | 13, 41, 607 | k = = 1 mod 5 (5) k = = 1 mod 11 (11) |
419 k's remaining at n=25K. See k's at Riesel Base 606 remain. |
44349 (24621) 30230 (24607) 39574 (24596) 68987 (24582) 53155 (24561) 37398 (24507) 25212 (24486) 13439 (24480) 6674 (24174) 34960 (23853) |
||
607 | 51584 | 5, 19, 7369 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 101 (101) |
513 k's remaining at n=25K. See k's at Riesel Base 607 remain. |
25164 (24835) 7094 (24777) 13584 (24668) 12134 (24497) 14958 (24379) 14106 (24355) 25082 (24296) 50298 (24136) 47366 (24002) 2148 (23651) |
||
608 | 8 | 3, 7 | k = = 1 mod 607 (607) | none - proven | 7 (87435) 4 (83) 5 (26) 6 (6) 2 (2) 3 (1) |
||
609 | 184 | 5, 61 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*609^q - 1) * (m*609^q + 1) odd n: factor of 5 |
k = = 1 mod 2 (2) k = = 1 mod 19 (19) |
none - proven | 76 (1491) 114 (1252) 136 (333) 116 (123) 108 (104) 70 (73) 72 (41) 56 (37) 44 (20) 138 (17) |
k = 4, 64, and 144 proven composite by partial algebraic factors. |
610 | 753 | 13, 47 | All k where k = m^2 and m = = 5 or 8 mod 13: for even n let k = m^2 and let n = 2*q; factors to: (m*610^q - 1) * (m*610^q + 1) odd n: factor of 13 |
k = = 1 mod 3 (3) k = = 1 mod 7 (7) k = = 1 mod 29 (29) |
234 (600K) | 350 (16580) 32 (3841) 560 (3733) 66 (2921) 530 (2069) 131 (1925) 558 (1404) 375 (1318) 389 (1206) 377 (849) |
k = 324 and 441 proven composite by partial algebraic factors. |
611 | 118 | 3, 17 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 61 (61) |
10 (600K) | 94 (12973) 104 (292) 4 (177) 32 (152) 2 (120) 44 (72) 38 (70) 68 (40) 70 (25) 90 (20) |
||
612 | 105437 | 5, 173, 613 | All k where k = m^2 and m = = 35 or 578 mod 613: for even n let k = m^2 and let n = 2*q; factors to: (m*612^q - 1) * (m*612^q + 1) odd n: factor of 613 |
k = = 1 mod 13 (13) k = = 1 mod 47 (47) |
969 k's remaining at n=25K. See k's at Riesel Base 612 remain. |
20676 (24951) 12737 (24924) 97979 (24872) 28437 (24790) 21107 (24769) 77899 (24715) 105191 (24709) 46413 (24572) 88961 (24561) 73299 (24480) |
k = 1225 proven composite by partial algebraic factors. |
613 | 34692 | 5, 53, 307 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 17 (17) |
129 k's remaining at n=100K. See k's at Riesel Base 613 remain. |
1584 (94460) 4050 (93732) 26552 (90776) 10152 (86820) 33884 (86811) 15066 (86153) 1604 (85447) 28032 (85384) 5378 (84473) 16514 (84199) |
||
614 | 4 | 3, 5 | k = = 1 mod 613 (613) | none - proven | 2 (312) 3 (3) |
||
615 | 34 | 7, 11 | k = = 1 mod 2 (2) k = = 1 mod 307 (307) |
12 (600K) | 22 (203539) 32 (4) 26 (3) 30 (2) 28 (2) 20 (2) 10 (2) 6 (2) 24 (1) 18 (1) |
||
616 | 23447 | 13, 17, 617 | All k where k = m^2 and m = = 194 or 423 mod 617: for even n let k = m^2 and let n = 2*q; factors to: (m*616^q - 1) * (m*616^q + 1) odd n: factor of 617 |
k = = 1 mod 3 (3) k = = 1 mod 5 (5) k = = 1 mod 41 (41) |
26 k's remaining at n=100K. See k's at Riesel Base 616 remain. |
15459 (99075) 21045 (96296) 6965 (58914) 7220 (58110) 22295 (54955) 14958 (52474) 18585 (47642) 7593 (42266) 23135 (40694) 16827 (40289) |
No k's proven composite by algebraic factors. |
617 | 104 | 3, 103 | k = = 1 mod 2 (2) k = = 1 mod 7 (7) k = = 1 mod 11 (11) |
none - proven | 44 (34964) 14 (25724) 38 (2110) 80 (1902) 58 (87) 96 (83) 88 (23) 74 (16) 72 (14) 24 (9) |
||
618 | 2517 | 7, 37, 211 | k = = 1 mod 617 (617) | 43 k's remaining at n=100K. See k's at Riesel Base 618 remain. |
436 (93186) 1546 (83570) 2426 (66885) 1858 (57817) 95 (56517) 282 (54172) 2216 (51494) 1159 (43397) 2424 (41400) 1731 (36706) |
||
619 | 216 | 5, 31 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*619^q - 1) * (m*619^q + 1) odd n: factor of 5 |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 103 (103) |
6 (600K) | 138 (95328) 206 (33625) 68 (10566) 92 (5818) 26 (2867) 114 (1302) 96 (947) 24 (134) 56 (73) 126 (61) |
k = 144 proven composite by partial algebraic factors. |
620 | 22 | 3, 23 | k = = 1 mod 619 (619) | none - proven | 20 (120136) 4 (1773) 11 (1434) 15 (562) 21 (39) 16 (11) 8 (10) 9 (9) 12 (6) 5 (4) |
||
621 | 190642 | 17, 109, 311, 313 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 31 (31) |
516 k's remaining at n=25K. See k's at Riesel Base 621 remain. |
12134 (24989) 187468 (24926) 115548 (24814) 92658 (24775) 166568 (24742) 168398 (24695) 5052 (24682) 83658 (24676) 51200 (24544) 156222 (24513) |
||
622 | 90 | 7, 89 | k = = 1 mod 3 (3) k = = 1 mod 23 (23) |
none - proven | 78 (402915) 8 (9455) 39 (5160) 62 (104) 32 (38) 41 (26) 50 (25) 60 (18) 87 (17) 26 (15) |
||
623 | 14 | 3, 13 | k = = 1 mod 2 (2) k = = 1 mod 311 (311) |
none - proven | 6 (4110) 8 (50) 4 (3) 12 (2) 2 (2) 10 (1) |
||
624 | 569819 | 5, 41, 9497 | (Condition 1): All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*624^q - 1) * (m*624^q + 1) odd n: factor of 5 (Condition 2): All k where k = 39*m^2 and m = = 2 or 3 mod 5: even n: factor of 5 for odd n let k = 39*m^2 and let n=2*q-1; factors to: [m*4^n*39^q - 1] * [m*4^n*39^q + 1] |
k = = 1 mod 7 (7) k = = 1 mod 89 (89) |
13722 k's remaining at n=6.5K. To be shown later. | 87609 (6500) 358944 (6498) 537870 (6496) 5029 (6496) 100261 (6493) 402799 (6492) 264826 (6491) 535001 (6489) 213146 (6489) 162783 (6488) |
k = 2^2, 3^2, 7^2, 12^2, 17^2, 18^2, 23^2, 28^2, 32^2, 33^2, 37^2, 38^2,
42^2, 47^2, 52^2, 53^2, 58^2, 63^2, 67^2, 68^2, (etc. pattern repeating every
35m where k not = = 1 mod 89) proven composite by condition 1. k = 39*2^2, 39*7^2, 39*8^2, 39*12^2, 39*13^2, 39*22^2, 39*23^2, 39*27^2, 39*28^2, 39*33^2, 39*37^2, 39*42^2, 39*43^2, 39*47^2, 39*48^2, 39*57^2, 39*58^2, 39*62^2, 39*63^2, 39*68^2, (etc. pattern repeating every 35m where k not = = 1 mod 89) proven composite by condition 2. |
625 | 26468 | 7, 31, 601 | All k = m^2 for all n; factors to: (m*25^n - 1) * (m*25^n + 1) |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 13 (13) |
59 k's remaining at n>=130K. See k's and test limits at Riesel Base 625 remain. |
6980 (286678) 6350 (227876) 12440 (169942) 3938 (139508) 22848 (129686) 24432 (125053) 7890 (118501) 20430 (96560) 13214 (95471) 25958 (90420) |
k = 6^2, 18^2, 24^2, 30^2, 36^2, 42^2, 48^2, 54^2, 60^2, 72^2, 78^2,
84^2, 96^2, 102^2, 108^2, 114^2, 120^2, 126^2, 132^2, 138^2, 150^2, 156^2,
and 162^2 proven composite by full algebraic factors. Some k's are being worked on by PrimeGrid's Sierpinski/Riesel Base 5 project. |
626 | 10 | 3, 11 | k = = 1 mod 5 (5) | none - proven | 5 (110) 8 (20) 7 (9) 2 (8) 9 (5) 4 (1) 3 (1) |
||
627 | 129182 | 7, 13, 4327 | All k where k = m^2 and m = = 28 or 129 mod 157: for even n let k = m^2 and let n = 2*q; factors to: (m*627^q - 1) * (m*627^q + 1) odd n: factor of 157 |
k = = 1 mod 2 (2) k = = 1 mod 313 (313) |
1222 k's remaining at n=25K. See k's at Riesel Base 627 remain. |
13770 (24982) 2328 (24946) 28982 (24749) 50248 (24696) 11998 (24686) 55974 (24684) 48626 (24622) 120922 (24522) 164 (24425) 68636 (24347) |
k = 784, 81796, and 116964 proven composite by partial algebraic factors. |
628 | 186 | 17, 37 | All k where k = m^2 and m = = 6 or 31 mod 37: for even n let k = m^2 and let n = 2*q; factors to: (m*628^q - 1) * (m*628^q + 1) odd n: factor of 37 |
k = = 1 mod 3 (3) k = = 1 mod 11 (11) k = = 1 mod 19 (19) |
none - proven | 149 (80423) 18 (7889) 120 (6927) 110 (5954) 107 (690) 101 (658) 50 (202) 183 (196) 137 (167) 171 (159) |
k = 36 proven composite by partial algebraic factors. |
629 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 1 mod 157 (157) |
none - proven | 2 (186) | ||
632 | 14 | 3, 5, 13 | k = = 1 mod 631 (631) | none - proven | 9 (19) 13 (15) 11 (14) 2 (6) 10 (5) 4 (5) 8 (4) 3 (4) 6 (2) 5 (2) |
||
633 | 1004 | 5, 7, 13, 17, 67 | k = = 1 mod 2 (2) k = = 1 mod 79 (79) |
64 (300K) 172 (300K) 326 (300K) 708 (300K) 952 (300K) |
152 (19312) 402 (17432) 746 (14574) 752 (6136) 950 (6070) 692 (5190) 192 (3747) 442 (3003) 112 (2879) 92 (2270) |
||
634 | 126 | 5, 127 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*634^q - 1) * (m*634^q + 1) odd n: factor of 5 |
k = = 1 mod 3 (3) k = = 1 mod 211 (211) |
29 (600K) | 20 (476756) 96 (20665) 59 (8118) 114 (3402) 36 (3271) 84 (1994) 41 (603) 69 (268) 26 (237) 93 (215) |
k = 9 proven composite by partial algebraic factors. |
635 | 52 | 3, 53 | k = = 1 mod 2 (2) k = = 1 mod 317 (317) |
none - proven | 6 (36162) 38 (35438) 28 (333) 40 (133) 2 (42) 10 (39) 44 (28) 22 (23) 50 (22) 8 (22) |
||
636 | 27 | 7, 13 | All k where k = m^2 and m = = 5 or 8 mod 13: for even n let k = m^2 and let n = 2*q; factors to: (m*636^q - 1) * (m*636^q + 1) odd n: factor of 13 |
k = = 1 mod 5 (5) k = = 1 mod 127 (127) |
9 (1M) | 14 (2231) 22 (23) 12 (14) 17 (3) 5 (3) 20 (2) 19 (2) 13 (2) 2 (2) 24 (1) |
k = 25 proven composite by partial algebraic factors. |
637 | 144 | 11, 29 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 53 (53) |
none - proven | 32 (18096) 8 (722) 36 (279) 48 (55) 140 (28) 128 (15) 66 (14) 120 (12) 104 (11) 62 (9) |
||
638 | 70 | 3, 71 | k = = 1 mod 7 (7) k = = 1 mod 13 (13) |
7 (300K) 11 (300K) 49 (300K) 59 (300K) |
25 (20295) 26 (2826) 34 (237) 23 (230) 2 (90) 24 (59) 62 (52) 67 (43) 68 (22) 35 (22) |
||
639 | 2136 | 5, 7, 19, 499 | (Condition 1): All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*639^q - 1) * (m*639^q + 1) odd n: factor of 5 (Condition 2): All k where k = 71*m^2 and m = = 1 or 4 mod 5: even n: factor of 5 for odd n let k = 71*m^2 and let n=2*q-1; factors to: [m*3^n*71^q - 1] * [m*3^n*71^q + 1] |
k = = 1 mod 2 (2) k = = 1 mod 11 (11) k = = 1 mod 29 (29) |
176 (300K) 464 (300K) 566 (300K) 604 (300K) 626 (300K) 816 (300K) 1124 (300K) 1194 (300K) 1576 (300K) 1626 (300K) 1646 (300K) 1954 (300K) 1964 (300K) |
400 (265307) 1756 (187277) 926 (180181) 1836 (120909) 1334 (86774) 382 (59408) 1196 (54973) 1866 (54741) 996 (47739) 564 (46820) |
k = 4, 64, 324, 484, 1444, and 1764 proven composite by condition 1. k = 1136 proven composite by condition 2. |
640 | 10349 | 7, 13, 37, 157 | k = = 1 mod 3 (3) k = = 1 mod 71 (71) |
35 k's remaining at n=100K. See k's at Riesel Base 640 remain. |
2565 (98637) 3446 (98234) 4091 (96387) 7290 (81358) 875 (80166) 2642 (80145) 8891 (77217) 2876 (71982) 2219 (68460) 7326 (64822) |
||
641 | 298 | 3, 7, 13, 67 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) |
44 (300K) 88 (300K) 108 (300K) 134 (300K) 158 (300K) 170 (300K) 218 (300K) 268 (300K) |
38 (158070) 214 (42969) 148 (10451) 184 (7817) 224 (6450) 142 (6323) 238 (5919) 114 (2714) 200 (1264) 194 (1170) |
||
642 | 3214 | 5, 17, 643 | k = = 1 mod 641 (641) | 57 k's remaining at n=100K. See k's at Riesel Base 642 remain. |
72 (96360) 733 (90458) 2237 (77737) 124 (77733) 2842 (77396) 480 (76579) 2174 (69252) 2401 (65723) 1223 (64099) 2367 (62258) |
||
643 | 300 | 7, 23 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 107 (107) |
114 (300K) 206 (300K) |
174 (192540) 162 (29547) 216 (16186) 102 (7971) 8 (5573) 104 (1732) 146 (554) 296 (287) 2 (202) 50 (159) |
||
644 | 4 | 3, 5 | k = = 1 mod 643 (643) | none - proven | 2 (8) 3 (1) |
||
645 | 18 | 17, 19 | All k where k = m^2 and m = = 4 or 13 mod 17: for even n let k = m^2 and let n = 2*q; factors to: (m*645^q - 1) * (m*645^q + 1) odd n: factor of 17 |
k = = 1 mod 2 (2) k = = 1 mod 7 (7) k = = 1 mod 23 (23) |
none - proven | 6 (8) 12 (4) 14 (1) 10 (1) 4 (1) 2 (1) |
k = 16 proven composite by partial algebraic factors. |
646 | 30410 | 7, 13, 31, 647 | k = = 1 mod 3 (3) k = = 1 mod 5 (5) k = = 1 mod 43 (43) |
85 k's remaining at n=100K. See k's at Riesel Base 646 remain. |
25827 (96252) 26352 (89063) 2109 (87855) 22163 (87050) 14795 (82703) 19167 (78254) 4533 (77865) 14855 (69214) 22967 (67014) 29474 (65760) |
||
647 | 688 | 3, 5, 41 | k = = 1 mod 2 (2) k = = 1 mod 17 (17) k = = 1 mod 19 (19) |
4 (100K) 50 (100K) 74 (100K) 82 (100K) 116 (100K) 128 (100K) 196 (100K) 212 (100K) 228 (100K) 254 (100K) 298 (100K) 314 (100K) 328 (100K) 344 (100K) 394 (100K) 412 (100K) 452 (100K) 472 (100K) 478 (100K) 538 (100K) 542 (100K) 622 (100K) 624 (100K) 634 (100K) 658 (100K) |
418 (65555) 178 (58827) 380 (48780) 94 (35643) 598 (33951) 416 (33330) 620 (22404) 2 (21576) 288 (9675) 284 (9216) |
||
648 | 237 | 5, 59, 137 | k = = 1 mod 647 (647) | 21 (500K) 186 (500K) 188 (500K) |
43 (146608) 94 (111133) 71 (74273) 120 (60652) 82 (32667) 100 (25665) 235 (12076) 131 (9334) 206 (4574) 113 (3010) |
||
649 | 14 | 5, 13 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) |
none - proven | 12 (792) 6 (11) 8 (4) 2 (1) |
||
650 | 8 | 3, 7 | k = = 1 mod 11 (11) k = = 1 mod 59 (59) |
none - proven | 4 (498101) 6 (6) 5 (2) 2 (2) 7 (1) 3 (1) |
||
651 | 4965144 | 163, 313, 677 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 13 (13) |
14902 k's remaining at n=2.5K. To be shown later. | 4531954 (2500) 3469074 (2500) 2851508 (2500) 1651034 (2500) 1434562 (2500) 4949072 (2499) 4255380 (2499) 3588660 (2499) 2298838 (2499) 754018 (2499) |
||
652 | 600759 | 5, 13, 43, 139, 653 | All k where k = m^2 and m = = 149 or 504 mod 653: for even n let k = m^2 and let n = 2*q; factors to: (m*652^q - 1) * (m*652^q + 1) odd n: factor of 653 |
k = = 1 mod 3 (3) k = = 1 mod 7 (7) k = = 1 mod 31 (31) |
4946 k's remaining at n=10K. See k's at Riesel Base 652 remain. |
434234 (9984) 135884 (9984) 103442 (9969) 362451 (9962) 95723 (9959) 595523 (9948) 183393 (9948) 118139 (9943) 50612 (9933) 340686 (9923) |
k = 254016 proven composite by partial algebraic factors. |
653 | 110 | 3, 109 | k = = 1 mod 2 (2) k = = 1 mod 163 (163) |
4 (300K) 32 (300K) 58 (300K) 64 (300K) 82 (300K) 88 (300K) |
70 (10163) 102 (612) 78 (449) 30 (381) 36 (227) 16 (189) 104 (140) 8 (80) 20 (68) 86 (54) |
||
654 | 261 | 5, 131 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*654^q - 1) * (m*654^q + 1) odd n: factor of 5 |
k = = 1 mod 653 (653) | 30 (300K) 53 (300K) 56 (300K) 79 (300K) 100 (300K) 204 (300K) 219 (300K) 236 (300K) 239 (300K) |
44 (132422) 132 (73231) 136 (67671) 124 (62210) 114 (37634) 176 (2167) 3 (920) 238 (732) 174 (480) 196 (453) |
k = 4, 9, 49, 64, 144, and 169 proven composite by partial algebraic factors. |
655 | 3294 | 7, 37, 79 | All k where k = m^2 and m = = 9 or 32 mod 41: for even n let k = m^2 and let n = 2*q; factors to: (m*655^q - 1) * (m*655^q + 1) odd n: factor of 41 |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 109 (109) |
128 (300K) 204 (300K) 302 (300K) 1926 (300K) 1988 (300K) 2010 (300K) 2418 (300K) 2480 (300K) 2796 (300K) 2912 (300K) |
1682 (218457) 800 (143586) 3266 (95571) 3060 (83770) 1344 (78757) 8 (53008) 1136 (50961) 2276 (45506) 1574 (40078) 288 (32675) |
No k's proven composite by algebraic factors. |
656 | 74 | 3, 73 | k = = 1 mod 5 (5) k = = 1 mod 131 (131) |
none - proven | 20 (878) 50 (734) 40 (393) 17 (198) 29 (140) 65 (124) 5 (90) 55 (61) 47 (54) 72 (48) |
||
657 | 22 | 5, 7, 97 | k = = 1 mod 2 (2) k = = 1 mod 41 (41) |
none - proven | 4 (121) 16 (83) 8 (23) 14 (21) 2 (10) 18 (4) 20 (2) 6 (2) 12 (1) 10 (1) |
||
658 | 22407 | 5, 13, 659 | k = = 1 mod 3 (3) k = = 1 mod 73 (73) |
98 k's remaining at n=100K. See k's at Riesel Base 658 remain. |
5897 (92752) 9716 (83511) 11262 (81960) 16938 (80656) 5769 (79672) 38 (79568) 7827 (75162) 16271 (71253) 11556 (70065) 11657 (69443) |
||
659 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 1 mod 7 (7) k = = 1 mod 47 (47) |
none - proven | 2 (2) | ||
660 | 322567 | 37, 61, 661 | All k where k = m^2 and m = = 106 or 555 mod 661: for even n let k = m^2 and let n = 2*q; factors to: (m*660^q - 1) * (m*660^q + 1) odd n: factor of 661 |
k = = 1 mod 659 (659) | 3922 k's remaining at n=10K. See k's at Riesel Base 660 remain. |
245890 (10000) 313244 (9992) 232318 (9991) 157819 (9989) 213203 (9981) 321904 (9976) 110380 (9968) 246359 (9965) 273534 (9963) 78733 (9962) |
k = 11236 and 308025 proven composite by partial algebraic factors. |
662 | 14 | 3, 13 | k = = 1 mod 661 (661) | 7 (600K) | 2 (16590) 11 (13306) 13 (1783) 5 (142) 12 (14) 8 (4) 3 (4) 9 (3) 6 (3) 10 (1) |
||
663 | 1244 | 5, 83, 113 | k = = 1 mod 2 (2) k = = 1 mod 331 (331) |
408 (300K) 414 (300K) 452 (300K) 900 (300K) |
456 (66051) 848 (57568) 662 (47556) 642 (44098) 1126 (33742) 114 (28673) 24 (27791) 366 (25498) 1226 (16973) 1052 (13804) |
||
664 | 6 | 5, 7 | k = = 1 mod 3 (3) k = = 1 mod 13 (13) k = = 1 mod 17 (17) |
none - proven | 3 (17) 5 (1) 2 (1) |
||
665 | 38 | 3, 37 | All k where k = m^2 and m = = 6 or 31 mod 37: for even n let k = m^2 and let n = 2*q; factors to: (m*665^q - 1) * (m*665^q + 1) odd n: factor of 37 |
k = = 1 mod 2 (2) k = = 1 mod 83 (83) |
8 (400K) | 14 (1702) 34 (59) 26 (16) 2 (12) 10 (7) 28 (3) 12 (3) 32 (2) 20 (2) 30 (1) |
k = 36 proven composite by partial algebraic factors. |
666 | 898 | 23, 29 | All k where k = m^2 and m = = 12 or 17 mod 29: for even n let k = m^2 and let n = 2*q; factors to: (m*666^q - 1) * (m*666^q + 1) odd n: factor of 29 |
k = = 1 mod 5 (5) k = = 1 mod 7 (7) k = = 1 mod 19 (19) |
none - proven | 139 (178851) 74 (60158) 753 (5768) 620 (4286) 417 (2321) 219 (2189) 672 (1199) 408 (724) 283 (635) 597 (634) |
k = 144 and 289 proven composite by partial algebraic factors. |
667 | 834 | 5, 17, 167 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 37 (37) |
288 (300K) 344 (300K) |
258 (37866) 632 (28650) 458 (25155) 500 (12724) 396 (10731) 696 (8087) 776 (5807) 168 (5611) 812 (5024) 692 (3330) |
||
668 | 14 | 3, 5, 13 | k = = 1 mod 23 (23) k = = 1 mod 29 (29) |
11 (400K) | 2 (486) 5 (330) 7 (67) 12 (59) 13 (41) 8 (4) 10 (1) 9 (1) 6 (1) 4 (1) |
||
669 | 66 | 5, 67 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*669^q - 1) * (m*669^q + 1) odd n: factor of 5 |
k = = 1 mod 2 (2) k = = 1 mod 167 (167) |
none - proven | 44 (3132) 2 (2787) 30 (78) 50 (43) 54 (28) 14 (26) 58 (15) 38 (14) 60 (7) 52 (3) |
k = 4 and 64 proven composite by partial algebraic factors. |
670 | 243 | 11, 61 | k = = 1 mod 3 (3) k = = 1 mod 223 (223) |
none - proven | 32 (79644) 210 (4277) 45 (1053) 65 (658) 44 (436) 42 (283) 36 (251) 56 (183) 191 (173) 75 (151) |
||
671 | 8 | 3, 7 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 67 (67) |
none - proven | 2 (2) 4 (1) |
||
672 | 41440 | 13, 19, 1831 | All k where k = m^2 and m = = 58 or 615 mod 673: for even n let k = m^2 and let n = 2*q; factors to: (m*672^q - 1) * (m*672^q + 1) odd n: factor of 673 |
k = = 1 mod 11 (11) k = = 1 mod 61 (61) |
407 k's remaining at n=25K. See k's at Riesel Base 672 remain. |
35917 (24981) 20944 (24536) 14023 (24418) 23139 (24384) 17761 (24315) 3802 (24252) 6578 (24250) 26679 (23669) 36343 (23407) 8524 (23125) |
k = 3364 proven composite by partial algebraic factors. |
673 | 1617938 | 5, 13, 19, 97, 337 | All k where k = m^2 and m = = 148 or 189 mod 337: for even n let k = m^2 and let n = 2*q; factors to: (m*673^q - 1) * (m*673^q + 1) odd n: factor of 337 |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 7 (7) |
14781 k's remaining at n=2.5K. To be shown later. | 1350324 (2500) 630998 (2500) 1581906 (2499) 776024 (2499) 1616052 (2498) 1334732 (2498) 757736 (2498) 356876 (2498) 939546 (2497) 916844 (2497) |
k = 675684 and 1440000 proven composite by partial algebraic factors. |
674 | 4 | 3, 5 | k = = 1 mod 673 (673) | none - proven | 3 (38) 2 (12) |
||
675 | 37816 | 7, 13, 631, 2521 | (Condition 1): All k where k = m^2 and m = = 5 or 8 mod 13: for even n let k = m^2 and let n = 2*q; factors to: (m*675^q - 1) * (m*675^q + 1) odd n: factor of 13 (Condition 2): All k where k = 3*m^2 and m = = 3 or 10 mod 13: even n: factor of 13 for odd n let k = 3*m^2 and let n=2*q-1; factors to: [m*15^n*3^q - 1] * [m*15^n*3^q + 1] |
k = = 1 mod 2 (2) k = = 1 mod 337 (337) |
185 k's remaining at n=100K. See k's at Riesel Base 675 remain. |
22938 (95472) 3678 (94862) 19616 (92808) 32280 (92767) 870 (88674) 30726 (84414) 37350 (83865) 29132 (77276) 34722 (75936) 14494 (75636) |
k = 64, 324, 1156, 1936, 3600, 4900, 7396, 9216, 12544, 14884, 19044,
21904, 26896, 30276, and 36100 proven composite by condition 1. k = 300, 768, 3888, 5292, 11532, 13872, 23232, and 26508 proven composite by condition 2. |
676 | 149 | 7, 31, 37 | All k = m^2 for all n; factors to: (m*26^n - 1) * (m*26^n + 1) |
k = = 1 mod 3 (3) k = = 1 mod 5 (5) |
none - proven | 32 (4906) 80 (191) 128 (150) 114 (71) 65 (50) 30 (36) 90 (23) 72 (23) 23 (14) 102 (12) |
k = 9 and 144 proven composite by full algebraic factors. |
677 | 112 | 3, 113 | k = = 1 mod 2 (2) k = = 1 mod 13 (13) |
60 (300K) 74 (300K) 86 (300K) 94 (300K) |
104 (89520) 38 (40390) 84 (36944) 58 (3959) 56 (3078) 78 (1694) 10 (1361) 44 (540) 82 (325) 32 (278) |
||
678 | 195 | 7, 97 | k = = 1 mod 677 (677) | 41 (300K) 55 (300K) 57 (300K) 118 (300K) 139 (300K) |
50 (140989) 127 (130375) 161 (92085) 49 (86691) 25 (85037) 6 (40858) 19 (30245) 85 (16215) 24 (3985) 162 (2399) |
||
679 | 186 | 5, 17 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*679^q - 1) * (m*679^q + 1) odd n: factor of 5 |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 113 (113) |
174 (400K) | 24 (14350) 66 (6943) 116 (1063) 104 (258) 14 (176) 84 (86) 120 (51) 126 (33) 158 (29) 54 (28) |
k = 144 proven composite by partial algebraic factors. |
680 | 226 | 3, 227 | k = = 1 mod 7 (7) k = = 1 mod 97 (97) |
none - proven | 116 (58870) 59 (27590) 101 (16836) 223 (16443) 16 (10115) 175 (8427) 74 (6678) 47 (1074) 181 (775) 94 (739) |
||
681 | 32 | 11, 31 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 17 (17) |
none - proven | 30 (246) 4 (219) 22 (34) 28 (8) 8 (7) 10 (4) 24 (2) 20 (1) 14 (1) 12 (1) |
||
682 | 40979 | 5, 7, 13, 683, 1543 | k = = 1 mod 3 (3) k = = 1 mod 227 (227) |
209 k's remaining at n=100K. See k's at Riesel Base 682 remain. |
4983 (97720) 23774 (97496) 11418 (96340) 14208 (95472) 40718 (95444) 10127 (94050) 39512 (93549) 5684 (93061) 28794 (93008) 36162 (92404) |
||
683 | 20 | 3, 19 | k = = 1 mod 2 (2) k = = 1 mod 11 (11) k = = 1 mod 31 (31) |
none - proven | 14 (1124) 2 (540) 18 (36) 8 (8) 16 (3) 6 (2) 10 (1) 4 (1) |
||
684 | 46 | 5, 29, 73 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*684^q - 1) * (m*684^q + 1) odd n: factor of 5 |
k = = 1 mod 683 (683) | 39 (400K) | 38 (1065) 31 (579) 41 (95) 45 (75) 14 (58) 44 (54) 42 (38) 6 (19) 34 (18) 30 (11) |
k = 4 and 9 proven composite by partial algebraic factors. |
685 | 518792 | 7, 13, 61, 12049 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 19 (19) |
3654 k's remaining at n=10K. See k's at Riesel Base 685 remain. |
153546 (9993) 156906 (9985) 373668 (9961) 150440 (9940) 26564 (9938) 180942 (9930) 393072 (9927) 94856 (9922) 378758 (9896) 41082 (9864) |
||
686 | 230 | 3, 229 | k = = 1 mod 5 (5) k = = 1 mod 137 (137) |
32 (300K) 92 (300K) |
199 (215171) 44 (66942) 104 (29844) 4 (16583) 225 (2699) 224 (1966) 160 (815) 40 (711) 147 (610) 17 (402) |
||
687 | 4686 | 5, 43, 109 | k = = 1 mod 2 (2) k = = 1 mod 7 (7) |
418 (300K) 816 (300K) 924 (300K) 1418 (300K) 1524 (300K) 1644 (300K) 2256 (300K) 3598 (300K) 4000 (300K) 4084 (300K) 4170 (300K) 4368 (300K) |
676 (282491) 2154 (263317) 4508 (204090) 1958 (198762) 4356 (142063) 656 (89119) 2008 (75320) 3756 (72985) 3012 (67569) 1504 (64896) |
||
688 | 105 | 13, 53 | k = = 1 mod 3 (3) k = = 1 mod 229 (229) |
9 (400K) | 27 (8779) 102 (2934) 62 (2250) 92 (2107) 81 (431) 12 (396) 56 (393) 60 (350) 101 (202) 15 (94) |
||
689 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 1 mod 43 (43) |
none - proven | 2 (2) | ||
691 | 4306490 | 7, 13, 19, 173, 193 | All k where k = m^2 and m = = 80 or 93 mod 173: for even n let k = m^2 and let n = 2*q; factors to: (m*691^q - 1) * (m*691^q + 1) odd n: factor of 173 |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 5 (5) k = = 1 mod 23 (23) |
27776 k's remaining at n=2.5K. To be shown later. | 3224714 (2500) 3151548 (2500) 2824604 (2500) 2391132 (2500) 945024 (2500) 308472 (2500) 2966118 (2499) 2709702 (2499) 4123182 (2498) 2440848 (2498) |
k = 374544 and 2722500 proven composite by partial algebraic factors. |
692 | 8 | 3, 7 | k = = 1 mod 691 (691) | none - proven | 6 (45446) 7 (1041) 2 (8) 3 (6) 5 (2) 4 (1) |
||
693 | 14922 | 5, 17, 347 | k = = 1 mod 2 (2) k = = 1 mod 173 (173) |
47 k's remaining at n=100K. See k's at Riesel Base 693 remain. |
1244 (92821) 3884 (89024) 4220 (80535) 1342 (70479) 8212 (67930) 9368 (63446) 1024 (56043) 10622 (55822) 11806 (55141) 3722 (54052) |
||
694 | 279 | 5, 139 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*694^q - 1) * (m*694^q + 1) odd n: factor of 5 |
k = = 1 mod 3 (3) k = = 1 mod 7 (7) k = = 1 mod 11 (11) |
96 (500K) 264 (500K) |
72 (12120) 194 (6180) 249 (3724) 219 (3038) 41 (1803) 101 (1615) 128 (870) 266 (389) 27 (314) 66 (233) |
k = 9 proven composite by partial algebraic factors. |
695 | 28 | 3, 29 | k = = 1 mod 2 (2) k = = 1 mod 347 (347) |
26 (400K) | 14 (9970) 6 (384) 4 (149) 2 (10) 20 (8) 12 (7) 8 (4) 24 (2) 18 (2) 22 (1) |
||
696 | 288 | 17, 41 | All k where k = m^2 and m = = 4 or 13 mod 17: for even n let k = m^2 and let n = 2*q; factors to: (m*696^q - 1) * (m*696^q + 1) odd n: factor of 17 |
k = = 1 mod 5 (5) k = = 1 mod 139 (139) |
152 (500K) 225 (500K) |
165 (14317) 119 (4557) 203 (2224) 239 (1873) 188 (1381) 145 (786) 100 (473) 125 (469) 4 (425) 118 (394) |
k = 169 proven composite by partial algebraic factors. |
697 | 4536 | 5, 13, 349 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 29 (29) |
8 (300K) 554 (300K) 746 (300K) 1178 (300K) 1604 (300K) 1682 (300K) 1782 (300K) 2592 (300K) 2616 (300K) 2634 (300K) 2744 (300K) 3840 (300K) 4106 (300K) 4188 (300K) 4298 (300K) 4386 (300K) 4524 (300K) |
3066 (242498) 2588 (211483) 2172 (210354) 4302 (97021) 2858 (58334) 1028 (48747) 924 (48689) 734 (23653) 1992 (20194) 2574 (18825) |
||
698 | 232 | 3, 233 | k = = 1 mod 17 (17) k = = 1 mod 41 (41) |
13 (300K) 29 (300K) 55 (300K) 62 (300K) 97 (300K) 119 (300K) 133 (300K) 146 (300K) 158 (300K) 164 (300K) 170 (300K) 178 (300K) 187 (300K) 191 (300K) 202 (300K) 209 (300K) 221 (300K) |
20 (236810) 2 (127558) 196 (54737) 26 (53474) 94 (47531) 71 (44086) 177 (40043) 134 (37348) 64 (29339) 95 (26270) |
||
699 | 6 | 5, 7 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*699^q - 1) * (m*699^q + 1) odd n: factor of 5 |
k = = 1 mod 2 (2) k = = 1 mod 349 (349) |
none - proven | 2 (3) | k = 4 proven composite by partial algebraic factors. |
701 | 14 | 3, 13 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 7 (7) |
none - proven | 10 (31) 12 (2) 2 (2) 4 (1) |
||
702 | 75 | 19, 37 | All k where k = m^2 and m = = 6 or 31 mod 37: for even n let k = m^2 and let n = 2*q; factors to: (m*702^q - 1) * (m*702^q + 1) odd n: factor of 37 |
k = = 1 mod 701 (701) | 32 (400K) | 23 (1978) 4 (615) 20 (575) 38 (167) 39 (77) 24 (68) 37 (66) 67 (57) 44 (33) 71 (29) |
k = 36 proven composite by partial algebraic factors. |
703 | 4454 | 5, 11, 73 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 13 (13) |
384 (300K) 494 (300K) 518 (300K) 714 (300K) 758 (300K) 1044 (300K) 1902 (300K) 1992 (300K) 2144 (300K) 2652 (300K) 2762 (300K) 2892 (300K) 3422 (300K) 3488 (300K) |
4056 (167545) 3596 (94090) 4368 (62145) 3266 (55570) 2292 (33682) 2694 (31112) 3024 (30984) 120 (28666) 1506 (26182) 4310 (20265) |
||
704 | 4 | 3, 5 | k = = 1 mod 19 (19) k = = 1 mod 37 (37) |
none - proven | 2 (62034) 3 (1) |
||
705 | 1881842 | 7, 13, 353, 1447 | (Condition 1): All k where k = m^2 and m = = 42 or 311 mod 353: for even n let k = m^2 and let n = 2*q; factors to: (m*705^q - 1) * (m*705^q + 1) odd n: factor of 353 (Condition 2): All k where k = 705*m^2 and m = = 42 or 311 mod 353: [Reverse condition 1] |
k = = 1 mod 2 (2) k = = 1 mod 11 (11) |
16419 k's remaining at n=2.5K. To be shown later. | 1248882 (2500) 1120068 (2500) 1071348 (2500) 1815740 (2499) 1718602 (2499) 1593894 (2499) 646402 (2499) 519704 (2499) 813562 (2498) 1266656 (2497) |
k = 1764, 440896, 559504. and 1876900 proven composite by condition 1. k = 1243620 proven composite by condition 2. |
706 | 302 | 7, 101 | k = = 1 mod 3 (3) k = = 1 mod 5 (5) k = = 1 mod 47 (47) |
none - proven | 83 (126486) 155 (38075) 174 (18016) 27 (8450) 29 (8181) 12 (3271) 129 (2160) 282 (1338) 69 (1226) 239 (563) |
||
707 | 14 | 3, 5, 13 | k = = 1 mod 2 (2) k = = 1 mod 353 (353) |
none - proven | 12 (10572) 2 (350) 8 (4) 4 (3) 10 (1) 6 (1) |
||
708 | 41121 | 5, 29, 709 | All k where k = m^2 and m = = 96 or 613 mod 709: for even n let k = m^2 and let n = 2*q; factors to: (m*708^q - 1) * (m*708^q + 1) odd n: factor of 709 |
k = = 1 mod 7 (7) k = = 1 mod 101 (101) |
236 k's remaining at n=100K. See k's at Riesel Base 708 remain. |
10379 (99336) 10080 (99306) 22503 (98384) 30875 (98156) 27979 (96123) 4889 (95564) 16988 (93630) 33712 (90648) 15761 (90165) 19803 (89010) |
k = 9216 proven composite by partial algebraic factors. |
709 | 924 | 5, 71 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*709^q - 1) * (m*709^q + 1) odd n: factor of 5 |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 59 (59) |
174 (300K) 234 (300K) 354 (300K) 746 (300K) 774 (300K) 776 (300K) |
834 (227380) 170 (183988) 606 (137687) 408 (75507) 218 (47512) 18 (12638) 864 (9624) 300 (7511) 216 (5227) 344 (5224) |
k = 144 and 324 proven composite by partial algebraic factors. |
710 | 80 | 3, 79 | k = = 1 mod 709 (709) | 8 (300K) 14 (300K) 47 (300K) 49 (300K) |
35 (137282) 77 (23672) 59 (10818) 34 (1009) 60 (768) 13 (293) 55 (287) 38 (256) 5 (108) 70 (71) |
||
711 | 4540 | 7, 13, 19, 89 | All k where k = m^2 and m = = 34 or 55 mod 89: for even n let k = m^2 and let n = 2*q; factors to: (m*88^q - 1) * (m*88^q + 1) odd n: factor of 89 |
k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 71 (71) |
90 (300K) 120 (300K) 588 (300K) 1010 (300K) 1082 (300K) 1262 (300K) 1418 (300K) 1654 (300K) 1920 (300K) 1964 (300K) 2178 (300K) 2648 (300K) 2830 (300K) 3084 (300K) 4104 (300K) |
1660 (130087) 2752 (97111) 3784 (95479) 2402 (86242) 2712 (75859) 2580 (74296) 4390 (69109) 1352 (65558) 2482 (55587) 1490 (41276) |
No k's proven composite by algebraic factors. |
712 | 185 | 23, 31 | k = = 1 mod 3 (3) k = = 1 mod 79 (79) |
47 (1M) | 51 (202369) 114 (127240) 183 (91958) 93 (29415) 164 (24132) 59 (22200) 158 (11611) 78 (2635) 83 (1364) 33 (1350) |
||
713 | 8 | 3, 7 | k = = 1 mod 2 (2) k = = 1 mod 89 (89) |
none - proven | 6 (2) 2 (2) 4 (1) |
||
714 | 12 | 11, 13 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*714^q - 1) * (m*714^q + 1) odd n: factor of 5 |
k = = 1 mod 23 (23) k = = 1 mod 31 (31) |
none - proven | 7 (6) 10 (2) 5 (2) 11 (1) 8 (1) 6 (1) 3 (1) 2 (1) |
k = 4 and 9 proven composite by partial algebraic factors. |
715 | 9745298 | 19, 97, 179, 277 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 7 (7) k = = 1 mod 17 (17) |
14622 k's remaining at n=2.5K. To be shown later. | 9020346 (2500) 5024796 (2500) 4040046 (2500) 2312904 (2500) 5700606 (2499) 5512604 (2499) 7869428 (2498) 8360036 (2497) 7342190 (2497) 670616 (2497) |
||
716 | 238 | 3, 239 | k = = 1 mod 5 (5) k = = 1 mod 11 (11) k = = 1 mod 13 (13) |
38 (300K) 95 (300K) 190 (300K) 200 (300K) |
134 (105548) 107 (17014) 123 (11523) 194 (6010) 2 (4870) 109 (4559) 29 (4054) 117 (3831) 179 (2898) 233 (1972) |
||
717 | 30514 | 5, 7, 13, 37, 359 | k = = 1 mod 2 (2) k = = 1 mod 179 (179) |
203 k's remaining at n=100K. See k's at Riesel Base 717 remain. |
23918 (97172) 19972 (96525) 27578 (94571) 19156 (93329) 23616 (93182) 8988 (92464) 19574 (91105) 10388 (91002) 544 (88719) 4762 (87269) |
||
718 | 1023 | 7, 13, 61 | k = = 1 mod 3 (3) k = = 1 mod 239 (239) |
9 (100K) 62 (100K) 74 (100K) 225 (100K) 237 (100K) 302 (100K) 324 (100K) 443 (100K) 477 (100K) 573 (100K) 590 (100K) 653 (100K) 693 (100K) 702 (100K) 732 (100K) 788 (100K) 809 (100K) 867 (100K) 872 (100K) 893 (100K) 1016 (100K) 1017 (100K) |
648 (93334) 645 (70853) 596 (59239) 120 (58837) 789 (51476) 491 (45713) 119 (37456) 239 (31831) 273 (30086) 851 (24334) |
||
719 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 1 mod 359 (359) |
none - proven | 2 (84) | ||
720 | 104 | 7, 103 | k = = 1 mod 719 (719) | 20 (300K) 27 (300K) 83 (300K) |
99 (71291) 102 (58992) 78 (6149) 63 (4782) 8 (1675) 86 (114) 62 (82) 23 (77) 5 (76) 31 (62) |
||
721 | 3966270 | 19, 61, 4261 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 5 (5) |
21072 k's remaining at n=2.5K. To be shown later. | 3727742 (2500) 3192302 (2500) 2945300 (2500) 2778234 (2500) 2755664 (2500) 1375052 (2499) 1246838 (2499) 356418 (2499) 209372 (2499) 2942852 (2498) |
||
722 | 242 | 3, 241 | k = = 1 mod 7 (7) k = = 1 mod 103 (103) |
41 (300K) 56 (300K) 73 (300K) 86 (300K) 97 (300K) 158 (300K) 194 (300K) 206 (300K) |
220 (149255) 221 (136558) 19 (65865) 100 (20591) 217 (16893) 191 (16022) 205 (10521) 89 (9068) 26 (5302) 149 (4092) |
||
723 | 12852 | 5, 13, 181 | All k where k = m^2 and m = = 19 or 162 mod 181: for even n let k = m^2 and let n = 2*q; factors to: (m*723^q - 1) * (m*723^q + 1) odd n: factor of 181 |
k = = 1 mod 2 (2) k = = 1 mod 19 (19) |
85 k's remaining at n=100K. See k's at Riesel Base 723 remain. |
11732 (97020) 9802 (96424) 11098 (91890) 2592 (91434) 9374 (90745) 5868 (89106) 9024 (88081) 3626 (84563) 8592 (73872) 492 (73624) |
No k's proven composite by algebraic factors. |
724 | 59 | 5, 29 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*724^q - 1) * (m*724^q + 1) odd n: factor of 5 |
k = = 1 mod 3 (3) k = = 1 mod 241 (241) |
none - proven | 48 (106132) 44 (15530) 57 (2956) 17 (1082) 39 (448) 27 (292) 6 (263) 24 (232) 26 (89) 21 (19) |
k = 9 proven composite by partial algebraic factors. |
725 | 10 | 3, 11 | k = = 1 mod 2 (2) k = = 1 mod 181 (181) |
none - proven | 2 (102) 4 (3) 8 (2) 6 (1) |
||
726 | 12751579 | 7, 13, 37, 727, 877 | k = = 1 mod 5 (5) k = = 1 mod 29 (29) |
140272 k's remaining at n=2.5K. To be shown later. | 12740674 (2500) 11219549 (2500) 10870937 (2500) 10028574 (2500) 9903640 (2500) 9794419 (2500) 9612582 (2500) 9127358 (2500) 8966609 (2500) 8905805 (2500) |
||
727 | 246 | 7, 13 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 11 (11) |
8 (400K) | 48 (76490) 194 (76084) 156 (43262) 222 (8041) 114 (263) 174 (200) 98 (136) 30 (136) 242 (82) 140 (63) |
||
728 | 212722 | 3, 5, 105997 | k = = 1 mod 727 (727) | 24784 k's remaining at n=2.5K. To be shown later. | 4 (4527) 76982 (2500) 147987 (2499) 185837 (2498) 118466 (2498) 60927 (2498) 206389 (2497) 195406 (2497) 175648 (2497) 188918 (2496) |
||
729 | 74 | 5, 73 | All k = m^2 for all n; factors to: (m*27^n - 1) * (m*27^n + 1) -or- All k = m^3 for all n; factors to: (m*9^n - 1) * (m^2*81^n + m*9^n + 1) |
k = = 1 mod 2 (2) k = = 1 mod 7 (7) k = = 1 mod 13 (13) |
none - proven | 24 (149450) 26 (367) 42 (31) 44 (18) 72 (8) 30 (8) 10 (5) 54 (4) 34 (4) 20 (4) |
k = 4 and 16 proven composite by full algebraic factors. |
730 | 171 | 17, 43 | k = = 1 mod 3 (3) | 170 (400K) | 36 (22937) 81 (9813) 152 (836) 33 (614) 60 (515) 11 (399) 113 (44) 65 (39) 126 (36) 86 (31) |
||
731 | 62 | 3, 61 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 73 (73) |
34 (400K) | 28 (1959) 14 (1142) 32 (1038) 54 (404) 22 (185) 50 (20) 8 (20) 48 (11) 60 (10) 12 (8) |
||
732 | 211836 | 5, 7, 13, 37, 733 | (Condition 1): All k where k = m^2 and m = = 353 or 380 mod 733: for even n let k = m^2 and let n = 2*q; factors to: (m*732^q - 1) * (m*732^q + 1) odd n: factor of 733 (Condition 2): All k where k = 183*m^2 and m = = 27 or 706 mod 733: even n: factor of 733 for odd n let k = 183*m^2 and let n=2*q-1; factors to: [m*2^n*183^q - 1] * [m*2^n*183^q + 1] |
k = = 1 mod 17 (17) k = = 1 mod 43 (43) |
8311 k's remaining at n=2.5K. To be shown later. | 170920 (2500) 96828 (2500) 179349 (2499) 109008 (2499) 12168 (2499) 196202 (2498) 94943 (2498) 6192 (2497) 156968 (2495) 99954 (2495) |
k = 124609 and 144400 proven composite by condition 1. k = 133407 proven composite by condition 2. |
733 | 4038 | 5, 13, 367 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 61 (61) |
366 (100K) 372 (100K) 482 (100K) 704 (100K) 824 (100K) 1046 (100K) 1388 (100K) 1454 (100K) 1676 (100K) 1704 (100K) 1976 (100K) 2058 (100K) 2072 (100K) 2088 (100K) 2150 (100K) 2306 (100K) 2462 (100K) 3348 (100K) 3678 (100K) 3782 (100K) 3818 (100K) 3860 (100K) 3978 (100K) |
2186 (89077) 1730 (85198) 398 (74646) 3336 (70075) 2154 (44037) 3320 (39897) 642 (29896) 2304 (27007) 1350 (26017) 4016 (22701) |
||
734 | 4 | 3, 5 | k = = 1 mod 733 (733) | none - proven | 2 (1082) 3 (23) |
||
735 | 3536594 | 13, 17, 23, 79, 157 | k = = 1 mod 2 (2) k = = 1 mod 367 (367) |
38151 k's remaining at n=2.5K. To be shown later. | 3526814 (2500) 2472522 (2500) 1474642 (2500) 1415552 (2500) 1269086 (2500) 1136210 (2500) 958952 (2500) 596424 (2500) 235692 (2500) 3506562 (2499) |
||
736 | 870 | 11, 67 | k = = 1 mod 3 (3) k = = 1 mod 5 (5) k = = 1 mod 7 (7) |
560 (400K) | 285 (31508) 749 (28425) 32 (19508) 177 (3997) 819 (1263) 590 (1158) 230 (1148) 89 (615) 527 (602) 780 (598) |
||
737 | 40 | 3, 41 | k = = 1 mod 2 (2) k = = 1 mod 23 (23) |
14 (300K) 22 (300K) |
26 (62278) 16 (28623) 28 (20591) 2 (352) 4 (153) 32 (128) 12 (32) 36 (17) 18 (15) 38 (8) |
||
738 | 13738 | 7, 13, 31, 241 | k = = 1 mod 11 (11) k = = 1 mod 67 (67) |
123 k's remaining at n=100K. See k's at Riesel Base 738 remain. |
12587 (97651) 13214 (95620) 6019 (91331) 9412 (88636) 5984 (87644) 2052 (85975) 11867 (84402) 9642 (81883) 1432 (81035) 3384 (79496) |
||
739 | 36 | 5, 37 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 41 (41) |
none - proven | 14 (286) 32 (202) 18 (102) 6 (5) 24 (4) 30 (2) 8 (2) 2 (2) 26 (1) 20 (1) |
||
740 | 14 | 3, 13 | k = = 1 mod 739 (739) | none - proven | 5 (1594) 10 (93) 8 (14) 6 (5) 2 (4) 4 (3) 3 (3) 12 (2) 11 (2) 13 (1) |
||
741 | 160 | 7, 53 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 37 (37) |
none - proven | 64 (111625) 158 (23778) 90 (2468) 78 (353) 48 (260) 148 (39) 80 (29) 132 (28) 104 (26) 72 (7) |
||
742 | 21546 | 5, 29, 743 | k = = 1 mod 3 (3) k = = 1 mod 13 (13) k = = 1 mod 19 (19) |
43 k's remaining at n=100K. See k's at Riesel Base 742 remain. |
11897 (92329) 7503 (89324) 9485 (80404) 2709 (73727) 15503 (66930) 2232 (63636) 8528 (61079) 7982 (58568) 14073 (58498) 14901 (58378) |
||
743 | 32 | 3, 31 | k = = 1 mod 2 (2) k = = 1 mod 7 (7) k = = 1 mod 53 (53) |
14 (400K) | 28 (437) 18 (53) 12 (23) 20 (20) 24 (16) 26 (10) 10 (9) 30 (2) 2 (2) 16 (1) |
||
744 | 299 | 5, 149 | (Condition 1): All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*744^q - 1) * (m*744^q + 1) odd n: factor of 5 (Condition 2): All k where k = 186*m^2 and m = = 1 or 4 mod 5: even n: factor of 5 for odd n let k = 186*m^2 and let n=2*q-1; factors to: [m*2^n*186^q - 1] * [m*2^n*186^q + 1] |
k = = 1 mod 743 (743) | 53 (300K) 116 (300K) 120 (300K) 172 (300K) 191 (300K) 221 (300K) 269 (300K) |
44 (297912) 211 (277219) 236 (60517) 242 (35144) 81 (15009) 84 (14068) 47 (8920) 106 (7691) 229 (7084) 204 (6698) |
k = 4, 9, 49, 64, 144, 169, and 289 proven composite by condition 1. k = 186 proven composite by condition 2. |
745 | 31706 | 7, 13, 61, 373 | All k where k = m^2 and m = = 104 or 269 mod 373: for even n let k = m^2 and let n = 2*q; factors to: (m*745^q - 1) * (m*745^q + 1) odd n: factor of 373 |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 31 (31) |
1160 (350K) 1416 (350K) 3662 (350K) 6894 (350K) 9162 (350K) 9650 (350K) 11964 (350K) 15864 (350K) 18300 (350K) 19770 (350K) 20136 (350K) 22034 (350K) 22500 (350K) 24950 (350K) 25736 (350K) 28080 (350K) 29586 (350K) |
6366 (348190) 22598 (338354) 11138 (297992) 26036 (279261) 21290 (203998) 24510 (177846) 16778 (168179) 20588 (158967) 19338 (141683) 17772 (115942) |
No k's proven composite by algebraic factors. |
746 | 34 | 3, 13, 89 | k = = 1 mod 5 (5) k = = 1 mod 149 (149) |
14 (300K) 25 (300K) |
20 (38608) 30 (444) 18 (405) 29 (284) 4 (81) 2 (62) 15 (40) 33 (10) 32 (6) 7 (5) |
||
747 | 120 | 11, 17 | All k where k = m^2 and m = = 4 or 13 mod 17: for even n let k = m^2 and let n = 2*q; factors to: (m*747^q - 1) * (m*747^q + 1) odd n: factor of 17 |
k = = 1 mod 2 (2) k = = 1 mod 373 (373) |
18 (300K) 32 (300K) 76 (300K) 84 (300K) |
54 (3108) 34 (1805) 4 (525) 56 (125) 44 (124) 74 (113) 108 (71) 58 (70) 24 (63) 42 (42) |
k = 16 proven composite by partial algebraic factors. |
748 | 855 | 7, 107 | k = = 1 mod 3 (3) k = = 1 mod 83 (83) |
174 (300K) 251 (300K) 314 (300K) 384 (300K) 512 (300K) 636 (300K) 809 (300K) |
645 (106115) 477 (92179) 407 (54675) 705 (45651) 372 (30803) 848 (24437) 134 (21791) 102 (13978) 638 (13857) 50 (9405) |
||
749 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 1 mod 11 (11) k = = 1 mod 17 (17) |
none - proven | 2 (2) | ||
750 | 27353 | 13, 37, 1171 | k = = 1 mod 7 (7) k = = 1 mod 107 (107) |
77 k's remaining at n=100K. See k's at Riesel Base 750 remain. |
19435 (99831) 15692 (97783) 21608 (96803) 13330 (95782) 15111 (95653) 23986 (83905) 10962 (80046) 4293 (77894) 22035 (74831) 8362 (70415) |
||
751 | 85682 | 7, 13, 37, 47 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 5 (5) |
233 k's remaining at n=100K. See k's at Riesel Base 751 remain. |
21198 (99381) 39714 (98810) 81828 (96521) 38544 (95704) 17762 (93339) 52350 (92834) 33590 (92231) 33108 (91500) 69644 (90905) 30314 (90680) |
||
752 | 101 | 3, 5, 17 | k = = 1 mod 751 (751) | 8 (300K) 22 (300K) 58 (300K) 64 (300K) 95 (300K) 97 (300K) |
65 (267180) 11 (112210) 59 (70888) 68 (12000) 29 (9580) 66 (4282) 53 (3958) 85 (2271) 82 (2237) 18 (1618) |
||
753 | 144 | 13, 29 | All k where k = m^2 and m = = 5 or 8 mod 13: for even n let k = m^2 and let n = 2*q; factors to: (m*753^q - 1) * (m*753^q + 1) odd n: factor of 13 |
k = = 1 mod 2 (2) k = = 1 mod 47 (47) |
14 (300K) 30 (300K) 88 (300K) 92 (300K) |
46 (8565) 116 (442) 130 (402) 82 (375) 2 (371) 132 (202) 128 (138) 28 (64) 122 (44) 38 (40) |
k = 64 proven composite by partial algebraic factors |
754 | 1056 | 5, 151 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*754^q - 1) * (m*754^q + 1) odd n: factor of 5 |
k = = 1 mod 3 (3) k = = 1 mod 251 (251) |
134 (300K) 171 (300K) 206 (300K) 254 (300K) 321 (300K) 341 (300K) 344 (300K) 389 (300K) 411 (300K) 444 (300K) 461 (300K) 510 (300K) 564 (300K) 966 (300K) 999 (300K) |
509 (58046) 1019 (33492) 849 (25660) 941 (17463) 446 (13815) 857 (12708) 879 (12192) 84 (11970) 789 (10752) 761 (9465) |
k = 9, 144, 324, and 729 proven composite by partial algebraic factors. |
755 | 8 | 3, 7 | k = = 1 mod 2 (2) k = = 1 mod 13 (13) k = = 1 mod 29 (29) |
none - proven | 2 (62) 6 (18) 4 (1) |
||
757 | 27666 | 5, 73, 379 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 7 (7) |
62 k's remaining at n=100K. See k's at Riesel Base 757 remain. |
6794 (96233) 13094 (91669) 18192 (90198) 25632 (86417) 14184 (83819) 25436 (78590) 3792 (78005) 20088 (74127) 5606 (73954) 20268 (67304) |
||
758 | 10 | 3, 11 | k = = 1 mod 757 (757) | none - proven | 4 (15573) 7 (67) 8 (14) 9 (13) 5 (6) 2 (4) 6 (1) 3 (1) |
||
759 | 56 | 5, 19 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*759^q - 1) * (m*759^q + 1) odd n: factor of 5 |
k = = 1 mod 2 (2) k = = 1 mod 379 (379) |
none - proven | 34 (266676) 54 (13722) 18 (2706) 6 (761) 36 (391) 40 (95) 38 (55) 42 (33) 8 (22) 26 (15) |
k = 4 proven composite by partial algebraic factors. |
761 | 128 | 3, 127 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 19 (19) |
32 (400K) | 74 (41682) 14 (34278) 44 (9756) 64 (8845) 94 (8297) 110 (1540) 122 (486) 50 (224) 112 (215) 8 (208) |
||
762 | 8 | 5, 7, 13 | k = = 1 mod 761 (761) | none - proven | 3 (116) 4 (7) 5 (4) 6 (2) 7 (1) 2 (1) |
||
763 | 925778 | 5, 17, 191, 193 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 127 (127) |
11168 k's remaining at n=2.5K. To be shown later. | 92322 (2500) 593352 (2499) 915410 (2497) 458168 (2497) 461594 (2496) 449442 (2495) 385164 (2495) 285234 (2495) 42224 (2495) 627998 (2494) |
||
764 | 4 | 3, 5 | k = = 1 mod 7 (7) k = = 1 mod 109 (109) |
none - proven | 3 (100) 2 (2) |
||
765 | 2114542 | 53, 383, 5521 | k = = 1 mod 2 (2) k = = 1 mod 191 (191) |
25003 k's remaining at n=2.5K. To be shown later. | 1249880 (2500) 334364 (2500) 159878 (2500) 2050544 (2499) 622794 (2499) 229128 (2499) 2106570 (2498) 2060922 (2498) 1853834 (2498) 1957080 (2497) |
||
766 | 1002 | 13, 59 | All k where k = m^2 and m = = 5 or 8 mod 13: for even n let k = m^2 and let n = 2*q; factors to: (m*766^q - 1) * (m*766^q + 1) odd n: factor of 13 |
k = = 1 mod 3 (3) k = = 1 mod 5 (5) k = = 1 mod 17 (17) |
158 (300K) 339 (300K) 365 (300K) 573 (300K) 707 (300K) |
815 (129146) 872 (33605) 104 (12983) 945 (12283) 417 (5873) 794 (5191) 638 (5059) 149 (4796) 950 (3303) 144 (2967) |
No k's proven composite by algebraic factors. |
767 | 172 | 3, 7, 19, 67 | k = = 1 mod 2 (2) k = = 1 mod 383 (383) |
44 (300K) 56 (300K) 58 (300K) 104 (300K) 106 (300K) 144 (300K) |
24 (105791) 38 (21544) 26 (17358) 74 (13980) 100 (1025) 72 (776) 142 (521) 154 (487) 86 (402) 126 (261) |
||
768 | 55367 | 7, 19, 103, 769 | All k where k = m^2 and m = = 62 or 707 mod 769: for even n let k = m^2 and let n = 2*q; factors to: (m*768^q - 1) * (m*768^q + 1) odd n: factor of 769 |
k = = 1 mod 13 (13) k = = 1 mod 59 (59) |
855 k's remaining at n=25K. See k's at Riesel Base 768 remain. |
6 (70213) 28736 (24770) 19409 (24663) 54353 (24638) 32978 (24548) 11234 (24540) 36006 (24465) 2022 (24442) 11512 (24395) 13501 (24385) |
k = 3844 proven composite by partial algebraic factors. |
769 | 6 | 5, 7 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) |
none - proven | 2 (5) | ||
770 | 256 | 3, 257 | k = = 1 mod 769 (769) | 37 (300K) 130 (300K) 178 (300K) 218 (300K) |
107 (240408) 214 (148511) 26 (77040) 125 (54154) 199 (48507) 40 (16313) 32 (10462) 83 (6006) 187 (2627) 179 (1236) |
||
771 | 83954 | 29, 37, 193 | All k where k = m^2 and m = = 81 or 112 mod 193: for even n let k = m^2 and let n = 2*q; factors to: (m*771^q - 1) * (m*771^q + 1) odd n: factor of 193 |
k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 7 (7) k = = 1 mod 11 (11) |
64 k's remaining at n=100K. See k's at Riesel Base 771 remain. |
21310 (99583) 72188 (97781) 69370 (97564) 38840 (93511) 9140 (89197) 82918 (86394) 228 (75856) 26942 (75343) 53182 (75143) 8250 (70449) |
k = 12544 proven composite by partial algebraic factors. |
772 | 27054 | 5, 13, 773 | All k where k = m^2 and m = = 317 or 456 mod 773: for even n let k = m^2 and let n = 2*q; factors to: (m*772^q - 1) * (m*772^q + 1) odd n: factor of 773 |
k = = 1 mod 3 (3) k = = 1 mod 257 (257) |
587 k's remaining at n=25K. See k's at Riesel Base 772 remain. |
11147 (24944) 21824 (24625) 4407 (24590) 8604 (24311) 10217 (24180) 23535 (24124) 6966 (23966) 12719 (23897) 20135 (23785) 4749 (23644) |
No k's proven composite by algebraic factors. |
773 | 44 | 3, 43 | k = = 1 mod 2 (2) k = = 1 mod 193 (193) |
38 (400K) | 34 (14471) 12 (424) 24 (172) 26 (110) 2 (96) 10 (85) 16 (29) 32 (16) 20 (12) 14 (8) |
||
774 | 61 | 5, 31 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*774^q - 1) * (m*774^q + 1) odd n: factor of 5 |
k = = 1 mod 773 (773) | 25 (300K) 30 (300K) |
24 (17938) 29 (8552) 16 (2637) 15 (1937) 44 (1170) 12 (599) 34 (262) 19 (80) 59 (62) 51 (47) |
k = 4, 9, and 49 proven composite by partial algebraic factors. |
775 | 172368 | 13, 97, 1777 | All k where k = m^2 and m = = 22 or 75 mod 97: for even n let k = m^2 and let n = 2*q; factors to: (m*775^q - 1) * (m*775^q + 1) odd n: factor of 97 |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 43 (43) |
537 k's remaining at n=25K. See k's at Riesel Base 775 remain. |
105374 (24812) 45200 (24788) 101270 (24590) 139470 (24551) 82352 (24344) 31518 (24242) 147464 (23999) 33272 (23811) 85998 (23733) 7544 (23694) |
k = 133956 proven composite by partial algebraic factors. |
776 | 8 | 3, 7 | k = = 1 mod 5 (5) k = = 1 mod 31 (31) |
none - proven | 5 (12) 2 (4) 4 (3) 3 (2) 7 (1) |
||
778 | 696 | 5, 17, 41 | All k where k = m^2 and m = = 9 or 32 mod 41: for even n let k = m^2 and let n = 2*q; factors to: (m*778^q - 1) * (m*778^q + 1) odd n: factor of 41 |
k = = 1 mod 3 (3) k = = 1 mod 7 (7) k = = 1 mod 37 (37) |
56 (300K) 404 (300K) 590 (300K) 657 (300K) |
21 (67710) 534 (37871) 248 (3913) 341 (3242) 177 (1704) 474 (1688) 609 (981) 42 (911) 170 (700) 458 (565) |
k = 81 proven composite by partial algebraic factors. |
779 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 1 mod 389 (389) |
none - proven | 2 (220) | ||
780 | 285 | 11, 71 | k = = 1 mod 19 (19) k = = 1 mod 41 (41) |
109 (300K) 122 (300K) |
221 (258841) 25 (19167) 21 (14828) 197 (12296) 43 (11656) 118 (4368) 32 (3286) 211 (1940) 243 (1529) 263 (1158) |
||
781 | 254 | 17, 23 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 5 (5) k = = 1 mod 13 (13) |
none - proven | 50 (3112) 162 (367) 200 (295) 128 (170) 84 (46) 192 (39) 72 (30) 252 (26) 122 (12) 30 (12) |
||
782 | 28 | 3, 29 | k = = 1 mod 11 (11) k = = 1 mod 71 (71) |
14 (400K) | 7 (1685) 18 (510) 20 (16) 13 (11) 8 (8) 15 (7) 27 (4) 17 (4) 2 (4) 25 (3) |
||
783 | 302 | 5, 7, 37 | k = = 1 mod 2 (2) k = = 1 mod 17 (17) k = = 1 mod 23 (23) |
104 (400K) | 258 (118544) 174 (98120) 230 (23156) 74 (18264) 4 (12507) 190 (8687) 6 (5022) 92 (2555) 262 (2250) 250 (1231) |
||
784 | 156 | 5, 157 | All k = m^2 for all n; factors to: (m*28^n - 1) * (m*28^n + 1) |
k = = 1 mod 3 (3) k = = 1 mod 29 (29) |
116 (400K) | 69 (155668) 126 (2771) 84 (1550) 152 (792) 104 (380) 131 (363) 149 (286) 14 (176) 122 (137) 74 (120) |
k = 9, 36, 81, and 144 proven composite by full algebraic factors. |
785 | 130 | 3, 131 | k = = 1 mod 2 (2) k = = 1 mod 7 (7) |
none - proven | 28 (51277) 16 (26599) 94 (23033) 2 (9670) 58 (823) 20 (434) 122 (306) 66 (229) 44 (228) 38 (224) |
||
786 | 37209 | 7, 19, 4651 | k = = 1 mod 5 (5) k = = 1 mod 157 (157) |
472 k's remaining at n=25K. See k's at Riesel Base 786 remain. |
28505 (24796) 17263 (24758) 22359 (24686) 30027 (24201) 24567 (23993) 35904 (23990) 17554 (23883) 29157 (23865) 19847 (23745) 3854 (23525) |
||
787 | 27332 | 5, 7, 13, 37, 151 | All k where k = m^2 and m = = 14 or 183 mod 197: for even n let k = m^2 and let n = 2*q; factors to: (m*787^q - 1) * (m*787^q + 1) odd n: factor of 197 |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 131 (131) |
159 k's remaining at n=100K. See k's at Riesel Base 787 remain. |
5108 (98388) 7188 (90408) 13626 (89481) 848 (88695) 19958 (86955) 26268 (86464) 24414 (84908) 16158 (84752) 3968 (80954) 14832 (75716) |
No k's proven composite by algebraic factors. |
788 | 14 | 3, 5, 13 | k = = 1 mod 787 (787) | none - proven | 9 (11325) 7 (1663) 2 (332) 5 (264) 11 (42) 3 (9) 8 (4) 12 (3) 4 (3) 6 (2) |
||
789 | 236 | 5, 79 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*789^q - 1) * (m*789^q + 1) odd n: factor of 5 |
k = = 1 mod 2 (2) k = = 1 mod 197 (197) |
120 (300K) 126 (300K) |
116 (156635) 146 (151073) 74 (80808) 184 (15372) 54 (3220) 206 (2931) 92 (2288) 234 (1758) 136 (725) 84 (598) |
k = 4, 64, and 144 proven composite by partial algebraic factors. |
790 | 225 | 7, 113 | k = = 1 mod 3 (3) k = = 1 mod 263 (263) |
48 (400K) | 20 (40772) 146 (400) 81 (399) 29 (323) 41 (140) 101 (136) 147 (122) 57 (121) 104 (98) 185 (93) |
||
791 | 10 | 3, 11 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 79 (79) |
none - proven | 8 (4) 2 (4) 4 (1) |
||
792 | 1158 | 13, 61 | (Condition 1): All k where k = m^2 and m = = 5 or 8 mod 13: for even n let k = m^2 and let n = 2*q; factors to: (m*792^q - 1) * (m*792^q + 1) odd n: factor of 13 (Condition 2): All k where k = m^2 and m = = 11 or 50 mod 61: for even n let k = m^2 and let n = 2*q; factors to: (m*792^q - 1) * (m*792^q + 1) odd n: factor of 61 (Condition 3): All k where k = 22*m^2 and m = = 4 or 9 mod 13: even n: factor of 13 for odd n let k = 22*m^2 and let n=2*q-1; factors to: [m*6^n*22^q - 1] * [m*6^n*22^q + 1] (Condition 4): All k where k = 22*m^2 and m = = 5 or 56 mod 61: even n: factor of 61 for odd n let k = 22*m^2 and let n=2*q-1; factors to: [m*6^n*22^q - 1] * [m*6^n*22^q + 1] |
k = = 1 mod 7 (7) k = = 1 mod 113 (113) |
245 (300K) 389 (300K) 417 (300K) 677 (300K) 742 (300K) 818 (300K) 1026 (300K) |
1152 (264617) 1067 (207705) 1111 (190801) 963 (143627) 558 (84648) 198 (74478) 672 (48437) 207 (36384) 560 (35721) 383 (20163) |
k = 25, 324, 441, and 961 proven composite by condition 1. k = 121 proven composite by condition 2. k = 352 proven composite by condition 3. k = 550 proven composite by condition 4. |
793 | 1834536 | 5, 41, 73, 397 | All k where k = m^2 and m = = 63 or 334 mod 397: for even n let k = m^2 and let n = 2*q; factors to: (m*793^q - 1) * (m*793^q + 1) odd n: factor of 397 |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 11 (11) |
18639 k's remaining at n=2.5K. To be shown later. | 469968 (2500) 460572 (2500) 1666676 (2499) 1299960 (2499) 714662 (2499) 1649970 (2498) 1400822 (2498) 612752 (2498) 397778 (2498) 233010 (2498) |
k = 1272384 and 1572516 proven composite by partial algebraic factors. |
794 | 4 | 3, 5 | k = = 1 mod 13 (13) k = = 1 mod 61 (61) |
none - proven | 2 (6) 3 (1) |
||
795 | 5770 | 29, 199, 641 | k = = 1 mod 2 (2) k = = 1 mod 397 (397) |
256 (100K) 338 (100K) 576 (100K) 1148 (100K) 1208 (100K) 1296 (100K) 1322 (100K) 1688 (100K) 1696 (100K) 1764 (100K) 1896 (100K) 1942 (100K) 1976 (100K) 1982 (100K) 2586 (100K) 3144 (100K) 3270 (100K) 3824 (100K) 4178 (100K) 4314 (100K) 4610 (100K) 4744 (100K) 4756 (100K) |
1248 (94478) 5184 (91435) 1852 (87627) 5058 (78597) 2446 (73020) 1478 (72919) 5016 (72081) 1436 (58378) 3222 (54308) 100 (42137) |
||
797 | 8 | 3, 7 | k = = 1 mod 2 (2) k = = 1 mod 199 (199) |
none - proven | 6 (2) 2 (2) 4 (1) |
||
798 | 339 | 5, 13, 17 | All k where k = m^2 and m = = 4 or 13 mod 17: for even n let k = m^2 and let n = 2*q; factors to: (m*798^q - 1) * (m*798^q + 1) odd n: factor of 17 |
k = = 1 mod 797 (797) | 188 (300K) 283 (300K) 307 (300K) |
279 (235749) 322 (104936) 302 (104367) 317 (37478) 186 (10550) 82 (10042) 234 (5052) 271 (4406) 220 (1388) 68 (1374) |
k = 16 and 169 proven composite by partial algebraic factors. |
800 | 88 | 3, 89 | k = = 1 mod 17 (17) k = = 1 mod 47 (47) |
8 (1M) | 25 (124713) 4 (33837) 5 (20508) 23 (20452) 53 (14346) 85 (6307) 77 (3362) 36 (1169) 28 (1089) 73 (937) |
||
802 | 408 | 5, 11, 197 | k = = 1 mod 3 (3) k = = 1 mod 89 (89) |
81 (300K) 128 (300K) 144 (300K) 156 (300K) 218 (300K) 276 (300K) 309 (300K) 329 (300K) 351 (300K) 366 (300K) |
248 (7802) 191 (5649) 159 (4653) 56 (4403) 359 (4389) 287 (3589) 354 (3456) 281 (1895) 219 (1736) 62 (1444) |
||
803 | 68 | 3, 67 | k = = 1 mod 2 (2) k = = 1 mod 401 (401) |
14 (300K) 52 (300K) |
64 (98003) 22 (34391) 44 (12372) 38 (328) 34 (119) 4 (89) 32 (56) 30 (48) 2 (48) 16 (31) |
||
804 | 6 | 5, 7 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*804^q - 1) * (m*804^q + 1) odd n: factor of 5 |
k = = 1 mod 11 (11) k = = 1 mod 73 (73) |
none - proven | 5 (1) 3 (1) 2 (1) |
k = 4 proven composite by partial algebraic factors. |
805 | 92 | 13, 31 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 67 (67) |
none - proven | 90 (2212) 30 (48) 74 (35) 14 (23) 86 (19) 78 (8) 20 (8) 56 (6) 12 (6) 72 (4) |
||
806 | 268 | 3, 269 | k = = 1 mod 5 (5) k = = 1 mod 7 (7) k = = 1 mod 23 (23) |
125 (400K) 214 (400K) |
152 (229984) 27 (71900) 74 (55078) 140 (21738) 203 (19520) 79 (10799) 97 (6167) 202 (3629) 80 (1948) 65 (1834) |
||
807 | 32824 | 5, 101, 521 | All k where k = m^2 and m = = 10 or 91 mod 101: for even n let k = m^2 and let n = 2*q; factors to: (m*807^q - 1) * (m*807^q + 1) odd n: factor of 101 |
k = = 1 mod 2 (2) k = = 1 mod 13 (13) k = = 1 mod 31 (31) |
198 k's remaining at n=100K. See k's at Riesel Base 807 remain. |
20144 (98989) 2468 (98442) 23192 (95126) 26314 (92023) 32684 (91403) 21914 (91323) 5064 (89117) 31210 (88163) 25554 (87657) 21316 (86915) |
k = 100 proven composite by partial algebraic factors. |
808 | 59058 | 5, 37, 809 | All k where k = m^2 and m = = 318 or 491 mod 809: for even n let k = m^2 and let n = 2*q; factors to: (m*808^q - 1) * (m*808^q + 1) odd n: factor of 809 |
k = = 1 mod 3 (3) k = = 1 mod 269 (269) |
947 k's remaining at n=25K. See k's at Riesel Base 808 remain. |
56106 (24766) 42878 (24633) 44727 (24618) 1367 (24444) 12906 (24417) 4326 (24297) 9497 (24166) 21773 (24160) 24429 (24152) 24594 (24048) |
No k's proven composite by algebraic factors. |
809 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 1 mod 101 (101) |
none - proven | 2 (44) | ||
810 | 35683 | 7, 19, 43, 811 | k = = 1 mod 809 (809) | 223 k's remaining at n=100K. See k's at Riesel Base 810 remain. |
30226 (98614) 23165 (98273) 31084 (96221) 7120 (96197) 7970 (95811) 5255 (95090) 18952 (94146) 16634 (91126) 10885 (90165) 28690 (90128) |
||
811 | 260 | 7, 29 | All k where k = m^2 and m = = 12 or 17 mod 29: for even n let k = m^2 and let n = 2*q; factors to: (m*811^q - 1) * (m*811^q + 1) odd n: factor of 29 |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 5 (5) |
none - proven | 8 (31783) 258 (28010) 128 (1619) 132 (1618) 210 (1017) 174 (146) 50 (59) 134 (45) 62 (30) 230 (28) |
k = 144 proven composite by partial algebraic factors. |
812 | 13 | 3, 5, 17 | k = = 1 mod 811 (811) | 4 (400K) | 10 (1575) 5 (50) 2 (10) 8 (8) 3 (3) 11 (2) 12 (1) 9 (1) 7 (1) 6 (1) |
||
813 | 186 | 11, 37 | k = = 1 mod 2 (2) k = = 1 mod 7 (7) k = = 1 mod 29 (29) |
122 (400K) | 34 (189659) 76 (120762) 142 (50872) 118 (27266) 158 (9237) 164 (664) 54 (184) 110 (58) 112 (35) 102 (28) |
||
814 | 164 | 5, 163 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*814^q - 1) * (m*814^q + 1) odd n: factor of 5 |
k = = 1 mod 3 (3) k = = 1 mod 271 (271) |
44 (300K) 128 (300K) |
14 (197138) 134 (92080) 23 (17640) 8 (17365) 158 (7221) 101 (6241) 83 (1114) 81 (831) 98 (439) 104 (396) |
k = 9 and 144 proven composite by partial algebraic factors. |
815 | 16 | 3, 17 | k = = 1 mod 2 (2) k = = 1 mod 11 (11) k = = 1 mod 37 (37) |
8 (400K) | 14 (470) 10 (3) 2 (2) 6 (1) 4 (1) |
||
816 | 343 | 19, 43 | k = = 1 mod 5 (5) k = = 1 mod 163 (163) |
18 (300K) 113 (300K) 204 (300K) |
214 (51534) 277 (14926) 267 (5467) 135 (3003) 207 (2716) 315 (834) 322 (540) 60 (529) 94 (520) 324 (443) |
||
817 | 6189398 | 5, 41, 409, 1009 | All k where k = m^2 and m = = 143 or 266 mod 409: for even n let k = m^2 and let n = 2*q; factors to: (m*817^q - 1) * (m*817^q + 1) odd n: factor of 409 |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 17 (17) |
74092 k's remaining at n=2.5K. To be shown later. | 6132890 (2500) 5559084 (2500) 5539334 (2500) 5177472 (2500) 4764698 (2500) 4093028 (2500) 3657872 (2500) 3652962 (2500) 2887568 (2500) 1551108 (2500) |
k = 304704 and 3617604 proven composite by partial algebraic factors. |
818 | 8 | 3, 7 | k = = 1 mod 19 (19) k = = 1 mod 43 (43) |
none - proven | 5 (4) 3 (4) 7 (3) 6 (2) 2 (2) 4 (1) |
||
819 | 124 | 5, 41 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*819^q - 1) * (m*819^q + 1) odd n: factor of 5 |
k = = 1 mod 2 (2) k = = 1 mod 409 (409) |
none - proven | 6 (407) 104 (360) 86 (119) 94 (98) 66 (67) 118 (66) 26 (61) 34 (26) 122 (24) 54 (18) |
k = 4 and 64 proven composite by partial algebraic factors. |
820 | 390795 | 17, 37, 821 | All k where k = m^2 and m = = 295 or 526 mod 821: for even n let k = m^2 and let n = 2*q; factors to: (m*820^q - 1) * (m*820^q + 1) odd n: factor of 821 |
k = = 1 mod 3 (3) k = = 1 mod 7 (7) k = = 1 mod 13 (13) |
527 k's remaining at n=25K. See k's at Riesel Base 820 remain. |
308468 (24687) 216345 (24669) 240092 (24501) 378368 (24497) 154580 (24380) 214668 (24299) 101159 (24129) 239298 (24114) 330003 (24100) 370179 (24020) |
No k's proven composite by algebraic factors. |
821 | 958 | 3, 137 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 41 (41) |
58 (300K) 144 (300K) 158 (300K) 188 (300K) 242 (300K) 662 (300K) 680 (300K) 688 (300K) 742 (300K) 814 (300K) 872 (300K) 928 (300K) |
178 (233901) 790 (227461) 380 (119910) 404 (107718) 938 (70510) 674 (48964) 464 (44160) 898 (42303) 500 (35260) 140 (24442) |
||
822 | 156369 | 5, 337, 823 | k = = 1 mod 821 (821) | 8895 k's remaining at n=2.5K. To be shown later. | 137768 (2500) 109571 (2499) 108763 (2499) 135182 (2498) 113769 (2496) 82939 (2496) 152011 (2495) 132529 (2495) 74393 (2495) 113933 (2494) |
||
823 | 8262 | 7, 43, 751 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 137 (137) |
68 k's remaining at n=100K. See k's at Riesel Base 823 remain. |
36 (94169) 3102 (93790) 7448 (91882) 3306 (90326) 4466 (83645) 8222 (81210) 7368 (80817) 3768 (68094) 2306 (67007) 2762 (63684) |
||
824 | 4 | 3, 5 | k = = 1 mod 823 (823) | none - proven | 2 (102) 3 (3) |
||
825 | 176 | 7, 59 | k = = 1 mod 2 (2) k = = 1 mod 103 (103) |
none - proven | 146 (1954) 174 (328) 48 (294) 160 (126) 26 (113) 134 (75) 106 (65) 76 (34) 70 (21) 50 (21) |
||
827 | 14 | 3, 5, 13 | k = = 1 mod 2 (2) k = = 1 mod 7 (7) k = = 1 mod 59 (59) |
none - proven | 6 (9) 2 (2) 12 (1) 10 (1) 4 (1) |
||
828 | 144 | 7, 13, 19 | k = = 1 mod 827 (827) | 64 (300K) 68 (300K) |
74 (76296) 15 (2308) 53 (2120) 55 (1769) 86 (1282) 97 (1124) 41 (1106) 121 (1101) 79 (1012) 139 (579) |
||
829 | 84 | 5, 83 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 23 (23) |
none - proven | 26 (2956) 50 (364) 14 (134) 12 (86) 56 (83) 74 (78) 68 (23) 18 (22) 20 (11) 62 (6) |
||
830 | 278 | 3, 277 | k = = 1 mod 829 (829) | 9 (300K) 95 (300K) 107 (300K) 121 (300K) 144 (300K) |
74 (238594) 263 (64410) 218 (54608) 226 (44351) 53 (31194) 269 (30552) 197 (27370) 188 (25418) 224 (23718) 212 (19742) |
||
831 | 1721084 | 13, 449, 769 | (Condition 1): All k where k = m^2 and m = = 5 or 8 mod 13: for even n let k = m^2 and let n = 2*q; factors to: (m*831^q - 1) * (m*831^q + 1) odd n: factor of 13 (Condition 2): All k where k = 831*m^2 and m = = 5 or 8 mod 13: [Reverse condition 1] |
k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 83 (83) |
25415 k's remaining at n=2.5K. To be shown later. | 1632240 (2500) 1085980 (2500) 1055482 (2500) 9558 (2500) 1572728 (2499) 892984 (2499) 281718 (2499) 1713568 (2498) 1380482 (2498) 744958 (2498) |
k = 8^2, 18^2, 60^2, 70^2, 112^2, 122^2, 138^2, 148^2, 190^2, 200^2,
242^2, 252^2, (etc. pattern repeating every
130m where k not = = 1 mod 83) proven composite by condition 1. k = 53184 and 269244 proven composite by condition 2. |
832 | 50 | 7, 17 | k = = 1 mod 3 (3) k = = 1 mod 277 (277) |
none - proven | 35 (332073) 20 (8944) 36 (183) 8 (127) 26 (22) 3 (19) 41 (18) 18 (15) 42 (13) 48 (12) |
||
833 | 140 | 3, 139 | k = = 1 mod 2 (2) k = = 1 mod 13 (13) |
104 (400K) | 28 (53769) 76 (10911) 74 (996) 122 (348) 20 (256) 134 (92) 50 (50) 80 (48) 78 (44) 42 (39) |
||
834 | 166 | 5, 167 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*834^q - 1) * (m*834^q + 1) odd n: factor of 5 |
k = = 1 mod 7 (7) k = = 1 mod 17 (17) |
none - proven | 130 (8495) 24 (2856) 136 (2249) 126 (973) 76 (567) 34 (346) 54 (286) 119 (242) 150 (191) 47 (131) |
k = 4, 9, 49, and 144 proven composite by partial algebraic factors. |
835 | 56 | 11, 19 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 139 (139) |
none - proven | 12 (7) 54 (6) 30 (4) 50 (2) 48 (2) 32 (2) 26 (2) 24 (2) 18 (2) 44 (1) |
||
836 | 32 | 3, 31 | k = = 1 mod 5 (5) k = = 1 mod 167 (167) |
8 (400K) | 23 (350) 2 (330) 18 (214) 28 (213) 5 (56) 20 (38) 10 (21) 12 (11) 17 (10) 30 (8) |
||
837 | 2094 | 5, 13, 419 | k = = 1 mod 2 (2) k = = 1 mod 11 (11) k = = 1 mod 19 (19) |
554 (300K) 578 (300K) 676 (300K) 876 (300K) 1138 (300K) 1296 (300K) |
968 (183539) 1258 (134139) 1000 (122503) 974 (74416) 1416 (68007) 534 (63527) 1752 (62706) 1262 (58622) 662 (32380) 274 (31465) |
||
838 | 180384 | 5, 7, 13, 97, 839 | k = = 1 mod 3 (3) k = = 1 mod 31 (31) |
3293 k's remaining at n=10K. See k's at Riesel Base 838 remain. |
162207 (9992) 149496 (9978) 7859 (9972) 112907 (9968) 162903 (9946) 127811 (9943) 58511 (9926) 134247 (9923) 9864 (9909) 135587 (9908) |
||
839 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 1 mod 419 (419) |
none - proven | 2 (2) | ||
840 | 84608 | 37, 61, 313 | (Condition 1): All k where k = m^2 and m = = 12 or 17 mod 29: for even n let k = m^2 and let n = 2*q; factors to: (m*840^q - 1) * (m*840^q + 1) odd n: factor of 29 (Condition 2): All k where k = 210*m^2 and m = = 5 or 24 mod 29: even n: factor of 29 for odd n let k = 210*m^2 and let n=2*q-1; factors to: [m*2^n*210^q - 1] * [m*2^n*210^q + 1] |
k = = 1 mod 839 (839) | 760 k's remaining at n=25K. See k's at Riesel Base 840 remain. |
48951 (24942) 23083 (24924) 74543 (24911) 27087 (24841) 43586 (24812) 58873 (24331) 28886 (24204) 69215 (24047) 57780 (24045) 11496 (23892) |
k = 144, 289, 1681, 2116, 4900, 5625, 9801, 10816, 16384, 17689, 24649,
26244, 34596, 36481, 46225, 48400, 59536, 62001, 74529, and 77284 proven
composite by condition 1. k = 5250 proven composite by condition 2. |
841 | 24090 | 13, 67, 271 | All k = m^2 for all n; factors to: (m*29^n - 1) * (m*29^n + 1) |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 5 (5) k = = 1 mod 7 (7) |
542 (300K) 1280 (300K) 5474 (300K) 7634 (300K) 10154 (300K) 12494 (300K) 12912 (300K) 13412 (300K) 13898 (300K) 15942 (300K) 16712 (300K) 21422 (300K) |
5732 (194967) 11480 (181102) 19308 (146474) 16604 (125777) 9714 (116064) 4442 (92170) 22218 (61289) 17244 (56627) 8700 (46497) 1644 (44888) |
k = 144, 324, 900, 1764, 3600, 5184, 10404, 11664, 19044, and 22500 proven composite by full algebraic factors. |
842 | 280 | 3, 281 | k = = 1 mod 29 (29) | 13 (100K) 25 (100K) 36 (100K) 43 (100K) 68 (100K) 82 (100K) 86 (100K) 89 (100K) 119 (100K) 127 (100K) 133 (100K) 137 (100K) 148 (100K) 172 (100K) 202 (100K) 211 (100K) 226 (100K) 242 (100K) 244 (100K) 249 (100K) 254 (100K) 269 (100K) |
130 (51293) 170 (46660) 17 (35640) 71 (33982) 186 (33489) 38 (18790) 28 (15283) 253 (13291) 251 (12378) 121 (10287) |
||
843 | 8652 | 5, 13, 19, 37, 211 | k = = 1 mod 2 (2) k = = 1 mod 421 (421) |
67 k's remaining at n=100K. See k's at Riesel Base 843 remain. |
316 (97299) 3488 (92798) 3402 (92647) 4742 (80636) 8276 (79118) 4544 (77655) 5616 (77642) 526 (76511) 5574 (75387) 7288 (72185) |
||
844 | 14 | 5, 13 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*844^q - 1) * (m*844^q + 1) odd n: factor of 5 |
k = = 1 mod 3 (3) k = = 1 mod 281 (281) |
none - proven | 6 (145) 2 (81) 8 (31) 12 (4) 11 (1) 5 (1) 3 (1) |
k = 9 proven composite by partial algebraic factors. |
845 | 46 | 3, 47 | k = = 1 mod 2 (2) k = = 1 mod 211 (211) |
none - proven | 2 (39406) 22 (593) 38 (138) 24 (84) 26 (74) 28 (33) 44 (28) 14 (20) 6 (19) 36 (15) |
||
846 | 34 | 7, 11 | k = = 1 mod 5 (5) k = = 1 mod 13 (13) |
none - proven | 10 (12780) 4 (3319) 13 (356) 8 (35) 32 (22) 9 (9) 20 (8) 7 (7) 22 (5) 3 (5) |
||
847 | 1357806 | 5, 41, 53, 401 | (Condition 1): All k where k = m^2 and m = = 23 or 30 mod 53: for even n let k = m^2 and let n = 2*q; factors to: (m*847^q - 1) * (m*847^q + 1) odd n: factor of 53 (Condition 2): All k where k = 7*m^2 and m = = 12 or 41 mod 53: even n: factor of 53 for odd n let k = 7*m^2 and let n=2*q-1; factors to: [m*11^n*7^q - 1] * [m*11^n*7^q + 1] |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 47 (47) |
12433 k's remaining at n=2.5K. To be shown later. | 894398 (2500) 1056620 (2499) 472572 (2498) 316788 (2498) 885786 (2497) 783906 (2497) 1200222 (2496) 805110 (2496) 1331006 (2495) 398456 (2495) |
k = 900, 82944, 121104, 367236, 443556, 853776, and 968256 proven
composite by condition 1. k = 1008, 655452, and 762300 proven composite by condition 2. |
848 | 284 | 3, 283 | k = = 1 mod 7 (7) k = = 1 mod 11 (11) |
74 (400K) 172 (400K) 178 (400K) 224 (400K) 266 (400K) |
7 (218439) 117 (82410) 185 (75298) 94 (65401) 194 (36212) 13 (23589) 187 (16055) 140 (10384) 72 (8804) 209 (7232) |
||
849 | 16 | 5, 17 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*849^q - 1) * (m*849^q + 1) odd n: factor of 5 |
k = = 1 mod 2 (2) k = = 1 mod 53 (53) |
none - proven | 14 (4114) 10 (21) 6 (19) 12 (2) 8 (1) 2 (1) |
k = 4 proven composite by partial algebraic factors. |
850 | 369 | 23, 37 | All k where k = m^2 and m = = 6 or 31 mod 37: for even n let k = m^2 and let n = 2*q; factors to: (m*850^q - 1) * (m*850^q + 1) odd n: factor of 37 |
k = = 1 mod 3 (3) k = = 1 mod 283 (283) |
221 (400K) | 339 (57302) 275 (6084) 248 (3822) 159 (3088) 281 (2411) 206 (1484) 341 (1022) 252 (830) 108 (632) 312 (600) |
k = 36 proven composite by partial algebraic factors. |
851 | 70 | 3, 71 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 17 (17) |
none - proven | 20 (2040) 64 (1729) 44 (1646) 22 (11) 24 (7) 68 (6) 32 (6) 42 (5) 38 (4) 58 (3) |
||
852 | 8529 | 5, 41, 853 | k = = 1 mod 23 (23) k = = 1 mod 37 (37) |
81 k's remaining at n=100K. See k's at Riesel Base 852 remain. |
559 (98945) 1258 (95659) 3002 (93492) 5694 (88979) 7121 (88093) 164 (85037) 5257 (82424) 6320 (81236) 6821 (77634) 8336 (76378) |
||
853 | 62 | 7, 61 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 71 (71) |
none - proven | 12 (244) 6 (234) 42 (94) 48 (68) 60 (26) 44 (19) 56 (6) 26 (6) 18 (6) 2 (4) |
||
854 | 4 | 3, 5 | k = = 1 mod 853 (853) | none - proven | 3 (5) 2 (2) |
||
856 | 108467 | 7, 181, 193 | All k where k = m^2 and m = = 207 or 650 mod 857: for even n let k = m^2 and let n = 2*q; factors to: (m*856^q - 1) * (m*856^q + 1) odd n: factor of 857 |
k = = 1 mod 3 (3) k = = 1 mod 5 (5) k = = 1 mod 19 (19) |
527 k's remaining at n=25K. See k's at Riesel Base 856 remain. |
83987 (24713) 94517 (24668) 47312 (24579) 53768 (24151) 52025 (23951) 61889 (23916) 3389 (23831) 74610 (23757) 6000 (23729) 27702 (23676) |
k = 42849 proven composite by partial algebraic factors. |
857 | 10 | 3, 11 | k = = 1 mod 2 (2) k = = 1 mod 107 (107) |
none - proven | 6 (23082) 4 (195) 8 (22) 2 (2) |
||
858 | 24053 | 5, 29, 859 | k = = 1 mod 857 (857) | 249 k's remaining at n=100K. See k's at Riesel Base 858 remain. |
12742 (99711) 16657 (98142) 19414 (97412) 10361 (96854) 16934 (95377) 3406 (94666) 21936 (91423) 5813 (90493) 20120 (89828) 17672 (89194) |
||
859 | 44 | 5, 43 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 11 (11) k = = 1 mod 13 (13) |
none - proven | 26 (90133) 42 (6610) 24 (42) 36 (11) 30 (4) 20 (4) 38 (3) 2 (3) 32 (1) 18 (1) |
||
860 | 8 | 3, 7 | k = = 1 mod 859 (859) | none - proven | 2 (62) 5 (12) 7 (5) 6 (4) 4 (3) 3 (1) |
||
861 | 323168 | 13, 37, 1543 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 43 (43) |
703 k's remaining at n=25K. See k's at Riesel Base 861 remain. |
167540 (24921) 281504 (24776) 280294 (24716) 273588 (24622) 295080 (24614) 152902 (24558) 73342 (24554) 158180 (24509) 257024 (24310) 154004 (24184) |
||
862 | 26417 | 13, 19, 31, 37 | k = = 1 mod 3 (3) k = = 1 mod 7 (7) k = = 1 mod 41 (41) |
158 k's remaining at n=100K. See k's at Riesel Base 862 remain. |
12653 (97184) 22841 (97179) 13269 (96943) 11909 (95309) 18203 (94994) 1010 (92163) 9678 (88891) 10338 (86211) 13083 (85622) 14234 (84425) |
||
863 | 14 | 3, 5, 13 | k = = 1 mod 2 (2) k = = 1 mod 431 (431) |
none - proven | 8 (4492) 4 (2403) 2 (4) 12 (3) 6 (2) 10 (1) |
||
864 | 174 | 5, 173 | (Condition 1): All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*864^q - 1) * (m*864^q + 1) odd n: factor of 5 (Condition 2): All k where k = 6*m^2 and m = = 1 or 4 mod 5: even n: factor of 5 for odd n let k = 6*m^2 and let n=2*q-1; factors to: [m*12^n*6^q - 1] * [m*12^n*6^q + 1] |
k = = 1 mod 863 (863) | 114 (400K) | 134 (319246) 123 (20922) 111 (10033) 151 (5007) 26 (4229) 92 (3160) 94 (2888) 28 (1944) 59 (1394) 36 (1267) |
k = 4, 9, 49, 64, 144, and 169 proven composite by condition 1. k = 6 and 96 proven composite by condition 2. |
866 | 35 | 3, 17 | k = = 1 mod 5 (5) k = = 1 mod 173 (173) |
none - proven | 8 (108590) 20 (12734) 7 (7227) 10 (2193) 23 (244) 2 (78) 24 (77) 18 (55) 27 (29) 14 (18) |
||
867 | 92 | 7, 31 | k = = 1 mod 2 (2) k = = 1 mod 433 (433) |
8 (500K) | 6 (61410) 84 (5877) 68 (363) 42 (78) 34 (64) 56 (49) 48 (42) 12 (42) 76 (14) 14 (11) |
||
868 | 78 | 11, 79 | k = = 1 mod 3 (3) k = = 1 mod 17 (17) |
none - proven | 54 (35296) 12 (2699) 9 (2403) 62 (56) 2 (30) 63 (18) 48 (14) 45 (13) 77 (12) 44 (12) |
||
869 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 1 mod 7 (7) k = = 1 mod 31 (31) |
none - proven | 2 (2) | ||
870 | 66 | 13, 67 | All k where k = m^2 and m = = 5 or 8 mod 13: for even n let k = m^2 and let n = 2*q; factors to: (m*870^q - 1) * (m*870^q + 1) odd n: factor of 13 |
k = = 1 mod 11 (11) k = = 1 mod 79 (79) |
none - proven | 65 (3916) 27 (2255) 53 (1485) 14 (1033) 54 (418) 63 (209) 17 (161) 2 (51) 55 (44) 4 (29) |
k = 25 and 64 proven composite by partial algebraic factors. |
871 | 16460 | 17, 53, 109 | All k where k = m^2 and m = = 33 or 76 mod 109: for even n let k = m^2 and let n = 2*q; factors to: (m*871^q - 1) * (m*871^q + 1) odd n: factor of 109 |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 5 (5) k = = 1 mod 29 (29) |
2328 (300K) 2430 (300K) 5262 (300K) 5318 (300K) 5648 (300K) 5664 (300K) 6408 (300K) 7302 (300K) 7772 (300K) 8958 (300K) 10572 (300K) 12032 (300K) 12534 (300K) |
914 (239796) 3084 (237917) 2702 (162988) 9482 (155938) 14280 (139781) 16172 (120722) 1964 (102208) 7430 (99782) 2852 (91588) 9120 (90061) |
No k's proven composite by algebraic factors. |
872 | 98 | 3, 97 | k = = 1 mod 13 (13) k = = 1 mod 67 (67) |
11 (400K) 16 (400K) 43 (400K) 86 (400K) |
93 (163674) 44 (162680) 95 (76786) 38 (65938) 37 (51045) 91 (26937) 32 (12532) 67 (11949) 2 (6036) 96 (2234) |
||
873 | 208 | 19, 23 | k = = 1 mod 2 (2) k = = 1 mod 109 (109) |
94 (400K) 114 (400K) |
104 (344135) 70 (39463) 36 (11719) 118 (5478) 180 (1358) 42 (1291) 160 (618) 14 (260) 58 (213) 162 (191) |
||
874 | 6 | 5, 7 | k = = 1 mod 3 (3) k = = 1 mod 97 (97) |
none - proven | 5 (2) 3 (1) 2 (1) |
||
875 | 74 | 3, 73 | k = = 1 mod 2 (2) k = = 1 mod 19 (19) k = = 1 mod 23 (23) |
none - proven | 38 (256892) 50 (53254) 56 (694) 52 (519) 40 (489) 34 (263) 72 (220) 14 (64) 60 (57) 8 (32) |
||
877 | 50654 | 7, 37, 991 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 73 (73) |
471 k's remaining at n=25K. See k's at Riesel Base 877 remain. |
42228 (24959) 10908 (24942) 17658 (24918) 29066 (24810) 8934 (24589) 29576 (24527) 28886 (24483) 18818 (24288) 38222 (24070) 26352 (24066) |
||
878 | 292 | 3, 293 | k = = 1 mod 877 (877) | 36 k's remaining at n=100K. See k's at Riesel Base 878 remain. |
181 (88273) 158 (73524) 157 (69051) 190 (68255) 112 (54035) 284 (46012) 96 (45635) 77 (42180) 91 (27833) 236 (21530) |
||
879 | 34 | 5, 11 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*879^q - 1) * (m*879^q + 1) odd n: factor of 5 |
k = = 1 mod 2 (2) k = = 1 mod 439 (439) |
24 (400K) | 14 (438) 18 (31) 12 (9) 22 (8) 10 (6) 2 (5) 32 (4) 16 (3) 30 (2) 8 (2) |
k = 4 proven composite by partial algebraic factors. |
880 | 48720 | 13, 103, 193 | All k where k = m^2 and m = = 387 or 494 mod 881: for even n let k = m^2 and let n = 2*q; factors to: (m*880^q - 1) * (m*880^q + 1) odd n: factor of 881 |
k = = 1 mod 3 (3) k = = 1 mod 293 (293) |
180 k's remaining at n=100K. See k's at Riesel Base 880 remain. |
30468 (95118) 6276 (92966) 1763 (90829) 12281 (89586) 28440 (89185) 47426 (88577) 14165 (87347) 25983 (85968) 45012 (84301) 39510 (83021) |
No k's proven composite by algebraic factors. |
881 | 8 | 3, 7 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 11 (11) |
none - proven | 2 (132) 4 (3) |
||
882 | 25606 | 5, 29, 883 | k = = 1 mod 881 (881) | 253 k's remaining at n=100K. See k's at Riesel Base 882 remain. |
5056 (98606) 7393 (97499) 11069 (96135) 2312 (93010) 23698 (92126) 21572 (89597) 11492 (88396) 15589 (87597) 1178 (86266) 6543 (85842) |
||
883 | 324 | 13, 17 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 7 (7) |
194 (500K) | 188 (88589) 224 (72180) 222 (63471) 306 (13951) 168 (1582) 26 (1234) 192 (1119) 132 (616) 62 (266) 186 (142) |
||
884 | 4 | 3, 5 | k = = 1 mod 883 (883) | none - proven | 2 (330) 3 (4) |
||
885 | 1041492 | 7, 19, 73, 443 | k = = 1 mod 2 (2) k = = 1 mod 13 (13) k = = 1 mod 17 (17) |
3952 k's remaining at n=10K. See k's at Riesel Base 885 remain. |
983466 (9998) 693632 (9992) 337352 (9980) 114120 (9970) 164300 (9968) 741234 (9964) 387046 (9949) 790282 (9937) 886182 (9918) 143478 (9916) |
||
886 | 1758033 | 7, 13, 19, 61, 887 | k = = 1 mod 3 (3) k = = 1 mod 5 (5) k = = 1 mod 59 (59) |
29469 k's remaining at n=2.5K. To be shown later. | 1677344 (2500) 1511549 (2500) 1447800 (2500) 1417434 (2500) 850167 (2500) 686193 (2500) 567668 (2500) 462893 (2500) 486735 (2499) 1427994 (2498) |
||
887 | 38 | 3, 37 | All k where k = m^2 and m = = 6 or 31 mod 37: for even n let k = m^2 and let n = 2*q; factors to: (m*887^q - 1) * (m*887^q + 1) odd n: factor of 37 |
k = = 1 mod 2 (2) k = = 1 mod 443 (443) |
22 (300K) 26 (300K) |
10 (4107) 34 (263) 24 (141) 28 (115) 2 (40) 14 (28) 16 (27) 20 (8) 32 (6) 30 (3) |
k = 36 proven composite by partial algebraic factors. |
888 | 69 | 5, 7, 17 | k = = 1 mod 887 (887) | 64 (400K) | 34 (326732) 49 (1931) 41 (454) 20 (364) 27 (310) 51 (229) 67 (204) 17 (202) 4 (201) 57 (187) |
||
889 | 266 | 5, 89 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*889^q - 1) * (m*889^q + 1) odd n: factor of 5 |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 37 (37) |
14 (300K) 86 (300K) 194 (300K) 216 (300K) |
234 (5694) 224 (2146) 246 (1351) 258 (1005) 134 (438) 174 (370) 24 (236) 264 (188) 114 (134) 206 (85) |
k = 144 proven composite by partial algebraic factors. |
890 | 10 | 3, 11 | k = = 1 mod 7 (7) k = = 1 mod 127 (127) |
none - proven | 2 (428) 3 (138) 6 (2) 5 (2) 9 (1) 7 (1) 4 (1) |
||
892 | 189 | 19, 47 | k = = 1 mod 3 (3) k = = 1 mod 11 (11) |
48 (400K) 96 (400K) 170 (400K) |
161 (10534) 174 (2647) 33 (1983) 39 (1245) 36 (1123) 125 (886) 147 (274) 128 (271) 132 (178) 9 (119) |
||
893 | 148 | 3, 149 | k = = 1 mod 2 (2) k = = 1 mod 223 (223) |
22 (300K) 44 (300K) 94 (300K) |
50 (231310) 134 (67840) 122 (11208) 74 (7812) 146 (4874) 56 (1086) 104 (504) 8 (428) 128 (422) 102 (264) |
||
894 | 284 | 5, 7, 31, 283 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*894^q - 1) * (m*894^q + 1) odd n: factor of 5 |
k = = 1 mod 19 (19) k = = 1 mod 47 (47) |
6 (300K) 79 (300K) 184 (300K) 216 (300K) 220 (300K) 225 (300K) |
179 (214290) 59 (97604) 276 (55679) 151 (53015) 44 (21516) 209 (4072) 124 (2656) 26 (2427) 181 (1453) 68 (1120) |
k = 4, 9, 49, 64, 144, and 169 proven composite by partial algebraic factors. |
895 | 152774 | 7, 97, 4129 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 149 (149) |
1042 k's remaining at n=25K. See k's at Riesel Base 895 remain. |
16080 (24779) 105008 (24745) 6362 (24708) 124130 (24684) 112488 (24645) 2984 (24550) 90132 (24169) 72570 (24023) 71042 (23828) 55356 (23745) |
||
896 | 14 | 3, 13 | k = = 1 mod 5 (5) k = = 1 mod 179 (179) |
none - proven | 12 (1386) 8 (262) 5 (22) 13 (11) 10 (5) 9 (5) 2 (2) 7 (1) 4 (1) 3 (1) |
||
897 | 19308 | 5, 17, 449 | All k where k = m^2 and m = = 67 or 382 mod 449: for even n let k = m^2 and let n = 2*q; factors to: (m*897^q - 1) * (m*897^q + 1) odd n: factor of 449 |
k = = 1 mod 2 (2) k = = 1 mod 7 (7) |
45 k's remaining at n=100K. See k's at Riesel Base 897 remain. |
9484 (85704) 9334 (79683) 16554 (78440) 18968 (73776) 12196 (71787) 19098 (63246) 11406 (58947) 12296 (57518) 840 (54949) 798 (50260) |
No k's proven composite by algebraic factors. |
898 | 30 | 29, 31 | k = = 1 mod 3 (3) k = = 1 mod 13 (13) k = = 1 mod 23 (23) |
none - proven | 17 (54) 18 (45) 5 (16) 26 (15) 23 (6) 2 (6) 21 (2) 12 (2) 11 (2) 8 (2) |
||
899 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 1 mod 449 (449) |
none - proven | 2 (2) | ||
900 | 52 | 17, 53 | All k = m^2 for all n; factors to: (m*30^n - 1) * (m*30^n + 1) |
k = = 1 mod 29 (29) k = = 1 mod 31 (31) |
none - proven | 22 (252407) 33 (454) 2 (71) 28 (31) 11 (15) 5 (12) 31 (11) 38 (8) 20 (8) 35 (5) |
k = 4, 9, 16, 25, 36, and 49 proven composite by full algebraic factors. |
901 | 12 | 7, 11, 13, 19 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 5 (5) |
none - proven | 8 (1) 2 (1) |
||
902 | 8 | 3, 7 | k = = 1 mod 17 (17) k = = 1 mod 53 (53) |
none - proven | 7 (3005) 5 (4) 2 (4) 3 (3) 6 (2) 4 (1) |
||
903 | 24746 | 5, 73, 113 | All k where k = m^2 and m = = 15 or 98 mod 113: for even n let k = m^2 and let n = 2*q; factors to: (m*903^q - 1) * (m*903^q + 1) odd n: factor of 113 |
k = = 1 mod 2 (2) k = = 1 mod 11 (11) k = = 1 mod 41 (41) |
39 k's remaining at n=100K. See k's at Riesel Base 903 remain. |
6972 (99786) 14702 (97862) 18872 (89267) 19166 (87334) 17222 (81175) 20066 (71126) 16554 (64471) 7846 (61171) 23982 (60614) 10966 (60177) |
k = 16384 proven composite by partial algebraic factors. |
904 | 1266 | 5, 181 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*904^q - 1) * (m*904^q + 1) odd n: factor of 5 |
k = = 1 mod 3 (3) k = = 1 mod 7 (7) k = = 1 mod 43 (43) |
129 (300K) 159 (300K) 311 (300K) 374 (300K) 444 (300K) 851 (300K) 894 (300K) 900 (300K) 914 (300K) 1031 (300K) 1046 (300K) |
657 (81712) 749 (66948) 180 (36872) 899 (28230) 534 (20854) 723 (19106) 504 (16620) 903 (13429) 419 (10616) 224 (9092) |
k = 9, 144, 324, 729, and 1089 proven composite by partial algebraic factors. |
905 | 152 | 3, 151 | k = = 1 mod 2 (2) k = = 1 mod 113 (113) |
22 (400K) | 70 (189879) 32 (178286) 128 (72312) 4 (4857) 130 (3477) 148 (2455) 92 (1598) 86 (726) 122 (634) 134 (560) |
||
907 | 4050362 | 5, 7, 13, 227, 661 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 151 (151) |
89943 k's remaining at n=2.5K. To be shown later. | 3953730 (2500) 3935754 (2500) 2204238 (2500) 1930562 (2500) 1626980 (2500) 1161264 (2500) 582932 (2500) 355254 (2500) 3084540 (2499) 2875194 (2499) |
||
908 | 29 | 3, 5, 7, 13, 67 | k = = 1 mod 907 (907) | none - proven | 8 (61796) 13 (3793) 14 (2572) 19 (1305) 26 (354) 16 (63) 22 (39) 2 (30) 23 (28) 21 (18) |
||
909 | 6 | 5, 7 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*909^q - 1) * (m*909^q + 1) odd n: factor of 5 |
k = = 1 mod 2 (2) k = = 1 mod 227 (227) |
none - proven | 2 (14) | k = 4 proven composite by partial algebraic factors. |
911 | 20 | 3, 19 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 7 (7) k = = 1 mod 13 (13) |
none - proven | 2 (14) 18 (2) 12 (2) 10 (1) 4 (1) |
||
912 | 331 | 11, 83 | k = = 1 mod 911 (911) | 10 (300K) 12 (300K) 58 (300K) 76 (300K) 78 (300K) 167 (300K) 218 (300K) 263 (300K) 296 (300K) |
228 (236298) 164 (108156) 177 (91873) 93 (14208) 324 (13359) 83 (12002) 298 (9875) 65 (5040) 288 (4039) 285 (2720) |
||
913 | 1368714 | 5, 7, 13, 109, 457 | All k where k = m^2 and m = = 109 or 348 mod 457: for even n let k = m^2 and let n = 2*q; factors to: (m*913^q - 1) * (m*913^q + 1) odd n: factor of 457 |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 19 (19) |
16764 k's remaining at n=2.5K. To be shown later. | 816492 (2500) 363444 (2500) 352782 (2500) 1202132 (2499) 706290 (2499) 931338 (2498) 741726 (2498) 429738 (2498) 921846 (2497) 824844 (2496) |
k = 121104 proven composite by partial algebraic factors. |
914 | 4 | 3, 5 | k = = 1 mod 11 (11) k = = 1 mod 83 (83) |
none - proven | 2 (438) 3 (1) |
||
915 | 3970630 | 13, 229, 2477 | All k where k = m^2 and m = = 107 or 122 mod 229: for even n let k = m^2 and let n = 2*q; factors to: (m*228^q - 1) * (m*228^q + 1) odd n: factor of 229 |
k = = 1 mod 2 (2) k = = 1 mod 457 (457) |
57194 k's remaining at n=2.5K. To be shown later. | 3630140 (2500) 3467372 (2500) 3140422 (2500) 2937940 (2500) 2677020 (2500) 1812632 (2500) 1755598 (2500) 1686736 (2500) 1098600 (2500) 1091940 (2500) |
k = 14884, 112896, 336400, 630436, 1077444, 1567504, 2238016, 2924100, and 3818116 proven composite by partial algebraic factors. |
916 | 132 | 7, 131 | k = = 1 mod 3 (3) k = = 1 mod 5 (5) k = = 1 mod 61 (61) |
none - proven | 78 (120247) 39 (586) 3 (475) 113 (305) 59 (283) 27 (206) 90 (178) 15 (85) 44 (72) 8 (67) |
||
917 | 16 | 3, 17 | k = = 1 mod 2 (2) k = = 1 mod 229 (229) |
none - proven | 2 (210) 14 (184) 8 (16) 10 (7) 4 (3) 12 (1) 6 (1) |
||
918 | 11946 | 5, 13, 919 | k = = 1 mod 7 (7) k = = 1 mod 131 (131) |
75 k's remaining at n=100K. See k's at Riesel Base 918 remain. |
4456 (98561) 11812 (91558) 3768 (87886) 8137 (82711) 10371 (81587) 177 (78784) 1708 (72912) 8606 (71535) 9972 (68594) 8574 (68063) |
||
919 | 24 | 5, 23 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 17 (17) |
none - proven | 6 (11) 2 (4) 14 (2) 20 (1) 12 (1) 8 (1) |
||
920 | 103 | 3, 7, 13, 19 | k = = 1 mod 919 (919) | 53 (500K) 61 (500K) 76 (500K) |
29 (367810) 82 (262409) 94 (64819) 86 (45938) 46 (33853) 98 (28244) 102 (11107) 85 (5769) 65 (4998) 81 (4697) |
||
922 | 27 | 5, 13, 73 | k = = 1 mod 3 (3) k = = 1 mod 307 (307) |
none - proven | 18 (582) 2 (342) 23 (12) 21 (10) 3 (8) 24 (4) 5 (4) 17 (2) 12 (2) 8 (2) |
||
923 | 8 | 3, 7 | k = = 1 mod 2 (2) k = = 1 mod 461 (461) |
none - proven | 6 (114) 2 (2) 4 (1) |
||
924 | 36 | 5, 37 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*924^q - 1) * (m*924^q + 1) odd n: factor of 5 |
k = = 1 mod 13 (13) k = = 1 mod 71 (71) |
none - proven | 6 (329) 20 (127) 34 (38) 30 (27) 29 (18) 5 (12) 35 (11) 23 (5) 17 (5) 8 (5) |
k = 4 and 9 proven composite by partial algebraic factors. |
926 | 104 | 3, 103 | k = = 1 mod 5 (5) k = = 1 mod 37 (37) |
9 (300K) 22 (300K) 53 (300K) 65 (300K) 85 (300K) 102 (300K) |
70 (131099) 49 (84987) 67 (52457) 95 (6528) 23 (4876) 100 (2631) 73 (1007) 47 (394) 35 (300) 79 (151) |
||
927 | 5886 | 5, 17, 29, 73 | All k where k = m^2 and m = = 12 or 17 mod 29: for even n let k = m^2 and let n = 2*q; factors to: (m*927^q - 1) * (m*927^q + 1) odd n: factor of 29 |
k = = 1 mod 2 (2) k = = 1 mod 463 (463) |
48 k's remaining at n=100K. See k's at Riesel Base 927 remain. |
3788 (96727) 1846 (96599) 2396 (96325) 3664 (95108) 4146 (84902) 2844 (79788) 3742 (76829) 1028 (74503) 2848 (73382) 5184 (72813) |
k = 144, 2116, and 4900 proven composite by partial algebraic factors. |
928 | 32514 | 5, 13, 929 | All k where k = m^2 and m = = 324 or 605 mod 929: for even n let k = m^2 and let n = 2*q; factors to: (m*928^q - 1) * (m*928^q + 1) odd n: factor of 929 |
k = = 1 mod 3 (3) k = = 1 mod 103 (103) |
629 k's remaining at n=25K. See k's at Riesel Base 928 remain. |
17703 (24741) 13239 (24540) 8124 (24481) 3713 (24298) 31557 (24271) 18281 (24223) 2283 (24082) 3407 (24015) 22548 (23758) 18957 (23402) |
No k's proven composite by algebraic factors. |
929 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 1 mod 29 (29) |
none - proven | 2 (18) | ||
930 | 20 | 7, 19 | k = = 1 mod 929 (929) | none - proven | 13 (354) 8 (101) 10 (13) 15 (11) 18 (4) 14 (2) 11 (2) 7 (2) 6 (2) 2 (2) |
||
931 | 3960 | 17, 37, 233 | All k where k = m^2 and m = = 89 or 144 mod 233: for even n let k = m^2 and let n = 2*q; factors to: (m*931^q - 1) * (m*931^q + 1) odd n: factor of 233 |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 5 (5) k = = 1 mod 31 (31) |
1854 (400K) 3812 (400K) |
3888 (227714) 2498 (51852) 2748 (16634) 242 (5908) 1662 (3762) 3390 (3253) 1728 (3209) 3668 (3164) 698 (2842) 3470 (1507) |
No k's proven composite by algebraic factors. |
932 | 310 | 3, 311 | k = = 1 mod 7 (7) k = = 1 mod 19 (19) |
142 (300K) 146 (300K) 208 (300K) 221 (300K) 238 (300K) 263 (300K) 277 (300K) 283 (300K) 307 (300K) |
74 (229308) 220 (120737) 250 (29891) 269 (21276) 237 (20750) 181 (14795) 251 (10922) 193 (9183) 293 (8914) 242 (4880) |
||
933 | 389944 | 5, 7, 13, 37, 467 | k = = 1 mod 2 (2) k = = 1 mod 233 (233) |
12657 k's remaining at n=2.5K. To be shown later. | 35038 (2500) 370792 (2499) 174916 (2499) 94586 (2499) 3738 (2498) 182444 (2496) 169348 (2496) 86414 (2496) 50054 (2496) 249474 (2495) |
||
934 | 21 | 5, 11 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*934^q - 1) * (m*934^q + 1) odd n: factor of 5 |
k = = 1 mod 3 (3) k = = 1 mod 311 (311) |
none - proven | 6 (1411) 12 (71) 8 (7) 14 (2) 5 (2) 20 (1) 18 (1) 17 (1) 15 (1) 11 (1) |
k = 9 proven composite by partial algebraic factors. |
935 | 14 | 3, 13 | k = = 1 mod 2 (2) k = = 1 mod 467 (467) |
none - proven | 2 (72) 6 (3) 12 (2) 8 (2) 10 (1) 4 (1) |
||
936 | 100260 | 7, 31, 37, 937 | k=64: n = = 0 mod 2: let n = 2q; factors to: (8*936^q - 1) * (8*936^q + 1) n = = 0 mod 3: let n=3q; factors to: (4*936^q - 1) * [16*936^(2q) + 4*936^q + 1] n = = 1 mod 6: factor of 37 n = = 5 mod 6: factor of 109 |
k = = 1 mod 5 (5) k = = 1 mod 11 (11) k = = 1 mod 17 (17) |
91 k's remaining at n=100K. See k's at Riesel Base 936 remain. |
74959 (98966) 43250 (98294) 63555 (97705) 55890 (97624) 97510 (95985) 78870 (94573) 78650 (93020) 96659 (91629) 19087 (89737) 52048 (85072) |
|
937 | 1140 | 7, 67 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 13 (13) |
384 (300K) 428 (300K) 636 (300K) 650 (300K) 848 (300K) 902 (300K) 918 (300K) 932 (300K) 1004 (300K) |
134 (219783) 434 (31271) 68 (10595) 738 (10563) 1086 (7143) 1070 (6014) 948 (5948) 734 (3520) 546 (2037) 678 (1866) |
||
938 | 299 | 3, 5, 149 | k = = 1 mod 937 (937) | 14 (100K) 20 (100K) 38 (100K) 47 (100K) 64 (100K) 82 (100K) 97 (100K) 104 (100K) 125 (100K) 152 (100K) 155 (100K) 157 (100K) 163 (100K) 170 (100K) 178 (100K) 179 (100K) 206 (100K) 224 (100K) 236 (100K) 239 (100K) 254 (100K) 269 (100K) 277 (100K) |
247 (90251) 232 (65287) 2 (40422) 216 (29158) 115 (22223) 67 (21067) 251 (13506) 119 (13356) 235 (12565) 258 (10154) |
||
939 | 46 | 5, 47 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*939^q - 1) * (m*939^q + 1) odd n: factor of 5 |
k = = 1 mod 2 (2) k = = 1 mod 7 (7) k = = 1 mod 67 (67) |
none - proven | 44 (3116) 16 (2115) 38 (1965) 30 (162) 24 (36) 6 (11) 14 (10) 42 (9) 28 (6) 40 (4) |
k = 4 proven composite by partial algebraic factors. |
940 | 36929 | 7, 73, 577 | k = 19044: for even n let n=2*q; factors to: (138*940^q - 1) * (138*940^q + 1) odd n: covering set 7, 13, 73 |
k = = 1 mod 3 (3) k = = 1 mod 313 (313) |
242 k's remaining at n=100K. See k's at Riesel Base 940 remain. |
16718 (99412) 15647 (98821) 25967 (98316) 18120 (94182) 15978 (93999) 2480 (92427) 33279 (92131) 7584 (86501) 25770 (86128) 28214 (84792) |
|
941 | 158 | 3, 157 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 47 (47) |
92 (400K) 112 (400K) |
74 (348034) 122 (137852) 128 (2264) 8 (1684) 90 (860) 132 (414) 44 (278) 50 (244) 110 (160) 154 (157) |
||
942 | 206 | 23, 41 | All k where k = m^2 and m = = 9 or 32 mod 41: for even n let k = m^2 and let n = 2*q; factors to: (m*942^q - 1) * (m*942^q + 1) odd n: factor of 41 |
k = = 1 mod 941 (941) | 48 (400K) 70 (400K) 114 (400K) 163 (400K) |
85 (27719) 49 (22137) 184 (15716) 102 (9858) 123 (5706) 149 (4575) 183 (4184) 88 (3774) 182 (3166) 44 (3156) |
k = 81 proven composite by partial algebraic factors. |
943 | 18822 | 5, 7, 13, 19, 59 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 157 (157) |
90 k's remaining at n=100K. See k's at Riesel Base 943 remain. |
4626 (99554) 11678 (99165) 17792 (97756) 15446 (95909) 14078 (92353) 9470 (86506) 7416 (83054) 9914 (82127) 17216 (80055) 11208 (68770) |
||
944 | 4 | 3, 5 | k = = 1 mod 23 (23) k = = 1 mod 41 (41) |
none - proven | 3 (3) 2 (2) |
||
945 | 386 | 11, 43 | k = = 1 mod 2 (2) k = = 1 mod 59 (59) |
42 (400K) 302 (400K) |
318 (20872) 208 (12406) 266 (7355) 230 (3954) 342 (2961) 336 (1088) 12 (855) 34 (647) 268 (558) 104 (429) |
||
947 | 80 | 3, 79 | k = = 1 mod 2 (2) k = = 1 mod 11 (11) k = = 1 mod 43 (43) |
none - proven | 74 (27996) 4 (10055) 16 (8931) 42 (106) 22 (89) 58 (79) 2 (54) 14 (40) 70 (31) 38 (28) |
||
948 | 220 | 13, 73 | All k where k = m^2 and m = = 5 or 8 mod 13: for even n let k = m^2 and let n = 2*q; factors to: (m*948^q - 1) * (m*948^q + 1) odd n: factor of 13 |
k = = 1 mod 947 (947) | 45 (300K) 53 (300K) 69 (300K) 157 (300K) |
21 (290747) 51 (29018) 62 (14250) 218 (2680) 47 (2218) 209 (1213) 166 (881) 140 (610) 114 (435) 194 (388) |
k = 25 and 64 proven composite by partial algebraic factors. |
949 | 56 | 5, 19 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 79 (79) |
none - proven | 14 (6110) 2 (173) 24 (50) 50 (19) 30 (18) 36 (7) 18 (6) 48 (4) 26 (3) 54 (2) |
||
950 | 316 | 3, 317 | k = = 1 mod 13 (13) k = = 1 mod 73 (73) |
11 (300K) 28 (300K) 110 (300K) 199 (300K) 227 (300K) 305 (300K) |
116 (258458) 44 (208860) 86 (142078) 25 (120829) 283 (56277) 137 (38862) 125 (31268) 239 (28756) 47 (22724) 121 (13833) |
||
951 | 50 | 7, 17 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 19 (19) |
none - proven | 34 (371834) 10 (21) 48 (6) 42 (4) 30 (3) 24 (3) 44 (1) 40 (1) 38 (1) 32 (1) |
||
952 | 5411 | 13, 43, 541 | k = = 1 mod 3 (3) k = = 1 mod 317 (317) |
34 k's remaining at n=100K. See k's at Riesel Base 952 remain. |
1076 (96494) 3576 (88762) 1211 (86277) 4245 (64148) 378 (57814) 2025 (48727) 3089 (47700) 846 (40594) 4689 (38912) 3548 (36718) |
||
953 | 266 | 3, 53 | k = = 1 mod 2 (2) k = = 1 mod 7 (7) k = = 1 mod 17 (17) |
74 (300K) 104 (300K) 160 (300K) 262 (300K) 264 (300K) |
194 (166836) 118 (29165) 242 (18404) 236 (13330) 44 (6368) 10 (5061) 206 (4506) 168 (2593) 224 (2528) 88 (2369) |
||
954 | 381 | 5, 191 | (Condition 1): All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*954^q - 1) * (m*954^q + 1) odd n: factor of 5 (Condition 2): All k where k = 106*m^2 and m = = 1 or 4 mod 5: even n: factor of 5 for odd n let k = 106*m^2 and let n=2*q-1; factors to: [m*3^n*106^q - 1] * [m*3^n*106^q + 1] |
k = = 1 mod 953 (953) | 6 (300K) 36 (300K) 81 (300K) 84 (300K) 151 (300K) 158 (300K) 159 (300K) 161 (300K) 176 (300K) 204 (300K) 321 (300K) 326 (300K) 356 (300K) |
346 (159015) 190 (112910) 379 (110860) 254 (103446) 102 (52163) 43 (18511) 109 (10854) 100 (10509) 219 (6376) 214 (6056) |
k = 4, 9, 49, 64, 144, 169, 289, and 324 proven composite by condition
1. k = 106 proven composite by condition 2. |
955 | 1333860 | 7, 157, 239, 829 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 53 (53) |
12170 k's remaining at n=2.5K. To be shown later. | 521900 (2500) 105780 (2500) 1064364 (2499) 18008 (2499) 1235138 (2498) 960872 (2498) 462962 (2498) 129114 (2498) 989594 (2496) 1196078 (2495) |
||
956 | 10 | 3, 11 | k = = 1 mod 5 (5) k = = 1 mod 191 (191) |
none - proven | 9 (309) 5 (192) 3 (143) 2 (18) 8 (4) 7 (1) 4 (1) |
||
957 | 1438 | 5, 13, 479 | k=64: n = = 1 mod 3: factor of 73 n = = 2 mod 3: factor of 19 n = = 0 mod 3: let n=3q; factors to: (4*957^q - 1) * [16*957^(2q) + 4*957^q + 1] |
k = = 1 mod 2 (2) k = = 1 mod 239 (239) |
8 (300K) 120 (300K) 404 (300K) 1026 (300K) 1046 (300K) 1198 (300K) 1326 (300K) 1432 (300K) |
904 (227111) 452 (55574) 216 (37882) 1294 (27433) 1286 (19831) 648 (12320) 818 (11776) 1168 (10244) 1262 (6421) 998 (5894) |
|
958 | 174 | 5, 7, 173 | k = = 1 mod 3 (3) k = = 1 mod 11 (11) k = = 1 mod 29 (29) |
8 (500K) | 162 (46431) 83 (41090) 120 (39177) 134 (10565) 156 (6394) 153 (1964) 27 (970) 87 (604) 29 (423) 104 (328) |
||
959 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 1 mod 479 (479) |
none - proven | 2 (2) | ||
961 | 38 | 13, 37 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 5 (5) |
none - proven | 14 (187) 12 (36) 30 (24) 2 (3) 32 (2) 18 (2) 24 (1) 20 (1) 8 (1) |
||
962 | 106 | 3, 107 | k = = 1 mod 31 (31) | 11 (400K) 13 (400K) 73 (400K) 74 (400K) 89 (400K) 104 (400K) |
44 (47400) 43 (32367) 8 (31840) 26 (13686) 40 (12149) 46 (4989) 51 (4917) 76 (3109) 92 (1636) 58 (911) |
||
964 | 194 | 5, 193 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*964^q - 1) * (m*964^q + 1) odd n: factor of 5 |
k = = 1 mod 3 (3) k = = 1 mod 107 (107) |
none - proven | 129 (112228) 141 (110107) 21 (22931) 179 (19040) 111 (15055) 149 (2136) 72 (1420) 183 (1131) 66 (659) 75 (628) |
k = 9 and 144 proven composite by partial algebraic factors. |
965 | 8 | 3, 7 | k = = 1 mod 2 (2) k = = 1 mod 241 (241) |
none - proven | 4 (8755) 2 (136) 6 (10) |
||
967 | 408 | 5, 11, 13 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 7 (7) k = = 1 mod 23 (23) |
242 (500K) | 32 (8416) 320 (3367) 140 (1775) 336 (971) 230 (924) 294 (679) 98 (678) 342 (581) 216 (430) 234 (348) |
||
968 | 16 | 3, 17 | k = = 1 mod 967 (967) | 4 (500K) | 2 (1750) 7 (39) 9 (13) 14 (8) 12 (2) 11 (2) 8 (2) 5 (2) 15 (1) 13 (1) |
||
969 | 96 | 5, 97 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*969^q - 1) * (m*969^q + 1) odd n: factor of 5 |
k = = 1 mod 2 (2) k = = 1 mod 11 (11) |
none - proven | 2 (24096) 16 (1079) 74 (580) 60 (76) 86 (55) 94 (12) 80 (12) 82 (11) 26 (9) 14 (8) |
k = 4 and 64 proven composite by partial algebraic factors. |
970 | 447630 | 13, 461, 971 | k = = 1 mod 3 (3) k = = 1 mod 17 (17) k = = 1 mod 19 (19) |
3431 k's remaining at n=10K. See k's at Riesel Base 970 remain. |
384434 (9998) 351378 (9993) 205493 (9988) 171711 (9985) 374454 (9978) 269070 (9970) 309072 (9968) 181388 (9963) 296837 (9957) 258644 (9928) |
||
971 | 3578 | 3, 7, 13, 79 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 97 (97) |
82 k's remaining at n=100K. See k's at Riesel Base 971 remain. |
1160 (99188) 2444 (78748) 3244 (75063) 794 (71126) 42 (67575) 3340 (66969) 1368 (65297) 2350 (62749) 2900 (58822) 1028 (55708) |
||
972 | 279 | 7, 139 | k = = 1 mod 971 (971) | 3 (300K) 8 (300K) 29 (300K) 49 (300K) 69 (300K) 75 (300K) 146 (300K) 174 (300K) |
197 (265841) 166 (141038) 188 (80392) 111 (59402) 260 (41245) 6 (36702) 78 (27907) 36 (24565) 103 (16926) 238 (10322) |
||
973 | 21914 | 5, 17, 487 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) |
83 k's remaining at n=100K. See k's at Riesel Base 973 remain. |
3162 (98466) 2964 (89563) 3596 (87761) 15908 (86628) 5376 (84193) 8316 (84014) 16724 (82415) 11064 (74865) 20846 (74089) 18942 (71672) |
||
974 | 4 | 3, 5 | k = = 1 mod 7 (7) k = = 1 mod 139 (139) |
none - proven | 2 (8) 3 (2) |
||
975 | 282032 | 7, 67, 2029 | (Condition 1): All k where k = m^2 and m = = 11 or 50 mod 61: for even n let k = m^2 and let n = 2*q; factors to: (m*975^q - 1) * (m*975^q + 1) odd n: factor of 61 (Condition 2): All k where k = 39*m^2 and m = = 6 or 55 mod 61: even n: factor of 61 for odd n let k = 39*m^2 and let n=2*q-1; factors to: [m*5^n*39^q - 1] * [m*5^n*39^q + 1] |
k = = 1 mod 2 (2) k = = 1 mod 487 (487) |
2245 k's remaining at n=10K. See k's at Riesel Base 975 remain. |
89658 (9978) 212902 (9938) 118482 (9923) 5996 (9923) 67152 (9919) 40622 (9917) 171994 (9911) 137722 (9906) 269398 (9878) 116258 (9862) |
k = 2500, 5184, 29584, 37636, 86436, 99856, 173056, and 191844 proven composite by condition
1. k = 1404 proven composite by condition 2. |
976 | 154367 | 7, 19, 67, 977 | All k where k = m^2 and m = = 252 or 725 mod 977: for even n let k = m^2 and let n = 2*q; factors to: (m*976^q - 1) * (m*976^q + 1) odd n: factor of 977 |
k = = 1 mod 3 (3) k = = 1 mod 5 (5) k = = 1 mod 13 (13) |
545 k's remaining at n=25K. See k's at Riesel Base 976 remain. |
38699 (24985) 144333 (24947) 26970 (24629) 122124 (24450) 124878 (24390) 98298 (24390) 128694 (24366) 9797 (24082) 67917 (23966) 11255 (23958) |
k = 63504 proven composite by partial algebraic factors. |
977 | 164 | 3, 163 | k = = 1 mod 2 (2) k = = 1 mod 61 (61) |
88 (300K) 116 (300K) 136 (300K) 140 (300K) 148 (300K) |
68 (83328) 14 (52076) 16 (21317) 58 (8643) 100 (6407) 128 (5420) 152 (4582) 18 (2155) 74 (1140) 30 (1107) |
||
978 | 177 | 11, 89 | k = = 1 mod 977 (977) | 12 (400K) 94 (400K) |
164 (387920) 131 (43291) 137 (16482) 11 (14065) 175 (11722) 160 (10896) 100 (5187) 21 (4326) 33 (4242) 122 (4163) |
||
979 | 6 | 5, 7 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 163 (163) |
none - proven | 2 (2) | ||
980 | 110 | 3, 109 | k = = 1 mod 11 (11) k = = 1 mod 89 (89) |
10 (400K) 31 (400K) |
109 (383669) 7 (50877) 44 (30084) 52 (17045) 107 (13362) 26 (2958) 8 (2656) 19 (2595) 46 (1047) 97 (939) |
||
982 | 4914 | 5, 17, 983 | k = = 1 mod 3 (3) k = = 1 mod 109 (109) |
71 k's remaining at n=100K. See k's at Riesel Base 982 remain. |
4845 (98383) 1644 (91540) 4902 (88146) 4848 (87494) 1308 (85760) 2493 (80324) 2321 (77333) 2640 (70708) 2487 (68196) 1002 (65933) |
||
983 | 14 | 3, 5, 13 | k = = 1 mod 2 (2) k = = 1 mod 491 (491) |
none - proven | 2 (200) 12 (12) 8 (2) 10 (1) 6 (1) 4 (1) |
||
984 | 196 | 5, 197 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*984^q - 1) * (m*984^q + 1) odd n: factor of 5 |
k = = 1 mod 983 (983) | 99 (300K) 119 (300K) 191 (300K) |
18 (209436) 121 (114465) 120 (97100) 86 (74279) 81 (33591) 11 (4521) 188 (2701) 94 (1628) 164 (1622) 91 (1217) |
k = 4, 9, 49, 64, 144, and 169 proven composite by partial algebraic factors. |
985 | 86 | 17, 29 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 41 (41) |
none - proven | 68 (2248) 50 (1190) 36 (721) 12 (49) 84 (18) 38 (6) 30 (5) 62 (4) 2 (4) 66 (3) |
||
986 | 8 | 3, 7 | k = = 1 mod 5 (5) k = = 1 mod 197 (197) |
none - proven | 7 (12505) 5 (5580) 2 (22) 4 (1) 3 (1) |
||
987 | 170 | 13, 19 | All k where k = m^2 and m = = 5 or 8 mod 13: for even n let k = m^2 and let n = 2*q; factors to: (m*987^q - 1) * (m*987^q + 1) odd n: factor of 13 |
k = = 1 mod 2 (2) k = = 1 mod 17 (17) k = = 1 mod 29 (29) |
58 (300K) 94 (300K) 118 (300K) |
96 (5035) 158 (1988) 62 (70) 162 (32) 116 (26) 80 (26) 150 (24) 148 (23) 100 (19) 144 (15) |
k = 64 proven composite by partial algebraic factors. |
988 | 300 | 23, 43 | k = = 1 mod 3 (3) k = = 1 mod 7 (7) k = = 1 mod 47 (47) |
47 (300K) 93 (300K) |
87 (17243) 186 (7537) 17 (1275) 209 (973) 63 (786) 111 (462) 45 (348) 81 (261) 68 (120) 26 (109) |
||
989 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 1 mod 13 (13) k = = 1 mod 19 (19) |
none - proven | 2 (26868) | ||
990 | 1684699 | 7, 13, 17, 61, 991 | k = = 1 mod 23 (23) k = = 1 mod 43 (43) |
24510 k's remaining at n=2.5K. To be shown later. | 9 (23031) 1539090 (2500) 1050731 (2500) 782787 (2500) 1486658 (2499) 1453329 (2499) 1292748 (2499) 1171725 (2499) 1100162 (2499) 1067118 (2499) |
||
991 | 11358 | 7, 13, 277 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 5 (5) k = = 1 mod 11 (11) |
1080 (100K) 1518 (100K) 1964 (100K) 2258 (100K) 2382 (100K) 2804 (100K) 2900 (100K) 4124 (100K) 4680 (100K) 5118 (100K) 6540 (100K) 7224 (100K) 7442 (100K) 7842 (100K) 8388 (100K) 9038 (100K) 9270 (100K) 9578 (100K) 9584 (100K) 9608 (100K) 9704 (100K) 10260 (100K) 10362 (100K) 11040 (100K) |
3942 (71722) 32 (52191) 7218 (50722) 5294 (50019) 5240 (48787) 8804 (45118) 9074 (40763) 10050 (38711) 6372 (34388) 3750 (24450) |
||
992 | 172 | 3, 5, 97 | k = = 1 mod 991 (991) | 2 (300K) 14 (300K) 22 (300K) 74 (300K) 103 (300K) 116 (300K) 118 (300K) 134 (300K) 146 (300K) |
158 (160514) 123 (33207) 107 (20238) 73 (18311) 160 (14029) 61 (11289) 52 (10701) 8 (10604) 62 (8030) 110 (7798) |
||
993 | 8 | 5, 7, 13 | k = = 1 mod 2 (2) k = = 1 mod 31 (31) |
none - proven | 6 (18) 4 (3) 2 (2) |
||
994 | 399 | 5, 199 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*994^q - 1) * (m*994^q + 1) odd n: factor of 5 |
k = = 1 mod 3 (3) k = = 1 mod 331 (331) |
26 (300K) 69 (300K) 141 (300K) 201 (300K) |
221 (224221) 209 (154302) 329 (42108) 174 (38976) 86 (33579) 159 (17350) 111 (11617) 224 (9622) 66 (8405) 309 (3164) |
k = 9, 144, and 324 proven composite by partial algebraic factors. |
995 | 82 | 3, 83 | k = = 1 mod 2 (2) k = = 1 mod 7 (7) k = = 1 mod 71 (71) |
20 (500K) | 68 (465908) 38 (9718) 52 (705) 44 (478) 70 (459) 2 (282) 62 (66) 46 (49) 4 (35) 30 (17) |
||
996 | 52840 | 7, 19, 43, 997 | All k where k = m^2 and m = = 161 or 836 mod 997: for even n let k = m^2 and let n = 2*q; factors to: (m*996^q - 1) * (m*996^q + 1) odd n: factor of 997 |
k = = 1 mod 5 (5) k = = 1 mod 199 (199) |
668 k's remaining at n=25K. See k's at Riesel Base 996 remain. |
47489 (24992) 52742 (24929) 13662 (24929) 14670 (24721) 9767 (24583) 26943 (24483) 11029 (24351) 16503 (23946) 1278 (23568) 50712 (23457) |
No k's proven composite by algebraic factors. |
997 | 101526 | 7, 13, 31, 1117 | k = = 1 mod 2 (2) k = = 1 mod 499 (499) |
1027 k's remaining at n=25K. See k's at Riesel Base 997 remain. |
23196 (24870) 56034 (24773) 78212 (24769) 48798 (24700) 38744 (24684) 33954 (24664) 14046 (24593) 43128 (24406) 72048 (24304) 60464 (24299) |
||
998 | 38 | 3, 37 | All k where k = m^2 and m = = 6 or 31 mod 37: for even n let k = m^2 and let n = 2*q; factors to: (m*998^q - 1) * (m*998^q + 1) odd n: factor of 37 |
k = = 1 mod 997 (997) | 5 (300K) 22 (300K) 29 (300K) 30 (300K) |
14 (16168) 4 (8427) 23 (5298) 25 (2287) 11 (834) 16 (329) 24 (104) 18 (82) 21 (29) 32 (28) |
k = 36 proven composite by partial algebraic factors. |
999 | 3166 | 5, 17, 197 | (Condition 1): All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*999^q - 1) * (m*999^q + 1) odd n: factor of 5 (Condition 2): All k where k = 111*m^2 and m = = 1 or 4 mod 5: even n: factor of 5 for odd n let k = 111*m^2 and let n=2*q-1; factors to: [m*3^n*111^q - 1] * [m*3^n*111^q + 1] |
k = = 1 mod 2 (2) k = = 1 mod 499 (499) |
56 k's remaining at n=100K. See k's at Riesel Base 999 remain. |
2110 (99773) 306 (84961) 1566 (80755) 2024 (72422) 940 (67413) 1326 (58041) 2942 (57389) 1014 (52980) 3008 (46983) 1084 (45128) |
k = 4, 64, 144, 324, 484, 784, 1024, 1444, 1764, 2304, and 2704
proven composite by condition 1. k = 1776 proven composite by condition 2. |
1000 | 12 | 11, 13 | All k = m^3 for all n; factors to: (m*10^n - 1) * (m^2*100^n + m*10^n + 1) |
k = = 1 mod 3 (3) k = = 1 mod 37 (37) |
none - proven | 6 (998) 11 (3) 9 (1) 5 (1) 3 (1) 2 (1) |
k = 8 proven composite by full algebraic factors. |
1001 | 1168 | 3, 167 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) |
70 (300K) 170 (300K) 994 (300K) |
242 (119418) 1024 (110819) 422 (89704) 782 (71888) 478 (30517) 754 (17605) 764 (16782) 280 (14111) 662 (12834) 292 (10169) |
||
1002 | 237 | 17, 59 | All k where k = m^2 and m = = 4 or 13 mod 17: for even n let k = m^2 and let n = 2*q; factors to: (m*1002^q - 1) * (m*1002^q + 1) odd n: factor of 17 |
k = = 1 mod 7 (7) k = = 1 mod 11 (11) k = = 1 mod 13 (13) |
none - proven | 233 (20508) 59 (12045) 208 (652) 58 (526) 186 (314) 135 (188) 25 (139) 76 (126) 139 (123) 39 (95) |
k = 16 proven composite by partial algebraic factors. |
1003 | 396 | 7, 79, 607 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 167 (167) |
252 (300K) 318 (300K) |
338 (62214) 18 (13746) 128 (3526) 258 (2149) 204 (799) 284 (705) 260 (251) 206 (235) 84 (157) 336 (134) |
||
1004 | 4 | 3, 5 | k = = 1 mod 17 (17) k = = 1 mod 59 (59) |
none - proven | 2 (2) 3 (1) |
||
1005 | 244960 | 7, 13, 97, 503 | k = 17424, 85264, 179776, and 202500: for even n let k = m^2 and let n = 2*q; factors to: (m*1005^q - 1) * (m*1005^q + 1) odd n: covering set 7, 13, 97 |
k = = 1 mod 2 (2) k = = 1 mod 251 (251) |
2554 k's remaining at n=10K. See k's at Riesel Base 1005 remain. |
9606 (9989) 169454 (9988) 200742 (9979) 27934 (9972) 89140 (9965) 207008 (9945) 229016 (9934) 218908 (9931) 103784 (9921) 61338 (9909) |
|
1006 | 1538 | 19, 53 | All k where k = m^2 and m = = 23 or 30 mod 53: for even n let k = m^2 and let n = 2*q; factors to: (m*1006^q - 1) * (m*1006^q + 1) odd n: factor of 53 |
k = = 1 mod 3 (3) k = = 1 mod 5 (5) k = = 1 mod 67 (67) |
189 (300K) 417 (300K) 719 (300K) 894 (300K) 944 (300K) 987 (300K) 1158 (300K) 1293 (300K) |
552 (146815) 317 (119362) 1200 (38888) 1104 (32960) 428 (32308) 468 (11862) 584 (10029) 675 (9575) 848 (8594) 1500 (8278) |
k = 900 proven composite by partial algebraic factors. |
1007 | 8 | 3, 7 | k = = 1 mod 2 (2) k = = 1 mod 503 (503) |
none - proven | 2 (8) 6 (2) 4 (1) |
||
1008 | 623563 | 5, 13, 61, 1009, 1399 | All k where k = m^2 and m = = 469 or 540 mod 1009: for even n let k = m^2 and let n = 2*q; factors to: (m*1008^q - 1) * (m*1008^q + 1) odd n: factor of 1009 |
k = = 1 mod 19 (19) k = = 1 mod 53 (53) |
15807 k's remaining at n=2.5K. To be shown later. | 545752 (2500) 432793 (2500) 336694 (2500) 196897 (2500) 483014 (2499) 398297 (2499) 373030 (2498) 94548 (2498) 22612 (2498) 7906 (2498) |
k = 219961 and 291600 proven composite by partial algebraic factors. |
1009 | 1314 | 5, 101 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*1009^q - 1) * (m*1009^q + 1) odd n: factor of 5 |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 7 (7) |
150 (300K) 186 (300K) 434 (300K) 444 (300K) 896 (300K) 924 (300K) |
662 (267747) 1112 (43447) 1292 (28491) 656 (18455) 104 (13718) 534 (12994) 704 (9236) 804 (8664) 584 (7744) 714 (5212) |
k = 144 and 324 proven composite by partial algebraic factors. |
1010 | 338 | 3, 337 | k = = 1 mod 1009 (1009) | 9 (300K) 31 (300K) 53 (300K) 74 (300K) 80 (300K) 102 (300K) 125 (300K) 131 (300K) 144 (300K) 185 (300K) 235 (300K) 248 (300K) 256 (300K) 278 (300K) 302 (300K) 317 (300K) |
113 (242194) 137 (190444) 209 (141224) 133 (107841) 146 (75156) 47 (67718) 59 (60250) 266 (27124) 269 (25620) 267 (24439) |
||
1011 | 208 | 11, 23 | k = = 1 mod 2 (2) k = = 1 mod 5 (5) k = = 1 mod 101 (101) |
none - proven | 22 (28040) 188 (18935) 98 (9020) 68 (1266) 10 (1158) 38 (894) 204 (122) 12 (119) 112 (65) 64 (37) |
||
1012 | 946143 | 5, 17, 73, 1013 | All k where k = m^2 and m = = 45 or 968 mod 1013: for even n let k = m^2 and let n = 2*q; factors to: (m*1012^q - 1) * (m*1012^q + 1) odd n: factor of 1013 |
k = = 1 mod 3 (3) k = = 1 mod 337 (337) |
16390 k's remaining at n=10K. See k's at Riesel Base 1012 remain. |
528263 (9994) 520382 (9986) 127538 (9982) 869906 (9981) 808274 (9980) 154527 (9980) 902373 (9976) 206081 (9973) 743241 (9971) 224303 (9971) |
k = 2025 proven composite by partial algebraic factors. |
1013 | 14 | 3, 13 | k = = 1 mod 2 (2) k = = 1 mod 11 (11) k = = 1 mod 23 (23) |
none - proven | 10 (2627) 2 (1116) 8 (872) 6 (2) 4 (1) |
||
1014 | 6 | 5, 7 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*1014^q - 1) * (m*1014^q + 1) odd n: factor of 5 |
k = = 1 mod 1013 (1013) | none - proven | 5 (2) 3 (1) 2 (1) |
k = 4 proven composite by partial algebraic factors. |
1015 | 11049380 | 127, 373, 1381 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 13 (13) |
41219 k's remaining at n=2.5K. To be shown later. | 9199160 (2500) 9087084 (2500) 7789586 (2500) 6918386 (2500) 6206660 (2500) 5940420 (2500) 5604978 (2500) 5066372 (2500) 4087652 (2500) 3152264 (2500) |
||
1016 | 112 | 3, 113 | k = = 1 mod 5 (5) k = = 1 mod 7 (7) k = = 1 mod 29 (29) |
none - proven | 7 (23335) 109 (4607) 4 (2715) 53 (934) 14 (392) 95 (232) 19 (159) 97 (131) 52 (105) 32 (92) |
||
1017 | 900 | 7, 13, 31 | k = = 1 mod 2 (2) k = = 1 mod 127 (127) |
100 (300K) 354 (300K) 396 (300K) 522 (300K) 828 (300K) |
750 (277556) 842 (230634) 508 (199220) 542 (137766) 898 (85783) 840 (80711) 400 (66551) 268 (65254) 22 (47885) 664 (28685) |
||
1018 | 111284 | 7, 13, 19, 31, 367 | k = = 1 mod 3 (3) k = = 1 mod 113 (113) |
2895 k's remaining at n=10K. See k's at Riesel Base 1018 remain. |
63527 (9995) 63951 (9979) 60554 (9973) 104261 (9967) 105239 (9955) 87222 (9950) 74400 (9941) 67901 (9917) 73761 (9901) 103314 (9867) |
||
1019 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 1 mod 509 (509) |
2 (600K) | (none) | ||
1021 | 218 | 7, 73 | k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 5 (5) k = = 1 mod 17 (17) |
none - proven | 174 (121880) 92 (487) 48 (142) 132 (64) 32 (56) 90 (48) 72 (46) 30 (22) 44 (19) 104 (18) |
||
1022 | 10 | 3, 11 | k = = 1 mod 1021 (1021) | none - proven | 4 (469) 3 (126) 9 (13) 8 (8) 5 (6) 7 (5) 2 (4) 6 (1) |
||
1023 | 68394 | 13, 61, 1321 | k = = 1 mod 2 (2) k = = 1 mod 7 (7) k = = 1 mod 73 (73) |
142 k's remaining at n=100K. See k's at Riesel Base 1023 remain. |
48236 (97117) 6124 (92155) 43564 (90968) 61044 (90355) 62206 (83638) 25066 (83565) 25808 (83400) 44502 (79170) 492 (78615) 45958 (78246) |
||
1025 | 20 | 3, 19 | k = = 1 mod 2 (2) | 8 (1.075M) | 6 (8958) 10 (33) 18 (6) 16 (5) 14 (4) 12 (4) 2 (2) 4 (1) |
||
1026 | 157 | 13, 79 | All k where k = m^2 and m = = 5 or 8 mod 13: for even n let k = m^2 and let n = 2*q; factors to: (m*1026^q - 1) * (m*1026^q + 1) odd n: factor of 13 |
k = = 1 mod 5 (5) k = = 1 mod 41 (41) |
none - proven | 113 (9283) 43 (4112) 5 (3391) 155 (1766) 79 (719) 77 (526) 137 (381) 20 (214) 14 (133) 80 (81) |
k = 25 and 64 proven composite by partial algebraic factors. |
1027 | 21332 | 5, 29, 257 | All k where k = m^2 and m = = 16 or 241 mod 257: for even n let k = m^2 and let n = 2*q; factors to: (m*1027^q - 1) * (m*1027^q + 1) odd n: factor of 257 |
k = = 1 mod 2 (2) k = = 1 mod 3 (3) k = = 1 mod 19 (19) |
32 k's remaining at n=250K. See k's at Riesel Base 1027 remain. |
12362 (240890) 19062 (206877) 5678 (202018) 17702 (193732) 11726 (185913) 14172 (179381) 15876 (155415) 19512 (150245) 4304 (149224) 9638 (129787) |
No k's proven composite by algebraic factors. |
1028 | 8 | 3, 7 | k = = 1 mod 13 (13) k = = 1 mod 79 (79) |
none - proven | 6 (3294) 5 (6) 7 (3) 2 (2) 4 (1) 3 (1) |
||
1029 | 104 | 5, 103 | All k where k = m^2 and m = = 2 or 3 mod 5: for even n let k = m^2 and let n = 2*q; factors to: (m*1029^q - 1) * (m*1029^q + 1) odd n: factor of 5 |
k = = 1 mod 2 (2) k = = 1 mod 257 (257) |
26 (1M) | 36 (55979) 98 (859) 80 (816) 92 (810) 56 (363) 32 (172) 44 (150) 90 (68) 34 (52) 96 (49) |
k = 4 and 64 proven composite by partial algebraic factors. |
1030 | 54642 | 13, 53, 541, 1031 | k = = 1 mod 3 (3) k = = 1 mod 7 (7) |
125 k's remaining at n=100K. See k's at Riesel Base 1030 remain. |
17391 (99561) 37643 (97976) 39612 (96274) 34178 (91022) 23286 (89794) 43176 (88615) 48390 (85754) 22109 (85734) 16656 (85063) 51758 (81304) |