Sierpinski conjectures and proofs
Bases that are powers of 2 are shown on a separate page.

Started: Dec. 14, 2007
Last update: June 28, 2023

Compiled by Gary Barnes

Riesel conjectures
Riesel conjectures powers of 2
Sierpinski conjectures powers of 2
Sierpinski conjecture reservations

All n must be >= 1.

k-values with at least one of the following conditions are excluded from the conjectures:
     1.  All n-values have a single trivial factor.
     2.  Make a full covering set with all or partial algebraic factors.
     3.  Make generalized Fermat numbers (GFn's), i.e. q^m*b^n+1 where b is the base, m>=0, and q is a root of the base.

k-values that are a multiple of base (b) and where k+1 is composite are included in the conjectures but excluded from testing.
Such k-values will have the same prime as k / b.

Green = testing through other projects
Gray = conjecture proven

Testing not done through other projects is coordinated at Mersenneforum Conjectures 'R Us.

Base Conjectured Sierpinski k Covering set k's that make a full covering set with all or partial algebraic factors Trivial k's (factor) Remaining k to find prime
(n testing limit)
Top 10 k's with largest first primes: k (n) Comments / GFn's without a prime / accounting of all k's
3 125050976086 5, 7, 13, 17, 19, 37, 41, 193, 757   k = = 1 mod 2 (2) 411412 k's remaining at n>=50K.

See k's and test limits at Sierpinski Base 3 remain.
125030472038 (945719)
125035448126 (933576)
125000536756 (774704)
125026898182 (751689)
125033255936 (690611)
125023497122 (550124)
125046722746 (542844)
125011623424 (536110)
608558012 (498094)
961852454 (495371)
See all primes for n>25K at prime-sierp-base3-gt-25K.zip.
5 159986 3, 7, 13, 31, 601   k = = 1 mod 2 (2) 30 k's remaining at n=4.3M.

See k's at Sierpinski Base 5 remain.
118568 (3112069)
138514 (2771922)
81556 (2539960)
92158 (2145024)
77072 (2139921)
154222 (2091432)
144052 (2018290)
109208 (1816285)
133778 (1785689)
24032 (1768249)
All k's are being worked on by PrimeGrid's Sierpinski/Riesel Base 5 project.  See k's and test limits at Sierpinski/Riesel Base 5 project stats.

all-ks-sierp-base5.txt
6 174308 7, 13, 31, 37, 97   k = = 4 mod 5 (5) 13215 (4M)
14505 (4M)
50252 (4M)
76441 (4M)
87800 (4M)
97131 (4M)
112783 (4M)
127688 (4M)
166753 (4M)
168610 (4M)
124125 (2018254)
139413 (1279992)
33706 (910462)
125098 (896696)
31340 (833096)
59506 (780877)
10107 (559967)
113966 (511831)
172257 (349166)
121736 (298935)
k = 1296, 7776, and 46656 are GFn's with no known prime.

all-ks-sierp-base6.zip
7 1112646039348 5, 13, 19, 43, 73, 181, 193, 1201   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
19917 k's remaining for k<=1G at n>=25K.

See k's and test limits at Sierpinski Base 7 remain.
1952376 (293352)
5452324 (277094)
5071026 (261921)
4325044 (260713)
4377694 (242365)
1711614 (240590)
2084536 (231987)
2506872 (226342)
7467202 (214914)
4205358 (214504)
See all primes for n>25K at Sierpinski Base 7 primes.
9 2344 5, 7, 13, 73   k = = 1 mod 2 (2) 2036 (5M) 1846 (65376)
1804 (44103)
1884 (16093)
1306 (3374)
914 (1813)
1746 (1320)
1934 (935)
1076 (828)
1272 (480)
1468 (382)
all-ks-sierp-base9.txt
10 9175 7, 11, 13, 37   k = = 2 mod 3 (3) 7666 (3M) 5028 (83982)
7404 (44826)
8194 (21129)
4069 (12095)
7809 (11793)
6172 (10740)
9021 (8090)
8889 (7588)
804 (5470)
1024 (4554)
k = 100 and 1000 are GFn's with no known prime.

all-ks-sierp-base10.txt
11 1490 3, 7, 19, 37   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
none - proven 958 (300544)
1468 (26258)
416 (12741)
1046 (3201)
1420 (2564)
626 (991)
1292 (575)
908 (573)
502 (432)
1370 (383)
all-ks-sierp-base11.txt
12 521 5, 13, 29   k = = 10 mod 11 (11) none - proven 404 (714558)
378 (2388)
261 (644)
407 (367)
354 (291)
37 (199)
30 (144)
88 (113)
17 (78)
239 (71)
k = 12 and 144 are GFn's with no known prime.

all-ks-sierp-base12.txt
13 132 5, 7, 17   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
none - proven 48 (6267)
120 (1552)
106 (56)
64 (26)
112 (12)
118 (11)
18 (11)
36 (8)
30 (4)
130 (3)
all-ks-sierp-base13.txt
14 4 3, 5   k = = 12 mod 13 (13) none - proven 3 (1)
2 (1)
all-ks-sierp-base14.txt
15 91218919470156 13, 17, 113, 211, 241, 1489, 3877   k = = 1 mod 2 (2)
k = = 6 mod 7 (7)
10362 k's remaining for k<=1G at n>=25K.

See k's and test limits at Sierpinski Base 15 remain.
3859132 (195563)
1868998 (186814)
734268 (180565)
4713672 (83962)
3429436 (78867)
4149714 (72183)
4989408 (67951)
913244 (67709)
3049998 (67110)
1295982 (66064)
See all primes for n>25K at Sierpinski Base 15 primes.
17 278 3, 5, 29   k = = 1 mod 2 (2) 244 (5M) 262 (186768)
160 (166048)
92 (51311)
88 (4868)
10 (1356)
166 (1068)
208 (984)
104 (871)
128 (225)
106 (144)
all-ks-sierp-base17.txt
18 398 5, 13, 19   k = = 16 mod 17 (17) none - proven 122 (292318)
381 (24108)
291 (2415)
37 (457)
362 (258)
123 (236)
183 (171)
363 (163)
209 (79)
318 (78)
k = 18 and 324 are GFn's with no known prime.

all-ks-sierp-base18.txt
19 765174 5, 7, 13, 127, 769   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
525 k's remaining at n=200K.

See k's at Sierpinski Base 19 remain.
256134 (199223)
624466 (198780)
353334 (198135)
477744 (197605)
721306 (197530)
142656 (197148)
314326 (196612)
375546 (195324)
60874 (195067)
669456 (194952)
all-ks-sierp-base19.zip
20 8 3, 7   k = = 18 mod 19 (19) none - proven 6 (15)
7 (2)
4 (2)
5 (1)
3 (1)
2 (1)
all-ks-sierp-base20.txt
21 1002 11, 13, 17   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
none - proven 118 (19849)
922 (230)
736 (215)
976 (84)
978 (43)
582 (39)
818 (35)
456 (31)
632 (28)
472 (25)
all-ks-sierp-base21.txt
22 6694 5, 23, 97   k = = 2 mod 3 (3)
k = = 6 mod 7 (7)
5128 (2M) 1611 (738988)
1908 (355313)
4233 (304046)
5659 (97758)
6462 (45507)
5061 (24048)
942 (18359)
6234 (16010)
2991 (10484)
5751 (4272)
k = 22 and 484 are GFn's with no known prime.

all-ks-sierp-base22.txt
23 182 3, 5, 53   k = = 1 mod 2 (2)
k = = 10 mod 11 (11)
none - proven 68 (365239)
8 (119215)
122 (14049)
124 (3118)
154 (2898)
80 (575)
82 (474)
108 (350)
4 (342)
136 (140)
all-ks-sierp-base23.txt
24 30651 5, 7, 13, 73, 79   k = = 22 mod 23 (23) 61 k's remaining at n=400K.

See k's at Sierpinski base 24 remain.
13984 (397259)
3846 (383526)
23981 (360062)
8369 (359371)
3706 (353908)
12799 (353083)
29009 (338099)
28099 (332519)
21526 (329368)
26804 (266195)
all-ks-sierp-base24.txt
25 262638 7, 13, 31, 601   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
81 k's remaining at n>=350K.

See k's and test limits at Sierpinski base 25 remain.
138514 (1385961)
81556 (1269980)
92158 (1072512)
154222 (1045716)
144052 (1009145)
120160 (884124)
186460 (743994)
92182 (567631)
110488 (458550)
35970 (325889)
k's < 159986 where k = = 1 mod 3 are being worked on by PrimeGrid's Sierpinski/Riesel Base 5 project.
k's and primes are converted from base 5.

all-ks-sierp-base25.zip
26 221 3, 7, 19, 37   k = = 4 mod 5 (5) 65 (1M)
155 (1M)
32 (318071)
217 (11454)
95 (1683)
178 (1154)
138 (827)
157 (308)
175 (276)
211 (98)
197 (71)
13 (68)
all-ks-sierp-base26.txt
27 538 5, 7, 73 All k = m^3 for all n; factors to:
(m*3^n + 1) *
(m^2*9^n - m*3^n + 1)
k = = 1 mod 2 (2)
k = = 12 mod 13 (13)
398 (2M) 342 (36291)
526 (7668)
316 (384)
244 (335)
160 (155)
414 (138)
208 (77)
396 (64)
212 (47)
274 (34)
k = 8, 216, and 512 proven composite by full algebraic factors.

all-ks-sierp-base27.txt
28 4554 5, 29, 157   k = = 2 mod 3 (3) 871 (1M)
4552 (1M)
3394 (427262)
4233 (331135)
2377 (104621)
1291 (22811)
2203 (13911)
1797 (5681)
2467 (4956)
4177 (3566)
1623 (3295)
2452 (2552)
all-ks-sierp-base28.txt
29 4 3, 5   k = = 1 mod 2 (2)
k = = 6 mod 7 (7)
none - proven 2 (1) all-ks-sierp-base29.txt
30 867 7, 13, 19, 31   k = = 28 mod 29 (29) 278 (1M)
588 (1M)
699 (11837)
242 (5064)
659 (4936)
311 (1760)
559 (1654)
557 (1463)
740 (1135)
12 (1023)
83 (644)
293 (361)
all-ks-sierp-base30.txt
31 6360528 7, 13, 19, 37, 331   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
503 k's remaining at n=100K.

See k's at Sierpinski Base 31 remain.
3419662 (97826)
1751346 (97378)
2983422 (97021)
3298528 (96957)
4238758 (96859)
2858922 (96460)
10366 (95452)
3679330 (94827)
2645352 (94350)
3866062 (93130)
 
33 1854 5, 17, 109   k = = 1 mod 2 (2) none - proven 766 (610412)
1818 (79815)
1678 (46632)
36 (23615)
1718 (16176)
1580 (9213)
1240 (6953)
154 (6846)
596 (6244)
288 (4583)
 
34 6 5, 7   k = = 2 mod 3 (3)
k = = 10 mod 11 (11)
none - proven 4 (1)
3 (1)
 
35 214018 3, 13, 97, 397   k = = 1 mod 2 (2)
k = = 16 mod 17 (17)
325 k's remaining at n=100K.

See k's at Sierpinski Base 35 remain.
102644 (98619)
166252 (97338)
60878 (97091)
78608 (96777)
16036 (96730)
134618 (96177)
109808 (95759)
105700 (95078)
111398 (94149)
2006 (91431)
 
36 1886 13, 31, 37, 43   k = = 4 mod 5 (5)
k = = 6 mod 7 (7)
none - proven 960 (1571)
716 (1554)
526 (698)
1096 (407)
1570 (352)
667 (302)
1115 (280)
1517 (192)
128 (172)
1751 (147)
k = 1296 is a GFn with no known prime.
37 2604 5, 19, 137   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
94 (1M)
1272 (1M)
2224 (1M)
1866 (48305)
2512 (9932)
936 (8608)
334 (6841)
1296 (6196)
1522 (3431)
1774 (3362)
664 (2149)
52 (1628)
1728 (1577)
 
38 14 3, 13   k = = 36 mod 37 (37) none - proven 2 (2729)
9 (21)
4 (10)
8 (7)
10 (4)
7 (4)
3 (3)
13 (2)
12 (1)
11 (1)
k = 1 is a GFn with no known prime.
39 166134 5, 7, 223, 1483   k = = 1 mod 2 (2)
k = = 18 mod 19 (19)
259 k's remaining at n=100K.

See k's at Sierpinski Base 39 remain.
103164 (99999)
44446 (98862)
52026 (98648)
97926 (98302)
53884 (97647)
46846 (97412)
143834 (96785)
104044 (96577)
64076 (96342)
29984 (96207)
 
40 826477 7, 41, 223, 547   k = = 2 mod 3 (3)
k = = 12 mod 13 (13)
238 k's remaining at n=100K.

See k's at Sierpinski Base 40 remain.
106681 (98153)
201885 (97900)
326236 (97481)
804421 (96594)
284908 (95843)
213609 (95297)
808029 (95230)
234888 (94799)
529965 (93483)
457108 (93385)
k = 1600 and 64000 are GFn's with no known prime.
41 8 3, 7   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
none - proven 6 (3)
2 (1)
 
42 13372 5, 43, 353   k = = 40 mod 41 (41) 988 (1M)
1117 (1M)
1421 (1M)
3226 (1M)
4127 (1M)
5503 (1M)
6707 (1M)
8298 (1M)
8601 (1M)
9074 (1M)
11093 (1M)
11717 (1M)
11738 (1M)
11912 (1M)
12256 (1M)
8343 (560662)
12001 (312245)
12042 (277646)
4643 (143933)
4297 (142044)
4731 (141968)
3897 (136780)
10009 (132629)
2794 (126595)
8300 (116404)
k = 42 and 1764 are GFn's with no known prime.
43 2256 5, 11, 37   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 6 mod 7 (7)
166 (1M) 648 (194123)
1468 (10855)
2146 (3388)
1792 (2569)
450 (1299)
1638 (1043)
2122 (777)
1486 (660)
1954 (546)
618 (542)
 
44 4 3, 5   k = = 42 mod 43 (43) none - proven 3 (9)
2 (1)
 
45 53474 7, 19, 23, 109   k = = 1 mod 2 (2)
k = = 10 mod 11 (11)
26 k's remaining at n=250K.

See k's at Sierpinski Base 45 remain.
12260 (238642)
36716 (238457)
9774 (234077)
19022 (213592)
35120 (209441)
47356 (170867)
47910 (160144)
23760 (150560)
20860 (141393)
37556 (106036)
 
46 14992 7, 19, 47, 103   k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
892 (700K)
976 (700K)
1132 (700K)
1798 (700K)
3477 (700K)
3961 (700K)
4842 (700K)
6015 (700K)
9918 (700K)
11686 (700K)
12585 (700K)
13725 (700K)
11796 (599707)
7675 (424840)
7566 (420563)
3261 (381439)
10950 (301087)
6816 (291720)
14166 (242276)
11751 (163218)
5395 (131937)
13443 (99244)
 
47 8 3, 5, 13   k = = 1 mod 2 (2)
k = = 22 mod 23 (23)
none - proven 2 (175)
4 (2)
6 (1)
 
48 1219 7, 13, 61, 181   k = = 46 mod 47 (47) 36 (700K)
62 (700K)
153 (700K)
561 (700K)
1114 (700K)
1168 (700K)
622 (584089)
937 (309725)
701 (284564)
1077 (216501)
1086 (136352)
1121 (133656)
29 (133042)
841 (84732)
1099 (81106)
359 (35671)
 
49 2944 5, 19, 73, 181, 193   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
1414 (1M)
1456 (1M)
1134 (66183)
2694 (60523)
2746 (49438)
186 (33764)
2488 (29737)
774 (18341)
2134 (11099)
1494 (7823)
2922 (7498)
1156 (3206)
 
50 16 3, 17   k = = 6 mod 7 (7) none - proven 7 (516)
4 (10)
11 (9)
10 (4)
9 (2)
15 (1)
14 (1)
12 (1)
8 (1)
5 (1)
k = 1 is a GFn with no known prime.
51 5183582 7, 13, 379, 2551   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
4319 k's remaining at n=80K.

See k's at Sierpinski Base 51 remain.
1353756 (79990)
1486278 (79956)
678898 (79935)
2751152 (79848)
440506 (79836)
3878486 (79826)
4176346 (79772)
3420612 (79669)
4380648 (79663)
4701280 (79649)
 
52 28674 5, 53, 541   k = = 2 mod 3 (3)
k = = 16 mod 17 (17)
3232 (500K)
3418 (500K)
8638 (500K)
9943 (500K)
15157 (500K)
15424 (500K)
15901 (500K)
17277 (500K)
18328 (500K)
19081 (500K)
23586 (500K)
24697 (500K)
25492 (500K)
25494 (500K)
26923 (500K)
27877 (500K)
23902 (382687)
24328 (310932)
2386 (308276)
5619 (231302)
10188 (208273)
28198 (189440)
15636 (186996)
6147 (157091)
16273 (134573)
27082 (131415)
k = 52 and 2704 are GFn's with no known prime.
53 1966 3, 5, 281   k = = 1 mod 2 (2)
k = = 12 mod 13 (13)
4 (2.24M)
62 (700K)
152 (700K)
184 (700K)
346 (700K)
866 (700K)
1066 (700K)
1084 (700K)
1154 (700K)
1174 (700K)
1238 (700K)
1298 (700K)
1328 (700K)
1414 (700K)
1426 (700K)
1838 (700K)
1862 (700K)
1892 (700K)
280 (333574)
8 (227183)
1534 (171870)
544 (157878)
872 (131625)
196 (85016)
338 (82923)
1480 (58038)
1276 (46496)
1816 (42232)
 
54 21 5, 11   k = = 52 mod 53 (53) none - proven 19 (103)
16 (30)
13 (7)
12 (4)
4 (3)
20 (2)
18 (2)
11 (2)
6 (2)
17 (1)
 
55 4416 7, 17, 89 k=2500:
   odd n:
     factor of 7
   n = = 2 mod 4:
     factor of 17
   n = = 0 mod 4:
     let n=4q
     and let m=5*55^q; factors to:
     (2*m^2 + 2m + 1) *
     (2*m^2 - 2m + 1)
k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
36 (1M)
778 (1M)
2274 (1M)
3940 (1M)
4360 (29655)
3886 (27868)
2010 (26234)
1462 (24481)
834 (18504)
610 (12616)
810 (11241)
1114 (7862)
3058 (5259)
3480 (4718)
 
56 20 3, 19   k = = 4 mod 5 (5)
k = = 10 mod 11 (11)
none - proven 13 (6)
7 (6)
3 (5)
16 (2)
15 (2)
18 (1)
17 (1)
12 (1)
11 (1)
8 (1)
 
57 1188 5, 13, 29   k = = 1 mod 2 (2)
k = = 6 mod 7 (7)
none - proven 378 (67340)
150 (15759)
14 (14955)
1132 (2636)
1074 (2270)
460 (738)
784 (494)
892 (446)
1178 (372)
564 (311)
 
58 43071 5, 59, 673   k = = 2 mod 3 (3)
k = = 18 mod 19 (19)
96 k's remaining at n=125K.

See k's at Sierpinski Base 58 remain.
12108 (122896)
29124 (122559)
15417 (116850)
7612 (116790)
23424 (116434)
35976 (112155)
34632 (109065)
28321 (95320)
25639 (92935)
29454 (92155)
k = 58 and 3364 are GFn's with no known prime.
59 4 3, 5   k = = 1 mod 2 (2)
k = = 28 mod 29 (29)
none - proven 2 (3)  
60 16957 13, 61, 277   k = = 58 mod 59 (59) 853 (500K)
1646 (500K)
2075 (500K)
4025 (500K)
4406 (500K)
4441 (500K)
5064 (500K)
6772 (500K)
7262 (500K)
7931 (500K)
10226 (500K)
11406 (500K)
12323 (500K)
13785 (500K)
14958 (500K)
15007 (500K)
15452 (500K)
15676 (500K)
16050 (500K)
14066 (324990)
16014 (227010)
5767 (201439)
12927 (191870)
11441 (180105)
8923 (109088)
13846 (90979)
2497 (88149)
10405 (77541)
6465 (37209)
k = 60 and 3600 are GFn's with no known prime.
61 15168 7, 13, 97, 523   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
1642 (500K)
3442 (500K)
3936 (500K)
6852 (500K)
8772 (500K)
9208 (500K)
9268 (500K)
11626 (500K)
12778 (500K)
8710 (165595)
9952 (111514)
1570 (55386)
8902 (49779)
12678 (47731)
11736 (45311)
3390 (42464)
7348 (40894)
14052 (32735)
12336 (20138)
 
62 8 3, 7   k = = 60 mod 61 (61) none - proven 7 (308)
2 (43)
3 (12)
4 (2)
6 (1)
5 (1)
k = 1 is a GFn with no known prime.
63 37565868 5, 13, 37, 109, 3907 k=3511808 & 27000000:
   n = = 1 mod 3:
     factor of 37
   n = = 2 mod 3:
     factor of 109
   n = = 0 mod 3:
     let n=3q
     and k=m^3; factors to:
     (m*63^q + 1) *
     [m^2*63^(2q) - m*63^q + 1]
k = = 1 mod 2 (2)
k = = 30 mod 31 (31)
33772 k's remaining at n=25K.

See k's at Sierpinski base 63 remain.
28843694 (24999)
1927378 (24999)
101058 (24999)
26532412 (24998)
30295674 (24997)
22636574 (24997)
15492974 (24995)
4150428 (24995)
33206820 (24994)
401440 (24993)
 
65 10 3, 11   k = = 1 mod 2 (2) none - proven 6 (5)
4 (2)
8 (1)
2 (1)
 
66 21314443 7, 17, 37, 67, 73, 4357   k = = 4 mod 5 (5)
k = = 12 mod 13 (13)
10856 k's remaining at n>=25K.

See k's and test limits at Sierpinski base 66 remain.
2268485 (99969)
1885047 (99777)
2014756 (99023)
2760682 (98888)
2935271 (98566)
2199818 (98471)
1896235 (98372)
3182540 (98311)
352890 (98272)
730435 (98236)
k = 4356, 287496, and 18974736 are GFn's with no known prime.
67 18342 5, 17, 449   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 10 mod 11 (11)
33 k's remaining at n=250K.

See k's at Sierpinski Base 67 remain.
13294 (215689)
17800 (197288)
8142 (187107)
6516 (181499)
2872 (174623)
12802 (170944)
5668 (170478)
15930 (152250)
15112 (142915)
10758 (115057)
 
68 22 3, 23   k = = 66 mod 67 (67) 17 (1M) 12 (656921)
11 (3947)
8 (319)
16 (36)
5 (29)
13 (26)
19 (6)
10 (6)
4 (6)
18 (2)
k = 1 is a GFn with no known prime.
69 6 5, 7   k = = 1 mod 2 (2)
k = = 16 mod 17 (17)
none - proven 4 (1)
2 (1)
 
70 11077 13, 29, 71   k = = 2 mod 3 (3)
k = = 22 mod 23 (23)
10438 (1M) 9231 (515544)
5608 (429979)
3762 (347127)
4119 (157484)
9471 (28526)
285 (24906)
9586 (24102)
4351 (20359)
7552 (17091)
5857 (12975)
k = 70 and 4900 are GFn's with no known prime.
72 731 5, 61, 73   k = = 70 mod 71 (71) none - proven 493 (480933)
647 (60536)
489 (20201)
559 (9626)
395 (8171)
444 (6071)
499 (2998)
292 (2779)
649 (2658)
521 (1208)
k = 72 is a GFn with no known prime.
73 1444 5, 13, 37   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
none - proven 1344 (355570)
778 (220782)
214 (22874)
628 (16143)
432 (2673)
1192 (1696)
1116 (1084)
468 (839)
636 (375)
502 (342)
 
74 4 3, 5   k = = 72 mod 73 (73) none - proven 3 (1)
2 (1)
 
75 4086 7, 13, 19, 61   k = = 1 mod 2 (2)
k = = 36 mod 37 (37)
1312 (1.3M) 2564 (610753)
2336 (43523)
3782 (41086)
2500 (38755)
1082 (15609)
1844 (13296)
2188 (11903)
948 (10963)
1920 (9704)
360 (6333)
 
76 43 7, 11   k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
none - proven 36 (26)
22 (16)
15 (6)
42 (4)
33 (4)
13 (3)
37 (2)
18 (2)
12 (2)
7 (2)
 
77 14 3, 13   k = = 1 mod 2 (2)
k = = 18 mod 19 (19)
none - proven 4 (6098)
10 (4)
12 (3)
2 (3)
8 (1)
6 (1)
 
78 186123 5, 79, 1217   k = = 6 mod 7 (7)
k = = 10 mod 11 (11)
120 k's remaining at n=100K.

See k's at Sierpinski Base 78 remain.
117079 (99186)
146623 (98607)
31738 (98568)
184622 (96429)
83107 (95785)
113423 (86660)
149783 (84567)
25281 (83932)
22344 (83678)
12325 (83516)
k = 78 and 6084 are GFn's with no known prime.
79 2212516 5, 7, 43, 6163   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 12 mod 13 (13)
6978 k's remaining at n>=50K.

See k's and test limits at Sierpinski base 79 remain.
2626 (170700)
1654 (66839)
1755634 (49957)
1933566 (49954)
62886 (49902)
598776 (49898)
2115426 (49858)
1318392 (49854)
889062 (49817)
2212084 (49809)
 
80 1039 3, 7, 13, 43, 173   k = = 78 mod 79 (79) 86 (500K)
92 (500K)
166 (500K)
370 (500K)
393 (500K)
472 (500K)
556 (500K)
623 (500K)
692 (500K)
778 (500K)
818 (500K)
968 (500K)
628 (491322)
295 (404886)
326 (398799)
188 (142291)
433 (121106)
770 (107149)
857 (106007)
787 (48156)
1024 (46306)
233 (36917)
 
81 6068 7, 13, 73 All k=4*q^4 for all n:
   let k=4*q^4
   and let m=q*3^n; factors to:
     (2*m^2 + 2m + 1) *
     (2*m^2 - 2m + 1)
k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
1650 (504K)
2036 (2.5M)
2350 (504K)
2976 (533K)
3440 (504K)
3566 (504K)
3702 (504K)
4016 (504K)
5946 (504K)
3072 (469325)
2378 (240056)
2182 (204681)
4730 (76088)
2950 (58681)
4470 (56874)
4810 (56535)
558 (51992)
1846 (32688)
5490 (30630)
k = 2500 proven composite by full algebraic factors.
82 19587 5, 7, 13, 37, 83   k = = 2 mod 3 (3) 55 k's remaining at n=100K.

See k's at Sierpinski Base 82 remain.
5652 (96054)
7288 (94205)
5101 (88245)
5977 (85004)
9676 (84109)
17692 (82887)
17091 (82407)
19134 (82154)
18168 (71000)
19098 (69654)
 
83 8 3, 7   k = = 1 mod 2 (2)
k = = 40 mod 41 (41)
none - proven 4 (5870)
6 (1)
2 (1)
 
84 16 5, 17   k = = 82 mod 83 (83) none - proven 14 (47)
15 (6)
10 (5)
2 (4)
11 (2)
7 (2)
6 (2)
3 (2)
13 (1)
12 (1)
 
85 346334170 37, 43, 193, 2437   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 6 mod 7 (7)
358422 k's remaining at n>=2.5K. To be shown later. 340278348 (10000)
310803528 (10000)
344056974 (9999)
340169688 (9999)
324601882 (9999)
320161146 (9998)
341994922 (9996)
335243590 (9996)
316360860 (9994)
314393598 (9994)
 
86 28 3, 29   k = = 4 mod 5 (5)
k = = 16 mod 17 (17)
8 (1M) 6 (40)
17 (17)
7 (12)
27 (4)
25 (2)
22 (2)
21 (2)
13 (2)
10 (2)
3 (2)
k = 1 is a GFn with no known prime.
87 274 7, 11, 19, 31   k = = 1 mod 2 (2)
k = = 42 mod 43 (43)
32 (1M) 34 (13654)
56 (2176)
12 (1214)
254 (1102)
150 (161)
198 (112)
8 (112)
166 (92)
252 (91)
100 (38)
 
88 4093 5, 7, 31, 37, 89   k = = 2 mod 3 (3)
k = = 28 mod 29 (29)
244 (500K)
958 (500K)
1452 (500K)
1585 (500K)
1678 (500K)
2007 (500K)
2838 (348438)
1779 (335783)
192 (225546)
978 (198087)
3396 (146911)
2617 (139862)
3292 (39901)
1491 (31709)
2022 (31585)
2749 (30642)
 
89 4 3, 5   k = = 1 mod 2 (2)
k = = 10 mod 11 (11)
none - proven 2 (1)  
90 27 7, 13   k = = 88 mod 89 (89) none - proven 14 (14)
8 (14)
22 (6)
19 (6)
5 (6)
16 (4)
12 (3)
23 (2)
21 (2)
15 (2)
 
91 89586 23, 41, 101   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
1678 (500K)
11706 (500K)
14236 (500K)
29970 (500K)
39492 (500K)
39582 (500K)
45058 (500K)
47080 (500K)
51036 (500K)
53742 (500K)
60466 (500K)
64792 (500K)
58582 (427818)
26472 (357645)
52600 (285235)
252 (219177)
23520 (205187)
12306 (194666)
49656 (144447)
65158 (128927)
6970 (103568)
46062 (95151)
 
92 32 3, 31   k = = 6 mod 7 (7)
k = = 12 mod 13 (13)
none - proven 31 (416)
8 (109)
17 (59)
29 (47)
24 (38)
10 (24)
16 (12)
7 (6)
23 (5)
22 (4)
k = 1 is a GFn with no known prime.
93 24394 5, 47, 173   k = = 1 mod 2 (2)
k = = 22 mod 23 (23)
70 k's remaining at n=100K.

See k's at Sierpinski Base 93 remain.
12092 (97182)
1652 (96929)
9754 (73359)
15818 (68946)
7286 (68324)
8604 (66022)
19568 (62463)
18752 (60545)
14306 (58632)
18658 (57219)
 
94 39 5, 19   k = = 2 mod 3 (3)
k = = 30 mod 31 (31)
none - proven 9 (263)
31 (54)
16 (26)
34 (19)
24 (7)
36 (4)
37 (3)
33 (3)
4 (3)
21 (2)
 
95 41354 3, 7, 13, 229   k = = 1 mod 2 (2)
k = = 46 mod 47 (47)
365 k's remaining at n=100K.

See k's at Sierpinski Base 95 remain.
35494 (96388)
18898 (95996)
38734 (94144)
22328 (93803)
11728 (93156)
4354 (92390)
14444 (92317)
2138 (91207)
23618 (90989)
12250 (89932)
 
96 353081 13, 97, 709   k = = 4 mod 5 (5)
k = = 18 mod 19 (19)
387 k's remaining at n=100K.

See k's at Sierpinski Base 96 remain.
298488 (99533)
251423 (98967)
171982 (97726)
303045 (96350)
196135 (94894)
337107 (94556)
299632 (94253)
126108 (94133)
319350 (93707)
227977 (93619)
 
97 15996 5, 7, 941   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
82 k's remaining at n=100K.

See k's at Sierpinski Base 97 remain.
14230 (89409)
11668 (78153)
15436 (76224)
12018 (75277)
13714 (71410)
5088 (66905)
7972 (64231)
6756 (61420)
12888 (57402)
10128 (55229)
 
98 10 3, 11   k = = 96 mod 97 (97) none - proven 4 (294)
8 (119)
6 (32)
7 (8)
3 (2)
9 (1)
5 (1)
2 (1)
k = 1 is a GFn with no known prime.
99 684 5, 13, 29   k = = 1 mod 2 (2)
k = = 6 mod 7 (7)
none - proven 284 (48911)
464 (14551)
376 (2758)
294 (2439)
456 (1896)
452 (1497)
126 (590)
546 (456)
614 (313)
316 (198)
 
100 2469 7, 13, 37   k = = 2 mod 3 (3)
k = = 10 mod 11 (11)
433 (1M)
922 (1M)
2145 (1M)
684 (563559)
64 (529397)
1269 (24225)
75 (16392)
591 (13007)
985 (11049)
2425 (5370)
1026 (4109)
594 (2932)
804 (2735)
k = 100 is a GFn with no known prime.
101 16 3, 17   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
none - proven 2 (192275)
10 (1506)
12 (1)
8 (1)
6 (1)
 
102 293 7, 19, 79   k = = 100 mod 101 (101) 122 (400K)
178 (400K)
236 (400K)
46 (50451)
278 (10941)
94 (6421)
12 (2739)
73 (2040)
131 (1112)
202 (610)
56 (499)
48 (305)
271 (300)
 
103 13794 5, 13, 1061   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 16 mod 17 (17)
44 k's remaining at n=100K.

See k's at Sierpinski Base 103 remain.
6694 (88879)
2944 (83517)
5598 (83136)
7944 (69106)
5290 (68543)
4666 (53415)
2934 (46883)
586 (39616)
12258 (37951)
13768 (30962)
 
104 4 3, 5   k = = 102 mod 103 (103) none - proven 2 (1233)
3 (1)
k = 1 is a GFn with no known prime.
105 181632 37, 53, 149   k = = 1 mod 2 (2)
k = = 12 mod 13 (13)
51 k's remaining at n=100K.

See k's at Sierpinski Base 105 remain.
35562 (97725)
41890 (84065)
54854 (79861)
104888 (78110)
138596 (76698)
53582 (76673)
8510 (76498)
116334 (72325)
42870 (70202)
30252 (70108)
 
106 495090 17, 107, 661   k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
k = = 6 mod 7 (7)
184 k's remaining at n=100K.

See k's at Sierpinski Base 106 remain.
258636 (99237)
172665 (97658)
430320 (96786)
88875 (95150)
242356 (93316)
395056 (89089)
292216 (88771)
48196 (86064)
106317 (85497)
255600 (84993)
 
107 122 3, 5, 229   k = = 1 mod 2 (2)
k = = 52 mod 53 (53)
38 (1M)
68 (1M)
62 (219967)
94 (105926)
46 (94296)
4 (32586)
40 (4458)
114 (3477)
92 (2247)
76 (736)
70 (584)
56 (137)
 
108 26270 7, 13, 109, 127   k = = 106 mod 107 (107) 132 k's remaining at n=100K.

See k's at Sierpinski Base 108 remain.
7612 (99261)
7304 (94930)
15874 (94153)
8034 (93577)
2874 (91402)
20666 (91335)
7631 (90728)
9187 (90213)
6759 (89530)
21101 (88027)
k=108 and 11664 are GFn's with no known prime.
109 34 5, 11   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
none - proven 28 (16)
4 (3)
18 (2)
16 (2)
12 (2)
6 (2)
30 (1)
24 (1)
22 (1)
10 (1)
 
110 38 3, 37   k = = 108 mod 109 (109) none - proven 20 (933)
34 (356)
11 (161)
13 (124)
19 (66)
25 (58)
2 (51)
22 (42)
28 (12)
18 (11)
all-ks-sierp-base110.txt
111 24340 7, 61, 101   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 10 mod 11 (11)
526 (400K)
3646 (400K)
5230 (400K)
5998 (400K)
6992 (400K)
7260 (400K)
10200 (400K)
11530 (400K)
13630 (400K)
14958 (400K)
17970 (400K)
19200 (400K)
19298 (400K)
20532 (400K)
24242 (400K)
24296 (400K)
18922 (383954)
4990 (242169)
11628 (221902)
14526 (198094)
6656 (173037)
6966 (172910)
9920 (169700)
3340 (167092)
20922 (145003)
7246 (128084)
 
112 3502 5, 13, 113   k = = 2 mod 3 (3)
k = = 36 mod 37 (37)
1696 (1M) 3303 (210284)
2757 (80039)
1780 (62794)
547 (8124)
1920 (5333)
2082 (5308)
3132 (3751)
1807 (3619)
1470 (3096)
1131 (2768)
 
113 94 3, 19   k = = 1 mod 2 (2)
k = = 6 mod 7 (7)
none - proven 4 (2958)
46 (2732)
82 (616)
68 (375)
42 (213)
38 (71)
18 (47)
8 (47)
16 (40)
36 (35)
 
114 24 5, 23   k = = 112 mod 113 (113) none - proven 12 (15)
3 (12)
22 (11)
11 (10)
9 (5)
16 (4)
23 (3)
19 (3)
15 (3)
10 (3)
 
115 49794 7, 13, 17, 29, 433   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 18 mod 19 (19)
32 k's remaining at n=100K.

See k's at Sierpinski Base 115 remain.
47086 (83695)
19402 (74778)
44980 (65084)
36976 (60596)
47346 (49848)
30 (47376)
38832 (43260)
47356 (36091)
13426 (35863)
11068 (33692)
 
116 25 3, 13   k = = 4 mod 5 (5)
k = = 22 mod 23 (23)
none - proven 12 (47)
20 (5)
10 (4)
7 (4)
23 (3)
5 (3)
16 (2)
13 (2)
6 (2)
21 (1)
 
117 2184 5, 37, 59   k = = 1 mod 2 (2)
k = = 28 mod 29 (29)
1474 (1M) 58 (460033)
386 (287544)
1082 (235482)
2172 (180355)
1776 (141799)
1778 (68489)
884 (16717)
1276 (8565)
882 (7896)
1678 (6953)
 
118 69 7, 17   k = = 2 mod 3 (3)
k = = 12 mod 13 (13)
48 (1M) 43 (106)
36 (96)
18 (80)
33 (67)
52 (48)
3 (46)
15 (22)
58 (11)
21 (7)
61 (5)
 
119 4 3, 5   k = = 1 mod 2 (2)
k = = 58 mod 59 (59)
none - proven 2 (1)  
121 360 7, 19, 37   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
none - proven 306 (960)
172 (96)
352 (86)
42 (60)
166 (57)
160 (53)
76 (44)
60 (31)
88 (27)
250 (21)
 
122 40 3, 41   k = = 10 mod 11 (11) 34 (1M) 37 (1622)
31 (1236)
16 (764)
2 (755)
25 (674)
23 (389)
17 (371)
4 (358)
5 (135)
28 (108)
k = 1 is a GFn with no known prime.
123 2138 5, 17, 31   k = = 1 mod 2 (2)
k = = 60 mod 61 (61)
122 (400K)
404 (400K)
650 (400K)
1816 (400K)
1826 (400K)
1952 (400K)
1706 (339764)
166 (23517)
222 (21728)
94 (16302)
1172 (11889)
1520 (10146)
1868 (8507)
1024 (7098)
526 (6223)
1272 (4260)
 
125 8 3, 7   k = = 1 mod 2 (2)
k = = 30 mod 31 (31)
none - proven 4 (2)
6 (1)
2 (1)
 
126 766700 13, 19, 127, 829   k = = 4 mod 5 (5) 1217 k's remaining at n=25K.

See k's at Sierpinski Base 126 remain.
207250 (24988)
439292 (24955)
583385 (24932)
340961 (24891)
38705 (24871)
693735 (24829)
142776 (24809)
665688 (24666)
757192 (24606)
269233 (24597)
k = 15876 is a GFn with no known prime.
129 14 5, 13   k = = 1 mod 2 (2) none - proven 6 (16796)
4 (19)
2 (6)
12 (1)
10 (1)
8 (1)
 
130 1021537 7, 31, 131, 541   k = = 2 mod 3 (3)
k = = 42 mod 43 (43)
1572 k's remaining at n=25K.

See k's at Sierpinski Base 130 remain.
907203 (24984)
639295 (24904)
160212 (24889)
317236 (24886)
896167 (24839)
46542 (24839)
172609 (24708)
521769 (24660)
800425 (24648)
335919 (24634)
k = 16900 is a GFn with no known prime.
131 10 3, 11   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 12 mod 13 (13)
none - proven 8 (1)
6 (1)
2 (1)
 
132 13 5, 7, 17   k = = 130 mod 131 (131) none - proven 6 (5)
7 (3)
12 (2)
9 (2)
8 (2)
4 (2)
2 (2)
11 (1)
10 (1)
5 (1)
 
133 1944 5, 29, 67   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 10 mod 11 (11)
88 (300K)
1138 (300K)
1336 (300K)
220 (4172)
672 (3929)
180 (2758)
336 (1736)
1122 (1520)
1876 (1488)
1114 (1474)
1158 (1427)
114 (1114)
474 (455)
 
134 4 3, 5   k = = 6 mod 7 (7)
k = = 18 mod 19 (19)
none - proven 3 (4)
2 (1)
 
135 1112 7, 43, 61   k = = 1 mod 2 (2)
k = = 66 mod 67 (67)
222 (400K)
734 (400K)
766 (400K)
1106 (400K)
304 (114227)
80 (47646)
832 (40885)
868 (26204)
50 (4875)
964 (3007)
118 (2747)
460 (1608)
1084 (1328)
278 (1284)
 
136 90693 7, 43, 61, 137   k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
58 k's remaining at n=100K.

See k's at Sierpinski Base 136 remain.
52681 (98043)
14797 (96356)
10183 (93483)
42913 (92663)
36052 (90860)
71902 (86837)
89793 (78866)
11425 (78018)
4528 (77633)
54271 (70410)
k = 136 and 18496 are GFn's with no known prime.
137 22 3, 23   k = = 1 mod 2 (2)
k = = 16 mod 17 (17)
none - proven 2 (327)
10 (102)
14 (93)
4 (18)
12 (3)
20 (1)
18 (1)
8 (1)
6 (1)
 
138 2781 5, 13, 139   k = = 136 mod 137 (137) 211 (500K)
344 (500K)
678 (500K)
1188 (500K)
1444 (500K)
1494 (500K)
1818 (500K)
2371 (500K)
2627 (500K)
2636 (469911)
2189 (345010)
2354 (314727)
1019 (274533)
1789 (271671)
141 (244616)
2416 (214921)
866 (212835)
2062 (192750)
47 (136218)
k = 138 is a GFn with no known prime.
139 6 5, 7   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 22 mod 23 (23)
none - proven 4 (1)  
140 46 3, 47   k = = 138 mod 139 (139) 8 (1M) 16 (251178)
34 (136)
29 (103)
38 (79)
13 (64)
28 (44)
11 (37)
44 (31)
10 (24)
14 (23)
 
141 129697332 13, 19, 71, 1039, 4201   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 6 mod 7 (7)
283945 k's remaining at n=2.5K. To be shown later. 129423588 (2500)
128781292 (2500)
123868692 (2500)
122492042 (2500)
120910090 (2500)
120890778 (2500)
120342712 (2500)
120340292 (2500)
116209530 (2500)
112200232 (2500)
 
142 12 11, 13   k = = 2 mod 3 (3)
k = = 46 mod 47 (47)
none - proven 10 (407)
7 (23)
3 (2)
9 (1)
6 (1)
4 (1)
 
143 7628 3, 5, 409   k = = 1 mod 2 (2)
k = = 70 mod 71 (71)
117 k's remaining at n=100K.

See k's at Sierpinski Base 143 remain.
5840 (97373)
1396 (91188)
4954 (89862)
3878 (89327)
5662 (88798)
5410 (88240)
6064 (88138)
7568 (78631)
2386 (78380)
6520 (76102)
 
144 59 5, 29   k = = 10 mod 11 (11)
k = = 12 mod 13 (13)
none - proven 34 (3061)
37 (1154)
6 (782)
31 (102)
55 (88)
30 (72)
35 (42)
17 (39)
46 (16)
40 (15)
k = 1 is a GFn with no known prime.
145 430482 7, 19, 73, 157   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
264 k's remaining at n=100K.

See k's at Sierpinski Base 145 remain.
331056 (99382)
235308 (99155)
17098 (97461)
262782 (96171)
135346 (95557)
257472 (94968)
366096 (94770)
84024 (93402)
328878 (93201)
204180 (92711)
 
146 8 3, 7   k = = 4 mod 5 (5)
k = = 28 mod 29 (29)
none - proven 5 (3)
7 (2)
6 (1)
3 (1)
2 (1)
 
147 17946 5, 37, 97, 137   k = = 1 mod 2 (2)
k = = 72 mod 73 (73)
37 k's remaining at n=100K.

See k's at Sierpinski Base 147 remain.
8818 (99720)
15726 (87760)
5884 (80094)
9478 (75558)
976 (72664)
10306 (66309)
9878 (65829)
4772 (64147)
3442 (57146)
6992 (52487)
 
148 4471 5, 13, 149   k = = 2 mod 3 (3)
k = = 6 mod 7 (7)
2361 (1M) 802 (114769)
3193 (104224)
4336 (103383)
2548 (85454)
876 (64416)
684 (31329)
1638 (18523)
3708 (15935)
4165 (15920)
3225 (15617)
k = 148 is a GFn with no known prime.
149 4 3, 5   k = = 1 mod 2 (2)
k = = 36 mod 37 (37)
none - proven 2 (3)  
150 49074 7, 31, 103, 151   k = = 148 mod 149 (149) 69 k's remaining at n=100K.

See k's at Sierpinski Base 150 remain.
2529 (95448)
25295 (93740)
43789 (91123)
30505 (91058)
15402 (88775)
610 (87338)
41663 (83930)
22810 (81558)
26349 (75650)
22237 (72247)
 
151 83316 13, 19, 877   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
92 k's remaining at n=200K.

See k's at Sierpinski Base 151 remain.
83110 (184411)
81112 (179764)
48166 (174188)
71422 (162094)
1728 (155323)
53676 (153270)
74476 (149055)
43438 (141982)
26580 (124195)
22602 (122888)
 
152 16 3, 17   k = = 150 mod 151 (151) none - proven 11 (837)
6 (27)
4 (18)
13 (8)
9 (7)
12 (4)
2 (3)
10 (2)
7 (2)
15 (1)
 
153 34 7, 11   k = = 1 mod 2 (2)
k = = 18 mod 19 (19)
none - proven 32 (33)
16 (9)
22 (6)
26 (3)
28 (2)
12 (2)
8 (2)
30 (1)
24 (1)
20 (1)
 
154 61 5, 31   k = = 2 mod 3 (3)
k = = 16 mod 17 (17)
none - proven 40 (9256)
36 (138)
31 (88)
37 (79)
43 (15)
9 (15)
21 (4)
55 (3)
28 (3)
51 (2)
 
155 14 3, 13   k = = 1 mod 2 (2)
k = = 6 mod 7 (7)
k = = 10 mod 11 (11)
4 (1.7M) 8 (5)
12 (1)
2 (1)
 
157 1344 5, 17, 79   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 12 mod 13 (13)
1174 (1M)
1228 (1M)
684 (375674)
78 (15433)
1072 (15383)
1186 (11196)
898 (10569)
222 (4187)
18 (3873)
1242 (1819)
394 (929)
706 (761)
 
158 52 3, 53   k = = 156 mod 157 (157) none - proven 8 (123475)
48 (24191)
32 (13401)
38 (10519)
27 (4966)
20 (1633)
37 (1034)
4 (874)
43 (178)
47 (141)
 
159 36 5, 13, 37, 97   k = = 1 mod 2 (2)
k = = 78 mod 79 (79)
none - proven 12 (121)
4 (29)
24 (9)
26 (6)
8 (5)
18 (4)
14 (3)
10 (3)
2 (3)
32 (2)
 
160 22 7, 23   k = = 2 mod 3 (3)
k = = 52 mod 53 (53)
none - proven 18 (27)
16 (4)
9 (4)
7 (4)
6 (3)
15 (2)
12 (2)
3 (2)
21 (1)
19 (1)
 
161 1760 3, 13, 17, 41   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
122 (300K)
560 (300K)
632 (300K)
892 (300K)
1228 (300K)
1600 (300K)
1682 (261371)
1328 (99591)
898 (94352)
1256 (56609)
1178 (48001)
350 (42125)
512 (41767)
1586 (19361)
1526 (12903)
1702 (12482)
 
162 6193 5, 13, 37, 61, 163   k = = 6 mod 7 (7)
k = = 22 mod 23 (23)
1248 (300K)
1438 (300K)
2609 (300K)
3096 (300K)
4831 (300K)
5706 (300K)
5869 (300K)
6102 (230090)
2212 (227663)
3052 (200790)
1764 (76926)
3496 (60128)
1250 (58127)
933 (55381)
2163 (49760)
2377 (47102)
1398 (33797)
 
163 4192 7, 19, 67   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
12 (500K)
94 (500K)
1188 (500K)
1242 (500K)
1272 (500K)
1986 (500K)
2008 (500K)
2298 (500K)
2362 (500K)
2656 (500K)
2712 (500K)
3552 (500K)
3648 (500K)
3286 (135773)
3660 (132815)
66 (107651)
2442 (104888)
1224 (33589)
2820 (29308)
1774 (28413)
216 (28267)
3856 (21892)
4060 (19818)
 
164 4 3, 5   k = = 162 mod 163 (163) none - proven 3 (4)
2 (3)
 
165 2974 7, 13, 43   k = = 1 mod 2 (2)
k = = 40 mod 41 (41)
1252 (300K)
1486 (300K)
1798 (300K)
194 (196199)
1154 (82091)
500 (55335)
550 (39769)
1104 (32462)
1426 (32448)
220 (27349)
1742 (27091)
2792 (26111)
2846 (18005)
 
166 140947 7, 13, 43, 167   k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
k = = 10 mod 11 (11)
85 k's remaining at n=100K.

See k's at Sierpinski Base 166 remain.
66558 (98155)
136200 (88570)
75156 (82754)
125121 (82419)
58225 (77829)
136560 (76666)
36240 (74390)
79845 (72275)
99792 (68181)
49372 (68028)
k = 166 and 27556 are GFn's with no known prime.
167 8 3, 7   k = = 1 mod 2 (2)
k = = 82 mod 83 (83)
none - proven 2 (6547)
6 (25)
4 (10)
 
168 9244 5, 13, 17, 73   k = = 166 mod 167 (167) 70 k's remaining at n=100K.

See k's at Sierpinski Base 168 remain.
1561 (97864)
1398 (80456)
5942 (77280)
4432 (73477)
8072 (68617)
7188 (62211)
3394 (55546)
2614 (54002)
7240 (50425)
6892 (48868)
k = 1 and 168 are GFn's with no known prime.
169 16 5, 17   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 6 mod 7 (7)
none - proven 10 (2)
12 (1)
4 (1)
 
170 20 3, 19   k = = 12 mod 13 (13) none - proven 7 (178)
5 (175)
19 (36)
17 (21)
13 (4)
3 (3)
2 (3)
16 (2)
10 (2)
4 (2)
 
171 18790 7, 13, 37, 43, 67   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 16 mod 17 (17)
988 (300K)
1420 (300K)
3998 (300K)
4448 (300K)
9418 (300K)
10356 (300K)
10708 (300K)
11826 (300K)
13290 (300K)
13698 (300K)
13716 (300K)
8300 (472170)
10020 (274566)
13460 (241448)
30 (229506)
8986 (162913)
17852 (130704)
8046 (122785)
18448 (85558)
17606 (62387)
14940 (59132)
 
172 108 7, 13, 109   k = = 2 mod 3 (3)
k = = 18 mod 19 (19)
none - proven 73 (1701)
96 (669)
52 (259)
22 (108)
79 (79)
54 (35)
51 (35)
48 (26)
40 (23)
19 (15)
 
173 28 3, 29   k = = 1 mod 2 (2)
k = = 42 mod 43 (43)
none - proven 10 (264234)
8 (323)
26 (23)
4 (10)
16 (8)
22 (4)
12 (4)
18 (2)
24 (1)
20 (1)
 
174 6 5, 7   k = = 172 mod 173 (173) 4 (1M) 5 (2)
3 (1)
2 (1)
 
176 58 3, 59   k = = 4 mod 5 (5)
k = = 6 mod 7 (7)
none - proven 32 (3591)
37 (3088)
35 (995)
50 (213)
10 (146)
28 (24)
46 (16)
31 (14)
57 (12)
7 (12)
 
177 3648 5, 13, 89   k = = 1 mod 2 (2)
k = = 10 mod 11 (11)
446 (500K)
558 (500K)
1074 (500K)
1158 (500K)
1622 (500K)
1868 (500K)
2226 (500K)
2250 (500K)
2758 (500K)
3292 (500K)
1126 (391360)
1536 (347600)
2152 (270059)
1338 (183598)
2036 (182624)
622 (111511)
242 (83855)
1762 (79972)
2798 (78238)
2692 (71820)
 
178 1585 13, 19, 43   k = = 2 mod 3 (3)
k = = 58 mod 59 (59)
126 (300K)
357 (300K)
480 (300K)
550 (300K)
639 (300K)
688 (300K)
730 (300K)
844 (300K)
859 (300K)
867 (300K)
1461 (300K)
136 (147501)
582 (146568)
576 (109608)
283 (81663)
372 (42160)
96 (41696)
474 (28627)
610 (28243)
1383 (24207)
768 (12906)
k = 178 is a GFn with no known prime.
179 4 3, 5   k = = 1 mod 2 (2)
k = = 88 mod 89 (89)
none - proven 2 (1)  
180 1679679 7, 31, 181, 1051   k = = 178 mod 179 (179) 11748 k's remaining at n=10K.

See k's at Sierpinski Base 180 remain.
445633 (10000)
56291 (9999)
835414 (9998)
223612 (9998)
1554393 (9996)
65664 (9994)
811059 (9988)
607956 (9988)
251990 (9983)
758834 (9982)
 
181 118 7, 13   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
none - proven 78 (56)
66 (48)
28 (40)
90 (17)
88 (13)
106 (10)
112 (9)
100 (8)
40 (6)
36 (4)
 
182 23 3, 5, 53   k = = 180 mod 181 (181) 8 (1M) 9 (263)
19 (90)
4 (70)
2 (15)
13 (12)
20 (5)
18 (4)
16 (4)
7 (4)
17 (3)
k = 1 is a GFn with no known prime.
183 1036 5, 17, 23   k = = 1 mod 2 (2)
k = = 6 mod 7 (7)
k = = 12 mod 13 (13)
none - proven 866 (262883)
392 (26836)
548 (2436)
344 (793)
758 (699)
786 (516)
212 (489)
500 (315)
24 (298)
856 (276)
 
184 36 5, 37   k = = 2 mod 3 (3)
k = = 60 mod 61 (61)
none - proven 16 (298)
6 (40)
4 (29)
3 (11)
12 (10)
10 (9)
24 (3)
19 (3)
15 (3)
31 (2)
 
185 32 3, 31   k = = 1 mod 2 (2)
k = = 22 mod 23 (23)
10 (1M) 4 (414)
6 (170)
28 (102)
30 (5)
26 (5)
2 (3)
16 (2)
24 (1)
20 (1)
18 (1)
 
186 67 11, 17   k = = 4 mod 5 (5)
k = = 36 mod 37 (37)
none - proven 65 (18879)
56 (300)
35 (134)
16 (107)
40 (98)
52 (72)
45 (58)
50 (25)
3 (12)
41 (11)
k = 1 is a GFn with no known prime.
187 798 5, 13, 47   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 30 mod 31 (31)
none - proven 486 (212627)
328 (63925)
742 (24856)
502 (12082)
430 (907)
544 (609)
642 (515)
282 (343)
684 (297)
720 (268)
 
188 8 3, 7   k = = 10 mod 11 (11)
k = = 16 mod 17 (17)
none - proven 4 (26)
2 (9)
7 (2)
3 (2)
6 (1)
5 (1)
 
189 56 5, 19   k = = 1 mod 2 (2)
k = = 46 mod 47 (47)
none - proven 18 (171175)
36 (44)
16 (42)
20 (36)
54 (35)
6 (34)
24 (15)
50 (9)
28 (9)
30 (7)
 
190 3146151 13, 191, 2777   k = = 2 mod 3 (3)
k = = 6 mod 7 (7)
4749 k's remaining at n=10K.

See k's at Sierpinski Base 190 remain.
2743963 (9999)
1034733 (9999)
3114759 (9998)
2853439 (9998)
776442 (9998)
2843040 (9996)
2709387 (9989)
2692249 (9988)
1612521 (9984)
245298 (9980)
 
191 302 3, 17, 37   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 18 mod 19 (19)
52 (300K)
68 (300K)
172 (300K)
178 (52494)
150 (44271)
292 (10014)
48 (4936)
28 (4490)
38 (4043)
130 (4008)
238 (3138)
248 (1619)
10 (1314)
 
192 7879 5, 7, 13, 31, 101   k = = 190 mod 191 (191) 56 k's remaining at n=100K.

See k's at Sierpinski Base 192 remain.
1122 (89238)
5594 (86270)
5675 (74618)
3473 (69049)
4566 (67168)
2829 (63997)
6878 (60430)
5375 (54124)
6898 (52349)
7586 (49923)
k = 192 is a GFn with no known prime.
193 14454 5, 97, 149   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
39 k's remaining at n=100K.

See k's at Sierpinski Base 193 remain.
5182 (99278)
11758 (98298)
12172 (98288)
2062 (81308)
3874 (79825)
9112 (75416)
12846 (70045)
9166 (67795)
6642 (66646)
6796 (65716)
 
194 4 3, 5   k = = 192 mod 193 (193) none - proven 3 (2)
2 (1)
 
196 2730222 41, 197, 937   k = = 2 mod 3 (3)
k = = 5 mod 5 (5)
k = = 12 mod 13 (13)
2518 k's remaining at n=25K.

See k's at Sierpinski Base 196 remain.
2024692 (24964)
755131 (24950)
2575696 (24928)
831511 (24921)
645081 (24908)
1023205 (24896)
890665 (24845)
1893760 (24835)
2089113 (24831)
748560 (24814)
k = 196 and 38416 are GFn's with no known prime.
197 10 3, 11   k = = 1 mod 2 (2)
k = = 6 mod 7 (7)
none - proven 4 (6)
8 (5)
2 (3)
 
198 4105 7, 13, 19, 2053   k = = 196 mod 197 (197) 36 k's remaining at n=100K.

See k's at Sierpinski Base 198 remain.
1074 (86150)
2976 (78439)
4014 (73851)
2864 (62462)
2084 (56478)
706 (55247)
2253 (54740)
621 (53839)
3962 (49750)
758 (47832)
 
199 13224 5, 7, 13, 433   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 10 mod 11 (11)
41 k's remaining at n=100K.

See k's at Sierpinski Base 199 remain.
5626 (99962)
1096 (96048)
2176 (95974)
8154 (82511)
4866 (77902)
11476 (73026)
2358 (64862)
9634 (57503)
10876 (56846)
96 (54582)
 
200 47 3, 13, 17 k=16:
   odd n:
     factor of 3
   n = = 0 mod 4:
     factor of 17
   n = = 2 mod 4:
     let n = 4*q - 2
    and let m = 20^q*10^(q-1); factors to:
     (2*m^2 + 2m + 1) *
     (2*m^2 - 2m + 1)
k = = 198 mod 199 (199) 40 (1M) 25 (21874)
10 (6036)
13 (1858)
38 (1669)
26 (1011)
5 (767)
34 (710)
19 (528)
46 (226)
43 (124)
k = 1 is a GFn with no known prime.
201 4613782 7, 19, 101, 2137   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
29202 k's remaining at n=2.5K. To be shown later. 3299008 (2500)
1774450 (2500)
1419250 (2500)
1391226 (2500)
581390 (2500)
42642 (2500)
1716392 (2499)
1589032 (2499)
992568 (2499)
731790 (2499)
 
202 57 7, 29   k = = 2 mod 3 (3)
k = = 66 mod 67 (67)
none - proven 27 (17723)
36 (1268)
24 (453)
19 (158)
9 (30)
12 (22)
13 (21)
43 (18)
49 (10)
22 (10)
16 (7)
k = 1 is a GFn with no known prime.
203 16 3, 17   k = = 1 mod 2 (2)
k = = 100 mod 101 (101)
none - proven 10 (2956)
2 (105)
8 (7)
6 (3)
4 (2)
14 (1)
12 (1)
 
204 81 5, 41   k = = 6 mod 7 (7)
k = = 28 mod 29 (29)
4 (1M) 21 (6096)
12 (4586)
54 (159)
79 (145)
8 (79)
56 (52)
11 (50)
74 (39)
29 (27)
64 (25)
 
205 138330 7, 13, 103, 3217   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 16 mod 17 (17)
76 k's remaining at n=100K.

See k's at Sierpinski Base 205 remain.
84412 (90949)
36154 (88060)
31002 (86633)
9064 (81140)
48460 (80884)
16294 (80850)
122860 (78381)
130914 (77588)
106378 (76573)
57522 (74097)
 
206 22 3, 23   k = = 4 mod 5 (5)
k = = 40 mod 41 (41)
none - proven 2 (46205)
16 (860)
8 (13)
20 (5)
17 (5)
13 (4)
10 (4)
7 (4)
15 (2)
21 (1)
 
207 9426 5, 13, 857   k = = 1 mod 2 (2)
k = = 102 mod 103 (103)
74 k's remaining at n=100K.

See k's at Sierpinski Base 207 remain.
4252 (95004)
4718 (93969)
2742 (84791)
976 (77008)
6278 (75593)
8854 (75514)
6956 (74720)
3782 (70879)
3576 (64880)
532 (58927)
 
208 153 11, 19   k = = 2 mod 3 (3)
k = = 22 mod 23 (23)
none - proven 88 (130796)
96 (5836)
73 (3546)
111 (1120)
13 (142)
120 (121)
54 (83)
7 (69)
37 (33)
106 (31)
 
209 4 3, 5   k = = 1 mod 2 (2)
k = = 12 mod 13 (13)
none - proven 2 (1)  
211 20238 13, 31, 37   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
k = = 6 mod 7 (7)
1962 (300K)
3130 (300K)
5152 (300K)
5248 (300K)
6942 (300K)
7686 (300K)
11820 (300K)
13732 (300K)
14778 (300K)
15318 (300K)
15636 (300K)
16026 (300K)
18420 (300K)
5758 (244970)
13212 (162393)
9906 (72179)
10440 (44039)
16600 (42863)
7050 (38592)
18750 (37130)
20212 (35583)
3378 (31594)
17250 (29927)
 
212 70 3, 71   k = = 210 mod 211 (211) 4 (1.0058M)
6 (500K)
64 (1M)
68 (500K)
56 (88905)
38 (81053)
62 (48955)
47 (6187)
27 (3082)
49 (734)
32 (547)
40 (382)
46 (216)
51 (119)
k = 1 is a GFn with no known prime.
213 4174 5, 13, 107   k = = 1 mod 2 (2)
k = = 52 mod 53 (53)
164 (300K)
1052 (300K)
1604 (300K)
1794 (300K)
1906 (300K)
2142 (300K)
2848 (300K)
2956 (300K)
3372 (300K)
3396 (300K)
3518 (300K)
3838 (300K)
4156 (300K)
4166 (300K)
1806 (229825)
1586 (214993)
3814 (175867)
2890 (167162)
1026 (151285)
2032 (140757)
1962 (112173)
3602 (85261)
2984 (74663)
710 (69185)
 
214 171 5, 43   k = = 2 mod 3 (3)
k = = 70 mod 71 (71)
87 (500K)
106 (500K)
39 (42495)
24 (33015)
31 (13468)
34 (12217)
19 (5711)
76 (2242)
129 (835)
159 (125)
63 (59)
54 (53)
k = 1 is a GFn with no known prime.
215 19924 3, 29, 797   k = = 1 mod 2 (2)
k = = 106 mod 107 (107)
304 k's remaining at n=100K.

See k's at Sierpinski Base 215 remain.
15482 (99473)
14356 (98992)
2642 (94327)
11798 (84763)
11978 (82309)
15632 (80503)
16876 (78514)
8474 (78239)
8948 (77815)
19700 (75163)
 
216 92 7, 31 All k = m^3 for all n; factors to:
(m*6^n + 1) *
(m^2*36^n - m*6^n + 1)
k = = 4 mod 5 (5)
k = = 42 mod 43 (43)
none - proven 50 (306)
43 (112)
5 (49)
67 (43)
66 (35)
47 (34)
20 (33)
41 (31)
68 (16)
78 (14)
k = 1, 8, and 27 proven composite by full algebraic factors.

k = 36 is a GFn with no known prime.
217 1854 5, 17, 109   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
1356 (600K) 1278 (57970)
1546 (26135)
834 (14519)
778 (14176)
558 (5669)
576 (4648)
1048 (3806)
744 (2955)
762 (1931)
844 (1441)
 
218 74 3, 73   k = = 6 mod 7 (7)
k = = 30 mod 31 (31)
17 (1M) 2 (333925)
50 (11339)
70 (9538)
49 (6766)
59 (3669)
46 (560)
38 (443)
52 (396)
72 (289)
73 (282)
k = 1 is a GFn with no known prime.
219 34 5, 11   k = = 1 mod 2 (2)
k = = 108 mod 109 (109)
none - proven 12 (29230)
16 (106)
32 (13)
26 (6)
10 (5)
20 (4)
6 (4)
24 (3)
22 (2)
30 (1)
 
220 103 13, 17   k = = 2 mod 3 (3)
k = = 72 mod 73 (73)
none - proven 27 (205486)
79 (132)
88 (36)
7 (25)
58 (18)
66 (16)
51 (15)
33 (13)
28 (13)
31 (12)
 
221 38 3, 37   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 10 mod 11 (11)
none - proven 28 (80)
18 (21)
36 (11)
22 (6)
8 (5)
16 (4)
26 (3)
12 (3)
30 (2)
20 (1)
 
222 389359 7, 31, 43, 223   k = = 12 mod 13 (13)
k = = 16 mod 17 (17)
1235 k's remaining at n=100K.

See k's at Sierpinski Base 222 remain.
321791 (99908)
234897 (98884)
92406 (98431)
45939 (97926)
311434 (97755)
230201 (97635)
171877 (97623)
117924 (97501)
297037 (97048)
300607 (96895)
k = 222 and 49284 are GFn's with no known prime.
223 57814 5, 7, 13, 31, 61   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 36 mod 37 (37)
529 k's remaining at n=30K.

See k's at Sierpinski Base 223 remain.
48126 (29852)
11964 (29642)
38256 (29340)
35176 (29268)
40512 (29192)
19594 (28690)
8632 (27960)
8458 (27919)
45396 (27896)
14134 (27682)
 
224 4 3, 5   k = = 222 mod 223 (223) none - proven 3 (1)
2 (1)
 
225 117406 17, 113, 1489 k=114244:
   for even n let k=4*q^4
   and let m=q*15^(n/2);
   factors to:
     (2*m^2 + 2m + 1) *
     (2*m^2 - 2m + 1)
   odd n:
     factor of 113
k = = 1 mod 2 (2)
k = = 6 mod 7 (7)
80 k's remaining at n=100K.

See k's at Sierpinski Base 225 remain.
42156 (96360)
6598 (94326)
74940 (91226)
21364 (90399)
67914 (89558)
73228 (89023)
84184 (85983)
58884 (85226)
116214 (84861)
57204 (82597)
 
226 1547460 7, 211, 227, 241   k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
14985 k's remaining at n=2.5K. To be shown later. 1367716 (2499)
1140963 (2499)
420523 (2499)
1516717 (2498)
1118088 (2498)
999421 (2498)
730162 (2498)
492097 (2498)
318135 (2498)
824910 (2497)
k = 226 and 51076 are GFn's with no known prime.
227 20 3, 19   k = = 1 mod 2 (2)
k = = 112 mod 113 (113)
18 (1M) 4 (13346)
16 (1156)
10 (84)
6 (20)
8 (5)
14 (3)
2 (3)
12 (2)
 
228 1146 5, 37, 229   k = = 226 mod 227 (227) 327 (500K)
915 (500K)
188 (374503)
196 (156032)
292 (50916)
586 (32685)
754 (27026)
223 (23944)
1063 (23822)
1047 (14536)
727 (8617)
469 (6070)
 
229 24 5, 23   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 18 mod 19 (19)
none - proven 6 (308)
4 (21)
16 (6)
10 (2)
22 (1)
12 (1)
 
230 8 3, 7   k = = 228 mod 229 (229) 4 (1M) 7 (6)
6 (1)
5 (1)
3 (1)
2 (1)
 
231 251748 13, 29, 61, 67   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 22 mod 23 (23)
95 k's remaining at n=100K.

See k's at Sierpinski Base 231 remain.
56058 (97376)
14702 (95801)
123512 (91534)
3798 (90267)
139868 (90022)
16618 (89804)
244616 (88082)
168546 (87682)
225328 (84550)
17430 (82482)
 
232 447592 5, 233, 2153   k = = 2 mod 3 (3)
k = = 6 mod 7 (7)
k = = 10 mod 11 (11)
807 k's remaining at n=25K.

See k's at Sierpinski Base 232 remain.
223813 (24865)
48352 (24751)
202512 (24747)
82524 (24614)
181963 (24596)
287908 (24585)
124188 (24317)
355863 (24314)
319662 (24299)
65376 (24253)
k = 232 and 53824 are GFn's with no known prime.
233 14 3, 13   k = = 1 mod 2 (2)
k = = 28 mod 29 (29)
none - proven 8 (35)
10 (2)
4 (2)
12 (1)
6 (1)
4 (1)
 
234 46 5, 47   k = = 232 mod 233 (233) none - proven 24 (2415)
14 (547)
37 (71)
41 (58)
29 (53)
18 (28)
34 (25)
36 (20)
43 (17)
44 (9)
 
235 15706 7, 19, 139   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 12 mod 13 (13)
27 k's remaining at n=100K.

See k's at Sierpinski Base 235 remain.
12592 (77810)
6744 (76960)
14458 (70234)
10914 (68925)
10044 (47812)
7080 (36163)
6786 (35662)
4660 (33837)
1984 (24582)
6432 (24278)
 
236 80 3, 79   k = = 4 mod 5 (5)
k = = 46 mod 47 (47)
53 (500K)
67 (500K)
32 (251993)
2 (161229)
22 (116792)
68 (5413)
26 (2757)
30 (2360)
10 (2046)
70 (894)
7 (346)
55 (310)
 
237 50 7, 17   k = = 1 mod 2 (2)
k = = 58 mod 59 (59)
none - proven 12 (206)
36 (204)
32 (67)
18 (16)
42 (15)
22 (10)
40 (9)
20 (7)
48 (5)
30 (2)
 
238 5613633 13, 67, 239, 283   k = = 2 mod 3 (3)
k = = 78 mod 79 (79)
58571 k's remaining at n=2.5K. To be shown later. 5518566 (2500)
4320762 (2500)
4296496 (2500)
3282811 (2500)
3184848 (2500)
3097012 (2500)
2634282 (2500)
773182 (2500)
5214648 (2499)
4398513 (2499)
 
239 4 3, 5   k = = 1 mod 2 (2)
k = = 6 mod 7 (7)
k = = 16 mod 17 (17)
none - proven 2 (1)  
240 1722187 7, 13, 19, 241, 397   k = = 238 mod 239 (239) 32558 k's remaining at n=2.5K. To be shown later. 1657542 (2500)
1649534 (2500)
1574922 (2500)
1435649 (2500)
1254944 (2500)
665530 (2500)
653805 (2500)
603260 (2500)
537682 (2500)
353061 (2500)
 
241 636076 11, 113, 257   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
1815 k's remaining at n=25K.

See k's at Sierpinski Base 241 remain.
99406 (24863)
109636 (24843)
165892 (24668)
181996 (24606)
538462 (24584)
157420 (24505)
80488 (24504)
362832 (24479)
402346 (24475)
340000 (24474)
 
242 8 3, 5, 13   k = = 240 mod 241 (241) none - proven 4 (4206)
5 (45)
2 (11)
7 (6)
6 (1)
3 (1)
 
243 40078 7, 13, 31, 61 All k = m^5 for all n; factors to:
(m*3^n + 1) *
(m^4*81^n - m^3*27^n + m^2*9^n - m*3^n + 1)
k = = 1 mod 2 (2)
k = = 10 mod 11 (11)
97 k's remaining at n=400K.

See k's at Sierpinski Base 243 remain.
38804 (382795)
34202 (381760)
32582 (380358)
24704 (375427)
14804 (355706)
27602 (351918)
38490 (341891)
33016 (339396)
14336 (312792)
11996 (311879)
k = 1024 proven composite by full algebraic factors.
244 6 5, 7   k = = 2 mod 3 (3) none - proven 4 (1)
3 (1)
k = 1 is a GFn with no known prime.
245 40 3, 41   k = = 1 mod 2 (2)
k = = 60 mod 61 (61)
none - proven 22 (316)
16 (46)
8 (23)
14 (15)
28 (4)
10 (4)
26 (3)
20 (3)
34 (2)
18 (2)
 
246 77 13, 19   k = = 4 mod 5 (5)
k = = 6 mod 7 (7)
none - proven 61 (104)
40 (56)
30 (37)
35 (30)
18 (27)
53 (12)
57 (11)
67 (9)
58 (6)
56 (5)
k = 1 is a GFn with no known prime.
247 71392 5, 17, 31, 1009   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 40 mod 41 (41)
171 k's remaining at n=100K.

See k's at Sierpinski Base 247 remain.
36214 (97283)
37912 (89307)
10170 (87505)
51180 (86529)
41782 (86063)
51238 (85245)
38034 (84975)
61914 (81638)
70648 (80317)
49530 (79014)
 
248 82 3, 83   k = = 12 mod 13 (13)
k = = 18 mod 19 (19)
16 (500K)
23 (500K)
31 (500K)
73 (500K)
53 (368775)
9 (39510)
34 (9494)
61 (1232)
65 (609)
57 (605)
2 (321)
5 (261)
20 (227)
67 (56)
 
249 824 5, 7, 13, 29, 37   k = = 1 mod 2 (2)
k = = 30 mod 31 (31)
436 (500K)
684 (500K)
706 (500K)
674 (365445)
656 (348030)
202 (299162)
704 (137167)
394 (123679)
754 (54387)
286 (52498)
136 (40974)
546 (30876)
454 (17413)
 
250 5496397 7, 13, 19, 37, 251, 1009   k = = 2 mod 3 (3)
k = = 82 mod 83 (83)
61066 k's remaining at n=2.5K. To be shown later. 5355138 (2500)
4734378 (2500)
4273203 (2500)
4176898 (2500)
3211522 (2500)
2789884 (2500)
2780374 (2500)
1553304 (2500)
542359 (2500)
5231307 (2499)
k = 62500 is a GFn with no known prime.
251 8 3, 7   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
none - proven 6 (17)
2 (1)
 
252 45 11, 23   k = = 250 mod 251 (251) 27 (600K) 31 (124)
40 (96)
44 (14)
42 (10)
21 (9)
22 (7)
6 (7)
34 (6)
20 (5)
16 (4)
k = 1 is a GFn with no known prime.
253 25018 5, 37, 127   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 6 mod 7 (7)
9096 (300K)
9436 (300K)
11488 (300K)
11746 (300K)
15118 (300K)
17818 (300K)
19684 (300K)
21208 (300K)
23748 (300K)
24262 (300K)
9678 (188400)
3874 (165449)
21484 (144437)
18604 (128933)
2188 (112983)
23404 (95194)
13284 (91465)
2566 (62820)
2502 (59748)
13666 (58159)
 
254 4 3, 5   k = = 10 mod 11 (11)
k = = 22 mod 23 (23)
none - proven 3 (2)
2 (1)
 
255 110094 7, 19, 41, 61, 97   k = = 1 mod 2 (2)
k = = 126 mod 127 (127)
156 k's remaining at n=100K.

See k's at Sierpinski Base 255 remain.
97284 (99554)
53782 (99272)
53990 (89792)
100164 (82757)
35986 (80599)
80590 (80127)
27266 (80029)
107862 (79096)
109240 (77772)
87524 (77280)
 
257 44 3, 43   k = = 1 mod 2 (2) 40 (600K) 4 (160422)
34 (33062)
2 (12183)
16 (684)
32 (531)
8 (29)
10 (12)
18 (8)
26 (7)
22 (6)
 
258 36 7, 37   k = = 256 mod 257 (257) none - proven 24 (5745)
29 (1038)
18 (316)
15 (128)
20 (79)
9 (59)
23 (54)
22 (40)
28 (20)
7 (20)
k = 1 is a GFn with no known prime.
259 144 5, 13   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 42 mod 43 (43)
64 (1M) 118 (150)
4 (111)
30 (62)
126 (34)
78 (19)
76 (12)
100 (10)
22 (10)
108 (9)
102 (8)
 
260 28 3, 29   k = = 6 mod 7 (7)
k = = 36 mod 37 (37)
none - proven 4 (650)
14 (593)
25 (158)
18 (20)
16 (12)
19 (4)
10 (4)
24 (3)
21 (3)
15 (3)
 
261 8837652 7, 79, 131, 859   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 12 mod 13 (13)
39028 k's remaining at n=2.5K. To be shown later. 8315258 (2500)
6724708 (2500)
5746342 (2500)
5674528 (2500)
2889598 (2500)
1657020 (2500)
780148 (2500)
8098982 (2499)
7888340 (2499)
7217626 (2499)
 
262 110724 5, 7, 13, 103, 263   k = = 2 mod 3 (3)
k = = 28 mod 29 (29)
832 k's remaining at n=25K.

See k's at Sierpinski Base 262 remain.
82251 (24884)
79651 (24821)
84442 (24767)
27960 (24765)
10714 (24747)
33289 (24570)
28705 (24553)
94854 (24546)
70012 (24536)
108739 (24298)
k = 262 and 68644 are GFn's with no known prime.
263 10 3, 11   k = = 1 mod 2 (2)
k = = 130 mod 131 (131)
8 (1M) 2 (957)
4 (50)
6 (1)
 
264 54 5, 53   k = = 262 mod 263 (263) 41 (1M) 29 (68009)
4 (9647)
50 (1241)
16 (430)
45 (90)
11 (46)
51 (32)
46 (16)
31 (14)
36 (12)
 
265 246 7, 19   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 10 mod 11 (11)
none - proven 94 (1997)
18 (163)
36 (146)
162 (118)
6 (75)
220 (67)
130 (48)
106 (46)
232 (36)
144 (24)
 
266 88 3, 89   k = = 4 mod 5 (5)
k = = 52 mod 53 (53)
none - proven 55 (32246)
46 (3378)
16 (668)
5 (509)
22 (500)
37 (226)
57 (121)
43 (82)
41 (71)
80 (53)
 
267 1343016 5, 13, 37, 67, 163   k = = 1 mod 2 (2)
k = = 6 mod 7 (7)
k = = 18 mod 19 (19)
3728 k's remaining at n=25K.

See k's at Sierpinski Base 267 remain.
489926 (24971)
1226032 (24911)
351270 (24888)
665242 (24855)
314452 (24838)
903498 (24822)
1248814 (24786)
61244 (24785)
1195058 (24764)
387584 (24719)
 
268 8338 5, 13, 269   k = = 2 mod 3 (3)
k = = 88 mod 89 (89)
76 k's remaining at n=100K.

See k's at Sierpinski Base 268 remain.
7138 (97848)
6892 (95386)
985 (93675)
2761 (92465)
5776 (91503)
6748 (82851)
1828 (81414)
783 (80368)
7278 (78058)
2194 (76193)
k = 268 is a GFn with no known prime.
269 4 3, 5   k = = 1 mod 2 (2)
k = = 66 mod 67 (67)
none - proven 2 (3)  
270 62060 7, 37, 151, 271   k = = 268 mod 269 (269) 428 k's remaining at n=25K.

See k's at Sierpinski Base 270 remain.
27865 (24644)
43942 (24565)
25742 (24564)
25367 (24410)
40932 (24220)
54456 (24121)
46164 (23962)
26365 (23644)
54805 (23545)
7104 (23386)
 
272 8 3, 7   k = = 270 mod 271 (271) none - proven 7 (22)
2 (15)
6 (3)
4 (2)
3 (2)
5 (1)
 
273 3974 5, 29, 137   k = = 2 mod 3 (3)
k = = 16 mod 17 (17)
464 (300K)
1234 (300K)
1718 (300K)
2858 (300K)
3266 (300K)
3566 (300K)
1642 (295670)
956 (135149)
2988 (134144)
1224 (113453)
278 (35500)
476 (35348)
886 (32227)
2444 (31845)
2072 (29402)
512 (22742)
 
274 21 5, 11   k = = 2 mod 3 (3)
k = = 6 mod 7 (7)
k = = 12 mod 13 (13)
none - proven 19 (5)
16 (2)
7 (2)
18 (1)
15 (1)
10 (1)
9 (1)
4 (1)
2 (1)
 
275 22 3, 23   k = = 1 mod 2 (2)
k = = 136 mod 137 (137)
none - proven 4 (158)
8 (19)
16 (4)
6 (4)
2 (3)
10 (2)
20 (1)
18 (1)
14 (1)
12 (1)
 
276 622697 7, 13, 277, 1549   k = = 4 mod 5 (5)
k = = 10 mod 11 (11)
1669 k's remaining at n=25K.

See k's at Sierpinski Base 276 remain.
336086 (24994)
117823 (24920)
283666 (24883)
126786 (24874)
608698 (24848)
281033 (24811)
484436 (24803)
555071 (24799)
200022 (24771)
175342 (24764)
 
277 19578 7, 19, 193   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 22 mod 23 (23)
82 k's remaining at n=100K.

See k's at Sierpinski Base 277 remain.
2748 (95994)
1144 (92827)
12904 (88546)
13402 (83438)
13242 (82178)
9558 (82053)
13992 (78883)
16264 (76258)
12822 (69543)
8916 (65901)
 
278 8 3, 5, 13   k = = 276 mod 277 (277) none - proven 3 (54)
5 (15)
7 (2)
4 (2)
6 (1)
2 (1)
 
279 6 5, 7   k = = 1 mod 2 (2)
k = = 138 mod 139 (139)
none - proven 2 (4)
4 (1)
 
281 46 3, 47   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 6 mod 7 (7)
none - proven 8 (1843)
32 (63)
28 (46)
40 (36)
38 (7)
22 (6)
42 (2)
36 (2)
16 (2)
10 (2)
 
282 10807 7, 13, 877   k = = 280 mod 281 (281) 148 k's remaining at n=100K.

See k's at Sierpinski Base 282 remain.
8704 (98169)
4306 (95892)
4073 (92140)
5745 (90967)
10443 (89140)
1652 (86218)
5074 (85030)
7993 (79297)
5654 (78457)
7487 (73687)
k = 282 is a GFn with no known prime.
283 106714 7, 13, 71, 367   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 46 mod 47 (47)
559 k's remaining at n=25K.

See k's at Sierpinski Base 283 remain.
99880 (24950)
97896 (24805)
43182 (24772)
29308 (24644)
82156 (24639)
44788 (24412)
66084 (24363)
14244 (24315)
24276 (24185)
93396 (23801)
 
284 4 3, 5   k = = 282 mod 283 (283) none - proven 3 (1)
2 (1)
 
285 12 11, 13   k = = 1 mod 2 (2)
k = = 70 mod 71 (71)
none - proven 6 (5)
4 (2)
10 (1)
8 (1)
2 (1)
 
286 370 7, 41   k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
k = = 18 mod 19 (19)
none - proven 106 (5542)
141 (450)
300 (375)
223 (131)
330 (76)
111 (69)
190 (54)
117 (53)
258 (49)
351 (48)
k = 1 and 286 are GFn's with no known prime.
287 7142 3, 5, 17, 457   k = = 1 mod 2 (2)
k = = 10 mod 11 (11)
k = = 12 mod 13 (13)
88 k's remaining at n=100K.

See k's at Sierpinski Base 287 remain.
1532 (99787)
5734 (98362)
1294 (97258)
2096 (90201)
5266 (89464)
3754 (86670)
4474 (86350)
1292 (81511)
2044 (79614)
7024 (79246)
 
288 2704 5, 17, 53   k = = 6 mod 7 (7)
k = = 40 mod 41 (41)
203 (300K)
218 (300K)
1514 (300K)
1769 (300K)
1818 (300K)
1871 (300K)
2296 (300K)
968 (235591)
2415 (209272)
2437 (120654)
2107 (61213)
1257 (43061)
2041 (41088)
2362 (35629)
2006 (29876)
1748 (27603)
964 (27046)
 
289 204 5, 29   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
none - proven 160 (83024)
156 (58234)
88 (2434)
10 (678)
166 (534)
6 (200)
106 (72)
96 (72)
126 (26)
66 (26)
 
290 98 3, 97   k = = 16 mod 17 (17) 73 (500K)
88 (500K)
91 (500K)
74 (26295)
42 (4605)
44 (3441)
49 (1782)
53 (1597)
70 (1018)
43 (702)
82 (612)
31 (420)
65 (323)
 
291 33232 7, 61, 199   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 28 mod 29 (29)
68 k's remaining at n=100K.

See k's at Sierpinski Base 291 remain.
16726 (89370)
16516 (89071)
10050 (86640)
9400 (81127)
16540 (80519)
11030 (75869)
22538 (69242)
30392 (68232)
31902 (67720)
10506 (66520)
 
292 40393 5, 7, 13, 19, 79   k = = 2 mod 3 (3)
k = = 96 mod 97 (97)
262 k's remaining at n=100K.

See k's at Sierpinski Base 292 remain.
6574 (98058)
9246 (96976)
5262 (96958)
31288 (96082)
26557 (95711)
14857 (92435)
15693 (91688)
26536 (91000)
25624 (89847)
26478 (89822)
k = 292 is a GFn with no known prime.
293 8 3, 7   k = = 1 mod 2 (2)
k = = 72 mod 73 (73)
none - proven 4 (1034)
6 (1)
2 (1)
 
294 119 5, 59   k = = 292 mod 293 (293) 61 (1M) 116 (78734)
99 (53407)
101 (11674)
112 (6582)
80 (6290)
51 (2170)
6 (2088)
96 (826)
109 (373)
11 (364)
k = 1 is a GFn with no known prime.
295 394902 37, 53, 821   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 6 mod 7 (7)
542 k's remaining at n=25K.

See k's at Sierpinski Base 295 remain.
224002 (24986)
214044 (24955)
138246 (24952)
202056 (24785)
167190 (24782)
205182 (24686)
377956 (24642)
100710 (24574)
288268 (24572)
337698 (24461)
 
296 10 3, 11   k = = 4 mod 5 (5)
k = = 58 mod 59 (59)
none - proven 8 (187)
7 (56)
3 (3)
6 (1)
5 (1)
2 (1)
 
297 133654 5, 7, 13, 19, 149   k = = 1 mod 2 (2)
k = = 36 mod 37 (37)
695 k's remaining at n=25K.

See k's at Sierpinski Base 297 remain.
114782 (24875)
37486 (24779)
42106 (24767)
92098 (24665)
50718 (24478)
45624 (24359)
120840 (24218)
80212 (23960)
13460 (23917)
106652 (23846)
 
298 183 13, 23   k = = 2 mod 3 (3)
k = = 10 mod 11 (11)
66 (500K)
168 (500K)
48 (24515)
105 (23516)
73 (15171)
24 (2226)
12 (293)
106 (277)
117 (270)
22 (229)
180 (168)
124 (93)
k = 1 is a GFn with no known prime.
299 4 3, 5   k = = 1 mod 2 (2)
k = = 148 mod 149 (149)
none - proven 2 (1)  
300 85 7, 43   k = = 12 mod 13 (13)
k = = 22 mod 23 (23)
none - proven 55 (2251)
29 (672)
83 (275)
63 (163)
50 (146)
28 (44)
8 (26)
49 (25)
36 (24)
9 (20)
 
301 1061982 89, 151, 509   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
705 k's remaining at n=25K.

See k's at Sierpinski Base 301 remain.
185356 (24957)
979522 (24905)
36402 (24880)
736350 (24853)
563382 (24672)
621562 (24587)
233158 (24550)
478816 (24282)
918436 (24195)
1023798 (24157)
 
302 16 3, 5, 17   k = = 6 mod 7 (7)
k = = 42 mod 43 (43)
none - proven 4 (18)
10 (16)
2 (15)
7 (8)
15 (4)
12 (2)
14 (1)
11 (1)
9 (1)
8 (1)
k = 1 is a GFn with no known prime.
303 174742 5, 19, 9181   k = = 1 mod 2 (2)
k = = 150 mod 151 (151)
2225 k's remaining at n=25K.

See k's at Sierpinski Base 303 remain.
10848 (24915)
39534 (24907)
38384 (24806)
65646 (24800)
55072 (24798)
145122 (24774)
143962 (24717)
59288 (24706)
74050 (24684)
122814 (24658)
 
304 121 5, 61   k = = 2 mod 3 (3)
k = = 100 mod 101 (101)
60 (1M) 69 (70969)
51 (4422)
19 (2493)
21 (2246)
61 (692)
16 (182)
88 (159)
94 (127)
96 (104)
106 (60)
k = 1 is a GFn with no known prime.
305 16 3, 17   k = = 1 mod 2 (2)
k = = 18 mod 19 (19)
none - proven 2 (16807)
10 (1522)
4 (126)
12 (2)
14 (1)
8 (1)
6 (1)
 
306 431937 7, 37, 199, 2539   k = = 4 mod 5 (5)
k = = 60 mod 61 (61)
1385 k's remaining at n=25K.

See k's at Sierpinski Base 306 remain.
174101 (25000)
207985 (24948)
300413 (24942)
218410 (24865)
261596 (24855)
428972 (24833)
161520 (24691)
66233 (24555)
98478 (24530)
357902 (24524)
 
307 34 7, 11   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 16 mod 17 (17)
none - proven 10 (3423)
6 (549)
12 (490)
22 (24)
30 (4)
28 (1)
24 (1)
18 (1)
4 (1)
 
308 104 3, 103   k = = 306 mod 307 (307) 5 (300K)
36 (300K)
53 (300K)
83 (300K)
88 (300K)
25 (20372)
4 (1966)
31 (1904)
46 (1440)
67 (1026)
20 (669)
62 (237)
56 (183)
76 (116)
28 (114)
k = 1 is a GFn with no known prime.
309 94 5, 31   k = = 1 mod 2 (2)
k = = 6 mod 7 (7)
k = = 10 mod 11 (11)
none - proven 16 (180)
26 (146)
74 (51)
80 (40)
56 (38)
66 (16)
88 (13)
46 (8)
22 (6)
30 (5)
 
310 268392 7, 13, 17, 37, 311   k = = 2 mod 3 (3)
k = = 102 mod 103 (103)
1091 k's remaining at n=25K.

See k's at Sierpinski Base 310 remain.
175719 (24993)
205722 (24979)
40617 (24914)
56220 (24905)
49272 (24886)
147801 (24732)
240826 (24708)
139522 (24676)
84552 (24608)
90342 (24462)
k = 310 and 96100 are GFn's with no known prime.
311 142 3, 13   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 30 mod 31 (31)
none - proven 10 (314806)
76 (135562)
46 (8480)
106 (754)
40 (492)
90 (361)
126 (292)
88 (130)
58 (84)
38 (59)
 
312 890797 5, 7, 19, 277, 313   k = = 310 mod 311 (311) 32149 k's remaining at n=2.5K. To be shown later. 12 (21162)
821948 (2500)
656057 (2500)
294396 (2500)
43112 (2500)
832655 (2499)
460686 (2499)
404472 (2499)
368517 (2499)
267720 (2499)
 
313 111312 5, 101, 157   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 12 mod 13 (13)
234 k's remaining at n=100K.

See k's at Sierpinski Base 313 remain.
55458 (99530)
104208 (98624)
29838 (95751)
28342 (93842)
29758 (92210)
58348 (90762)
64138 (90154)
88084 (89439)
75844 (87002)
36748 (84791)
 
314 4 3, 5   k = = 312 mod 313 (313) none - proven 3 (280)
2 (3)
 
315 1642 13, 19, 31   k = = 1 mod 2 (2)
k = = 156 mod 157 (157)
550 (500K)
836 (500K)
278 (180134)
1390 (101935)
1186 (18580)
1252 (18342)
940 (16389)
168 (13346)
1466 (12888)
286 (9448)
1018 (4839)
1576 (3706)
 
316 287520 13, 19, 31, 317   k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
k = = 6 mod 7 (7)
145 k's remaining at n=100K.

See k's at Sierpinski Base 316 remain.
177877 (98900)
258658 (98469)
260776 (97297)
42796 (96540)
252490 (95911)
108592 (94552)
70470 (94256)
116887 (92271)
136432 (91116)
32907 (91007)
 
317 52 3, 53   k = = 1 mod 2 (2)
k = = 78 mod 79 (79)
44 (600K) 20 (218953)
6 (1465)
40 (1296)
32 (1051)
38 (465)
8 (433)
34 (370)
46 (268)
16 (100)
12 (82)
 
318 144 11, 29   k = = 316 mod 317 (317) 89 (600K) 56 (288096)
116 (18547)
59 (6718)
51 (2620)
92 (1588)
78 (908)
121 (737)
122 (624)
14 (302)
111 (188)
 
319 684 5, 17, 73   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 52 mod 53 (53)
64 (300K)
256 (300K)
286 (300K)
366 (300K)
574 (300K)
334 (188699)
624 (2817)
678 (2632)
306 (2396)
672 (2266)
436 (1388)
546 (884)
318 (564)
244 (469)
346 (436)
 
320 106 3, 107   k = = 10 mod 11 (11)
k = = 28 mod 29 (29)
97 (600K) 8 (52003)
25 (35754)
49 (2580)
46 (2480)
11 (1263)
92 (301)
95 (219)
13 (160)
94 (158)
61 (132)
 
321 22 7, 23   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
none - proven 8 (478)
16 (19)
6 (13)
10 (2)
20 (1)
18 (1)
12 (1)
2 (1)
 
322 18 17, 19   k = = 2 mod 3 (3)
k = = 106 mod 107 (107)
none - proven 12 (4)
13 (2)
9 (2)
7 (2)
16 (1)
15 (1)
10 (1)
6 (1)
4 (1)
3 (1)
k = 1 is a GFn with no known prime.
323 2284 3, 5, 13, 37, 457   k = = 1 mod 2 (2)
k = = 6 mod 7 (7)
k = = 22 mod 23 (23)
31 k's remaining at n=100K.

See k's at Sierpinski Base 323 remain.
1040 (82177)
1108 (66274)
1456 (41240)
1876 (36140)
1820 (34937)
2206 (27420)
1928 (23659)
274 (19466)
578 (18315)
2224 (15730)
 
324 14 5, 13   k = = 16 mod 17 (17)
k = = 18 mod 19 (19)
none - proven 10 (6)
13 (5)
3 (3)
11 (2)
6 (2)
2 (2)
12 (1)
9 (1)
8 (1)
7 (1)
k = 1 is a GFn with no known prime.
326 110 3, 109   k = = 4 mod 5 (5)
k = = 12 mod 13 (13)
none - proven 5 (400785)
17 (350899)
13 (56864)
73 (7036)
43 (5596)
87 (406)
53 (299)
33 (236)
58 (184)
70 (168)
 
327 1844 13, 37, 41, 97, 379   k = = 1 mod 2 (2)
k = = 162 mod 163 (163)
38 (300K)
122 (300K)
704 (300K)
1086 (300K)
1352 (300K)
1376 (300K)
1378 (300K)
1516 (300K)
1648 (300K)
1696 (300K)
1762 (300K)
1764 (289322)
1482 (278686)
1072 (176435)
1752 (138892)
328 (135981)
1770 (125824)
782 (81263)
222 (55884)
1076 (50035)
206 (45156)
 
328 48 7, 47   k = = 2 mod 3 (3)
k = = 108 mod 109 (109)
27 (1M) 22 (592)
36 (292)
30 (201)
4 (30)
45 (19)
34 (13)
6 (7)
3 (6)
42 (4)
37 (4)
 
329 4 3, 5   k = = 1 mod 2 (2)
k = = 40 mod 41 (41)
none - proven 2 (1)  
330 16636723 13, 331, 8377   k = = 6 mod 7 (7)
k = = 46 mod 47 (47)
101096 k's remaining at n=2.5K. To be shown later. 16027380 (2500)
15961583 (2500)
15595009 (2500)
15502536 (2500)
13386508 (2500)
13356747 (2500)
11875154 (2500)
11545292 (2500)
11499685 (2500)
9575909 (2500)
 
331 280458 7, 13, 19, 29, 83   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
k = = 10 mod 11 (11)
253 k's remaining at n=100K.

See k's at Sierpinski Base 331 remain.
180358 (99393)
257766 (99333)
107292 (97697)
47458 (97552)
51868 (97186)
222358 (96954)
245986 (96320)
126300 (96095)
99730 (95893)
61990 (94974)
 
332 38 3, 37   k = = 330 mod 331 (331) 4 (770K)
16 (700K)
31 (367560)
27 (4366)
17 (1327)
10 (552)
9 (310)
23 (269)
5 (105)
32 (79)
26 (61)
20 (31)
 
333 6514 5, 13, 167   k = = 1 mod 2 (2)
k = = 82 mod 83 (83)
18 (250K)
118 (250K)
824 (250K)
962 (250K)
1476 (250K)
1504 (250K)
1678 (250K)
1806 (250K)
2172 (250K)
2224 (250K)
2504 (250K)
2506 (250K)
3268 (250K)
4308 (250K)
4542 (250K)
4842 (250K)
4954 (250K)
5010 (250K)
5052 (250K)
5242 (250K)
5592 (250K)
5738 (250K)
6096 (250K)
6310 (250K)
6408 (250K)
3748 (218908)
2428 (202852)
6326 (188895)
2484 (182603)
1846 (164232)
1712 (117912)
4642 (115616)
4674 (112314)
40 (105533)
3868 (99848)
 
334 66 5, 67   k = = 2 mod 3 (3)
k = = 36 mod 37 (37)
4 (500K)
51 (500K)
12 (83333)
49 (951)
9 (339)
27 (103)
61 (82)
6 (44)
39 (39)
52 (35)
25 (32)
18 (26)
 
335 8 3, 7   k = = 1 mod 2 (2)
k = = 166 mod 167 (167)
4 (1M) 2 (13)
6 (1)
 
336 92000 17, 29, 337   k = = 4 mod 5 (5)
k = = 66 mod 67 (67)
107 k's remaining at n=100K.

See k's at Sierpinski Base 336 remain.
84737 (99515)
78876 (99491)
18648 (97397)
65993 (95154)
55501 (91303)
84958 (89747)
53970 (85991)
12355 (83084)
87070 (80980)
45831 (79065)
k = 336 is a GFn with no known prime.
337 534 5, 13, 41   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 6 mod 7 (7)
none - proven 168 (61657)
222 (3910)
402 (2155)
282 (1327)
42 (548)
234 (346)
352 (342)
66 (300)
348 (149)
196 (108)
 
338 112 3, 113   k = = 336 mod 337 (337) 10 (300K)
23 (300K)
34 (300K)
46 (300K)
53 (300K)
61 (300K)
76 (300K)
77 (300K)
98 (300K)
103 (300K)
13 (37612)
82 (35952)
83 (28199)
97 (18802)
32 (8089)
45 (7958)
40 (5632)
64 (3202)
62 (1325)
7 (792)
k = 1 is a GFn with no known prime.
339 16 5, 17   k = = 1 mod 2 (2)
k = = 12 mod 13 (13)
none - proven 14 (7)
4 (7)
6 (4)
2 (3)
10 (1)
8 (1)
 
340 309 11, 31   k = = 2 mod 3 (3)
k = = 112 mod 113 (113)
199 (1M) 210 (104298)
75 (2445)
123 (2039)
34 (1946)
249 (1618)
166 (1038)
217 (765)
103 (401)
175 (367)
30 (325)
 
341 20 3, 19   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 16 mod 17 (17)
none - proven 10 (106008)
18 (5)
6 (2)
12 (1)
8 (1)
2 (1)
 
342 552 5, 7, 149   k = = 10 mod 11 (11)
k = = 30 mod 31 (31)
36 (300K)
204 (300K)
341 (300K)
468 (300K)
491 (300K)
27 (232379)
246 (168008)
71 (57384)
237 (41199)
412 (39987)
498 (20368)
62 (13143)
344 (3494)
504 (2509)
313 (2057)
 
343 1936 5, 13, 43 All k = m^3 for all n; factors to:
(m*7^n + 1) *
(m^2*49^n - m*7^n + 1)
k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 18 mod 19 (19)
616 (300K)
904 (300K)
924 (300K)
1678 (300K)
1084 (287519)
1470 (223429)
646 (108636)
1852 (52708)
1506 (48204)
1906 (18092)
472 (9909)
1438 (7926)
1762 (5085)
826 (5053)
k = 64, 216, and 1000 proven composite by full algebraic factors.
344 4 3, 5   k = = 6 mod 7 (7) none - proven 2 (17)
3 (1)
k = 1 is a GFn with no known prime.
347 28 3, 29   k = = 1 mod 2 (2)
k = = 172 mod 173 (173)
none - proven 4 (370)
22 (126)
2 (123)
10 (72)
20 (19)
16 (12)
14 (7)
26 (3)
12 (2)
24 (1)
 
348 26523 5, 53, 349   k = = 346 mod 347 (347) 257 k's remaining at n=100K.

See k's at Sierpinski Base 348 remain.
13638 (99714)
6634 (98921)
8831 (98423)
4201 (97292)
4883 (96722)
13263 (93018)
25323 (92456)
9838 (90747)
11624 (90009)
26133 (88450
 
349 6 5, 7   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 28 mod 29 (29)
none - proven 4 (3)  
350 14 3, 13   k = = 348 mod 349 (349) none - proven 5 (20391)
10 (1294)
7 (84)
13 (6)
9 (3)
6 (2)
4 (2)
12 (1)
11 (1)
8 (1)
 
351 115752 11, 229, 269   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 6 mod 7 (7)
102 k's remaining at n=100K.

See k's at Sierpinski Base 351 remain.
12618 (94570)
85416 (92750)
56200 (91900)
91092 (91694)
97998 (88799)
88692 (87161)
67638 (86425)
58992 (85985)
55340 (84595)
89068 (84412)
 
352 7990 7, 61, 97   k = = 2 mod 3 (3)
k = = 12 mod 13 (13)
183 (500K)
1837 (500K)
1902 (500K)
2073 (500K)
2119 (500K)
2812 (500K)
3178 (500K)
3454 (500K)
3531 (500K)
3552 (500K)
4387 (500K)
4989 (500K)
5647 (500K)
5697 (500K)
5703 (500K)
6706 (500K)
6729 (500K)
6852 (500K)
7243 (500K)
7978 (500K)
2707 (161776)
1173 (89793)
3484 (88810)
7923 (86434)
1977 (77376)
5794 (72574)
5346 (66463)
6363 (57245)
6114 (53991)
7941 (40220)
 
353 16 3, 5, 17   k = = 1 mod 2 (2)
k = = 10 mod 11 (11)
8 (700K) 12 (20261)
2 (2313)
4 (2086)
6 (3)
14 (1)
 
354 141 5, 71   k = = 352 mod 353 (353) 12 (500K)
75 (500K)
134 (500K)
64 (19921)
104 (4495)
43 (2808)
96 (1994)
89 (1403)
94 (1357)
101 (1246)
44 (735)
124 (623)
90 (397)
k = 1 is a GFn with no known prime.
355 23586 7, 13, 89, 103   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 58 mod 59 (59)
40 k's remaining at n=100K.

See k's at Sierpinski Base 355 remain.
4840 (88061)
8986 (78137)
3628 (71696)
12906 (67056)
18630 (63648)
20136 (63131)
13246 (58166)
10572 (56966)
424 (54435)
3442 (52451)
 
356 8 3, 7   k = = 4 mod 5 (5)
k = = 70 mod 71 (71)
none - proven 5 (595)
2 (3)
7 (2)
6 (1)
3 (1)
k = 1 is a GFn with no known prime.
357 456628 5, 179, 2549   k = = 1 mod 2 (2)
k = = 88 mod 89 (89)
1428 k's remaining at n=25K.

See k's at Sierpinski Base 357 remain.
188042 (24996)
320674 (24955)
404114 (24870)
142138 (24853)
368846 (24812)
327688 (24800)
219286 (24760)
287548 (24756)
250092 (24663)
385344 (24575)
 
359 4 3, 5   k = = 1 mod 2 (2)
k = = 178 mod 179 (179)
none - proven 2 (1)  
360 628 7, 13, 19, 37   k = = 358 mod 359 (359) 77 (300K)
172 (300K)
303 (300K)
381 (300K)
506 (300K)
552 (230680)
219 (168699)
343 (165674)
39 (35844)
286 (27214)
20 (19670)
581 (17429)
179 (12302)
137 (11328)
517 (11075)
 
361 1671172 7, 13, 17, 181, 4297   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
5510 k's remaining at n>=10K.

See k's and test limits at Sierpinski Base 361 remain.
624466 (99390)
721306 (98765)
142656 (98574)
314326 (98306)
375546 (97662)
1156606 (97533)
669456 (97476)
249556 (97358)
353986 (96124)
397276 (95784)
 
362 10 3, 11   k = = 18 mod 19 (19) none - proven 4 (30)
2 (15)
6 (9)
7 (6)
9 (1)
8 (1)
5 (1)
3 (1)
k = 1 is a GFn with no known prime.
363 64 7, 13   k = = 1 mod 2 (2)
k = = 180 mod 181 (181)
none - proven 48 (4283)
38 (299)
36 (128)
14 (26)
40 (14)
52 (9)
16 (9)
62 (5)
56 (5)
42 (5)
 
364 291 5, 73   k = = 2 mod 3 (3)
k = = 10 mod 11 (11)
none - proven 46 (7308)
145 (2197)
144 (1045)
231 (468)
279 (329)
214 (281)
169 (277)
289 (267)
151 (260)
9 (165)
 
365 304 3, 61   k = = 1 mod 2 (2)
k = = 6 mod 7 (7)
k = = 12 mod 13 (13)
2 (500K)
176 (500K)
268 (10808)
40 (4662)
226 (2798)
88 (1708)
158 (717)
172 (492)
140 (385)
262 (352)
214 (344)
248 (325)
 
366 79231 7, 31, 619   k = = 4 mod 5 (5)
k = = 72 mod 73 (73)
357 k's remaining at n=100K.

See k's at Sierpinski Base 366 remain.
77822 (99456)
43651 (99049)
34967 (98821)
78956 (98810)
51642 (98276)
59076 (95805)
45590 (95600)
66491 (95487)
64226 (94788)
46126 (93434)
k = 366 is a GFn with no known prime.
367 3462 7, 13, 619, 3463   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 60 mod 61 (61)
24 (300K)
160 (300K)
766 (300K)
888 (300K)
1096 (300K)
1458 (300K)
1632 (300K)
1780 (300K)
1954 (300K)
2092 (300K)
2598 (300K)
2782 (300K)
3106 (300K)
3202 (300K)
838 (198905)
2368 (117513)
3216 (33961)
2742 (29246)
552 (27584)
1018 (19541)
1726 (19044)
1824 (17835)
2446 (16284)
3130 (14635)
 
368 40 3, 41   k = = 366 mod 367 (367) 8 (500K)
12 (500K)
34 (500K)
24 (19350)
2 (7045)
23 (4699)
29 (371)
38 (319)
16 (280)
5 (207)
6 (107)
4 (82)
39 (25)
k = 1 is a GFn with no known prime.
369 36 5, 37   k = = 1 mod 2 (2)
k = = 22 mod 23 (23)
none - proven 6 (3418)
24 (53)
18 (27)
4 (23)
32 (11)
26 (4)
16 (4)
12 (3)
20 (2)
34 (1)
 
370 160 7, 53   k = = 2 mod 3 (3)
k = = 40 mod 41 (41)
none - proven 34 (4981)
52 (757)
76 (525)
78 (484)
85 (178)
27 (151)
109 (84)
16 (75)
154 (59)
97 (59)
 
371 32 3, 31   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 36 mod 37 (37)
none - proven 22 (252)
26 (113)
20 (19)
10 (12)
6 (7)
28 (4)
16 (4)
12 (2)
30 (1)
18 (1)
 
372 9699 5, 13, 373   k = = 6 mod 7 (7)
k = = 52 mod 53 (53)
51 k's remaining at n=100K.

See k's at Sierpinski Base 372 remain.
5449 (96877)
8104 (96018)
6430 (92755)
9186 (73167)
1327 (62755)
1513 (61478)
6016 (59952)
362 (55491)
3782 (46611)
5033 (45089)
k = 372 is a GFn with no known prime.
373 120 11, 17   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 30 mod 31 (31)
108 (700K) 118 (105239)
82 (16926)
48 (5171)
34 (14)
106 (9)
10 (9)
90 (8)
40 (7)
16 (7)
66 (5)
 
374 4 3, 5   k = = 372 mod 373 (373) none - proven 2 (33)
3 (1)
 
375 7509988 7, 47, 139, 1009   k = = 1 mod 2 (2)
k = = 10 mod 11 (11)
k = = 16 mod 17 (17)
46406 k's remaining at n=2.5K. To be shown later. 6419062 (2500)
5838528 (2500)
3152008 (2500)
2230010 (2500)
1523882 (2500)
1339222 (2500)
743658 (2500)
7253116 (2499)
6327284 (2499)
6218710 (2499)
 
376 610 13, 29   k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
246 (500K)
298 (500K)
222 (121432)
463 (59011)
477 (29831)
157 (20880)
118 (12818)
265 (7759)
412 (2807)
523 (2152)
430 (2036)
450 (712)
 
377 8 3, 7   k = = 1 mod 2 (2)
k = = 46 mod 47 (47)
none - proven 4 (74)
6 (45)
2 (19)
 
378 6444 5, 17, 379   k = = 12 mod 13 (13)
k = = 28 mod 29 (29)
288 (300K)
327 (300K)
460 (300K)
534 (300K)
729 (300K)
757 (300K)
829 (300K)
953 (300K)
1854 (300K)
2784 (300K)
3588 (300K)
3879 (300K)
3478 (260076)
5428 (249058)
1818 (217098)
4355 (152156)
6102 (108197)
2275 (85190)
305 (83923)
4810 (81803)
5301 (75809)
4499 (64018)
 
379 246 5, 19   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 6 mod 7 (7)
156 (1M) 24 (66097)
136 (43454)
96 (344)
126 (86)
150 (74)
30 (37)
210 (34)
226 (30)
208 (19)
186 (18)
 
380 128 3, 127   k = = 378 mod 379 (379) 64 (500K)
85 (500K)
61 (273136)
106 (182846)
89 (19069)
95 (6513)
14 (2157)
73 (1958)
103 (946)
48 (884)
46 (758)
101 (597)
k = 1 is a GFn with no known prime.
381 18526 7, 13, 43, 191   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 18 mod 19 (19)
5976 (300K)
6772 (300K)
9260 (300K)
10942 (300K)
12692 (300K)
14668 (300K)
15570 (300K)
15640 (300K)
16826 (300K)
18100 (300K)
1322 (128493)
14056 (104273)
2292 (93814)
4952 (65623)
1966 (56007)
5762 (43890)
13250 (43466)
2852 (41505)
10016 (40735)
16998 (40145)
 
382 11491 5, 13, 383   k = = 2 mod 3 (3)
k = = 126 mod 127 (127)
93 k's remaining at n=100K.

See k's at Sierpinski Base 382 remain.
7563 (94114)
5316 (92775)
7132 (86578)
4752 (86356)
10762 (85942)
2082 (83098)
10804 (79485)
7773 (76365)
6303 (71272)
6291 (68279)
 
383 1022 3, 5, 17, 41   k = = 1 mod 2 (2)
k = = 190 mod 191 (191)
37 k's remaining at n>=519K.

See k's and test limits at Sierpinski Base 383 remain.
50 (463313)
104 (408249)
454 (354814)
134 (225187)
740 (185249)
518 (126363)
220 (116742)
944 (75703)
46 (55808)
876 (55720)
 
384 6 5, 7   k = = 382 mod 383 (383) none - proven 4 (21)
5 (2)
3 (1)
2 (1)
 
385 3301264 13, 193, 5701   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
3407 k's remaining at n=10K.

See k's at Sierpinski Base 385 remain.
150670 (9994)
435264 (9988)
2684260 (9987)
855234 (9987)
1403730 (9984)
1116282 (9982)
3001384 (9972)
2251122 (9965)
2534266 (9961)
44224 (9958)
 
386 85 3, 43   k = = 4 mod 5 (5)
k = = 6 mod 7 (7)
k = = 10 mod 11 (11)
none - proven 30 (225439)
31 (1010)
25 (784)
36 (413)
3 (183)
40 (140)
7 (120)
53 (63)
52 (44)
60 (21)
 
387 1798 5, 7, 13, 17, 19   k = = 1 mod 2 (2)
k = = 192 mod 193 (193)
502 (300K)
594 (300K)
612 (300K)
696 (300K)
1004 (300K)
1070 (300K)
1268 (300K)
1314 (300K)
1456 (300K)
1532 (300K)
958 (95552)
1630 (82885)
236 (76425)
1616 (76153)
264 (29733)
1596 (27933)
766 (27587)
1466 (26076)
290 (23117)
94 (18818)
 
388 90249 5, 7, 13, 19, 389   k = = 2 mod 3 (3)
k = = 42 mod 43 (43)
832 k's remaining at n=25K.

See k's at Sierpinski Base 388 remain.
1194 (24973)
48250 (24971)
13576 (24935)
36447 (24900)
37902 (24850)
47583 (24762)
957 (24696)
4732 (24564)
6348 (24515)
55012 (24470)
k = 388 is a GFn with no known prime.
389 4 3, 5   k = = 1 mod 2 (2)
k = = 96 mod 97 (97)
none - proven 2 (5)  
390 137 17, 23   k = = 388 mod 389 (389) none - proven 65 (8188)
16 (421)
101 (345)
114 (223)
94 (146)
68 (123)
116 (98)
135 (87)
24 (44)
93 (26)
k = 1 is a GFn with no known prime.
391 206662 7, 19, 1399, 2689   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
k = = 12 mod 13 (13)
247 k's remaining at n=100K.

See k's at Sierpinski Base 391 remain.
153346 (98323)
25962 (97635)
147006 (97453)
138942 (93353)
63706 (90871)
197590 (90764)
14160 (89705)
146308 (86392)
82132 (86290)
95122 (85567)
 
392 130 3, 131   k = = 16 mod 17 (17)
k = = 22 mod 23 (23)
23 (500K)
94 (500K)
103 (500K)
125 (444161)
61 (68204)
92 (57111)
76 (16584)
79 (3050)
28 (1942)
47 (1895)
107 (1711)
122 (739)
11 (411)
 
393 58608 13, 43, 277   k = = 1 mod 2 (2)
k = = 6 mod 7 (7)
166 k's remaining at n=100K.

See k's at Sierpinski Base 393 remain.
33856 (95601)
27514 (95166)
52636 (94444)
21752 (92218)
24236 (91416)
30840 (90638)
46274 (90607)
19486 (90563)
40546 (89137)
29578 (87438)
 
394 159 5, 79   k = = 2 mod 3 (3)
k = = 130 mod 131 (131)
129 (500K)
136 (500K)
99 (5557)
61 (2272)
69 (707)
10 (626)
73 (492)
85 (381)
36 (294)
157 (257)
28 (218)
106 (180)
k = 1 is a GFn with no known prime.
395 10 3, 11   k = = 1 mod 2 (2)
k = = 196 mod 197 (197)
4 (1M)
8 (500K)
2 (2625)
6 (1)
 
396 5253 7, 37, 607   k = = 4 mod 5 (5)
k = = 78 mod 79 (79)
2358 (500K)
3267 (500K)
4245 (500K)
5228 (500K)
2136 (285974)
3338 (280633)
4821 (263301)
1693 (228140)
1153 (149297)
4651 (129805)
3240 (105962)
4155 (92698)
398 (86708)
1713 (73752)
 
397 10546 7, 31, 37, 199   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 10 mod 11 (11)
28 k's remaining at n=100K.

See k's at Sierpinski Base 397 remain.
7596 (77651)
8916 (69232)
2196 (57783)
4818 (56714)
9306 (52185)
9696 (44736)
3078 (42177)
6936 (38644)
9636 (36888)
4024 (35337)
 
398 8 3, 7   k = = 396 mod 397 (397) none - proven 7 (17472)
4 (30)
5 (13)
3 (11)
6 (1)
2 (1)
 
400 12492354 13, 127, 401, 421   k = = 2 mod 3 (3)
k = = 6 mod 7 (7)
k = = 18 mod 19 (19)
68114 k's remaining at n=2.5K. To be shown later. 10957630 (2500)
9216358 (2500)
8093443 (2500)
7469107 (2500)
7449103 (2500)
7389330 (2500)
7354531 (2500)
5771554 (2500)
5529904 (2500)
4249677 (2500)
k = 160000 is a GFn with no known prime.
401 68 3, 67   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
20 (1M) 16 (4212)
22 (2848)
62 (751)
32 (183)
52 (122)
38 (69)
66 (47)
58 (16)
6 (16)
28 (12)
 
402 92 13, 31   k = = 400 mod 401 (401) 61 (600K) 66 (10840)
30 (4637)
83 (1148)
87 (942)
6 (679)
56 (664)
36 (560)
63 (260)
40 (258)
2 (159)
k = 1 is a GFn with no known prime.
403 11412 5, 101, 109   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 66 mod 67 (67)
31 k's remaining at n=100K.

See k's at Sierpinski Base 403 remain.
9798 (94424)
166 (90779)
9822 (83001)
2092 (74365)
7932 (67802)
3588 (66688)
8146 (64887)
1114 (63457)
5974 (58039)
3466 (54204)
 
404 4 3, 5   k = = 12 mod 13 (13)
k = = 30 mod 31 (31)
none - proven 3 (1)
2 (1)
k = 1 is a GFn with no known prime.
405 146 7, 29   k = = 1 mod 2 (2)
k = = 100 mod 101 (101)
none - proven 106 (120952)
78 (5158)
34 (2325)
8 (1504)
6 (717)
132 (685)
120 (132)
46 (123)
86 (93)
94 (73)
 
406 186 11, 37   k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
none - proven 100 (543228)
16 (420)
76 (361)
183 (337)
12 (178)
70 (158)
36 (67)
177 (54)
75 (22)
67 (22)
 
407 16 3, 17   k = = 1 mod 2 (2)
k = = 6 mod 7 (7)
k = = 28 mod 29 (29)
none - proven 2 (291)
14 (13)
4 (6)
12 (2)
10 (2)
8 (1)
 
408 5318 13, 197, 409   k = = 10 mod 11 (11)
k = = 36 mod 37 (37)
68 (300K)
729 (300K)
768 (300K)
1021 (300K)
1104 (300K)
1804 (300K)
1931 (300K)
2068 (300K)
2114 (300K)
2271 (300K)
2718 (300K)
3106 (300K)
3199 (300K)
3219 (300K)
3506 (300K)
3792 (300K)
3874 (300K)
4107 (300K)
5239 (300K)
3580 (222030)
3086 (160483)
2134 (127675)
4562 (90529)
5024 (77122)
3986 (75032)
3897 (71241)
486 (69543)
2306 (67124)
1184 (65975)
k = 408 is a GFn with no known prime.
409 124 5, 41   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 16 mod 17 (17)
none - proven 6 (369832)
30 (3329)
48 (539)
42 (450)
96 (38)
106 (26)
66 (24)
46 (22)
100 (20)
114 (17)
 
410 136 3, 137   k = = 408 mod 409 (409) 103 (500K)
110 (500K)
119 (304307)
8 (279991)
67 (250678)
4 (144078)
20 (11647)
40 (2568)
18 (670)
28 (524)
84 (409)
88 (210)
k = 1 is a GFn with no known prime.
411 46246 13, 89, 103   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 40 mod 41 (41)
88 k's remaining at n=100K.

See k's at Sierpinski Base 411 remain.
14838 (99817)
1156 (97861)
43726 (90110)
23382 (82998)
39750 (82223)
20798 (81042)
25280 (80486)
26380 (74936)
42808 (73183)
2098 (68729)
 
412 132 5, 7, 17   k = = 2 mod 3 (3)
k = = 136 mod 137 (137)
36 (500K)
64 (500K)
117 (294963)
21 (45032)
106 (2528)
99 (838)
118 (325)
55 (183)
88 (134)
72 (102)
127 (92)
16 (71)
 
413 22 3, 23   k = = 1 mod 2 (2)
k = = 102 mod 103 (103)
none - proven 10 (16)
6 (11)
16 (8)
8 (7)
18 (4)
20 (3)
4 (2)
14 (1)
12 (1)
2 (1)
 
414 84 5, 83   k = = 6 mod 7 (7)
k = = 58 mod 59 (59)
none - proven 24 (391179)
61 (236)
21 (142)
81 (88)
3 (66)
36 (28)
16 (24)
82 (19)
5 (18)
46 (10)
 
416 140 3, 139   k = = 4 mod 5 (5)
k = = 82 mod 83 (83)
none - proven 73 (253392)
118 (28046)
31 (23572)
13 (18232)
10 (3186)
48 (2680)
2 (2517)
20 (2411)
110 (2247)
125 (1661)
k = 1 is a GFn with no known prime.
417 56 11, 19   k = = 1 mod 2 (2)
k = = 12 mod 13 (13)
10 (700K) 54 (8501)
34 (298)
40 (8)
44 (6)
48 (5)
26 (5)
52 (3)
32 (3)
50 (2)
42 (2)
 
418 8398 5, 7, 29, 37, 79   k = = 2 mod 3 (3)
k = = 138 mod 139 (139)
28 k's remaining at n=100K.

See k's at Sierpinski Base 418 remain.
7873 (83802)
5364 (75889)
3018 (75443)
6807 (74905)
6703 (71519)
3858 (71195)
6172 (70560)
1114 (70230)
8092 (68764)
387 (65726)
k = 418 is a GFn with no known prime.
419 4 3, 5   k = = 1 mod 2 (2)
k = = 10 mod 11 (11)
k = = 18 mod 19 (19)
none - proven 2 (1)  
420 2288555 13, 151, 421, 1171   k = = 418 mod 419 (419) 9707 k's remaining at n=10K.

See k's at Sierpinski Base 420 remain.
2130839 (10000)
551118 (9999)
1753090 (9998)
81759 (9994)
2033139 (9993)
779053 (9990)
742483 (9989)
489229 (9985)
1422755 (9984)
812265 (9982)
k = 176400 is a GFn with no known prime.
421 53806 13, 17, 211   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
k = = 6 mod 7 (7)
970 (300K)
1750 (300K)
2770 (300K)
3132 (300K)
5266 (300K)
11182 (300K)
17640 (300K)
24036 (300K)
24300 (300K)
25110 (300K)
36772 (300K)
37348 (300K)
39288 (300K)
42856 (300K)
43776 (300K)
44116 (300K)
44706 (300K)
26040 (251428)
26362 (244658)
24838 (224768)
14296 (216090)
9216 (191802)
9726 (166757)
26850 (164666)
3472 (114140)
3186 (91460)
36520 (67040)
 
422 46 3, 47   k = = 420 mod 421 (421) 8 (500K)
13 (500K)
17 (500K)
22 (268038)
16 (176284)
31 (33728)
37 (13020)
19 (7302)
41 (4319)
10 (2978)
4 (2634)
33 (1302)
23 (989)
k = 1 is a GFn with no known prime.
423 9698 5, 29, 53   k = = 1 mod 2 (2)
k = = 210 mod 211 (211)
69 k's remaining at n=100K.

See k's at Sierpinski Base 423 remain.
6254 (97095)
3392 (96909)
9502 (93490)
8422 (92388)
8612 (92386)
5116 (88813)
2124 (86809)
2724 (81553)
7792 (79126)
7802 (74137)
 
424 16 5, 17   k = = 2 mod 3 (3)
k = = 46 mod 47 (47)
none - proven 3 (1105)
9 (23)
13 (2)
12 (2)
6 (2)
15 (1)
10 (1)
7 (1)
4 (1)
k = 1 is a GFn with no known prime.
425 70 3, 71   k = = 1 mod 2 (2)
k = = 52 mod 53 (53)
none - proven 8 (94661)
64 (718)
4 (562)
34 (496)
38 (389)
62 (197)
50 (55)
46 (48)
58 (32)
28 (30)
 
426 62 7, 61   k = = 4 mod 5 (5)
k = = 16 mod 17 (17)
8 (600K) 43 (278)
15 (194)
42 (75)
23 (43)
31 (32)
53 (28)
28 (15)
13 (13)
48 (9)
61 (8)
 
427 5852794 5, 107, 18233   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 70 mod 71 (71)
48534 k's remaining at n=2.5K. To be shown later. 4156686 (2500)
3966132 (2500)
2218618 (2500)
2142628 (2500)
1219012 (2500)
5770342 (2499)
5358804 (2499)
4912204 (2499)
3419896 (2499)
1227534 (2499)
 
428 10 3, 11   k = = 6 mod 7 (7)
k = = 60 mod 61 (61)
8 (600K) 4 (14)
7 (2)
3 (2)
9 (1)
5 (1)
2 (1)
 
429 44 5, 43   k = = 1 mod 2 (2)
k = = 106 mod 107 (107)
none - proven 26 (2794)
4 (175)
34 (65)
12 (54)
10 (45)
40 (15)
36 (6)
30 (5)
42 (3)
24 (3)
 
430 22413 7, 19, 379, 431   k = = 2 mod 3 (3)
k = = 10 mod 11 (11)
k = = 12 mod 13 (13)
15321 (600K) 17872 (228564)
859 (218562)
5370 (134491)
19125 (116506)
9024 (98827)
7858 (87160)
3399 (84495)
19638 (84214)
14566 (83829)
14448 (80945)
 
431 20138 3, 7, 67, 379   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 42 mod 43 (43)
316 k's remaining at n=100K.

See k's at Sierpinski Base 431 remain.
19810 (99512)
10148 (99117)
19126 (96304)
5626 (96228)
14628 (94881)
6146 (92197)
3280 (90562)
1036 (89558)
1720 (89402)
6680 (86265)
 
432 46765 7, 13, 67, 433   k = = 430 mod 431 (431) 964 k's remaining at n=25K.

See k's at Sierpinski Base 432 remain.
38596 (24973)
15243 (24882)
38765 (24829)
45186 (24821)
44483 (24618)
15649 (24573)
46539 (24542)
21034 (24277)
8420 (24239)
28218 (24060)
 
433 342 7, 31   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
118 (500K)
264 (500K)
108 (138703)
22 (32432)
106 (21228)
16 (8740)
64 (3686)
36 (1580)
276 (1116)
288 (1030)
316 (828)
156 (496)
 
434 4 3, 5   k = = 432 mod 433 (433) none - proven 2 (9)
3 (1)
 
436 208 19, 23   k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
k = = 28 mod 29 (29)
none - proven 45 (481613)
73 (1553)
198 (203)
25 (203)
58 (156)
201 (139)
112 (87)
180 (81)
18 (73)
75 (49)
 
437 8 3, 5, 13   k = = 1 mod 2 (2)
k = = 108 mod 109 (109)
none - proven 2 (423)
4 (18)
6 (3)
 
438 2633 5, 37, 439   k = = 18 mod 19 (19)
k = = 22 mod 23 (23)
30 k's remaining at n=100K.

See k's at Sierpinski Base 438 remain.
2147 (91976)
2106 (89704)
101 (77631)
1658 (72299)
1371 (65081)
1075 (60386)
1473 (59628)
888 (56704)
2099 (49301)
783 (43748)
k = 438 is a GFn with no known prime.
439 34 5, 11   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 72 mod 73 (73)
none - proven 12 (94)
4 (89)
22 (70)
24 (7)
18 (5)
28 (2)
16 (2)
6 (2)
30 (1)
10 (1)
 
440 8 3, 7   k = = 438 mod 439 (439) none - proven 4 (56086)
5 (825)
7 (14)
6 (11)
3 (1)
2 (1)
 
441 118 13, 17   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 10 mod 11 (11)
none - proven 66 (11078)
62 (23)
86 (20)
72 (16)
22 (13)
78 (8)
88 (5)
60 (5)
12 (5)
52 (4)
 
442 36768 5, 41, 443   k = = 2 mod 3 (3)
k = = 6 mod 7 (7)
50 k's remaining at n=100K.

See k's at Sierpinski Base 442 remain.
17076 (96005)
35539 (94242)
10096 (89736)
4524 (80651)
33519 (80649)
29460 (80163)
25993 (79794)
10383 (78161)
36346 (68852)
28863 (66386)
 
443 184 3, 37   k = = 1 mod 2 (2)
k = = 12 mod 13 (13)
k = = 16 mod 17 (17)
8 (500K)
22 (500K)
94 (500K)
166 (432000)
136 (57948)
24 (17867)
170 (12345)
46 (2044)
154 (1178)
124 (606)
70 (262)
76 (248)
48 (158)
 
444 179 5, 89   k = = 442 mod 443 (443) 46 (500K)
111 (500K)
88 (122491)
41 (22682)
106 (9800)
53 (3295)
121 (1950)
8 (1247)
21 (872)
76 (532)
81 (364)
68 (270)
 
445 14986 7, 13, 727   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 36 mod 37 (37)
42 k's remaining at n=100K.

See k's at Sierpinski Base 445 remain.
9306 (96393)
9910 (90591)
5326 (87980)
12828 (75399)
12066 (54702)
10228 (52935)
1998 (47925)
10254 (47320)
8532 (46763)
7552 (40843)
 
446 148 3, 149   k = = 4 mod 5 (5)
k = = 88 mod 89 (89)
52 (300K)
53 (300K)
98 (300K)
115 (300K)
120 (300K)
136 (300K)
67 (121154)
70 (89454)
143 (55765)
107 (20379)
145 (17512)
46 (890)
146 (645)
125 (505)
76 (398)
103 (352)
k = 1 is a GFn with no known prime.
447 204 5, 7, 29   k = = 1 mod 2 (2)
k = = 222 mod 223 (223)
86 (500K)
148 (500K)
202 (60143)
146 (37159)
132 (36439)
96 (32360)
106 (30608)
174 (10619)
144 (2323)
188 (857)
92 (160)
64 (158)
 
448 139191 5, 137, 449   k = = 2 mod 3 (3)
k = = 148 mod 149 (149)
961 k's remaining at n=25K.

See k's at Sierpinski Base 448 remain.
81789 (24957)
115471 (24916)
50088 (24826)
90709 (24787)
18118 (24763)
94239 (24742)
109192 (24676)
82504 (24543)
130977 (24525)
75651 (24437)
 
449 4 3, 5   k = = 1 mod 2 (2)
k = = 6 mod 7 (7)
none - proven 2 (435)  
450 122 11, 41   k = = 448 mod 449 (449) 87 (600K) 109 (31885)
54 (6981)
45 (2676)
110 (2217)
61 (1024)
67 (770)
38 (683)
83 (518)
115 (141)
89 (130)
k = 1 is a GFn with no known prime.
451 97068 7, 13, 79, 113   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
104 k's remaining at n=100K.

See k's at Sierpinski Base 451 remain.
27516 (96417)
90388 (95078)
51640 (89803)
57886 (88923)
32868 (88020)
63660 (85642)
64012 (84696)
6166 (84519)
42052 (82269)
14026 (80809)
 
452 152 3, 151   k = = 10 mod 11 (11)
k = = 40 mod 41 (41)
23 (300K)
37 (300K)
41 (300K)
68 (300K)
96 (300K)
101 (300K)
124 (300K)
136 (300K)
151 (61688)
4 (14154)
128 (7893)
75 (3587)
91 (3496)
115 (2266)
31 (1516)
62 (1411)
85 (1236)
71 (1203)
 
453 4863476 5, 227, 20521   k = = 1 mod 2 (2)
k = = 112 mod 113 (113)
100879 k's remaining at n=2.5K. To be shown later. 4544168 (2500)
4417450 (2500)
4201646 (2500)
4000406 (2500)
3948610 (2500)
3388200 (2500)
3050648 (2500)
2458860 (2500)
2132898 (2500)
2028692 (2500)
 
454 6 5, 7   k = = 2 mod 3 (3)
k = = 150 mod 151 (151)
none - proven 4 (3)
3 (2)
k = 1 is a GFn with no known prime.
455 20 3, 19   k = = 1 mod 2 (2)
k = = 226 mod 227 (227)
none - proven 14 (1679)
8 (13)
12 (11)
16 (6)
10 (4)
4 (2)
18 (1)
6 (1)
2 (1)
 
456 14836963 269, 457, 773   k = = 4 mod 5 (5)
k = = 6 mod 7 (7)
k = = 12 mod 13 (13)
51825 k's remaining at n=2.5K. To be shown later. 14703278 (2500)
14131216 (2500)
12292077 (2500)
12247287 (2500)
11714270 (2500)
11183177 (2500)
10358955 (2500)
8188646 (2500)
8011733 (2500)
7668482 (2500)
 
457 84958 5, 17, 89, 229   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 18 mod 19 (19)
422 k's remaining at n=25K.

See k's at Sierpinski Base 457 remain.
74268 (24993)
48072 (24122)
10038 (24056)
46408 (23922)
40708 (23321)
35038 (22806)
24256 (22747)
4332 (22607)
37584 (22390)
29424 (22266)
 
458 16 3, 17   k = = 456 mod 457 (457) none - proven 13 (306196)
10 (5952)
3 (107)
2 (105)
14 (79)
4 (66)
12 (13)
8 (11)
5 (7)
7 (6)
k = 1 is a GFn with no known prime.
459 24 5, 23   k = = 1 mod 2 (2)
k = = 228 mod 229 (229)
none - proven 16 (30)
6 (10)
12 (3)
4 (3)
22 (1)
20 (1)
18 (1)
14 (1)
10 (1)
8 (1)
 
460 37803 13, 41, 461   k = = 2 mod 3 (3)
k = = 16 mod 17 (17)
75 k's remaining at n=100K.

See k's at Sierpinski Base 460 remain.
24273 (93772)
22662 (84216)
35505 (81439)
32427 (80544)
1117 (79130)
35064 (74195)
4506 (73296)
4411 (68018)
13114 (67128)
17344 (67045)
k = 460 is a GFn with no known prime.
461 8 3, 7   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 22 mod 23 (23)
2 (600K) 6 (1)  
462 6880642 5, 13, 73, 373, 463   k = = 460 mod 461 (461) 123504 k's remaining at n=2.5K. To be shown later. 6508000 (2500)
6383896 (2500)
5644032 (2500)
5637852 (2500)
5610546 (2500)
5604935 (2500)
5566091 (2500)
5438712 (2500)
5220801 (2500)
4930826 (2500)
k = 462 and 213444 are GFn's with no known prime.
463 1188 5, 13, 29   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 6 mod 7 (7)
k = = 10 mod 11 (11)
616 (500K)
1072 (500K)
30 (43298)
436 (43228)
178 (42858)
684 (22942)
1152 (6772)
574 (2953)
1068 (964)
438 (406)
768 (296)
840 (247)
 
464 4 3, 5   k = = 462 mod 463 (463) none - proven 3 (2)
2 (1)
 
465 78056 7, 13, 233, 337   k = = 1 mod 2 (2)
k = = 28 mod 29 (29)
127 k's remaining at n=100K.

See k's at Sierpinski Base 465 remain.
17822 (98145)
53838 (96113)
14612 (94883)
57474 (88244)
77494 (85597)
74802 (84919)
1094 (82546)
51086 (78670)
64874 (78048)
6618 (76985)
 
466 6492 7, 43, 241   k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
k = = 30 mod 31 (31)
222 (300K)
321 (300K)
556 (300K)
1077 (300K)
1272 (300K)
1867 (300K)
3783 (300K)
4252 (300K)
4296 (300K)
4786 (300K)
5326 (300K)
5370 (300K)
6072 (300K)
6102 (300K)
6256 (300K)
6345 (300K)
6070 (273937)
2826 (58289)
4737 (57300)
3076 (54058)
4780 (52720)
5437 (43209)
6060 (40601)
730 (33269)
3421 (32222)
3498 (28329)
 
467 8 3, 5, 7, 19, 37   k = = 1 mod 2 (2)
k = = 232 mod 233 (233)
4 (1M) 2 (126775)
6 (1)
 
468 202 7, 67   k = = 466 mod 467 (467) 97 (1.186M) 188 (535963)
29 (232718)
191 (78529)
160 (63873)
120 (48842)
183 (18276)
172 (11834)
20 (11537)
197 (7378)
128 (6759)
k = 1 is a GFn with no known prime.
469 46 5, 47   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 12 mod 13 (13)
none - proven 22 (26)
34 (7)
40 (6)
6 (6)
36 (4)
28 (3)
16 (2)
42 (1)
30 (1)
24 (1)
 
470 158 3, 157   k = = 6 mod 7 (7)
k = = 66 mod 67 (67)
none - proven 32 (683151)
136 (159762)
16 (88936)
64 (63338)
91 (6500)
4 (5218)
85 (4092)
82 (2978)
122 (1021)
112 (1006)
 
471 4562 7, 13, 31, 37   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 46 mod 47 (47)
1046 (300K)
1170 (300K)
1592 (300K)
2378 (300K)
2768 (300K)
2818 (300K)
2890 (300K)
2922 (300K)
3526 (300K)
3768 (300K)
4072 (300K)
4378 (300K)
1700 (196669)
2560 (158236)
3652 (106792)
4098 (81150)
3722 (67209)
2430 (53443)
2740 (43077)
1882 (22465)
4560 (20925)
3482 (16508)
 
472 87 11, 43   k = = 2 mod 3 (3)
k = = 156 mod 157 (157)
21 (500K)
67 (500K)
55 (2848)
82 (479)
54 (199)
63 (137)
79 (94)
12 (80)
34 (74)
51 (59)
76 (25)
33 (25)
 
473 8 3, 5, 13   k = = 1 mod 2 (2)
k = = 58 mod 59 (59)
none - proven 6 (5)
4 (2)
2 (1)
 
474 39 5, 19   k = = 10 mod 11 (11)
k = = 42 mod 43 (43)
none - proven 16 (1778)
18 (483)
34 (129)
26 (126)
4 (51)
20 (26)
31 (14)
36 (10)
25 (10)
6 (8)
 
475 288 7, 17   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 78 mod 79 (79)
none - proven 34 (1387)
204 (1004)
190 (802)
76 (249)
216 (239)
202 (151)
22 (142)
118 (119)
184 (53)
16 (47)
 
476 52 3, 53   k = = 4 mod 5 (5)
k = = 18 mod 19 (19)
28 (600K) 7 (42)
33 (16)
47 (15)
41 (11)
45 (10)
15 (10)
40 (8)
8 (7)
21 (6)
48 (4)
 
477 78152 5, 61, 239   k = = 1 mod 2 (2)
k = = 6 mod 7 (7)
k = = 16 mod 17 (17)
168 k's remaining at n=100K.

See k's at Sierpinski Base 477 remain.
31796 (97796)
68026 (96248)
5532 (95712)
18888 (94118)
22846 (92569)
9136 (89760)
24822 (89714)
76106 (87085)
69736 (86316)
22954 (86095)
 
478 523069 5, 17, 41, 479   k = = 2 mod 3 (3)
k = = 52 mod 53 (53)
17110 k's remaining at n=2.5K. To be shown later. 307111 (2500)
130543 (2500)
447745 (2499)
87094 (2499)
463786 (2497)
321676 (2496)
81000 (2495)
99588 (2494)
48424 (2494)
380481 (2493)
 
479 4 3, 5   k = = 1 mod 2 (2)
k = = 238 mod 239 (239)
none - proven 2 (3)  
480 38 13, 37   k = = 478 mod 479 (479) 12 (600K) 36 (3165)
13 (50)
5 (29)
14 (18)
27 (14)
2 (8)
23 (7)
22 (7)
21 (6)
25 (5)
k = 1 is a GFn with no known prime.
481 11680548 7, 109, 241, 709   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
46637 k's remaining at n=2.5K. To be shown later. 12 (45940)
10297996 (2500)
10129498 (2500)
9858696 (2500)
9720612 (2500)
9609132 (2500)
9133660 (2500)
9112426 (2500)
7911538 (2500)
7313752 (2500)
 
482 8 3, 7   k = = 12 mod 13 (13)
k = = 36 mod 37 (37)
none - proven 4 (30690)
2 (11)
6 (3)
7 (2)
5 (1)
3 (1)
k = 1 is a GFn with no known prime.
483 32 5, 11, 41   k = = 1 mod 2 (2)
k = = 240 mod 241 (241)
none - proven 8 (8680)
6 (153)
18 (14)
26 (8)
16 (4)
30 (3)
28 (2)
12 (2)
24 (1)
22 (1)
 
484 96 5, 97   k = = 2 mod 3 (3)
k = = 6 mod 7 (7)
k = = 22 mod 23 (23)
none - proven 54 (69515)
21 (1060)
78 (864)
36 (204)
84 (103)
15 (57)
30 (41)
39 (33)
88 (27)
66 (24)
k = 1 is a GFn with no known prime.
485 3344 3, 7, 13, 223   k = = 1 mod 2 (2)
k = = 10 mod 11 (11)
67 k's remaining at n=100K.

See k's at Sierpinski Base 485 remain.
1096 (96988)
3296 (83623)
850 (83154)
244 (65630)
2442 (64966)
1786 (64032)
38 (63059)
1942 (62882)
1252 (62248)
1336 (52796)
 
486 301941 7, 19, 223, 487   k = = 4 mod 5 (5)
k = = 96 mod 97 (97)
2844 k's remaining at n=10K.

See k's at Sierpinski Base 486 remain.
203222 (9997)
293691 (9976)
198321 (9970)
248177 (9958)
24528 (9952)
182883 (9930)
84758 (9929)
69447 (9916)
50235 (9901)
109876 (9886)
k = 486 and 236196 are GFn's with no known prime.
487 6772 7, 13, 19, 37, 61   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
42 k's remaining at n=100K.

See k's at Sierpinski Base 487 remain.
5806 (83469)
804 (78502)
306 (72072)
1402 (59559)
6334 (59551)
346 (56445)
286 (55313)
820 (52051)
3454 (50815)
556 (47551)
 
488 164 3, 163   k = = 486 mod 487 (487) 8 (300K)
106 (300K)
122 (300K)
128 (300K)
139 (300K)
145 (300K)
141 (150192)
35 (58539)
31 (30060)
107 (23797)
154 (16642)
77 (8917)
150 (7165)
34 (6982)
19 (6798)
16 (5608)
 
489 6 5, 7   k = = 2 mod 3 (3)
k = = 60 mod 61 (61)
none - proven 4 (5)
2 (2)
 
490 15123 13, 31, 199   k = = 2 mod 3 (3)
k = = 162 mod 163 (163)
29 k's remaining at n=100K.

See k's at Sierpinski Base 490 remain.
6075 (82357)
11496 (81141)
7708 (51506)
15010 (50571)
14619 (50449)
12321 (42008)
12555 (41726)
285 (40033)
9697 (37271)
2482 (37159)
 
491 40 3, 41   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 6 mod 7 (7)
none - proven 26 (767)
32 (41)
36 (13)
38 (11)
22 (10)
28 (4)
10 (4)
16 (2)
12 (2)
30 (1)
 
492 86 17, 29   k = = 490 mod 491 (491) 69 (600K) 10 (42842)
31 (30359)
50 (11445)
54 (6883)
33 (381)
47 (366)
48 (304)
28 (277)
52 (246)
18 (202)
 
493 324 13, 19   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 40 mod 41 (41)
18 (300K)
64 (300K)
66 (300K)
118 (300K)
142 (300K)
144 (26030)
298 (9247)
132 (4809)
168 (1751)
210 (244)
318 (192)
282 (162)
262 (142)
184 (70)
216 (64)
 
494 4 3, 5   k = = 16 mod 17 (17)
k = = 28 mod 29 (29)
none - proven 2 (21)
3 (1)
 
495 692446 17, 31, 41, 101   k = = 2 mod 3 (3)
k = = 12 mod 13 (13)
k = = 18 mod 19 (19)
1247 k's remaining at n=25K.

See k's at Sierpinski Base 495 remain.
439206 (24967)
403682 (24830)
352688 (24720)
215170 (24611)
265266 (24595)
657698 (24496)
13112 (24491)
418158 (24483)
113756 (24481)
90798 (24383)
 
496 141 7, 71   k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
k = = 10 mod 11 (11)
none - proven 15 (44172)
27 (551)
97 (259)
127 (208)
118 (31)
85 (22)
36 (22)
72 (20)
135 (12)
96 (11)
 
497 16 3, 5, 17   k = = 1 mod 2 (2)
k = = 30 mod 31 (31)
8 (600K) 4 (1898)
2 (1339)
6 (169)
12 (4)
10 (4)
14 (1)
 
498 7983 5, 257, 499   k = = 6 mod 7 (7)
k = = 70 mod 71 (71)
45 k's remaining at n=100K.

See k's at Sierpinski Base 498 remain.
4054 (96131)
5556 (92092)
7439 (78874)
298 (73851)
5694 (72499)
4779 (71567)
2042 (70742)
7021 (70024)
5033 (58711)
6508 (58232)
 
499 2124 5, 13, 61   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 82 mod 83 (83)
136 (100K)
174 (100K)
208 (100K)
216 (100K)
294 (100K)
306 (100K)
406 (100K)
586 (100K)
846 (100K)
936 (100K)
948 (100K)
1026 (100K)
1042 (100K)
1074 (100K)
1354 (100K)
1384 (100K)
1414 (100K)
1474 (100K)
1546 (100K)
1806 (100K)
1906 (100K)
1944 (100K)
2008 (100K)
246 (81050)
1494 (78183)
1984 (70797)
1636 (46992)
1714 (39275)
1158 (30143)
754 (29709)
636 (22822)
606 (19962)
1018 (17765)
 
500 166 3, 167   k = = 498 mod 499 (499) 22 (300K)
24 (300K)
52 (300K)
64 (300K)
65 (300K)
92 (300K)
116 (300K)
151 (300K)
160 (300K)
164 (300K)
83 (145465)
29 (25213)
62 (5515)
94 (4492)
124 (2820)
145 (2588)
54 (2169)
7 (1996)
106 (1664)
60 (1123)
k = 1 is a GFn with no known prime.
501 278 7, 19, 31   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
none - proven 192 (116124)
12 (20139)
208 (5882)
26 (1251)
138 (351)
230 (329)
250 (315)
96 (257)
66 (244)
40 (195)
 
502 8832 5, 7, 13, 61, 73   k = = 2 mod 3 (3)
k = = 166 mod 167 (167)
89 k's remaining at n=100K.

See k's at Sierpinski Base 502 remain.
7447 (90086)
6441 (88783)
7852 (85644)
8737 (81775)
5238 (81370)
2766 (75500)
4023 (70853)
1501 (65459)
4744 (61537)
7012 (58954)
k = 502 is a GFn with no known prime.
503 8 3, 7   k = = 1 mod 2 (2)
k = = 250 mod 251 (251)
none - proven 4 (714)
2 (9)
6 (1)
 
504 201 5, 101   k = = 502 mod 503 (503) 79 (300K)
94 (300K)
116 (300K)
76 (107254)
166 (61354)
121 (8792)
69 (5899)
91 (5494)
171 (3102)
26 (1998)
89 (1603)
36 (1522)
86 (630)
 
505 208 11, 23   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 6 mod 7 (7)
none - proven 186 (31199)
190 (164)
100 (134)
166 (60)
30 (41)
78 (30)
136 (18)
24 (14)
126 (11)
88 (11)
 
506 25 3, 13   k = = 4 mod 5 (5)
k = = 100 mod 101 (101)
none - proven 16 (1066)
11 (269)
22 (22)
20 (11)
7 (6)
23 (3)
17 (3)
3 (3)
13 (2)
10 (2)
 
507 1142 5, 97, 127   k = = 1 mod 2 (2)
k = = 10 mod 11 (11)
k = = 22 mod 23 (23)
380 (300K)
702 (300K)
984 (300K)
292 (142979)
360 (21897)
478 (14561)
734 (5581)
862 (5302)
936 (3996)
924 (3862)
1010 (3256)
872 (2310)
818 (1221)
 
508 601128 5, 7, 37, 73, 509   k = = 2 mod 3 (3)
k = = 12 mod 13 (13)
14811 k's remaining at n=2.5K. To be shown later. 331305 (2500)
128433 (2500)
416908 (2498)
392328 (2498)
501451 (2497)
113341 (2497)
520851 (2496)
502407 (2496)
487182 (2496)
79917 (2496)
 
509 4 3, 5   k = = 1 mod 2 (2)
k = = 126 mod 127 (127)
none - proven 2 (1)  
510 218 7, 73   k = = 508 mod 509 (509) 57 (500K)
195 (500K)
148 (3310)
17 (1740)
30 (804)
113 (550)
129 (548)
90 (409)
169 (220)
141 (206)
31 (184)
190 (172)
 
513 45828 7, 139, 271   k = = 1 mod 2 (2) 446 k's remaining at n=25K.

See k's at Sierpinski Base 513 remain.
14474 (24795)
6774 (24793)
2298 (24767)
40424 (24629)
42804 (24470)
4974 (24455)
23210 (24148)
28188 (24035)
33596 (23907)
25774 (23737)
 
514 411 5, 103   k = = 2 mod 3 (3)
k = = 18 mod 19 (19)
96 (500K)
99 (500K)
211 (500K)
271 (500K)
289 (500K)
309 (500K)
321 (500K)
381 (500K)
249 (29583)
54 (18905)
79 (9431)
276 (5160)
199 (4951)
273 (4048)
301 (2096)
82 (2022)
387 (1940)
109 (1893)
k = 1 is a GFn with no known prime.
515 44 3, 43   k = = 1 mod 2 (2)
k = = 490 mod 491 (491)
none - proven 26 (2477)
42 (1331)
22 (254)
12 (186)
4 (122)
16 (94)
24 (37)
40 (12)
8 (11)
10 (4)
 
516 142 11, 47   k = = 4 mod 5 (5)
k = = 102 mod 103 (103)
122 (600K) 93 (1993)
140 (1401)
108 (115)
100 (86)
25 (83)
127 (74)
17 (54)
88 (33)
30 (31)
48 (28)
 
517 36 7, 37   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 42 mod 43 (43)
none - proven 22 (10)
12 (8)
18 (5)
6 (3)
28 (2)
34 (1)
30 (1)
24 (1)
16 (1)
10 (1)
 
518 172 3, 173   k = = 10 mod 11 (11)
k = = 46 mod 47 (47)
68 (300K)
83 (300K)
107 (300K)
167 (300K)
128 (293315)
16 (41876)
52 (28950)
91 (18940)
8 (11767)
44 (6703)
129 (5335)
2 (4453)
31 (3752)
64 (3526)
k = 1 is a GFn with no known prime.
519 14 5, 13   k = = 1 mod 2 (2)
k = = 6 mod 7 (7)
k = = 36 mod 37 (37)
none - proven 4 (1425)
10 (34)
12 (1)
8 (1)
2 (1)
 
520 1006 7, 19, 97   k = = 2 mod 3 (3)
k = = 172 mod 173 (173)
369 (1M) 373 (342177)
880 (12438)
663 (8581)
157 (4854)
838 (3120)
810 (2329)
948 (2027)
432 (1134)
703 (1119)
31 (876)
k = 520 is a GFn with no known prime.
521 28 3, 29   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 12 mod 13 (13)
none - proven 20 (301)
10 (42)
26 (9)
2 (9)
8 (5)
6 (4)
18 (3)
22 (2)
16 (2)
 
522 32644 5, 7, 13, 31, 43   k = = 520 mod 521 (521) 781 k's remaining at n=25K.

See k's at Sierpinski Base 522 remain.
6 (52603)
15167 (24908)
11161 (24769)
16741 (24637)
13607 (24488)
8692 (24368)
9596 (24203)
26774 (24122)
5157 (24044)
16456 (24037)
k = 522 is a GFn with no known prime.
523 10872 7, 13, 43, 131   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 28 mod 29 (29)
45 k's remaining at n=100K.

See k's at Sierpinski Base 523 remain.
3694 (81154)
3792 (80629)
8884 (77166)
10362 (66513)
688 (66286)
888 (66056)
9898 (63512)
4416 (60043)
8448 (59091)
7102 (55236)
 
524 4 3, 5   k = = 522 mod 523 (523) none - proven 3 (2)
2 (1)
k = 1 is a GFn with no known prime.
525 8639814 13, 263, 10601   k = = 1 mod 2 (2)
k = = 130 mod 131 (131)
54690 k's remaining at n=2.5K. To be shown later. 6299960 (2500)
5495304 (2500)
4222476 (2500)
3612414 (2500)
2408498 (2500)
664266 (2500)
629916 (2500)
629692 (2500)
7984138 (2499)
7778308 (2499)
 
526 373 17, 31   k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
k = = 6 mod 7 (7)
none - proven 123 (3435)
186 (2927)
340 (401)
210 (262)
28 (223)
30 (191)
337 (126)
205 (120)
105 (89)
292 (68)
 
527 10 3, 11   k = = 1 mod 2 (2)
k = = 262 mod 263 (263)
none - proven 2 (23)
4 (2)
8 (1)
6 (1)
 
528 116 5, 13, 23   k = = 16 mod 17 (17)
k = = 30 mod 31 (31)
none - proven 64 (10186)
113 (618)
24 (334)
72 (333)
42 (261)
11 (248)
27 (97)
28 (88)
65 (74)
21 (48)
k = 1 is a GFn with no known prime.
529 972 7, 13, 79   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 10 mod 11 (11)
244 (394K)
376 (394K)
394 (394K)
426 (394K)
454 (394K)
544 (394K)
634 (394K)
906 (394K)
936 (394K)
810 (113679)
922 (94889)
184 (59607)
264 (24831)
342 (12082)
696 (5506)
766 (4318)
850 (2799)
444 (2641)
174 (1753)
 
530 58 3, 59   k = = 22 mod 23 (23) 14 (300K)
52 (300K)
31 (74898)
40 (124)
13 (98)
39 (84)
9 (51)
55 (50)
5 (29)
23 (19)
53 (17)
35 (17)
k = 1 is a GFn with no known prime.
531 20 7, 19   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 52 mod 53 (53)
none - proven 18 (43)
8 (28)
10 (17)
16 (10)
12 (1)
6 (1)
2 (1)
 
532 40 13, 41   k = = 2 mod 3 (3)
k = = 58 mod 59 (59)
none - proven 37 (1331)
6 (9)
10 (7)
36 (5)
33 (4)
22 (4)
25 (3)
24 (3)
19 (3)
12 (3)
 
533 88 3, 89   k = = 1 mod 2 (2)
k = = 6 mod 7 (7)
k = = 18 mod 19 (19)
38 (400K)
64 (400K)
16 (7932)
40 (840)
52 (212)
8 (79)
44 (33)
14 (27)
66 (25)
28 (18)
2 (17)
32 (13)
 
534 106 5, 107   k = = 12 mod 13 (13)
k = = 40 mod 41 (41)
104 (600K) 34 (117941)
24 (72261)
94 (21245)
19 (11311)
76 (9502)
13 (6760)
57 (718)
11 (688)
21 (618)
75 (405)
k = 1 is a GFn with no known prime.
535 4653216 7, 61, 67, 40813   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 88 mod 89 (89)
35050 k's remaining at n=2.5K. To be shown later. 4498902 (2500)
3907806 (2500)
3237924 (2500)
2956032 (2500)
2891940 (2500)
2570110 (2500)
1884984 (2500)
1632000 (2500)
197220 (2500)
4402750 (2499)
 
536 178 3, 179   k = = 4 mod 5 (5)
k = = 106 mod 107 (107)
13 (500K)
75 (500K)
81 (493229)
71 (169461)
32 (44419)
26 (36623)
77 (35657)
145 (26684)
97 (22426)
43 (20154)
5 (8789)
67 (2724)
 
537 176734 5, 7, 13, 109, 269   k = = 1 mod 2 (2)
k = = 66 mod 67 (67)
2347 k's remaining at n=10K.

See k's at Sierpinski Base 537 remain.
82700 (9963)
24480 (9946)
141236 (9939)
136608 (9936)
100624 (9935)
97900 (9923)
117342 (9916)
37096 (9899)
146910 (9893)
1304 (9874)
 
538 27 5, 7, 73   k = = 2 mod 3 (3)
k = = 178 mod 179 (179)
none - proven 22 (1534)
13 (367)
3 (14)
18 (4)
24 (3)
15 (2)
12 (2)
9 (2)
25 (1)
21 (1)
k = 1 is a GFn with no known prime.
539 4 3, 5   k = = 1 mod 2 (2)
k = = 268 mod 269 (269)
none - proven 2 (7)  
540 1091739 17, 541, 1009   k = = 6 mod 7 (7)
k = = 10 mod 11 (11)
2632 k's remaining at n=10K.

See k's at Sierpinski Base 540 remain.
566289 (10000)
65445 (9997)
324095 (9992)
364598 (9987)
149697 (9987)
998687 (9984)
151301 (9981)
505043 (9977)
679792 (9972)
628358 (9972)
 
541 15253776 13, 271, 11257   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
120506 k's remaining at n=2.5K. To be shown later. 14911560 (2500)
14855220 (2500)
13835050 (2500)
13762366 (2500)
13045738 (2500)
12347766 (2500)
12284602 (2500)
12199662 (2500)
11403880 (2500)
11242420 (2500)
 
542 32 3, 5, 41   k = = 540 mod 541 (541) 2 (500K)
13 (500K)
19 (18950)
4 (15982)
11 (4909)
29 (859)
16 (364)
27 (334)
30 (156)
25 (116)
15 (109)
22 (98)
 
543 6478 7, 13, 17, 19   k = = 1 mod 2 (2)
k = = 270 mod 271 (271)
96 k's remaining at n=100K.

See k's at Sierpinski Base 543 remain.
798 (96135)
4350 (95038)
4514 (83623)
3280 (81575)
5616 (81047)
3660 (77360)
3160 (69334)
6240 (67126)
3792 (63578)
4274 (62891)
 
544 64 5, 7, 19, 37   k = = 2 mod 3 (3)
k = = 180 mod 181 (181)
none - proven 9 (4705)
61 (1002)
6 (278)
31 (258)
40 (141)
49 (71)
4 (39)
30 (26)
42 (25)
39 (23)
 
545 8 3, 7   k = = 1 mod 2 (2)
k = = 16 mod 17 (17)
none - proven 4 (558)
6 (1)
2 (1)
 
547 1658658 5, 41, 113, 137   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 6 mod 7 (7)
k = = 12 mod 13 (13)
5063 k's remaining at n=10K.

See k's at Sierpinski Base 547 remain.
599232 (9990)
17400 (9984)
1521282 (9982)
776332 (9982)
395032 (9964)
589024 (9958)
1378876 (9956)
377394 (9954)
217962 (9950)
910912 (9947)
 
548 16 3, 5, 17   k = = 546 mod 547 (547) none - proven 8 (5311)
6 (115)
13 (22)
10 (12)
3 (6)
7 (4)
4 (2)
15 (1)
14 (1)
12 (1)
 
549 34 5, 11   k = = 1 mod 2 (2)
k = = 136 mod 137 (137)
none - proven 30 (35)
22 (31)
6 (20)
2 (14)
16 (12)
4 (9)
20 (3)
10 (3)
26 (2)
12 (2)
 
550 115 19, 29   k = = 2 mod 3 (3)
k = = 60 mod 61 (61)
94 (600K) 75 (5841)
88 (134)
33 (90)
54 (48)
24 (45)
48 (25)
61 (21)
3 (16)
55 (11)
82 (9)
 
551 22 3, 23   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 10 mod 11 (11)
none - proven 16 (20)
20 (13)
18 (3)
12 (3)
8 (1)
6 (1)
2 (1)
 
552 78 7, 79   k = = 18 mod 19 (19)
k = = 28 mod 29 (29)
none - proven 26 (22956)
43 (8714)
36 (2004)
50 (1530)
19 (1010)
61 (649)
8 (508)
64 (158)
14 (63)
77 (43)
k = 1 is a GFn with no known prime.
553 1938 5, 53, 277   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 22 mod 23 (23)
94 (300K)
172 (300K)
688 (300K)
1602 (300K)
372 (73872)
1852 (52517)
984 (36330)
1498 (32100)
796 (20335)
1168 (11202)
1458 (8068)
1116 (7228)
1018 (5404)
282 (2749)
 
554 4 3, 5   k = = 6 mod 7 (7)
k = = 78 mod 79 (79)
none - proven 3 (1)
2 (1)
 
555 32388 139, 233, 661   k = = 1 mod 2 (2)
k = = 276 mod 277 (277)
132 k's remaining at n=100K.

See k's at Sierpinski Base 555 remain.
28192 (98858)
22728 (94729)
11080 (93907)
27078 (89948)
31840 (88590)
14986 (85883)
13166 (84038)
23502 (84036)
26318 (82983)
28558 (80460)
 
556 3353698 7, 13, 557, 3391   k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
k = = 36 mod 37 (37)
32274 k's remaining at n=2.5K. To be shown later. 1938673 (2500)
948756 (2500)
561532 (2500)
2268556 (2499)
2139952 (2499)
1602768 (2499)
1460175 (2499)
973497 (2499)
943011 (2499)
673357 (2499)
 
557 16 3, 5, 17   k = = 1 mod 2 (2)
k = = 138 mod 139 (139)
none - proven 12 (50)
2 (19)
10 (18)
14 (17)
4 (10)
8 (1)
6 (1)
 
558 259 13, 43   k = = 556 mod 557 (557) 8 (300K)
183 (300K)
198 (300K)
118 (261698)
224 (34435)
174 (28067)
249 (10239)
144 (7622)
62 (4949)
73 (4751)
142 (4297)
42 (3529)
51 (3441)
k = 1 is a GFn with no known prime.
559 6 5, 7   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 30 mod 31 (31)
none - proven 4 (1)  
560 10 3, 11   k = = 12 mod 13 (13)
k = = 42 mod 43 (43)
none - proven 4 (590)
2 (5)
9 (3)
7 (2)
3 (2)
8 (1)
6 (1)
5 (1)
 
561 6290186 37, 281, 4253   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 6 mod 7 (7)
7027 k's remaining at n=6.175K. To be shown later. 5213332 (6173)
4307280 (6173)
1221868 (6172)
3981406 (6171)
1360200 (6171)
4879002 (6169)
1741880 (6168)
5021802 (6166)
5421848 (6165)
4805718 (6165)
 
562 12 7, 13, 19   k = = 2 mod 3 (3)
k = = 10 mod 11 (11)
k = = 16 mod 17 (17)
none - proven 7 (7)
3 (6)
4 (2)
9 (1)
6 (1)
 
563 12 5, 7, 13, 19, 29   k = = 1 mod 2 (2)
k = = 280 mod 281 (281)
none - proven 4 (3958)
6 (303)
2 (81)
8 (7)
10 (6)
 
564 114 5, 113   k = = 562 mod 563 (563) 68 (500K)
79 (500K)
29 (326765)
106 (175330)
107 (42025)
109 (30771)
112 (8205)
73 (3297)
86 (3130)
83 (856)
44 (535)
47 (233)
k = 1 is a GFn with no known prime.
565 8472 7, 13, 37, 67, 229   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 46 mod 47 (47)
1146 (300K)
1942 (300K)
2416 (300K)
3684 (300K)
4192 (300K)
5376 (300K)
5872 (300K)
6462 (300K)
7132 (300K)
7266 (300K)
7570 (300K)
7642 (300K)
8040 (300K)
6510 (245490)
6844 (219383)
360 (108195)
2284 (99835)
1920 (68974)
7648 (58824)
8136 (55996)
616 (41311)
1914 (34320)
2256 (28984)
 
566 8 3, 7   k = = 4 mod 5 (5)
k = = 112 mod 113 (113)
none - proven 5 (35)
7 (10)
6 (3)
2 (3)
3 (1)
 
567 924 5, 13, 71   k = = 1 mod 2 (2)
k = = 282 mod 283 (283)
none - proven 212 (98259)
704 (88673)
902 (14194)
424 (13083)
506 (9217)
252 (8956)
876 (7297)
78 (4789)
804 (4382)
898 (4297)
 
568 23328 5, 29, 569   k = = 2 mod 3 (3)
k = = 6 mod 7 (7)
86 k's remaining at n=100K.

See k's at Sierpinski Base 568 remain.
8956 (96517)
3666 (85165)
13660 (82952)
12052 (80318)
10308 (79159)
16222 (78098)
16741 (77448)
2742 (77198)
4789 (77174)
9172 (76649)
 
569 4 3, 5   k = = 1 mod 2 (2)
k = = 70 mod 71 (71)
none - proven 2 (29)  
570 2972056 7, 13, 61, 271, 571   k = = 568 mod 569 (569) 56901 k's remaining at n=2.5K. To be shown later. 2917923 (2500)
2775562 (2500)
2733002 (2500)
2425552 (2500)
2385903 (2500)
2020675 (2500)
1826290 (2500)
1089073 (2500)
699849 (2500)
2676772 (2499)
k = 324900 is a GFn with no known prime.
571 12 11, 13   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
k = = 18 mod 19 (19)
none - proven 6 (7)
10 (1)
 
572 190 3, 191   k = = 570 mod 571 (571) 8 (300K)
19 (300K)
29 (300K)
32 (300K)
80 (300K)
109 (300K)
121 (300K)
166 (300K)
57 (235362)
92 (41699)
115 (38628)
152 (17923)
83 (16765)
31 (15576)
34 (12590)
124 (9526)
154 (5922)
172 (4068)
k = 1 is a GFn with no known prime.
573 204 7, 41   k = = 1 mod 2 (2)
k = = 10 mod 11 (11)
k = = 12 mod 13 (13)
106 (500K)
132 (500K)
202 (500K)
122 (4497)
172 (2556)
44 (929)
178 (631)
188 (359)
118 (359)
78 (324)
48 (99)
16 (72)
124 (62)
 
574 24 5, 23   k = = 2 mod 3 (3)
k = = 190 mod 191 (191)
16 (600K) 15 (110)
13 (6)
22 (3)
19 (3)
12 (3)
21 (2)
6 (2)
18 (1)
10 (1)
9 (1)
k = 1 is a GFn with no known prime.
575 136582 13, 73, 349   k = = 1 mod 2 (2)
k = = 6 mod 7 (7)
k = = 40 mod 41 (41)
1823 k's remaining at n=25K.

See k's at Sierpinski Base 575 remain.
7812 (24901)
32590 (24878)
100228 (24800)
78374 (24793)
31654 (24638)
129206 (24623)
134362 (24560)
14530 (24532)
133480 (24498)
115788 (24492)
 
576 30651 7, 13, 73, 79   k = = 4 mod 5 (5)
k = = 22 mod 23 (23)
151 k's remaining at n>=100K.

See k's and test limits at Sierpinski Base 576 remain.
3846 (191763)
23981 (180031)
3706 (176954)
21526 (164684)
29641 (115926)
27611 (109973)
29116 (108494)
23035 (99646)
5820 (94377)
10216 (91958)
 
577 664 5, 13, 17   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
132 (300K)
274 (300K)
288 (300K)
424 (300K)
426 (300K)
492 (300K)
84 (86565)
156 (26837)
106 (18716)
172 (18691)
120 (6988)
442 (4250)
616 (3504)
528 (3390)
30 (2974)
420 (2709)
 
578 68 3, 5, 7, 19, 37   k = = 576 mod 577 (577) 17 (300K)
31 (300K)
38 (300K)
64 (102614)
2 (44165)
61 (40892)
52 (39982)
8 (6143)
22 (5024)
20 (4177)
46 (1392)
47 (1089)
19 (950)
k = 1 is a GFn with no known prime.
579 86 5, 29   k = = 1 mod 2 (2)
k = = 16 mod 17 (17)
6 (600K) 4 (67775)
78 (528)
44 (229)
24 (163)
18 (146)
46 (130)
56 (94)
2 (74)
72 (22)
76 (16)
 
580 414 7, 83   k = = 2 mod 3 (3)
k = = 192 mod 193 (193)
none - proven 406 (22265)
183 (8364)
391 (2403)
73 (2360)
333 (1620)
294 (952)
108 (744)
78 (576)
384 (435)
118 (361)
k = 1 is a GFn with no known prime.
581 98 3, 97   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 28 mod 29 (29)
none - proven 82 (1494)
50 (533)
46 (120)
22 (54)
76 (48)
48 (37)
88 (30)
16 (24)
66 (12)
58 (8)
 
582 54 11, 53   k = = 6 mod 7 (7)
k = = 82 mod 83 (83)
32 (600K) 52 (1567)
12 (334)
4 (299)
38 (106)
21 (75)
53 (26)
11 (23)
9 (23)
16 (19)
37 (10)
 
583 2994 5, 41, 73   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 96 mod 97 (97)
706 (300K)
894 (300K)
1096 (300K)
1270 (300K)
1680 (300K)
1762 (300K)
1914 (300K)
2022 (300K)
2196 (300K)
2448 (300K)
2556 (300K)
2614 (300K)
306 (179215)
528 (156444)
808 (100572)
1552 (45288)
2908 (34608)
862 (30241)
2274 (26374)
1608 (22879)
2778 (17923)
244 (13018)
 
584 4 3, 5   k = = 10 mod 11 (11)
k = = 52 mod 53 (53)
none - proven 2 (111)
3 (1)
 
585 13929512 137, 293, 1249   k = = 1 mod 2 (2)
k = = 72 mod 73 (73)
134076 k's remaining at n=2.5K. To be shown later. 13597884 (2500)
13235148 (2500)
12815354 (2500)
12649318 (2500)
12491656 (2500)
11649066 (2500)
10853922 (2500)
10028178 (2500)
9818812 (2500)
9434536 (2500)
 
586 21262902 17, 37, 89, 587   k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
k = = 12 mod 13 (13)
196149 k's remaining at n=2.5K. To be shown later. 21212400 (2500)
21016413 (2500)
20948088 (2500)
20386258 (2500)
20214777 (2500)
18094411 (2500)
17768170 (2500)
17625852 (2500)
17616958 (2500)
17250678 (2500)
k = 586 and 343396 are GFn's with no known prime.
587 8 3, 7   k = = 1 mod 2 (2)
k = = 292 mod 293 (293)
none - proven 6 (24119)
2 (195)
4 (2)
 
588 94 19, 31   k = = 586 mod 587 (587) none - proven 90 (110728)
89 (10781)
25 (5789)
18 (911)
43 (858)
68 (210)
30 (179)
21 (123)
56 (77)
9 (77)
 
589 414 5, 59   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 6 mod 7 (7)
none - proven 186 (14952)
178 (3190)
108 (2617)
336 (1098)
226 (952)
354 (623)
94 (611)
136 (430)
172 (221)
198 (179)
 
590 196 3, 197   k = = 18 mod 19 (19)
k = = 30 mod 31 (31)
19 (300K)
26 (300K)
40 (300K)
64 (500K)
104 (300K)
118 (300K)
148 (300K)
157 (300K)
178 (300K)
179 (300K)
145 (201814)
194 (131743)
17 (36593)
122 (14391)
103 (9670)
95 (8541)
41 (7195)
32 (6077)
164 (5517)
187 (4224)
k = 1 is a GFn with no known prime.
591 16242 7, 37, 109, 181   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 58 mod 59 (59)
33 k's remaining at n=100K.

See k's at Sierpinski Base 591 remain.
7442 (99283)
6390 (81466)
5232 (80302)
9510 (74086)
2478 (72995)
15856 (66210)
14096 (55289)
3110 (49851)
13652 (49721)
9066 (42186)
 
592 23721 5, 29, 593   k = = 2 mod 3 (3)
k = = 196 mod 197 (197)
247 k's remaining at n=100K.

See k's at Sierpinski Base 592 remain.
15468 (99036)
19867 (98006)
9 (96869)
7926 (96699)
12612 (96552)
3981 (94029)
21867 (91348)
7759 (91341)
2589 (90109)
21097 (89911)
 
593 10 3, 11   k = = 1 mod 2 (2)
k = = 36 mod 37 (37)
4 (1M)
8 (500K)
6 (1)
2 (1)
 
594 6 5, 7   k = = 592 mod 593 (593) none - proven 2 (4)
5 (1)
4 (1)
3 (1)
 
595 301128 13, 31, 43, 149   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 10 mod 11 (11)
90 k's remaining at n=100K.

See k's at Sierpinski Base 595 remain.
284946 (98941)
250818 (93298)
26074 (89819)
157072 (87343)
168180 (87093)
151440 (85940)
250510 (74909)
114030 (71591)
130714 (70551)
59154 (69618)
 
596 200 3, 199   k = = 4 mod 5 (5)
k = = 6 mod 7 (7)
k = = 16 mod 17 (17)
136 (600K) 151 (278054)
8 (148445)
71 (124933)
121 (105308)
137 (20789)
96 (16348)
182 (4967)
145 (3970)
198 (1551)
170 (1463)
 
597 12 5, 13, 29   k = = 1 mod 2 (2)
k = = 148 mod 149 (149)
none - proven 8 (100)
10 (3)
2 (2)
6 (1)
4 (1)
 
598 18568 5, 37, 599   k = = 2 mod 3 (3)
k = = 198 mod 199 (199)
93 k's remaining at n=100K.

See k's at Sierpinski Base 598 remain.
17023 (99335)
1294 (99243)
17007 (94820)
10383 (93327)
4224 (91174)
18109 (89186)
14172 (86544)
10144 (80094)
17803 (78174)
11112 (77789)
 
599 4 3, 5   k = = 1 mod 2 (2)
k = = 12 mod 13 (13)
k = = 22 mod 23 (23)
none - proven 2 (13)  
600 1906972 7, 13, 19, 37, 601   k = = 598 mod 599 (599) 48948 k's remaining at n=2.5K. To be shown later. 12 (11241)
1528367 (2500)
1240660 (2500)
1695504 (2499)
1504520 (2499)
1418338 (2499)
1339113 (2499)
1302705 (2499)
814616 (2499)
782865 (2499)
 
601 216 7, 43   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
none - proven 18 (1322)
36 (844)
198 (761)
190 (428)
112 (319)
126 (196)
160 (141)
22 (68)
172 (61)
120 (34)
 
602 68 3, 67   k = = 600 mod 601 (601) 16 (300K)
34 (300K)
43 (300K)
49 (300K)
64 (130078)
27 (29560)
61 (20236)
32 (19527)
65 (3137)
4 (1330)
23 (817)
62 (695)
25 (316)
47 (135)
k = 1 is a GFn with no known prime.
603 1964 5, 13, 151   k = = 1 mod 2 (2)
k = = 6 mod 7 (7)
k = = 42 mod 43 (43)
122 (300K)
1072 (300K)
1358 (300K)
1962 (300K)
1286 (245567)
1396 (61512)
584 (54929)
1608 (42670)
688 (18222)
1256 (15880)
854 (14842)
1708 (13552)
556 (13309)
876 (12696)
 
604 21 5, 11   k = = 2 mod 3 (3)
k = = 66 mod 67 (67)
none - proven 12 (17370)
16 (124)
19 (49)
15 (19)
6 (4)
18 (3)
10 (3)
3 (2)
13 (1)
9 (1)
k = 1 is a GFn with no known prime.
605 100 3, 101   k = = 1 mod 2 (2)
k = = 150 mod 151 (151)
70 (600K) 10 (12394)
46 (2068)
40 (86)
30 (34)
48 (29)
8 (23)
78 (16)
66 (13)
32 (13)
96 (12)
 
606 50380 13, 41, 607   k = = 4 mod 5 (5)
k = = 10 mod 11 (11)
171 k's remaining at n=100K.

See k's at Sierpinski Base 606 remain.
45270 (97009)
47606 (96848)
39616 (95665)
44435 (94348)
4486 (92383)
48081 (89201)
46126 (88567)
35901 (85655)
16106 (85285)
47428 (84564)
k = 606 is a GFn with no known prime.
607 420034 5, 19, 7369   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 100 mod 101 (101)
5572 k's remaining at n=10K.

See k's at Sierpinski Base 607 remain.
338082 (9999)
255714 (9990)
48240 (9977)
108216 (9967)
386538 (9965)
317584 (9965)
370102 (9960)
75702 (9947)
218386 (9943)
41422 (9942)
 
608 8 3, 7   k = = 606 mod 607 (607) none - proven 4 (20706)
6 (9)
7 (2)
3 (2)
5 (1)
2 (1)
k = 1 is a GFn with no known prime.
609 184 5, 61   k = = 1 mod 2 (2)
k = = 18 mod 19 (19)
none - proven 124 (5887)
50 (1599)
182 (421)
24 (351)
142 (118)
52 (102)
96 (78)
98 (58)
156 (56)
172 (51)
 
610 142 13, 47   k = = 2 mod 3 (3)
k = = 6 mod 7 (7)
k = = 28 mod 29 (29)
none - proven 96 (396)
18 (163)
33 (57)
123 (54)
21 (51)
9 (39)
105 (38)
117 (34)
51 (25)
25 (23)
 
611 16 3, 17   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 60 mod 61 (61)
none - proven 6 (5)
10 (2)
12 (1)
8 (1)
2 (1)
 
612 162446 5, 173, 613   k = = 12 mod 13 (13)
k = = 46 mod 47 (47)
2152 k's remaining at n=10K.

See k's at Sierpinski Base 612 remain.
30623 (9993)
131654 (9985)
108256 (9984)
18930 (9983)
104536 (9963)
149362 (9930)
90156 (9917)
142203 (9894)
126422 (9887)
119099 (9866)
k = 612 is a GFn with no known prime.
613 1536 5, 53, 307   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 16 mod 17 (17)
328 (300K)
1294 (300K)
1438 (300K)
1504 (300K)
502 (143534)
778 (110107)
306 (75741)
916 (29363)
1006 (27959)
678 (22927)
1230 (21908)
1368 (21624)
286 (18805)
1258 (10539)
 
614 4 3, 5   k = = 612 mod 613 (613) none - proven 3 (18)
2 (1)
 
615 34 7, 11   k = = 1 mod 2 (2)
k = = 306 mod 307 (307)
none - proven 12 (976)
22 (120)
4 (13)
8 (8)
14 (5)
28 (3)
24 (2)
16 (2)
32 (1)
30 (1)
 
616 53061 13, 17, 617   k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
k = = 40 mod 41 (41)
50 k's remaining at n=100K.

See k's at Sierpinski Base 616 remain.
10323 (98019)
18747 (93948)
25765 (85583)
29695 (80413)
23778 (78240)
36262 (72284)
26196 (71883)
4212 (70740)
4948 (64121)
51633 (62524)
 
617 514 3, 103   k = = 1 mod 2 (2)
k = = 6 mod 7 (7)
k = = 10 mod 11 (11)
44 (300K)
124 (300K)
136 (300K)
158 (300K)
242 (300K)
484 (300K)
488 (300K)
424 (150210)
414 (46246)
70 (33760)
458 (24761)
122 (13631)
116 (9839)
420 (7744)
392 (3699)
248 (2757)
310 (2500)
 
618 3995 7, 37, 211   k = = 616 mod 617 (617) 49 k's remaining at n=200K.

See k's at Sierpinski Base 618 remain.
3161 (199877)
1223 (193431)
111 (187244)
2369 (180975)
1649 (161163)
68 (146688)
2441 (144343)
2558 (142259)
1248 (142002)
3863 (140056)
k = 618 is a GFn with no known prime.
619 94 5, 31   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 102 mod 103 (103)
none - proven 46 (5214)
84 (1837)
24 (537)
72 (59)
60 (58)
58 (15)
64 (13)
6 (8)
78 (6)
10 (6)
 
620 22 3, 23   k = = 618 mod 619 (619) 12 (300K)
13 (300K)
10 (138)
17 (91)
16 (54)
11 (53)
5 (41)
4 (18)
2 (13)
19 (12)
7 (6)
8 (5)
k = 1 is a GFn with no known prime.
621 19592 29, 61, 311   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 30 mod 31 (31)
36 k's remaining at n=100K.

See k's at Sierpinski Base 621 remain.
12168 (95200)
11602 (93867)
11380 (93327)
9482 (93215)
14066 (86829)
6442 (72626)
4010 (64906)
11508 (56084)
970 (54232)
1392 (49966)
 
622 90 7, 89   k = = 2 mod 3 (3)
k = = 22 mod 23 (23)
none - proven 43 (57946)
46 (4115)
88 (577)
33 (274)
27 (155)
9 (126)
61 (69)
76 (59)
48 (49)
49 (42)
k = 1 is a GFn with no known prime.
623 14 3, 13   k = = 1 mod 2 (2)
k = = 310 mod 311 (311)
none - proven 8 (467)
2 (5)
10 (2)
4 (2)
12 (1)
6 (1)
 
624 712899 5, 41, 9497   k = = 6 mod 7 (7)
k = = 88 mod 89 (89)
23326 k's remaining at n=2.5K. To be shown later. 515336 (2500)
294081 (2500)
218389 (2499)
117574 (2499)
580706 (2498)
507131 (2498)
227291 (2498)
140061 (2498)
17491 (2498)
700624 (2497)
 
625 17428 7, 31, 601 All k=4*q^4 for all n:
   let k=4*q^4
   and let m=q*5^n; factors to:
     (2*m^2 + 2m + 1) *
     (2*m^2 - 2m + 1)
k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 12 mod 13 (13)
6 (300K)
222 (175K)
2362 (300K)
5634 (300K)
6436 (1.075M)
7306 (300K)
7528 (1.075M)
9616 (300K)
10218 (300K)
10794 (300K)
10918 (1.075M)
11326 (300K)
11434 (300K)
11632 (300K)
12460 (300K)
12864 (175K)
13422 (300K)
13548 (175K)
14332 (300K)
15006 (300K)
15588 (175K)
15760 (300K)
16894 (300K)
9574 (292308)
17370 (222563)
15340 (209640)
15046 (150779)
8532 (131194)
11682 (98866)
7348 (95080)
10384 (86321)
426 (78769)
7752 (73983)
k = 4, 1024, 2500, 5184, 9604, and 16384 proven composite by full algebraic factors.

Some k's are being worked on by PrimeGrid's Sierpinski/Riesel Base 5 project.
626 10 3, 11   k = = 4 mod 5 (5) none - proven 2 (174203)
5 (2069)
6 (5)
7 (2)
8 (1)
3 (1)
k = 1 is a GFn with no known prime.
627 12354 7, 13, 4327   k = = 1 mod 2 (2)
k = = 312 mod 313 (313)
84 k's remaining at n=100K.

See k's at Sierpinski Base 627 remain.
1018 (84057)
12234 (77165)
8798 (76240)
3974 (74907)
4892 (68828)
6836 (67552)
2784 (64199)
2476 (62040)
7776 (60277)
11068 (59982)
 
628 1072 17, 37   k = = 2 mod 3 (3)
k = = 10 mod 11 (11)
k = = 18 mod 19 (19)
16 (300K)
295 (300K)
334 (300K)
426 (300K)
579 (300K)
889 (300K)
984 (300K)
460 (182346)
730 (55623)
798 (40367)
69 (17578)
864 (14999)
367 (13536)
1021 (13316)
387 (12638)
178 (9547)
883 (9419)
 
629 4 3, 5   k = = 1 mod 2 (2)
k = = 156 mod 157 (157)
none - proven 2 (1)  
631 8243256 79, 307, 331, 433   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
k = = 6 mod 7 (7)
28048 k's remaining at n=2.5K. To be shown later. 7808386 (2500)
6974332 (2500)
6917836 (2500)
6104806 (2500)
4372386 (2500)
4358068 (2500)
7562466 (2499)
7309552 (2499)
6909546 (2499)
3938032 (2499)
 
632 8 3, 5, 13   k = = 630 mod 631 (631) none - proven 7 (8446)
5 (321)
3 (57)
4 (14)
2 (3)
6 (1)
k = 1 is a GFn with no known prime.
633 6022 5, 17, 317   k = = 1 mod 2 (2)
k = = 78 mod 79 (79)
58 k's remaining at n=100K.

See k's at Sierpinski Base 633 remain.
1374 (87542)
1798 (80284)
5802 (77188)
5028 (75128)
1378 (73772)
3098 (61636)
5280 (55260)
3548 (54160)
1824 (53353)
1996 (48227)
 
634 126 5, 127   k = = 2 mod 3 (3)
k = = 210 mod 211 (211)
75 (300K)
106 (300K)
27 (185354)
69 (92329)
121 (14936)
118 (5479)
103 (4631)
61 (2346)
66 (432)
31 (282)
9 (189)
96 (98)
 
635 52 3, 53   k = = 1 mod 2 (2)
k = = 316 mod 317 (317)
none - proven 28 (34556)
32 (17309)
4 (11722)
2 (2535)
26 (969)
14 (911)
46 (120)
48 (63)
6 (58)
40 (28)
 
636 27 7, 13   k = = 4 mod 5 (5)
k = = 126 mod 127 (127)
none - proven 15 (9850)
3 (141)
7 (11)
21 (8)
8 (8)
18 (5)
26 (4)
12 (3)
6 (3)
22 (2)
 
637 144 11, 29   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 52 mod 53 (53)
none - proven 88 (350)
64 (77)
22 (56)
70 (53)
34 (42)
132 (27)
100 (12)
142 (11)
54 (11)
138 (8)
 
638 70 3, 71   k = = 6 mod 7 (7)
k = = 12 mod 13 (13)
32 (600K) 52 (31966)
68 (11135)
58 (2582)
50 (1713)
23 (1439)
22 (536)
7 (264)
8 (163)
16 (92)
36 (52)
k = 1 is a GFn with no known prime.
639 1664 5, 7, 19, 37   k = = 1 mod 2 (2)
k = = 10 mod 11 (11)
k = = 28 mod 29 (29)
146 (300K)
334 (300K)
514 (300K)
586 (300K)
796 (300K)
1566 (300K)
1646 (300K)
1006 (291952)
1174 (123735)
1426 (70836)
696 (51672)
474 (49543)
316 (47778)
124 (46587)
1102 (42119)
1336 (36734)
1526 (19748)
 
640 11925 7, 13, 37, 67   k = = 2 mod 3 (3)
k = = 70 mod 71 (71)
39 k's remaining at n=100K.

See k's at Sierpinski Base 640 remain.
7513 (97535)
11463 (91507)
11353 (86613)
11920 (83947)
3946 (79149)
595 (71001)
3264 (62967)
1167 (59827)
11886 (50825)
4339 (50427)
k = 640 is a GFn with no known prime.
641 106 3, 107   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
none - proven 8 (87701)
46 (35514)
12 (26421)
82 (7080)
92 (1895)
48 (152)
80 (61)
28 (34)
40 (30)
62 (25)
 
642 10932 13, 17, 643   k = = 640 mod 641 (641) 206 k's remaining at n=100K.

See k's at Sierpinski Base 642 remain.
2322 (99918)
6007 (99271)
3421 (98676)
612 (98131)
1481 (94923)
558 (93970)
5294 (92998)
9179 (91417)
6926 (89793)
1546 (89441)
 
643 22 7, 23   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 106 mod 107 (107)
none - proven 6 (164915)
10 (42)
4 (5)
18 (3)
16 (1)
12 (1)
 
644 4 3, 5   k = = 642 mod 643 (643) none - proven 3 (1)
2 (1)
 
645 18 17, 19   k = = 1 mod 2 (2)
k = = 6 mod 7 (7)
k = = 22 mod 23 (23)
none - proven 14 (847)
8 (2)
4 (2)
16 (1)
12 (1)
10 (1)
2 (1)
 
646 52701 7, 13, 1531   k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
k = = 42 mod 43 (43)
133 k's remaining at n=100K.

See k's at Sierpinski Base 646 remain.
28558 (99075)
22963 (98906)
28552 (98539)
12247 (98155)
35598 (93747)
44446 (91199)
33955 (91099)
47883 (90333)
16800 (84501)
13485 (82533)
 
647 124 3, 5, 41   k = = 1 mod 2 (2)
k = = 16 mod 17 (17)
k = = 18 mod 19 (19)
2 (300K)
74 (300K)
100 (300K)
76 (130372)
58 (22212)
116 (7425)
98 (1857)
106 (1376)
34 (334)
122 (331)
38 (253)
86 (239)
62 (207)
 
648 296 11, 59   k = = 646 mod 647 (647) 56 (300K)
89 (300K)
117 (300K)
166 (300K)
199 (300K)
218 (300K)
144 (102694)
61 (54359)
34 (43670)
76 (13439)
236 (13176)
111 (10616)
234 (8359)
133 (7170)
188 (6502)
269 (4369)
k = 1 is a GFn with no known prime.
649 144 5, 13   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
64 (600K) 66 (10970)
120 (295)
16 (60)
72 (51)
40 (22)
78 (14)
124 (11)
130 (10)
114 (9)
136 (6)
 
650 8 3, 7   k = = 10 mod 11 (11)
k = = 58 mod 59 (59)
none - proven 4 (96222)
6 (5)
7 (4)
5 (1)
3 (1)
2 (1)
k = 1 is a GFn with no known prime.
651 4541342 163, 313, 677   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 12 mod 13 (13)
13808 k's remaining at n=2.5K. To be shown later. 2882280 (2500)
2745672 (2500)
2626912 (2500)
1779056 (2500)
1489772 (2500)
1890016 (2499)
4044372 (2498)
3782168 (2498)
3477280 (2498)
1720408 (2498)
 
652 2491849 5, 13, 37, 43, 653   k = = 2 mod 3 (3)
k = = 6 mod 7 (7)
k = = 30 mod 31 (31)
39920 k's remaining at n=2.5K. To be shown later. 2125356 (2500)
2098866 (2500)
1931706 (2500)
1700917 (2500)
1631025 (2500)
593622 (2500)
2302137 (2499)
2075179 (2499)
1269957 (2499)
1228497 (2499)
k = 652 and 425104 are GFn's with no known prime.
653 110 3, 109   k = = 1 mod 2 (2)
k = = 162 mod 163 (163)
56 (300K)
68 (300K)
94 (300K)
108 (300K)
44 (105477)
50 (22537)
76 (16576)
106 (11128)
10 (9786)
22 (7710)
98 (5243)
46 (2808)
64 (2434)
38 (311)
 
654 261 5, 131   k = = 652 mod 653 (653) 29 (300K)
101 (300K)
144 (300K)
251 (300K)
219 (103409)
248 (81515)
198 (9929)
79 (9533)
106 (9196)
55 (7946)
39 (6541)
178 (3990)
185 (2292)
196 (2236)
 
655 6930 13, 29, 41   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 108 mod 109 (109)
32 k's remaining at n=100K.

See k's at Sierpinski Base 655 remain.
3874 (98812)
6310 (93460)
4552 (87094)
888 (70525)
1438 (55746)
5550 (41357)
2476 (36566)
6804 (36200)
3688 (33061)
4006 (32470)
 
656 145 3, 73   k = = 4 mod 5 (5)
k = = 130 mod 131 (131)
13 (300K)
26 (300K)
37 (300K)
52 (300K)
80 (300K)
85 (300K)
47 (117409)
73 (38942)
72 (31813)
125 (24631)
137 (12785)
71 (5531)
68 (2745)
28 (922)
123 (347)
22 (272)
 
657 48 7, 47   k = = 1 mod 2 (2)
k = = 40 mod 41 (41)
none - proven 8 (2368)
32 (1688)
20 (25)
42 (16)
36 (12)
26 (8)
22 (4)
34 (3)
12 (3)
30 (2)
 
658 20428 5, 13, 659   k = = 2 mod 3 (3)
k = = 72 mod 73 (73)
112 k's remaining at n=100K.

See k's at Sierpinski Base 658 remain.
13378 (95431)
1867 (89254)
7333 (86331)
13881 (85408)
14907 (84596)
19848 (82983)
4893 (82682)
12946 (75223)
20071 (72957)
12889 (69213)
k = 658 is a GFn with no known prime.
659 4 3, 5   k = = 1 mod 2 (2)
k = = 6 mod 7 (7)
k = = 46 mod 47 (47)
none - proven 2 (1)  
660 74031 37, 193, 661   k = = 658 mod 659 (659) 564 k's remaining at n=25K.

See k's at Sierpinski Base 660 remain.
1881 (24994)
40143 (24939)
69788 (24781)
66777 (24766)
1986 (24651)
26281 (24413)
40316 (24410)
17694 (24238)
7588 (24228)
44399 (24171)
k = 660 is a GFn with no known prime.
662 14 3, 31   k = = 660 mod 661 (661) none - proven 5 (13389)
6 (2839)
2 (183)
10 (154)
12 (83)
9 (6)
13 (2)
7 (2)
4 (2)
11 (1)
k = 1 is a GFn with no known prime.
663 10042 5, 83, 113   k = = 1 mod 2 (2)
k = = 330 mod 331 (331)
44 k's remaining at n=100K.

See k's at Sierpinski Base 663 remain.
2724 (99737)
7466 (98501)
2738 (96607)
7552 (96289)
4542 (88084)
6112 (77784)
2320 (77203)
7144 (70989)
7494 (66258)
3196 (64185)
 
664 6 5, 7   k = = 2 mod 3 (3)
k = = 12 mod 13 (13)
k = = 16 mod 17 (17)
none - proven 4 (1)
3 (1)
 
665 38 3, 37   k = = 1 mod 2 (2)
k = = 82 mod 83 (83)
none - proven 36 (5749)
4 (1334)
20 (61)
2 (45)
32 (33)
22 (28)
28 (6)
10 (6)
8 (5)
34 (4)
 
666 231 23, 29   k = = 4 mod 5 (5)
k = = 6 mod 7 (7)
k = = 18 mod 19 (9)
none - proven 115 (2003)
88 (1612)
182 (1253)
30 (156)
106 (87)
183 (71)
42 (67)
173 (45)
95 (44)
156 (30)
k = 1 is a GFn with no known prime.
667 26218 5, 17, 167   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 36 mod 37 (37)
117 k's remaining at n=100K.

See k's at Sierpinski Base 667 remain.
26026 (96907)
15486 (94695)
25776 (93668)
10680 (91855)
20082 (90103)
13068 (90029)
12358 (90014)
22900 (89541)
24156 (86761)
6660 (86088)
 
668 8 3, 5, 13   k = = 22 mod 23 (23)
k = = 28 mod 29 (29)
none - proven 5 (379)
2 (245)
4 (62)
6 (23)
7 (8)
3 (6)
k = 1 is a GFn with no known prime.
669 66 5, 67   k = = 1 mod 2 (2)
k = = 166 mod 167 (167)
none - proven 34 (6089)
6 (5450)
64 (4175)
36 (250)
40 (92)
48 (53)
54 (47)
14 (7)
2 (7)
60 (5)
 
670 243 11, 61   k = = 2 mod 3 (3)
k = = 222 mod 223 (223)
none - proven 153 (2367)
201 (523)
120 (367)
109 (347)
151 (196)
174 (166)
100 (124)
46 (110)
130 (107)
169 (100)
k = 1 is a GFn with no known prime.
671 8 3, 7   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 66 mod 67 (67)
none - proven 2 (11)
6 (1)
 
672 3366 5, 37, 673   k = = 10 mod 11 (11)
k = = 60 mod 61 (61)
36 (300K)
168 (300K)
829 (300K)
1076 (300K)
1141 (300K)
1273 (300K)
1453 (300K)
1804 (300K)
2263 (300K)
2279 (300K)
2458 (300K)
2818 (300K)
3267 (300K)
3364 (300K)
2018 (127129)
1018 (92322)
1747 (90016)
242 (86503)
1213 (72193)
922 (71884)
2729 (50950)
3314 (49574)
778 (48464)
2909 (47495)
k = 672 is a GFn with no known prime.
673 687142 5, 13, 19, 97, 337   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 6 mod 7 (7)
3328 k's remaining at n=10K.

See k's at Sierpinski Base 673 remain.
630348 (9987)
462414 (9987)
39532 (9981)
211534 (9966)
120466 (9964)
234586 (9955)
337438 (9946)
91672 (9938)
660076 (9932)
479992 (9924)
 
674 4 3, 5   k = = 672 mod 673 (673) none - proven 2 (5)
3 (3)
 
675 293812 7, 13, 103, 181   k = = 1 mod 2 (2)
k = = 336 mod 337 (337)
3017 k's remaining at n=10K.

See k's at Sierpinski Base 675 remain.
96100 (9992)
248676 (9991)
151906 (9976)
264738 (9961)
94808 (9959)
161474 (9954)
27156 (9939)
217112 (9937)
142076 (9907)
42964 (9901)
 
676 825 7, 19, 37   k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
none - proven 607 (544517)
120 (48949)
640 (33255)
715 (19347)
307 (18917)
633 (7368)
138 (5757)
217 (5727)
255 (4693)
373 (3443)
k = 676 is a GFn with no known prime.
677 112 3, 113   k = = 1 mod 2 (2)
k = = 12 mod 13 (13)
none - proven 34 (82642)
56 (9471)
32 (5567)
30 (1744)
52 (1140)
106 (200)
58 (134)
10 (114)
92 (103)
18 (69)
 
678 195 7, 97   k = = 676 mod 677 (677) 106 (600K) 132 (78513)
171 (60397)
122 (45968)
188 (25679)
29 (10818)
99 (7866)
97 (4161)
153 (1435)
120 (1266)
55 (899)
k = 1 is a GFn with no known prime.
679 16 5, 17   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 112 mod 113 (113)
none - proven 4 (69449)
12 (10)
6 (4)
10 (1)
 
680 226 3, 227   k = = 6 mod 7 (7)
k = = 96 mod 97 (97)
43 (300K)
53 (300K)
127 (300K)
131 (300K)
199 (300K)
194 (59611)
173 (54713)
64 (10750)
47 (2217)
137 (2193)
40 (1796)
57 (1687)
154 (1672)
110 (1125)
176 (331)
 
681 32 11, 31   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 16 mod 17 (17)
none - proven 2 (328)
12 (22)
20 (11)
10 (9)
18 (2)
6 (2)
30 (1)
28 (1)
26 (1)
22 (1)
 
682 6831 5, 61, 683   k = = 2 mod 3 (3)
k = = 226 mod 227 (227)
43 k's remaining at n=100K.

See k's at Sierpinski Base 682 remain.
3649 (99570)
684 (97590)
2626 (84828)
6462 (81943)
477 (77584)
5407 (74947)
279 (52707)
6772 (51635)
2286 (40815)
5202 (40250)
 
683 20 3, 19   k = = 1 mod 2 (2)
k = = 10 mod 11 (11)
k = = 30 mod 31 (31)
none - proven 18 (141239)
8 (91)
16 (84)
14 (25)
12 (5)
4 (2)
6 (1)
2 (1)
 
684 86 5, 17, 29   k = = 682 mod 683 (683) 34 (300K)
41 (300K)
8 (23386)
75 (12102)
29 (3911)
31 (836)
39 (489)
19 (459)
14 (291)
54 (195)
26 (126)
49 (107)
k = 1 is a GFn with no known prime.
685 637524 7, 13, 61, 7681   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 18 mod 19 (19)
4576 k's remaining at n=10K.

See k's at Sierpinski Base 685 remain.
98554 (9996)
7966 (9989)
300112 (9978)
585276 (9977)
180270 (9967)
144366 (9965)
206158 (9958)
396138 (9954)
590160 (9947)
148182 (9939)
 
686 230 3, 229   k = = 4 mod 5 (5)
k = = 136 mod 137 (137)
116 (600K) 130 (115776)
211 (97950)
151 (13722)
32 (8867)
193 (3822)
178 (2694)
196 (1952)
218 (1141)
110 (1091)
208 (1068)
 
687 7956 5, 43, 109   k = = 1 mod 2 (2)
k = = 6 mod 7 (7)
32 k's remaining at n=100K.

See k's at Sierpinski Base 687 remain.
5502 (99392)
4600 (97735)
6892 (95391)
1678 (93460)
382 (73924)
4334 (59737)
1052 (58291)
2326 (56447)
274 (50407)
964 (46541)
 
688 105 13, 53   k = = 2 mod 3 (3)
k = = 228 mod 229 (229)
54 (500K)
103 (500K)
67 (423893)
12 (2433)
25 (1999)
64 (1949)
40 (754)
24 (405)
96 (232)
88 (158)
19 (106)
90 (95)
 
689 4 3, 5   k = = 1 mod 2 (2)
k = = 42 mod 43 (43)
none - proven 2 (3)  
691 9449088 7, 13, 19, 173, 193   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
k = = 22 mod 23 (23)
62047 k's remaining at n=2.5K. To be shown later. 8320818 (2500)
8164752 (2500)
7892688 (2500)
5870850 (2500)
5678356 (2500)
2270098 (2500)
1913356 (2500)
1426396 (2500)
1297902 (2500)
8691706 (2499)
 
692 8 3, 7   k = = 690 mod 691 (691) none - proven 4 (270)
2 (67)
7 (4)
3 (2)
6 (1)
5 (1)
k = 1 is a GFn with no known prime.
693 6592 5, 17, 347   k = = 1 mod 2 (2)
k = = 172 mod 173 (173)
324 (300K)
2122 (300K)
2276 (300K)
3124 (300K)
4184 (300K)
4736 (300K)
4746 (300K)
5558 (300K)
5976 (300K)
6252 (300K)
6316 (300K)
6354 (300K)
5844 (213666)
4892 (206286)
5468 (188110)
4752 (93845)
1736 (75020)
6276 (70087)
4458 (69850)
3694 (61366)
1278 (60431)
3872 (59580)
 
694 1111 5, 139   k = = 2 mod 3 (3)
k = = 6 mod 7 (7)
k = = 10 mod 11 (11)
511 (300K)
651 (300K)
655 (300K)
696 (300K)
831 (300K)
1026 (300K)
411 (119838)
1009 (116285)
1039 (77087)
759 (62631)
634 (57297)
829 (45889)
781 (42356)
885 (37580)
969 (13333)
994 (10669)
k = 1 and 694 are GFn's with no known prime.
695 28 3, 29   k = = 1 mod 2 (2)
k = = 346 mod 347 (347)
none - proven 2 (94625)
8 (39625)
26 (1771)
10 (192)
14 (105)
12 (27)
4 (6)
22 (4)
24 (2)
16 (2)
 
696 288 17, 41   k = = 4 mod 5 (5)
k = = 138 mod 139 (139)
none - proven 135 (35285)
205 (24902)
120 (13046)
206 (8620)
18 (6544)
215 (518)
136 (393)
178 (297)
158 (200)
2 (189)
 
697 14308 5, 13, 349   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 28 mod 29 (29)
58 k's remaining at n=100K.

See k's at Sierpinski Base 697 remain.
9924 (96581)
3132 (85543)
1042 (82910)
10282 (77855)
14194 (69618)
2728 (66701)
1788 (63922)
9136 (58401)
12696 (58259)
11268 (57036)
 
698 232 3, 233   k = = 16 mod 17 (17)
k = = 40 mod 41 (41)
8 (300K)
23 (300K)
34 (300K)
91 (300K)
124 (300K)
140 (300K)
143 (300K)
158 (300K)
205 (122244)
106 (109564)
95 (89463)
172 (83404)
151 (67920)
222 (26145)
76 (15212)
61 (13348)
136 (5472)
77 (4241)
k = 1 is a GFn with no known prime.
699 6 5, 7   k = = 1 mod 2 (2)
k = = 348 mod 349 (349)
none - proven 4 (1)
2 (1)
 
701 92 3, 13   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 6 mod 7 (7)
none - proven 52 (163776)
12 (969)
38 (671)
68 (669)
58 (548)
8 (379)
22 (150)
28 (54)
86 (31)
66 (24)
 
702 75 19, 37   k = = 700 mod 701 (701) 39 (600K) 47 (1422)
6 (1228)
62 (1087)
61 (408)
72 (388)
54 (307)
7 (87)
57 (72)
32 (68)
37 (63)
 
703 538 5, 11, 73   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 12 mod 13 (13)
354 (300K)
474 (300K)
340 (280035)
430 (46194)
276 (27272)
406 (12501)
456 (2720)
222 (1049)
270 (903)
526 (844)
364 (550)
240 (413)
 
704 4 3, 5   k = = 18 mod 19 (19)
k = = 36 mod 37 (37)
none - proven 3 (1)
2 (1)
 
705 10159692 7, 13, 181, 229, 353   k = = 1 mod 2 (2)
k = = 10 mod 11 (11)
93375 k's remaining at n=2.5K. To be shown later. 9914126 (2500)
9467782 (2500)
9290642 (2500)
7589360 (2500)
7209792 (2500)
6814274 (2500)
6409010 (2500)
6395984 (2500)
5190078 (2500)
4968898 (2500)
 
706 405 7, 101   k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
k = = 46 mod 47 (47)
none - proven 288 (169692)
118 (14617)
33 (6199)
30 (2839)
316 (2020)
258 (1785)
246 (1396)
318 (618)
57 (378)
162 (318)
k=1 is a GFn with no known prime.
707 58 3, 59   k = = 1 mod 2 (2)
k = = 352 mod 353 (353)
40 (600K) 26 (45893)
28 (1776)
38 (953)
44 (259)
46 (152)
16 (84)
18 (82)
32 (51)
2 (51)
52 (38)
 
708 28361 5, 29, 709   k = = 6 mod 7 (7)
k = = 100 mod 101 (101)
190 k's remaining at n=100K.

See k's at Sierpinski Base 708 remain.
2598 (99964)
7094 (99897)
3073 (97462)
20153 (96115)
26222 (95989)
11376 (92188)
2651 (88828)
2118 (87687)
11341 (87060)
651 (86923)
k=708 is a GFn with no known prime.
709 214 5, 71   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 58 mod 59 (59)
none - proven 66 (1296)
6 (722)
96 (696)
36 (330)
88 (324)
108 (297)
132 (284)
186 (168)
106 (148)
24 (105)
 
710 80 3, 79   k = = 708 mod 709 (709) 8 (300K)
47 (300K)
52 (300K)
16 (240014)
10 (31038)
11 (15271)
53 (10189)
50 (2563)
73 (1324)
40 (404)
19 (314)
44 (297)
25 (274)
 
711 49572 7, 19, 37, 61, 89   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 70 mod 71 (71)
201 k's remaining at n=100K.

See k's at Sierpinski Base 711 remain.
36620 (95122)
34622 (91188)
406 (90422)
31538 (87936)
28526 (87810)
45952 (87411)
9558 (86136)
34572 (82384)
28640 (81880)
34270 (81668)
 
712 528 23, 31   k = = 2 mod 3 (3)
k = = 78 mod 79 (79)
22 (300K)
94 (300K)
123 (300K)
211 (300K)
237 (300K)
346 (300K)
367 (300K)
369 (300K)
493 (300K)
30 (215913)
300 (168722)
298 (138773)
246 (97696)
433 (84457)
114 (38517)
231 (18852)
337 (11051)
24 (9894)
61 (6675)
k=1 is a GFn with no known prime.
713 8 3, 7   k = = 1 mod 2 (2)
k = = 88 mod 89 (89)
none - proven 4 (26)
6 (9)
2 (1)
 
714 12 11, 13   k = = 22 mod 23 (23)
k = = 30 mod 31 (31)
none - proven 10 (7839)
11 (156)
8 (13)
6 (4)
9 (1)
7 (1)
5 (1)
4 (1)
3 (1)
2 (1)
 
715 21508102 19, 97, 179, 277   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 6 mod 7 (7)
k = = 16 mod 17 (17)
33368 k's remaining at n=2.5K. To be shown later. 21372754 (2500)
12614992 (2500)
12137800 (2500)
10366818 (2500)
3498534 (2500)
2540814 (2500)
2425378 (2500)
1043310 (2500)
17288950 (2499)
14573926 (2499)
 
716 238 3, 239   k = = 4 mod 5 (5)
k = = 10 mod 11 (11)
k = = 12 mod 13 (13)
106 (300K)
121 (300K)
166 (300K)
167 (71209)
83 (31267)
173 (25905)
80 (10035)
137 (7465)
17 (4637)
171 (2043)
157 (1886)
73 (1592)
35 (1533)
 
717 179678 5, 7, 13, 101, 109, 509   k = = 1 mod 2 (2)
k = = 178 mod 179 (179)
2703 k's remaining at n=10K.

See k's at Sierpinski Base 717 remain.
35374 (9987)
146646 (9969)
56262 (9963)
54424 (9907)
28414 (9899)
10418 (9896)
134396 (9883)
93192 (9868)
148510 (9866)
109620 (9860)
 
718 243 7, 31, 61   k = = 2 mod 3 (3)
k = = 238 mod 239 (239)
3 (300K)
69 (300K)
108 (300K)
153 (300K)
222 (300K)
18 (4204)
75 (2688)
49 (1942)
54 (1538)
96 (1067)
232 (901)
201 (407)
139 (349)
183 (318)
127 (304)
 
719 4 3, 5   k = = 1 mod 2 (2)
k = = 358 mod 359 (359)
none - proven 2 (1)  
720 104 7, 103   k = = 718 mod 719 (719) 13 (500K) 90 (99529)
57 (26004)
22 (17920)
50 (13740)
83 (5331)
55 (1443)
97 (589)
18 (140)
86 (66)
29 (54)
k = 1 is a GFn with no known prime.
721 3446248 19, 61, 4261   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
18229 k's remaining at n=2.5K. To be shown later. 2866740 (2500)
830596 (2499)
140922 (2499)
2831856 (2498)
2574930 (2498)
3028008 (2497)
2871222 (2497)
2552590 (2497)
23122 (2497)
1358596 (2496)
 
722 8 3, 5, 13, 73, 109   k = = 6 mod 7 (7)
k = = 102 mod 103 (103)
none - proven 4 (626)
5 (187)
3 (20)
2 (3)
7 (2)
k = 1 is a GFn with no known prime.
723 2354 5, 13, 181   k = = 1 mod 2 (2)
k = = 18 mod 19 (19)
14 (100K)
278 (100K)
544 (100K)
564 (100K)
712 (100K)
1028 (100K)
1058 (100K)
1308 (100K)
1312 (100K)
1392 (100K)
1396 (100K)
1412 (100K)
1704 (100K)
1888 (100K)
1902 (100K)
1906 (100K)
2076 (100K)
2124 (100K)
2134 (100K)
2296 (100K)
2352 (100K)
1668 (99198)
1360 (57754)
728 (47090)
216 (45595)
1242 (38682)
1444 (34911)
1078 (21382)
1378 (18935)
460 (18472)
1268 (18092)
 
724 204 5, 29   k = = 2 mod 3 (3)
k = = 240 mod 241 (241)
9 (500K) 30 (28548)
175 (15958)
66 (9484)
99 (3293)
124 (2151)
142 (1787)
93 (1164)
85 (1046)
129 (733)
169 (563)
k = 1 is a GFn with no known prime.
725 10 3, 11   k = = 1 mod 2 (2)
k = = 180 mod 181 (181)
none - proven 6 (10)
4 (6)
8 (1)
2 (1)
 
726 10923176 7, 13, 37, 601, 727   k = = 4 mod 5 (5)
k = = 28 mod 29 (29)
119761 k's remaining at n=2.5K. To be shown later. 10856606 (2500)
10757772 (2500)
10537982 (2500)
9959756 (2500)
9951008 (2500)
9881050 (2500)
9445688 (2500)
9152842 (2500)
8351656 (2500)
6894196 (2500)
 
727 64 7, 13   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 10 mod 11 (11)
none - proven 12 (1907)
36 (344)
30 (91)
22 (42)
42 (15)
60 (7)
58 (4)
52 (4)
46 (4)
18 (4)
 
728 953974 3, 5, 105997   k = = 726 mod 727 (727) 115651 k's remaining at n=2.5K. To be shown later. 8 (7399)
933400 (2500)
867271 (2500)
605236 (2500)
449512 (2500)
362611 (2500)
274753 (2500)
172561 (2500)
154251 (2500)
53917 (2500)
 
729 74 5, 73 All k = m^3 for all n; factors to:
(m*9^n + 1) *
(m^2*81^n - m*9^n + 1)
k = = 1 mod 2 (2)
k = = 6 mod 7 (7)
k = = 12 mod 13 (13)
none - proven 18 (53)
56 (28)
42 (24)
52 (16)
66 (6)
32 (6)
68 (4)
60 (3)
40 (3)
28 (3)
k = 8 proven composite by full algebraic factors.
730 171 17, 43   k = = 2 mod 3 (3) 84 (400K) 85 (211537)
154 (178174)
132 (11966)
169 (7217)
129 (3143)
157 (1355)
27 (1069)
160 (881)
64 (599)
66 (480)
 
731 62 3, 61   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 72 mod 73 (73)
none - proven 28 (138318)
10 (1102)
30 (72)
26 (37)
2 (35)
58 (10)
40 (8)
32 (7)
56 (5)
52 (4)
 
732 81364 5, 7, 13, 37, 733   k = = 16 mod 17 (17)
k = = 42 mod 43 (43)
1358 k's remaining at n=25K.

See k's at Sierpinski Base 732 remain.
38488 (24989)
71119 (24970)
51829 (24935)
66239 (24923)
39199 (24923)
66706 (24903)
78257 (24899)
8111 (24785)
18323 (24642)
11257 (24610)
 
733 14314 5, 13, 367   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 60 mod 61 (61)
77 k's remaining at n=100K.

See k's at Sierpinski Base 733 remain.
7798 (98299)
10594 (96159)
4726 (92461)
5130 (91705)
5262 (80182)
12378 (79770)
6882 (78788)
4966 (73632)
3666 (71429)
13374 (69561)
 
734 4 3, 5   k = = 732 mod 733 (733) none - proven 2 (3)
3 (1)
k = 1 is a GFn with no known prime.
735 174778 17, 23, 15889   k = = 1 mod 2 (2)
k = = 366 mod 367 (367)
721 k's remaining at n=25K.

See k's at Sierpinski Base 735 remain.
129978 (24952)
12996 (24778)
22670 (24773)
76016 (24682)
39674 (24425)
156146 (24033)
63180 (23999)
70792 (23739)
146730 (23051)
42324 (22964)
 
736 133 11, 67   k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
k = = 6 mod 7 (7)
12 (400K) 78 (96)
21 (87)
100 (60)
88 (31)
130 (26)
127 (26)
67 (24)
85 (11)
10 (11)
102 (9)
 
737 40 3, 41   k = = 1 mod 2 (2)
k = = 22 mod 23 (23)
none - proven 4 (269302)
38 (93785)
16 (7132)
14 (13)
32 (11)
24 (11)
28 (10)
12 (7)
36 (5)
2 (3)
 
738 12767 7, 13, 31, 73   k = = 10 mod 11 (11)
k = = 66 mod 67 (67)
129 k's remaining at n=100K.

See k's at Sierpinski Base 738 remain.
6806 (99875)
9416 (98317)
1389 (95939)
566 (86439)
9128 (82444)
2789 (79685)
10623 (78151)
9864 (77730)
6578 (74539)
4941 (73084)
 
739 36 5, 37   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 40 mod 41 (41)
none - proven 18 (110)
16 (54)
6 (38)
10 (3)
22 (2)
12 (2)
34 (1)
30 (1)
28 (1)
24 (1)
 
740 14 3, 13   k = = 738 mod 739 (739) 13 (1M) 4 (58042)
11 (33519)
8 (83)
10 (12)
12 (5)
7 (2)
9 (1)
6 (1)
5 (1)
3 (1)
 
741 160 7, 53   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 36 mod 37 (37)
none - proven 148 (3464)
50 (164)
76 (113)
108 (101)
142 (94)
30 (65)
112 (53)
38 (34)
78 (28)
120 (22)
 
742 30462 5, 29, 743   k = = 2 mod 3 (3)
k = = 12 mod 13 (13)
k = = 18 mod 19 (19)
52 k's remaining at n=100K.

See k's at Sierpinski Base 742 remain.
4087 (98932)
15039 (95518)
21933 (95188)
8172 (87879)
7288 (74313)
18646 (70827)
26112 (70794)
28894 (69426)
19267 (67803)
29092 (66075)
 
743 32 3, 31   k = = 1 mod 2 (2)
k = = 6 mod 7 (7)
k = = 52 mod 53 (53)
none - proven 10 (285478)
14 (10449)
4 (246)
8 (71)
24 (42)
22 (12)
18 (6)
16 (4)
28 (2)
12 (2)
 
744 299 5, 149   k = = 742 mod 743 (743) 21 (300K)
83 (300K)
89 (300K)
101 (300K)
103 (300K)
186 (300K)
199 (300K)
201 (300K)
269 (300K)
271 (300K)
289 (300K)
290 (300K)
10 (137055)
86 (97852)
251 (55652)
256 (51360)
206 (48288)
261 (25338)
41 (15982)
96 (11484)
73 (6818)
171 (6416)
k = 1 is a GFn with no known prime.
745 334816 7, 13, 61, 3037   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 30 mod 31 (31)
784 k's remaining at n=25K.

See k's at Sierpinski Base 745 remain.
39172 (24998)
318678 (24990)
33270 (24934)
278586 (24859)
272406 (24852)
67498 (24591)
296670 (24522)
118614 (24466)
149298 (24426)
27012 (24418)
 
746 82 3, 83   k = = 4 mod 5 (5)
k = = 148 mod 149 (149)
8 (300K)
61 (300K)
67 (300K)
80 (300K)
47 (47853)
41 (34969)
77 (21213)
68 (5261)
40 (4256)
66 (744)
70 (260)
53 (149)
31 (40)
6 (38)
k = 1 is a GFn with no known prime.
747 32 5, 11, 41   k = = 1 mod 2 (2)
k = = 372 mod 373 (373)
none - proven 22 (3560)
12 (118)
10 (13)
18 (4)
2 (4)
30 (2)
28 (2)
20 (2)
8 (2)
4 (2)
 
748 106 7, 107   k = = 2 mod 3 (3)
k = = 82 mod 83 (83)
none - proven 90 (116015)
27 (88373)
13 (32635)
36 (24344)
61 (6293)
21 (1273)
63 (224)
78 (116)
18 (103)
4 (43)
 
749 4 3, 5   k = = 1 mod 2 (2)
k = = 10 mod 11 (11)
k = = 16 mod 17 (17)
none - proven 2 (1)  
750 210779 13, 37, 1171   k = = 6 mod 7 (7)
k = = 106 mod 107 (107)
1073 k's remaining at n=25K.

See k's at Sierpinski Base 750 remain.
162939 (24821)
144385 (24681)
154394 (24635)
164033 (24631)
89880 (24619)
51389 (24469)
92453 (24438)
123751 (24357)
24132 (24340)
10794 (24261)
 
751 41032 7, 13, 37, 47   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
119 k's remaining at n=100K.

See k's at Sierpinski Base 751 remain.
516 (89247)
1738 (84911)
17566 (84272)
25198 (76728)
9376 (74640)
35460 (69972)
27970 (67501)
15250 (66683)
6426 (65475)
37080 (61373)
 
752 16 3, 5, 17   k = = 750 mod 751 (751) none - proven 2 (26163)
15 (1128)
10 (168)
8 (49)
13 (16)
3 (12)
7 (6)
9 (5)
12 (2)
4 (2)
k = 1 is a GFn with no known prime.
753 144 13, 29   k = = 1 mod 2 (2)
k = = 46 mod 47 (47)
12 (300K)
96 (300K)
142 (92369)
66 (11920)
86 (9913)
106 (9225)
68 (1832)
38 (1315)
26 (585)
134 (517)
40 (444)
82 (354)
 
754 301 5, 151   k = = 2 mod 3 (3)
k = = 250 mod 251 (251)
99 (300K)
159 (300K)
199 (300K)
214 (32727)
241 (15618)
46 (11428)
192 (4778)
66 (3462)
48 (1618)
276 (1548)
198 (1544)
186 (1538)
144 (1469)
k = 1 is a GFn with no known prime.
755 8 3, 7   k = = 1 mod 2 (2)
k = = 12 mod 13 (13)
k = = 28 mod 29 (29)
none - proven 4 (2118)
6 (329)
2 (1)
 
757 47376 5, 73, 379   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 6 mod 7 (7)
120 k's remaining at n=100K.

See k's at Sierpinski Base 757 remain.
28396 (98249)
1746 (95576)
38458 (92681)
19986 (90393)
5392 (89982)
46984 (88593)
6850 (88381)
31782 (86946)
30874 (84046)
38542 (79975)
 
758 10 3, 11   k = = 756 mod 757 (757) 8 (500K) 2 (8309)
4 (42)
5 (39)
3 (11)
7 (2)
9 (1)
6 (1)
 
759 56 5, 19   k = = 1 mod 2 (2)
k = = 378 mod 379 (379)
none - proven 44 (1895)
6 (1564)
26 (710)
16 (290)
34 (37)
18 (31)
46 (20)
20 (14)
52 (10)
40 (5)
 
761 128 3, 127   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 18 mod 19 (19)
16 (300K)
32 (300K)
92 (300K)
118 (243458)
38 (4773)
22 (3452)
82 (2178)
40 (1912)
72 (368)
50 (239)
116 (41)
122 (21)
20 (21)
 
762 246 5, 7, 13   k = = 760 mod 761 (761) 27 (300K)
34 (300K)
57 (300K)
216 (300K)
222 (300K)
203 (178410)
141 (149740)
202 (66399)
48 (24261)
96 (23173)
6 (11151)
195 (10393)
132 (8631)
99 (7710)
235 (6351)
k = 1 is a GFn with no known prime.
763 151462 5, 17, 191, 193   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 126 mod 127 (127)
814 k's remaining at n=25K.

See k's at Sierpinski Base 763 remain.
146364 (24821)
73194 (24759)
84186 (24741)
91746 (24676)
139266 (24605)
39402 (24589)
16042 (24482)
50320 (24366)
135294 (24329)
120546 (24308)
 
764 4 3, 5   k = = 6 mod 7 (7)
k = = 108 mod 109 (109)
none - proven 2 (1189)
3 (1)
 
765 2699768 53, 383, 5521   k = = 1 mod 2 (2)
k = = 190 mod 191 (191)
32349 k's remaining at n=2.5K. To be shown later. 2608338 (2500)
2119122 (2500)
1975398 (2499)
1817630 (2499)
1410748 (2499)
1040870 (2499)
844058 (2499)
2639024 (2498)
2567690 (2498)
2329274 (2498)
 
766 235 13, 59   k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
k = = 16 mod 17 (17)
58 (300K)
222 (300K)
103 (5067)
51 (1569)
73 (289)
178 (276)
46 (204)
183 (152)
142 (129)
180 (122)
198 (80)
70 (68)
k = 1 is a GFn with no known prime.
767 80 3, 7, 43, 79   k = = 1 mod 2 (2)
k = = 382 mod 383 (383)
4 (555K)
16 (555K)
52 (555K)
46 (134564)
62 (62239)
68 (18869)
36 (388)
64 (370)
8 (341)
20 (187)
32 (139)
76 (56)
74 (37)
 
768 55367 7, 19, 103, 769   k = = 12 mod 13 (13)
k = = 58 mod 59 (59)
685 k's remaining at n=40K.

See k's at Sierpinski Base 768 remain.
32159 (39814)
10974 (39639)
34388 (39492)
47639 (39318)
29339 (39310)
8656 (38996)
34154 (38806)
38214 (38783)
27069 (38498)
32852 (38168)
 
769 6 5, 7   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
none - proven 4 (3)  
770 256 3, 257   k = = 768 mod 769 (769) 8 (300K)
11 (300K)
191 (81307)
182 (45297)
205 (36892)
140 (14355)
242 (13313)
188 (5781)
149 (5453)
56 (4763)
209 (4121)
83 (2307)
k = 1 is a GFn with no known prime.
771 264218 29, 37, 193   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 6 mod 7 (7)
k = = 10 mod 11 (11)
202 k's remaining at n=100K.

See k's at Sierpinski Base 771 remain.
28756 (98207)
198368 (97819)
196908 (93458)
223680 (93345)
51648 (89405)
228316 (89219)
57158 (88869)
199162 (88443)
6772 (88363)
199588 (87662)
 
772 23191 5, 13, 773   k = = 2 mod 3 (3)
k = = 256 mod 257 (257)
342 k's remaining at n=100K.

See k's at Sierpinski Base 772 remain.
16329 (98295)
8691 (98219)
17406 (97339)
13482 (96596)
4609 (96410)
19521 (95436)
13842 (94560)
13801 (94069)
7080 (93654)
6546 (93637)
 
773 44 3, 43   k = = 1 mod 2 (2)
k = = 192 mod 193 (193)
2 (350K)
8 (350K)
10 (350K)
16 (350K)
32 (350K)
34 (70958)
36 (2119)
28 (230)
14 (199)
18 (98)
38 (27)
40 (8)
30 (6)
22 (4)
26 (3)
 
774 61 5, 31   k = = 772 mod 773 (773) 6 (300K)
19 (300K)
24 (6333)
52 (3025)
30 (1399)
47 (269)
38 (207)
48 (67)
16 (60)
23 (57)
46 (56)
54 (39)
 
775 862620 13, 97, 1777   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 42 mod 43 (43)
3752 k's remaining at n=10K.

See k's at Sierpinski Base 775 remain.
737650 (9998)
753936 (9996)
226816 (9993)
272634 (9987)
747022 (9986)
513852 (9984)
542676 (9974)
300840 (9971)
430390 (9970)
126160 (9968)
 
776 8 3, 7   k = = 4 mod 5 (5)
k = = 30 mod 31 (31)
none - proven 3 (10)
7 (6)
6 (1)
5 (1)
2 (1)
 
777 24088826 5, 389, 60373   k = = 1 mod 2 (2)
k = = 96 mod 97 (97)
394350 k's remaining at n=2.5K. To be shown later. 23971582 (2500)
23927032 (2500)
23919436 (2500)
23487206 (2500)
23225942 (2500)
22892566 (2500)
22592082 (2500)
22585806 (2500)
22367112 (2500)
22237722 (2500)
 
778 208 5, 17, 19   k = = 2 mod 3 (3)
k = = 6 mod 7 (7)
k = = 36 mod 37 (37)
163 (400K) 18 (19927)
121 (1067)
87 (1029)
159 (594)
151 (587)
138 (526)
103 (428)
133 (407)
75 (329)
180 (298)
 
779 4 3, 5   k = = 1 mod 2 (2)
k = = 388 mod 389 (389)
none - proven 2 (1)  
780 243 7, 11, 31, 61   k = = 18 mod 18 (19)
k = = 40 mod 41 (41)
none - proven 43 (205685)
230 (11159)
57 (4525)
241 (2251)
234 (1168)
133 (828)
192 (774)
14 (597)
135 (558)
142 (501)
 
781 528 17, 23   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
k = = 12 mod 13 (13)
370 (500K) 346 (4210)
70 (2662)
418 (872)
516 (191)
438 (32)
118 (31)
58 (23)
72 (22)
46 (20)
502 (18)
 
782 28 3, 29   k = = 11 mod 12 (12)
k = = 70 mod 71 (71)
none - proven 19 (594)
22 (150)
11 (93)
16 (72)
2 (55)
17 (15)
7 (12)
27 (7)
12 (4)
24 (3)
 
783 36 5, 7, 37   k = = 1 mod 2 (2)
k = = 16 mod 17 (17)
k = = 22 mod 23 (23)
none - proven 8 (274)
6 (231)
18 (46)
28 (18)
34 (7)
30 (6)
10 (3)
14 (2)
4 (2)
32 (1)
 
784 156 5, 157   k = = 2 mod 3 (3)
k = = 28 mod 29 (29)
151 (400K) 139 (23965)
105 (14268)
46 (2876)
69 (1421)
31 (748)
34 (279)
81 (104)
49 (89)
21 (84)
141 (56)
 
785 130 3, 131   k = = 1 mod 2 (2)
k = = 6 mod 7 (7)
none - proven 8 (900325)
112 (84676)
124 (2996)
82 (2184)
128 (1137)
116 (621)
14 (549)
88 (334)
96 (95)
74 (95)
 
786 210082 7, 19, 4651   k = = 4 mod 5 (5)
k = = 156 mod 157 (157)
3604 k's remaining at n=10K.

See k's at Sierpinski Base 786 remain.
10 (68168)
102358 (9997)
20842 (9995)
109186 (9994)
53645 (9993)
28627 (9973)
161075 (9958)
23260 (9952)
122321 (9938)
94411 (9937)
 
787 7684 5, 7, 13, 19, 197   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 130 mod 131 (131)
37 k's remaining at n=100K.

See k's at Sierpinski Base 787 remain.
5068 (78569)
6060 (66435)
6082 (65782)
4792 (65520)
7108 (63609)
7348 (51146)
3526 (47181)
198 (46620)
5976 (43548)
718 (42422)
 
788 40 3, 13, 41   k = = 786 mod 787 (787) 14 (300K)
16 (300K)
38 (300K)
2 (72917)
8 (11407)
31 (1588)
32 (389)
30 (304)
33 (183)
21 (92)
36 (89)
10 (78)
37 (60)
 
789 236 5, 79   k = = 1 mod 2 (2)
k = = 196 mod 197 (197)
96 (500K) 4 (149139)
148 (136439)
80 (101124)
6 (27296)
174 (9317)
146 (6520)
12 (1261)
24 (623)
166 (570)
142 (332)
 
790 225 7, 113   k = = 2 mod 3 (3)
k = = 262 mod 263 (263)
127 (300K)
160 (300K)
94 (209857)
64 (4646)
48 (2909)
139 (909)
85 (430)
189 (400)
27 (379)
178 (297)
223 (219)
145 (156)
 
791 10 3, 11   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 78 mod 79 (79)
none - proven 6 (2)
8 (1)
2 (1)
 
792 365 13, 61   k = = 6 mod 7 (7)
k = = 112 mod 113 (113)
12 (300K)
77 (300K)
142 (300K)
233 (300K)
182 (134655)
339 (60434)
243 (38377)
71 (9185)
144 (6742)
121 (5347)
262 (2679)
207 (2407)
53 (1900)
299 (390)
k = 1 is a GFn with no known prime.
793 4492848 5, 41, 73, 397   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 10 mod 11 (11)
47035 k's remaining at n=2.5K. To be shown later. 4281780 (2500)
4058368 (2500)
3311566 (2500)
2680486 (2500)
1527846 (2500)
258930 (2500)
39052 (2500)
4434148 (2499)
3649240 (2499)
3452568 (2499)
 
794 4 3, 5   k = = 12 mod 13 (13)
k = = 60 mod 61 (61)
none - proven 2 (3)
3 (1)
k = 1 is a GFn with no known prime.
795 6566 17, 29, 199   k = = 1 mod 2 (2)
k = = 396 mod 397 (397)
32 k's remaining at n=100K.

See k's at Sierpinski Base 795 remain.
6368 (92406)
4280 (82678)
3384 (80868)
1616 (58496)
2636 (38215)
6492 (29734)
374 (27489)
474 (24443)
3132 (23481)
3230 (22732)
 
797 8 3, 7   k = = 1 mod 2 (2)
k = = 198 mod 199 (199)
none - proven 4 (468702)
2 (35)
6 (1)
 
798 187 5, 13, 47   k = = 796 mod 797 (797) 33 (400K) 107 (2889)
25 (2762)
28 (1255)
73 (1238)
81 (860)
31 (744)
125 (604)
57 (530)
171 (460)
113 (456)
 
800 88 3, 89   k = = 16 mod 17 (17)
k = = 46 mod 47 (47)
61 (500K)
82 (500K)
26 (162819)
10 (15104)
24 (2444)
65 (1253)
47 (727)
40 (568)
31 (450)
71 (389)
19 (312)
25 (308)
 
802 129 7, 13, 337   k = = 2 mod 3 (3)
k = = 88 mod 89 (89)
none - proven 10 (149319)
120 (7279)
61 (7104)
82 (6087)
115 (3373)
97 (928)
27 (427)
66 (228)
123 (186)
124 (173)
k = 1 is a GFn with no known prime.
803 16 3, 5, 17   k = = 1 mod 2 (2)
k = = 400 mod 401 (401)
4 (500K) 8 (1243)
12 (13)
6 (9)
10 (6)
14 (1)
2 (1)
 
804 6 5, 7   k = = 10 mod 11 (11)
k = = 72 mod 73 (73)
none - proven 3 (4)
5 (1)
4 (1)
2 (1)
 
805 714 13, 31   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 66 mod 67 (67)
none - proven 588 (153593)
340 (125637)
430 (25396)
412 (2837)
100 (2538)
636 (2107)
216 (1117)
456 (446)
654 (363)
378 (262)
 
806 268 3, 269   k = = 4 mod 5 (5)
k = = 6 mod 7 (7)
k = = 22 mod 23 (23)
140 (400K) 122 (173475)
163 (155542)
121 (19766)
38 (19391)
142 (18496)
217 (10920)
227 (2447)
145 (1244)
100 (616)
247 (518)
k = 1 is a GFn with no known prime.
807 53428 5, 101, 521   k = = 1 mod 2 (2)
k = = 12 mod 13 (13)
k = = 30 mod 31 (31)
508 k's remaining at n=25K.

See k's at Sierpinski Base 807 remain.
16554 (24661)
14794 (24537)
21174 (24478)
28972 (24443)
7244 (24322)
9068 (24069)
36926 (24012)
23096 (23952)
5946 (23856)
5582 (23660)
 
808 24271 5, 37, 809   k = = 2 mod 3 (3)
k = = 268 mod 269 (269)
267 k's remaining at n=100K.

See k's at Sierpinski Base 808 remain.
16414 (98133)
6942 (97388)
20317 (94902)
17344 (94047)
7468 (93391)
6898 (91763)
8461 (91520)
15126 (90980)
1141 (90087)
23095 (88418)
 
809 4 3, 5   k = = 1 mod 2 (2)
k = = 100 mod 101 (101)
none - proven 2 (1)  
810 30008 7, 13, 43, 811   k = = 808 mod 809 (809) 165 k's remaining at n=100K.

See k's at Sierpinski Base 810 remain.
17065 (89480)
21425 (87145)
4628 (86573)
14509 (85813)
1850 (84355)
25296 (83962)
29800 (82374)
8341 (81382)
20341 (81140)
22008 (79430)
 
811 552 7, 29   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
252 (300K)
450 (300K)
538 (300K)
510 (124135)
358 (32640)
378 (6792)
196 (1427)
258 (1309)
456 (620)
88 (514)
42 (428)
216 (425)
202 (369)
 
812 16 3, 5, 17   k = = 810 mod 811 (811) none - proven 8 (3461)
2 (1003)
15 (31)
4 (26)
6 (19)
10 (18)
12 (6)
5 (5)
13 (2)
7 (2)
k = 1 is a GFn with no known prime.
813 186 11, 37   k = = 1 mod 2 (2)
k = = 6 mod 7 (7)
k = = 28 mod 29 (29)
none - proven 142 (2477)
166 (872)
78 (484)
126 (436)
108 (415)
80 (232)
46 (199)
18 (127)
138 (104)
64 (97)
 
814 651 5, 163   k = = 2 mod 3 (3)
k = = 270 mod 271 (271)
261 (300K)
276 (300K)
294 (300K)
391 (300K)
456 (300K)
559 (300K)
612 (300K)
196 (263256)
162 (233173)
94 (140039)
376 (129690)
229 (48271)
496 (26446)
586 (25024)
615 (10999)
300 (10987)
394 (9405)
k = 1 is a GFn with no known prime.
815 16 3, 17   k = = 1 mod 2 (2)
k = = 10 mod 11 (11)
k = = 36 mod 37 (37)
none - proven 2 (119)
4 (10)
6 (2)
14 (1)
12 (1)
8 (1)
 
816 343 19, 43   k = = 4 mod 5 (5)
k = = 162 mod 163 (163)
153 (400K) 246 (24975)
85 (3255)
292 (3033)
216 (2836)
40 (2582)
322 (1635)
96 (944)
23 (766)
187 (605)
160 (587)
 
817 2063406 5, 41, 409, 1009   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 16 mod 17 (17)
24181 k's remaining at n=2.5K. To be shown later. 1021686 (2500)
753258 (2500)
1376274 (2499)
657856 (2499)
50070 (2499)
1016674 (2498)
973242 (2498)
483072 (2498)
411132 (2498)
191694 (2498)
 
818 8 3, 7   k = = 18 mod 19 (19)
k = = 42 mod 43 (43)
none - proven 4 (7726)
7 (22)
3 (12)
6 (1)
5 (1)
2 (1)
k = 1 is a GFn with no known prime.
819 124 5, 41   k = = 1 mod 2 (2)
k = = 408 mod 409 (409)
none - proven 40 (6493)
94 (2165)
76 (1268)
84 (501)
36 (96)
92 (58)
18 (49)
122 (43)
42 (40)
26 (40)
 
820 30378 17, 37, 821   k = = 2 mod 3 (3)
k = = 6 mod 7 (7)
k = = 12 mod 13 (13)
339 (100K)
1453 (100K)
2665 (100K)
5292 (100K)
5623 (100K)
6955 (100K)
7054 (100K)
9397 (100K)
12355 (100K)
12475 (100K)
16723 (100K)
17665 (100K)
17889 (100K)
21283 (100K)
22696 (100K)
25062 (100K)
25314 (100K)
25827 (100K)
26380 (100K)
27120 (100K)
29113 (100K)
14038 (95797)
13318 (84759)
21058 (83174)
24901 (80512)
4462 (70305)
20637 (69366)
3204 (64442)
16069 (64070)
24636 (58914)
10507 (46471)
k = 820 is a GFn with no known prime.
821 136 3, 137   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 40 mod 41 (41)
80 (500K) 82 (139686)
110 (16855)
106 (14542)
98 (3309)
56 (1819)
6 (1360)
2 (945)
132 (544)
62 (437)
88 (268)
 
822 278173 5, 337, 823   k = = 820 mod 821 (821) 16021 k's remaining at n=2.5K. To be shown later. 62576 (2500)
250745 (2499)
228272 (2499)
189024 (2499)
227114 (2498)
221625 (2498)
47558 (2498)
129218 (2497)
39779 (2497)
203011 (2496)
k = 822 is a GFn with no known prime.
823 9166 7, 13, 43, 103   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 136 mod 137 (137)
69 k's remaining at n=100K.

See k's at Sierpinski Base 823 remain.
3138 (91588)
8484 (87406)
8452 (86872)
3520 (73141)
2418 (68362)
3246 (66116)
6738 (65119)
1668 (58267)
8362 (51378)
8808 (49240)
 
824 4 3, 5   k = = 822 mod 823 (823) none - proven 2 (7)
3 (1)
 
825 176 7, 59   k = = 1 mod 2 (2)
k = = 102 mod 103 (103)
58 (300K)
64 (300K)
120 (238890)
20 (6961)
148 (3716)
132 (3151)
60 (1690)
146 (117)
118 (53)
152 (36)
140 (32)
36 (26)
 
827 8 3, 5, 13   k = = 1 mod 2 (2)
k = = 6 mod 7 (7)
k = = 58 mod 59 (59)
none - proven 2 (367)
4 (2)
 
828 12 7, 13, 19   k = = 826 mod 827 (827) 8 (500K) 5 (6)
10 (3)
9 (3)
7 (2)
3 (2)
11 (1)
6 (1)
4 (1)
2 (1)
 
829 84 5, 83   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 22 mod 23 (23)
none - proven 66 (388)
76 (128)
16 (70)
52 (63)
24 (31)
46 (26)
54 (11)
34 (9)
4 (9)
64 (7)
 
830 278 3, 277   k = = 828 mod 829 (829) 30 (300K)
37 (300K)
47 (300K)
55 (300K)
89 (300K)
94 (300K)
103 (300K)
139 (300K)
145 (300K)
160 (300K)
173 (300K)
208 (300K)
257 (300K)
43 (65316)
86 (64645)
64 (41986)
61 (36578)
180 (35747)
155 (23123)
250 (18080)
227 (15501)
187 (9774)
20 (9763)
 
831 1030522 13, 449, 769   k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
k = = 82 mod 83 (83)
15039 k's remaining at n=2.5K. To be shown later. 677952 (2499)
197382 (2498)
173330 (2498)
77616 (2498)
27582 (2498)
811316 (2497)
497988 (2497)
961760 (2496)
980616 (2494)
928292 (2494)
 
832 69 7, 17   k = = 2 mod 3 (3)
k = = 276 mod 277 (277)
36 (500K)
67 (500K)
39 (15125)
13 (349)
30 (190)
52 (152)
10 (132)
37 (71)
21 (67)
57 (64)
64 (50)
66 (20)
 
833 140 3, 139   k = = 1 mod 2 (2)
k = = 12 mod 13 (13)
32 (300K)
106 (300K)
8 (5735)
22 (670)
4 (650)
46 (396)
82 (70)
124 (58)
128 (55)
72 (50)
30 (41)
94 (26)
 
834 166 5, 167   k = = 6 mod 7 (7)
k = = 16 mod 17 (17)
89 (400K) 151 (8828)
114 (2661)
126 (1580)
156 (318)
73 (297)
39 (173)
54 (163)
31 (126)
32 (57)
26 (56)
 
835 474 11, 19   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 138 mod 139 (139)
94 (300K)
276 (300K)
244 (16024)
298 (6418)
12 (5632)
390 (3087)
438 (2058)
178 (1688)
96 (1122)
316 (1088)
406 (933)
150 (882)
 
836 32 3, 31   k = = 4 mod 5 (5)
k = = 166 mod 167 (167)
2 (400K) 7 (5700)
16 (4292)
30 (251)
5 (43)
22 (34)
10 (24)
18 (16)
23 (15)
12 (15)
28 (8)
k = 1 is a GFn with no known prime.
837 1032 7, 97, 1033   k = = 1 mod 2 (2)
k = = 10 mod 11 (11)
k = = 18 mod 19 (19)
334 (300K)
402 (300K)
696 (300K)
872 (300K)
404 (163205)
908 (106337)
234 (96217)
38 (53782)
948 (42490)
482 (33683)
486 (31555)
22 (26331)
356 (18827)
96 (13919)
 
838 1447276 5, 7, 13, 97, 839   k = = 2 mod 3 (3)
k = = 30 mod 31 (31)
46353 k's remaining at n=2.5K. To be shown later. 1321471 (2500)
1241347 (2500)
1065847 (2500)
1001161 (2500)
947871 (2500)
579231 (2500)
222795 (2500)
47238 (2500)
33751 (2500)
1299499 (2499)
k = 838 and 702244 are GFn's with no known prime.
839 4 3, 5   k = = 1 mod 2 (2)
k = = 418 mod 419 (419)
none - proven 2 (5)  
840 9076 37, 61, 313   k = = 838 mod 839 (839) 54 k's remaining at n=100K.

See k's at Sierpinski Base 840 remain.
412 (94384)
7019 (85806)
2517 (82807)
8295 (80068)
217 (73775)
7773 (73438)
5772 (70860)
1451 (51944)
3220 (50514)
5182 (49799)
k = 1 and 840 are GFn's with no known prime.
841 22312 13, 37, 61, 421   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
k = = 6 mod 7 (7)
1278 (300K)
6900 (300K)
8722 (300K)
10518 (300K)
12310 (300K)
13840 (300K)
14362 (300K)
16788 (300K)
17262 (300K)
18022 (300K)
19140 (300K)
19786 (300K)
15690 (266965)
1590 (172731)
18400 (152616)
4008 (131505)
6322 (127936)
9292 (117699)
700 (107773)
16950 (101338)
10956 (96215)
9822 (75757)
 
842 68 3, 7, 31, 67   k = = 28 mod 29 (29) 13 (400K)
19 (400K)
31 (400K)
17 (104679)
61 (100660)
23 (36037)
64 (17030)
47 (6387)
53 (2537)
2 (1919)
65 (1545)
10 (354)
12 (223)
k = 1 is a GFn with no known prime.
843 28486 5, 61, 211   k = = 1 mod 2 (2)
k = = 420 mod 421 (421)
250 k's remaining at n=100K.

See k's at Sierpinski Base 843 remain.
2744 (99026)
3694 (98009)
19622 (96553)
21550 (96128)
3844 (95467)
8942 (93246)
5776 (92681)
17298 (92120)
15898 (92096)
5174 (91111)
 
844 51 5, 13   k = = 2 mod 3 (3)
k = = 280 mod 281 (281)
none - proven 40 (246524)
9 (9687)
31 (378)
45 (304)
27 (58)
36 (28)
10 (27)
6 (14)
4 (13)
19 (11)
k = 1 is a GFn with no known prime.
845 46 3, 47   k = = 1 mod 2 (2)
k = = 210 mod 211 (211)
none - proven 34 (78106)
40 (2952)
4 (1646)
2 (877)
6 (325)
36 (41)
16 (28)
32 (17)
24 (15)
26 (11)
 
846 43 7, 11   k = = 4 mod 5 (5)
k = = 12 mod 13 (13)
none - proven 27 (3371)
15 (408)
11 (88)
21 (13)
18 (13)
22 (8)
23 (6)
17 (5)
37 (3)
13 (3)
 
847 150678 5, 41, 53, 401   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 46 mod 47 (47)
557 k's remaining at n=25K.

See k's at Sierpinski Base 847 remain.
32004 (24895)
138384 (24890)
34588 (24786)
55588 (24778)
14262 (24731)
57846 (24708)
18324 (24682)
128418 (24565)
63594 (24549)
12862 (24383)
 
848 284 3, 283   k = = 6 mod 7 (7)
k = = 10 mod 11 (11)
4 (1M)
17 (300K)
46 (300K)
106 (300K)
121 (300K)
196 (300K)
217 (300K)
231 (300K)
233 (300K)
283 (300K)
220 (187868)
107 (69105)
151 (58196)
185 (56253)
173 (29315)
238 (16692)
189 (13667)
215 (8459)
211 (5992)
22 (4800)
k = 1 is a GFn with no known prime.
849 16 5, 17   k = = 1 mod 2 (2)
k = = 52 mod 53 (53)
none - proven 12 (28)
10 (17)
4 (11)
6 (2)
14 (1)
8 (1)
2 (1)
 
850 369 23, 37   k = = 2 mod 3 (3)
k = = 282 mod 283 (283)
252 (400K) 346 (3142)
208 (2154)
79 (1671)
270 (1509)
114 (1443)
268 (1113)
36 (737)
145 (705)
289 (340)
331 (216)
 
851 70 3, 71   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 16 mod 17 (17)
none - proven 32 (2079)
68 (893)
8 (113)
46 (18)
2 (15)
52 (12)
22 (12)
10 (12)
62 (11)
58 (8)
 
852 34974 5, 41, 853   k = = 22 mod 23 (23)
k = = 36 mod 37 (37)
627 k's remaining at n=25K.

See k's at Sierpinski Base 852 remain.
1647 (24891)
6102 (24835)
34866 (24805)
26436 (24704)
13318 (24617)
34968 (24381)
32602 (24375)
33730 (24233)
26001 (24135)
33849 (24113)
 
853 204 5, 7, 29   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 70 mod 71 (71)
106 (1M) 42 (91322)
34 (267)
76 (203)
166 (156)
132 (129)
78 (96)
88 (76)
118 (71)
178 (55)
124 (49)
 
854 4 3, 5   k = = 852 mod 853 (853) none - proven 3 (4)
2 (1)
k = 1 is a GFn with no known prime.
856 39457 7, 181, 193   k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
k = = 18 mod 19 (19)
103 k's remaining at n=100K.

See k's at Sierpinski Base 856 remain.
28123 (97689)
18906 (95635)
27726 (90589)
36847 (89735)
3366 (88865)
34353 (86530)
33435 (86205)
27823 (85963)
8902 (85891)
16915 (82556)
 
857 10 3, 11   k = = 1 mod 2 (2)
k = = 106 mod 107 (107)
none - proven 6 (80)
4 (6)
2 (3)
8 (1)
 
858 35218 5, 29, 859   k = = 856 mod 857 (857) 567 k's remaining at n=25K.

See k's at Sierpinski Base 858 remain.
4130 (24454)
29256 (24229)
4406 (23977)
32206 (23908)
31481 (23905)
4455 (23830)
10071 (23693)
20225 (23322)
20678 (23144)
31776 (23095)
k = 858 is a GFn with no known prime.
859 474 5, 43   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 10 mod 11 (11)
k = = 12 mod 13 (13)
136 (300K)
250 (300K)
414 (41231)
394 (2913)
396 (1708)
226 (988)
304 (591)
214 (401)
256 (386)
336 (286)
196 (230)
466 (218)
 
860 8 3, 7   k = = 858 mod 859 (859) none - proven 6 (391)
5 (7)
7 (6)
4 (6)
3 (3)
2 (1)
 
861 813160 13, 37, 1543   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 42 mod 43 (43)
2692 k's remaining at n=10K.

See k's at Sierpinski Base 861 remain.
367828 (9981)
430550 (9977)
411096 (9970)
802702 (9968)
293240 (9956)
732138 (9948)
197838 (9932)
801852 (9928)
682172 (9913)
333508 (9913)
 
862 6757 19, 31, 421   k = = 2 mod 3 (3)
k = = 6 mod 7 (7)
k = = 40 mod 41 (41)
38 k's remaining at n=100K.

See k's at Sierpinski Base 862 remain.
3808 (98309)
1828 (89429)
3846 (83765)
802 (81952)
3241 (81340)
5181 (78665)
5412 (78123)
1836 (77709)
2758 (75034)
1537 (69935)
k = 862 is a GFn with no known prime.
863 8 3, 5, 13   k = = 1 mod 2 (2)
k = = 430 mod 431 (431)
none - proven 4 (62)
2 (25)
6 (1)
 
864 174 5, 173   k = = 862 mod 863 (863) 74 (500K) 136 (71418)
53 (56085)
15 (51510)
64 (27053)
41 (18064)
39 (12723)
27 (11230)
147 (6951)
144 (4507)
131 (2702)
 
865 15460266 7, 13, 37, 61, 433   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
  Testing just started.  
866 16 3, 17   k = = 4 mod 5 (5)
k = = 172 mod 173 (173)
8 (500K) 13 (1492)
12 (531)
11 (35)
15 (8)
3 (7)
5 (5)
10 (2)
7 (2)
6 (1)
2 (1)
 
867 92 7, 31   k = = 1 mod 2 (2)
k = = 432 mod 433 (433)
none - proven 50 (63774)
36 (5504)
74 (3730)
2 (1280)
32 (362)
38 (290)
72 (278)
62 (267)
64 (122)
22 (54)
 
868 78 11, 79   k = = 2 mod 3 (3)
k = = 16 mod 17 (17)
none - proven 61 (388)
7 (273)
34 (90)
43 (55)
45 (42)
12 (28)
48 (12)
13 (12)
39 (7)
18 (7)
k =1 is a GFn with no known prime.
869 4 3, 5   k = = 1 mod 2 (2)
k = = 6 mod 7 (7)
k = = 30 mod 31 (31)
none - proven 2 (49149)  
870 66 13, 67   k = = 10 mod 11 (11)
k = = 78 mod 79 (79)
none - proven 38 (29675)
55 (872)
12 (87)
50 (56)
14 (48)
5 (48)
35 (46)
46 (45)
6 (22)
4 (19)
k = 1 is a GFn with no known prime.
871 21676 7, 17, 53, 103, 409   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
k = = 28 mod 29 (29)
582 (100K)
618 (100K)
696 (100K)
2110 (100K)
2280 (100K)
3702 (100K)
4468 (100K)
6648 (100K)
6898 (100K)
7302 (100K)
9702 (100K)
10336 (100K)
10356 (100K)
11526 (100K)
13332 (100K)
14496 (100K)
17616 (100K)
18946 (100K)
19222 (100K)
20248 (100K)
20806 (100K)
21238 (100K)
7050 (94061)
18682 (77041)
20382 (70537)
6472 (69628)
15726 (64212)
19512 (53106)
12550 (49403)
5778 (47932)
1752 (43331)
9300 (39775)
 
872 98 3, 97   k = = 12 mod 13 (13)
k = = 66 mod 67 (67)
19 (400K)
46 (400K)
68 (400K)
94 (397354)
26 (45765)
13 (38782)
27 (7438)
79 (6794)
23 (6793)
62 (5987)
44 (4367)
32 (4203)
33 (1581)
k = 1 is a GFn with no known prime.
873 208 19, 23   k = = 1 mod 2 (2)
k = = 108 mod 109 (109)
116 (400K)
150 (400K)
206 (400K)
24 (88530)
68 (81083)
88 (6970)
96 (5824)
164 (3271)
198 (2800)
172 (2600)
144 (509)
106 (391)
178 (348)
 
874 6 5, 7   k = = 2 mod 3 (3)
k = = 96 mod 97 (97)
none - proven 4 (77)
3 (2)
 
875 74 3, 73   k = = 1 mod 2 (2)
k = = 18 mod 19 (19)
k = = 22 mod 23 (23)
4 (1M) 38 (52517)
46 (250)
52 (150)
58 (44)
10 (38)
16 (26)
72 (15)
64 (14)
50 (11)
2 (11)
 
877 2182 5, 7, 13, 37, 139   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 72 mod 73 (73)
438 (300K)
696 (300K)
748 (300K)
1146 (300K)
1272 (300K)
1348 (300K)
1434 (300K)
1602 (300K)
1942 (237267)
1606 (150351)
1018 (138945)
1776 (125700)
1758 (60129)
1494 (48809)
672 (45992)
172 (41580)
1470 (29067)
564 (25366)
 
878 23 3, 5, 53   k = = 876 mod 877 (877) 2 (400K)
13 (400K)
17 (400K)
11 (227481)
10 (972)
18 (454)
16 (168)
19 (114)
14 (87)
3 (12)
8 (11)
22 (10)
20 (9)
k = 1 is a GFn with no known prime.
879 34 5, 11   k = = 1 mod 2 (2)
k = = 438 mod 439 (439)
none - proven 10 (25003)
32 (4617)
24 (1183)
14 (167)
26 (24)
22 (6)
28 (4)
8 (4)
16 (2)
12 (2)
 
880 25282 13, 103, 193   k = = 2 mod 3 (3)
k = = 292 mod 293 (293)
79 k's remaining at n=100K.

See k's at Sierpinski Base 880 remain.
5458 (99301)
22465 (96712)
23655 (96567)
3858 (88554)
22923 (82182)
14247 (80185)
14148 (80028)
706 (76693)
13465 (71040)
13675 (70732)
k = 880 is a GFn with no known prime.
881 8 3, 7   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 10 mod 11 (11)
none - proven 6 (63)
2 (27)
 
882 5297 5, 37, 883   k = = 880 mod 881 (881) 46 k's remaining at n=100K.

See k's at Sierpinski Base 882 remain.
68 (98958)
1057 (96951)
2874 (95905)
623 (89706)
5232 (85756)
445 (85369)
64 (84322)
3452 (82495)
3029 (69511)
3350 (62647)
k = 882 is a GFn with no known prime.
883 324 13, 17   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 6 mod 7 (7)
66 (500K) 154 (268602)
288 (12839)
222 (10326)
322 (1597)
58 (907)
192 (570)
18 (374)
274 (326)
28 (235)
136 (209)
 
884 4 3, 5   k = = 882 mod 883 (883) none - proven 2 (5)
3 (3)
 
885 588746 7, 19, 73, 443   k = = 1 mod 2 (2)
k = = 12 mod 13 (13)
k = = 16 mod 17 (17)
2160 k's remaining at n=10K.

See k's at Sierpinski Base 885 remain.
143810 (10000)
179068 (9977)
444418 (9964)
347532 (9936)
177252 (9936)
162098 (9934)
345242 (9920)
179330 (9919)
179736 (9909)
160694 (9905)
 
886 8170158 7, 13, 61, 181, 887   k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
k = = 58 mod 59 (59)
142454 k's remaining at n=2.5K. To be shown later. 7730176 (2500)
7416420 (2500)
6973543 (2500)
6738057 (2500)
6098103 (2500)
5628577 (2500)
5337247 (2500)
5317885 (2500)
5243605 (2500)
5176713 (2500)
k = 886 and 784996 are GFn's with no known prime.
887 38 3, 37   k = = 1 mod 2 (2)
k = = 442 mod 443 (443)
16 (300K)
34 (300K)
2 (27771)
12 (13960)
24 (2687)
36 (1243)
22 (1008)
20 (545)
30 (123)
10 (12)
14 (7)
28 (6)
 
888 13 5, 7, 17   k = = 886 mod 887 (887) none - proven 8 (112)
3 (16)
4 (6)
10 (3)
6 (3)
12 (1)
11 (1)
9 (1)
7 (1)
5 (1)
k = 1 is a GFn with no known prime. 
889 624 5, 89   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 36 mod 37 (37)
none - proven 534 (71765)
174 (38647)
384 (20127)
576 (7422)
456 (7060)
6 (3450)
330 (3076)
604 (2299)
268 (1190)
96 (680)
 
890 10 3, 11   k = = 6 mod 7 (7)
k = = 126 mod 127 (127)
none - proven 4 (10)
2 (7)
7 (4)
9 (1)
8 (1)
5 (1)
3 (1)
 .
892 187 5, 13, 47   k = = 2 mod 3 (3)
k = = 10 mod 11 (11)
46 (500K)
93 (500K)
151 (500K)
118 (373012)
51 (271541)
16 (5475)
138 (1494)
99 (1326)
96 (1224)
7 (156)
132 (151)
148 (114)
12 (91)
 
893 32 3, 5, 41   k = = 1 mod 2 (2)
k = = 222 mod 223 (223)
none - proven 8 (86771)
26 (519)
16 (20)
10 (12)
4 (10)
12 (8)
30 (7)
6 (7)
28 (2)
22 (2)
 
894 359 5, 179   k = = 18 mod 19 (19)
k = = 46 mod 47 (47)
6 (300K)
29 (300K)
109 (300K)
144 (300K)
178 (300K)
181 (300K)
184 (300K)
204 (300K)
214 (300K)
271 (300K)
354 (300K)
74 (201093)
327 (34066)
243 (20613)
101 (17754)
154 (7051)
304 (6407)
43 (5486)
319 (5079)
249 (5033)
24 (4007)
 
895 953800 7, 97, 4129   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 148 mod 149 (149)
13493 k's remaining at n=2.5K. To be shown later. 745038 (2500)
860580 (2499)
698524 (2498)
105196 (2498)
742926 (2497)
599136 (2497)
586332 (2497)
318754 (2496)
226822 (2496)
666804 (2495)
 
896 22 3, 23   k = = 4 mod 5 (5)
k = = 178 mod 179 (179)
none - proven 10 (436)
16 (150)
21 (7)
8 (7)
18 (5)
7 (4)
2 (3)
13 (2)
6 (2)
20 (1)
k = 1 is a GFn with no known prime.
897 7634 5, 17, 449   k = = 1 mod 2 (2)
k = = 6 mod 7 (7)
448 (300K)
798 (300K)
1246 (300K)
1296 (300K)
1968 (300K)
2444 (300K)
3568 (300K)
3692 (300K)
3962 (300K)
4858 (300K)
4938 (300K)
5002 (300K)
5084 (300K)
5762 (300K)
7428 (300K)
5882 (185306)
3386 (167919)
5202 (146872)
5810 (141540)
4132 (63703)
6848 (49788)
2088 (47900)
1262 (47202)
3690 (33277)
7532 (31775)
 
898 30 29, 31   k = = 2 mod 3 (3)
k = = 12 mod 13 (13)
k = = 22 mod 23 (23)
none - proven 28 (98959)
19 (165)
13 (35)
24 (30)
6 (29)
9 (15)
3 (6)
15 (3)
18 (2)
10 (2)
 
899 4 3, 5   k = = 1 mod 2 (2)
k = = 448 mod 449 (449)
none - proven 2 (15731)  
900 12 7, 13, 19   k = = 28 mod 29 (29)
k = = 30 mod 31 (31)
none - proven 8 (2270)
6 (47)
5 (3)
4 (3)
3 (3)
11 (1)
10 (1)
9 (1)
7 (1)
2 (1)
 
901 12 7, 11, 13, 19   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
none - proven 10 (1)
6 (1)
 
902 8 3, 7   k = = 16 mod 17 (17)
k = = 52 mod 53 (53)
none - proven 5 (15)
4 (6)
2 (3)
7 (2)
6 (1)
3 (1)
k = 1 is a GFn with no known prime.
903 338 5, 73, 113   k = = 1 mod 2 (2)
k = = 10 mod 11 (11)
k = = 40 mod 41 (41)
none - proven 308 (13220)
290 (8582)
168 (1442)
212 (941)
14 (685)
94 (683)
182 (177)
162 (154)
192 (80)
298 (79)
 
904 361 5, 181   k = = 2 mod 3 (3)
k = = 6 mod 7 (7)
k = = 42 mod 43 (43)
49 (300K)
99 (300K)
121 (300K)
211 (300K)
289 (300K)
294 (300K)
136 (147230)
30 (124238)
180 (63687)
331 (32322)
31 (19068)
256 (15408)
81 (12738)
144 (2023)
168 (1158)
16 (972)
k = 1 is a GFn with no known prime.
905 118 3, 13, 17   k = = 1 mod 2 (2)
k = = 112 mod 113 (113)
62 (400K)
68 (400K)
88 (400K)
90 (5989)
10 (5154)
108 (294)
98 (233)
16 (186)
94 (170)
82 (118)
76 (106)
30 (58)
46 (56)
 
907 1350424 5, 7, 13, 227, 661   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 150 mod 151 (151)
29433 k's remaining at n=2.5K. To be shown later. 969112 (2500)
869068 (2500)
776188 (2500)
569218 (2500)
1019872 (2499)
961882 (2499)
863644 (2499)
219994 (2499)
1194514 (2498)
1018458 (2498)
 
908 100 3, 101   k = = 906 mod 907 (907) 2 (300K)
32 (300K)
34 (300K)
49 (300K)
76 (300K)
79 (300K)
94 (300K)
8 (243439)
36 (146460)
71 (49583)
77 (47301)
55 (23710)
41 (23083)
11 (9855)
68 (8091)
16 (5320)
63 (3876)
k = 1 is a GFn with no known prime.
909 6 5, 7   k = = 1 mod 2 (2)
k = = 226 mod 227 (227)
none - proven 2 (10)
4 (1)
 
911 208 3, 19   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 6 mod 7 (7)
k = = 12 mod 13 (13)
8 (300K)
18 (300K)
50 (300K)
172 (300K)
158 (181509)
182 (57327)
56 (19695)
70 (4818)
28 (4530)
136 (3190)
196 (1734)
128 (1299)
22 (540)
10 (336)
 
912 331 11, 83   k = = 910 mod 911 (911) 32 (300K)
67 (300K)
82 (300K)
98 (300K)
122 (300K)
138 (300K)
166 (300K)
197 (300K)
234 (300K)
248 (300K)
34 (230098)
318 (143201)
3 (132173)
298 (118230)
80 (35967)
113 (33032)
158 (20282)
139 (20261)
271 (8604)
297 (7251)
 
913 2540464 5, 7, 13, 109, 457   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 18 mod 19 (19)
31687 k's remaining at n=2.5K. To be shown later. 2379562 (2500)
1176462 (2500)
426838 (2500)
2115084 (2499)
1992696 (2499)
2149072 (2498)
1980012 (2498)
1085394 (2498)
696414 (2498)
148372 (2498)
 
914 4 3, 5   k = = 10 mod 11 (11)
k = = 82 mod 83 (83)
2 (400K) 3 (12)  
915 4266956 13, 229, 2477   k = = 1 mod 2 (2)
k = = 456 mod 457 (457)
61769 k's remaining at n=2.5K. To be shown later. 3644646 (2500)
3525666 (2500)
3312666 (2500)
3108464 (2500)
2908460 (2500)
2415474 (2500)
2087660 (2500)
1986044 (2500)
1900478 (2500)
1336678 (2500)
 
916 132 7, 131   k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
k = = 60 mod 61 (61)
none - proven 85 (1058)
33 (197)
57 (146)
22 (144)
82 (115)
73 (84)
130 (71)
31 (71)
111 (51)
76 (49)
 
917 16 3, 17   k = = 1 mod 2 (2)
k = = 228 mod 229 (229)
2 (500K) 8 (53)
4 (22)
14 (9)
12 (4)
10 (2)
6 (1)
 
918 24812 5, 13, 919   k = = 6 mod 7 (7)
k = = 130 mod 131 (131)
156 k's remaining at n=100K.

See k's at Sierpinski Base 918 remain.
4971 (94549)
8208 (93900)
21715 (91845)
16167 (91042)
19357 (86816)
2956 (83981)
15186 (82888)
18924 (75089)
567 (74068)
13903 (71888)
 
919 24 5, 23   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 16 mod 17 (17)
none - proven 12 (45358)
6 (5092)
18 (386)
10 (8)
22 (1)
4 (1)
 
920 103 3, 7, 13, 19   k = = 918 mod 919 (919) 13 (300K)
14 (300K)
43 (300K)
64 (500K)
82 (300K)
68 (212407)
8 (107821)
4 (103686)
79 (43780)
61 (9644)
73 (5802)
32 (5493)
46 (1254)
69 (770)
76 (686)
 
922 285 13, 71   k = = 2 mod 3 (3)
k = = 306 mod 307 (307)
30 (400K)
138 (400K)
214 (400K)
142 (16611)
282 (14114)
144 (11670)
159 (5986)
126 (3644)
72 (3310)
58 (2338)
186 (1857)
25 (1641)
4 (1179)
k = 1 is a GFn with no known prime.
923 8 3, 7   k = = 1 mod 2 (2)
k = = 460 mod 461 (461)
none - proven 6 (41)
4 (10)
2 (1)
 
924 36 5, 37   k = = 12 mod 13 (13)
k = = 70 mod 71 (71)
none - proven 14 (8031)
16 (386)
24 (49)
23 (43)
19 (19)
29 (15)
26 (14)
21 (10)
6 (10)
13 (9)
k = 1 is a GFn with no known prime.
926 205 3, 103   k = = 4 mod 5 (5)
k = = 36 mod 37 (37)
17 (300K)
65 (300K)
103 (300K)
118 (300K)
137 (166603)
13 (103582)
5 (40035)
52 (29706)
121 (10886)
82 (6096)
10 (4998)
18 (4090)
102 (3443)
150 (2304)
k = 1 is a GFn with no known prime.
927 28624 5, 17, 29, 89   k = = 1 mod 2 (2)
k = = 462 mod 463 (463)
454 k's remaining at n=25K.

See k's at Sierpinski Base 927 remain.
1206 (24612)
7570 (24550)
16356 (24223)
5476 (23793)
13948 (23773)
12288 (23758)
28188 (23344)
15874 (23329)
20270 (23111)
21682 (22799)
 
928 27871 5, 13, 929   k = = 2 mod 3 (3)
k = = 102 mod 103 (103)
529 k's remaining at n=25K.

See k's at Sierpinski Base 928 remain.
11722 (24808)
19512 (24114)
277 (23898)
13747 (23392)
18828 (23051)
15930 (22914)
3628 (22828)
17272 (22600)
21061 (22515)
481 (22383)
 
929 4 3, 5   k = = 1 mod 2 (2)
k = = 28 mod 29 (29)
none - proven 2 (99)  
930 20 7, 19   k = = 928 mod 929 (929) 8 (400K) 7 (217)
13 (207)
9 (24)
15 (12)
14 (7)
11 (7)
19 (3)
16 (3)
17 (2)
10 (2)
 
931 37978 13, 53, 233   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
k = = 30 mod 31 (31)
26 k's remaining at n=100K.

See k's at Sierpinski Base 931 remain.
28870 (99192)
29638 (98833)
36568 (97445)
1696 (91296)
37660 (74618)
24790 (70090)
23256 (69463)
35118 (68086)
8832 (61468)
4992 (61245)
 
932 310 3, 311   k = = 6 mod 7 (7)
k = = 18 mod 19 (19)
23 (300K)
28 (300K)
77 (300K)
98 (300K)
122 (300K)
169 (300K)
212 (300K)
218 (300K)
224 (300K)
238 (300K)
263 (300K)
19 (187910)
241 (132236)
40 (71610)
154 (44138)
290 (37017)
134 (33535)
302 (25795)
278 (24761)
89 (19399)
145 (16936)
k = 1 is a GFn with no known prime.
933 3343252 5, 7, 13, 37, 467   k = = 1 mod 2 (2)
k = = 232 mod 233 (233)
113075 k's remaining at n=2.5K. To be shown later. 3265912 (2500)
3160312 (2500)
2685828 (2500)
2640658 (2500)
2436352 (2500)
2186988 (2500)
1855706 (2500)
1801302 (2500)
1354218 (2500)
1349438 (2500)
 
934 16 5, 17   k = = 2 mod 3 (3)
k = = 310 mod 311 (311)
none - proven 4 (101403)
9 (429)
12 (44)
7 (6)
6 (4)
15 (1)
13 (1)
10 (1)
3 (1)
 
935 14 3, 13   k = = 1 mod 2 (2)
k = = 466 mod 467 (467)
10 (400K) 6 (8)
12 (3)
4 (2)
8 (1)
2 (1)
 
936 100260 7, 31, 37, 937   k = = 4 mod 5 (5)
k = = 10 mod 11 (11)
k = = 16 mod 17 (17)
92 k's remaining at n=100K.

See k's at Sierpinski Base 936 remain.
87446 (97893)
36965 (94192)
50590 (92119)
60885 (91085)
79262 (88094)
74033 (87581)
3006 (86823)
18995 (82704)
74870 (81183)
72715 (78700)
 
937 202 7, 67   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 12 mod 13 (13)
none - proven 78 (2696)
186 (1017)
76 (319)
22 (260)
132 (159)
120 (154)
162 (86)
52 (70)
174 (45)
16 (44)
 
938 314 3, 313   k = = 936 mod 937 (937) 29 (300K)
31 (300K)
71 (300K)
91 (300K)
94 (300K)
124 (300K)
139 (300K)
151 (300K)
173 (300K)
181 (300K)
199 (300K)
216 (300K)
227 (300K)
278 (300K)
298 (300K)
304 (300K)
182 (128989)
286 (128944)
161 (86753)
52 (71936)
25 (63532)
98 (62867)
164 (50781)
221 (26565)
26 (22411)
101 (20631)
k = 1 is a GFn with no known prime.
939 46 5, 47   k = = 1 mod 2 (2)
k = = 6 mod 7 (7)
k = = 66 mod 67 (67)
none - proven 30 (137000)
8 (520)
36 (88)
38 (31)
12 (20)
22 (19)
26 (6)
44 (3)
24 (3)
4 (3)
 
940 5557 7, 73, 577   k = = 2 mod 3 (3)
k = = 312 mod 313 (313)
45 k's remaining at n=100K.

See k's at Sierpinski Base 940 remain.
4525 (96497)
4291 (88651)
241 (81773)
5260 (70077)
2785 (63569)
2712 (62213)
4710 (50218)
3142 (46024)
2089 (43616)
3076 (39990)
k = 940 is a GFn with no known prime.
941 158 3, 157   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 46 mod 47 (47)
none - proven 26 (127533)
156 (23309)
106 (14510)
118 (11780)
10 (8508)
42 (7988)
60 (2144)
80 (157)
142 (102)
66 (95)
 
942 206 23, 41   k = = 940 mod 941 (941) 40 (400K)
137 (400K)
139 (400K)
113 (56965)
202 (28850)
37 (25835)
166 (25140)
20 (17720)
24 (5886)
123 (5256)
93 (2768)
142 (2488)
103 (1998)
k = 1 is a GFn with no known prime.
943 15636 5, 7, 13, 19, 59   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 156 mod 157 (157)
53 k's remaining at n=100K.

See k's at Sierpinski Base 943 remain.
1306 (93200)
15304 (85197)
10068 (80828)
780 (77473)
13630 (75336)
3582 (73510)
58 (63523)
6588 (63467)
424 (63363)
13744 (60702)
 
944 4 3, 5   k = = 22 mod 23 (23)
k = = 40 mod 41 (41)
none - proven 3 (1)
2 (1)
k = 1 is a GFn with no known prime.
945 386 11, 43   k = = 1 mod 2 (2)
k = = 58 mod 59 (59)
186 (400K)
296 (400K)
320 (400K)
244 (85970)
350 (2918)
118 (727)
62 (713)
162 (480)
362 (419)
218 (377)
144 (350)
364 (294)
246 (287)
 
947 80 3, 79   k = = 1 mod 2 (2)
k = = 10 mod 11 (11)
k = = 42 mod 43 (43)
2 (400K)
34 (400K)
68 (400K)
22 (870)
16 (700)
48 (401)
56 (109)
64 (70)
72 (42)
36 (29)
70 (20)
38 (17)
62 (11)
 
948 38 5, 13, 17   k = = 946 mod 947 (947) none - proven 16 (2193)
2 (1242)
28 (358)
27 (196)
9 (194)
17 (97)
10 (79)
12 (69)
33 (54)
32 (26)
k = 1 is a GFn with no known prime.
949 246 5, 19   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 78 mod 79 (79)
none - proven 208 (50171)
244 (35995)
54 (35319)
172 (1510)
94 (1245)
52 (885)
210 (770)
46 (770)
34 (329)
178 (316)
 
950 316 3, 317   k = = 12 mod 13 (13)
k = = 72 mod 73 (73)
32 (400K)
34 (400K)
52 (400K)
53 (400K)
100 (400K)
22 (37424)
241 (24518)
170 (24241)
176 (11909)
55 (9596)
296 (8923)
139 (8540)
187 (6502)
244 (6074)
292 (4650)
 
951 50 7, 17   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 18 mod 19 (19)
none - proven 36 (6892)
42 (1525)
20 (377)
48 (145)
30 (46)
12 (32)
26 (11)
38 (8)
32 (4)
22 (4)
 
952 5503 5, 13, 37, 41, 43   k = = 2 mod 3 (3)
k = = 316 mod 317 (317)
66 (100K)
147 (100K)
322 (100K)
583 (100K)
603 (100K)
712 (100K)
718 (100K)
790 (100K)
1401 (100K)
1492 (100K)
1617 (100K)
2329 (100K)
2703 (100K)
2779 (100K)
3676 (100K)
4006 (100K)
4092 (100K)
4170 (100K)
4354 (100K)
4363 (100K)
4444 (100K)
4552 (100K)
4794 (100K)
5167 (100K)
5412 (100K)
5413 (99768)
207 (95930)
1111 (86803)
1108 (77720)
4944 (76370)
3195 (71184)
2793 (69268)
196 (65649)
5323 (61302)
706 (58148)
 
953 52 3, 53   k = = 1 mod 2 (2)
k = = 6 mod 7 (7)
k = = 16 mod 17 (17)
8 (400K) 14 (97789)
44 (5845)
22 (2050)
46 (844)
40 (232)
4 (18)
38 (11)
24 (10)
36 (8)
26 (7)
 
954 381 5, 191   k = = 952 mod 953 (953) 34 (300K)
126 (300K)
174 (300K)
181 (300K)
184 (300K)
229 (300K)
261 (300K)
269 (300K)
304 (300K)
306 (300K)
324 (300K)
327 (300K)
336 (300K)
341 (300K)
376 (300K)
119 (276761)
351 (41442)
334 (26017)
311 (18078)
13 (17159)
281 (15634)
164 (15017)
361 (10972)
374 (10971)
289 (10241)
k = 1 is a GFn with no known prime.
955 981094 7, 31, 157, 239   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 52 mod 53 (53)
2322 k's remaining at n=75K.

See k's at Sierpinski Base 955 remain.
274686 (74924)
184848 (74727)
833500 (74683)
284506 (74676)
415158 (74619)
424792 (74497)
918700 (74395)
259806 (74378)
232570 (74244)
879166 (74146)
 
956 10 3, 11   k = = 4 mod 5 (5)
k = = 190 mod 191 (191)
none - proven 5 (9)
3 (3)
7 (2)
8 (1)
6 (1)
2 (1)
 
957 19638 5, 13, 479   k = = 1 mod 2 (2)
k = = 238 mod 239 (239)
143 k's remaining at n=100K.

See k's at Sierpinski Base 957 remain.
12966 (96860)
7442 (94519)
13008 (94432)
12052 (86915)
15224 (86275)
14974 (78578)
6820 (76118)
5156 (72284)
5756 (71539)
6592 (70624)
 
958 412 7, 137   k = = 2 mod 3 (3)
k = = 10 mod 11 (11)
k = = 28 mod 29 (29)
48 (400K)
363 (400K)
13 (101751)
342 (43041)
400 (40344)
183 (31062)
316 (8124)
309 (7850)
286 (6379)
141 (3708)
237 (2473)
387 (2234)
k = 1 is a GFn with no known prime.
959 4 3, 5   k = = 1 mod 2 (2)
k = = 478 mod 479 (479)
none - proven 2 (5)  
961 1000 13, 37   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
630 (300K)
688 (300K)
766 (300K)
778 (300K)
846 (300K)
886 (300K)
892 (300K)
820 (63536)
316 (30374)
586 (7864)
636 (4337)
508 (3594)
390 (1479)
682 (1352)
300 (1190)
456 (916)
696 (554)
 
962 106 3, 107   k = = 30 mod 31 (31) 47 (300K)
68 (300K)
77 (300K)
94 (300K)
62 (244403)
17 (192155)
4 (84234)
71 (69703)
8 (47221)
34 (34834)
79 (15814)
88 (10884)
23 (8493)
32 (3943)
 
964 771 5, 193   k = = 2 mod 3 (3)
k = = 106 mod 107 (107)
51 (300K)
99 (300K)
126 (300K)
184 (300K)
241 (300K)
451 (300K)
481 (300K)
486 (300K)
516 (300K)
546 (300K)
556 (300K)
564 (300K)
579 (300K)
694 (300K)
34 (160951)
270 (136805)
271 (60072)
766 (58970)
631 (47742)
174 (45275)
354 (31733)
306 (28138)
411 (12600)
111 (7354)
k = 1 is a GFn with no known prime.
965 8 3, 7   k = = 1 mod 2 (2)
k = = 240 mod 241 (241)
none - proven 4 (62)
6 (1)
2 (1)
 
967 144 5, 11, 13   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 6 mod 7 (7)
k = = 22 mod 23 (23)
none - proven 88 (1577)
142 (55)
54 (51)
112 (44)
102 (19)
78 (14)
136 (11)
40 (9)
52 (8)
72 (6)
 
968 16 3, 17   k = = 966 mod 967 (967) 11 (400K) 2 (917)
10 (162)
4 (90)
6 (40)
15 (20)
7 (8)
8 (7)
5 (3)
13 (2)
3 (2)
k = 1 is a GFn with no known prime.
969 96 5, 97   k = = 1 mod 2 (2)
k = = 10 mod 11 (11)
none - proven 26 (8714)
6 (5888)
66 (1068)
52 (621)
94 (113)
44 (107)
86 (90)
24 (83)
46 (56)
30 (24)
 
970 430152 13, 157, 971   k = = 2 mod 3 (3)
k = = 16 mod 17 (17)
k = = 18 mod 19 (19)
3258 k's remaining at n=10K.

See k's at Sierpinski Base 970 remain.
89554 (10000)
95269 (9994)
347085 (9986)
112507 (9973)
115477 (9971)
135537 (9961)
171939 (9960)
264507 (9959)
47011 (9958)
25926 (9954)
k = 970 is a GFn with no known prime.
971 14876 3, 7, 13, 79   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 96 mod 97 (97)
342 k's remaining at n=100K.

See k's at Sierpinski Base 971 remain.
4978 (100000)
3572 (99345)
1852 (96924)
10970 (96601)
1810 (96596)
8810 (93911)
10540 (90000)
10742 (89745)
9002 (88311)
4166 (84923)
 
972 279 7, 139   k = = 970 mod 971 (971) 41 (300K)
64 (300K)
100 (300K)
162 (300K)
167 (300K)
176 (300K)
182 (300K)
183 (300K)
138 (156865)
120 (124768)
36 (58552)
79 (50178)
106 (44032)
27 (41803)
194 (40475)
50 (29594)
274 (11102)
57 (5710)
 
973 9252 5, 17, 487   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
27 k's remaining at n=100K.

See k's at Sierpinski Base 973 remain.
8242 (96058)
4254 (85066)
7816 (81736)
8178 (77348)
8502 (76933)
5286 (75587)
6408 (65882)
7050 (62382)
76 (59887)
2034 (49117)
 
974 4 3, 5   k = = 6 mod 7 (7)
k = = 138 mod 139 (139)
none - proven 3 (7)
2 (1)
k = 1 is a GFn with no known prime.
975 375364 7, 67, 2029   k = = 1 mod 2 (2)
k = = 486 mod 487 (487)
2920 k's remaining at n=10K.

See k's at Sierpinski Base 975 remain.
29826 (9997)
249030 (9987)
46394 (9978)
366824 (9977)
96440 (9973)
355130 (9970)
238082 (9961)
231600 (9951)
195410 (9951)
172934 (9943)
 
976 4492245 7, 19, 67, 977   k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
k = = 12 mod 13 (13)
48740 k's remaining at n=2.5K. To be shown later. 4211995 (2500)
3213487 (2500)
4394331 (2499)
3709747 (2499)
3181560 (2499)
3051561 (2499)
1257328 (2499)
569590 (2499)
3963817 (2498)
3917530 (2498)
k = 976 and 952576 are GFn's with no known prime.
977 160 3, 7, 13, 19, 53   k = = 1 mod 2 (2)
k = = 60 mod 61 (61)
34 (300K)
62 (300K)
68 (300K)
76 (300K)
110 (300K)
116 (300K)
122 (300K)
38 (299737)
10 (125872)
80 (18615)
6 (6404)
124 (4278)
134 (3673)
96 (3000)
40 (1580)
158 (1297)
146 (649)
 
978 177 11, 89   k = = 976 mod 977 (977) 12 (300K)
21 (300K)
43 (300K)
144 (300K)
151 (71003)
173 (68898)
153 (41023)
34 (29366)
142 (6649)
129 (3311)
113 (2375)
103 (2167)
157 (1692)
162 (1526)
k = 1 is a GFn with no known prime.
979 6 5, 7   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 162 mod 163 (163)
none - proven 4 (1)  
980 110 3, 109   k = = 10 mod 11 (11)
k = = 88 mod 89 (89)
25 (400K) 94 (129356)
44 (103071)
38 (60283)
77 (2309)
70 (592)
103 (426)
79 (324)
84 (243)
64 (238)
4 (182)
k = 1 is a GFn with no known prime.
982 39640 7, 43, 1069   k = = 2 mod 3 (3)
k = = 108 mod 109 (109)
816 k's remaining at n=25K.

See k's at Sierpinski Base 982 remain.
10387 (24983)
28990 (24588)
30268 (24328)
25791 (24065)
39421 (23913)
19782 (23912)
19707 (23804)
6471 (23780)
12465 (23680)
20572 (23551)
 
983 40 3, 41   k = = 1 mod 2 (2)
k = = 490 mod 491 (491)
8 (400K) 16 (22248)
26 (673)
22 (442)
12 (141)
32 (69)
6 (20)
30 (17)
36 (11)
38 (7)
18 (6)
 
984 196 5, 197   k = = 982 mod 983 (983) 129 (300K)
160 (300K)
194 (300K)
19 (257291)
81 (214452)
101 (153924)
69 (27067)
178 (19420)
26 (12738)
98 (9161)
54 (4677)
86 (4266)
162 (4101)
 
985 900 7, 29   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 40 mod 41 (41)
526 (500K)
666 (500K)
766 (500K)
88 (296644)
610 (63334)
288 (9869)
528 (1062)
282 (790)
222 (760)
838 (491)
178 (449)
324 (418)
256 (312)
 
986 8 3, 7   k = = 4 mod 5 (5)
k = = 196 mod 197 (197)
none - proven 6 (21633)
7 (6)
3 (3)
5 (1)
2 (1)
 
987 170 13, 19   k = = 1 mod 2 (2)
k = = 16 mod 17 (17)
k = = 28 mod 29 (29)
none - proven 142 (45547)
92 (28564)
96 (13820)
22 (4174)
90 (1669)
134 (1254)
112 (499)
42 (138)
62 (68)
166 (51)
 
988 1678 23, 43   k = = 2 mod 3 (3)
k = = 6 mod 7 (7)
k = = 46 mod 47 (47)
24 (300K)
343 (300K)
714 (300K)
732 (300K)
859 (300K)
898 (300K)
1542 (300K)
1261 (246031)
1540 (84185)
730 (58605)
684 (51125)
162 (35078)
903 (28887)
1114 (22457)
582 (13608)
351 (13501)
702 (12136)
k = 1 and 988 are GFn's with no known prime.
989 4 3, 5   k = = 1 mod 2 (2)
k = = 12 mod 13 (13)
k = = 18 mod 19 (19)
none - proven 2 (1)  
990 838385 7, 13, 17, 61, 991   k = = 22 mod 23 (23)
k = = 42 mod 43 (43)
11957 k's remaining at n=2.5K. To be shown later. 779349 (2500)
247320 (2500)
197534 (2500)
578788 (2499)
339290 (2499)
9242 (2499)
774210 (2497)
62476 (2497)
722451 (2495)
716925 (2495)
 
991 5262 7, 13, 277   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
k = = 10 mod 11 (11)
402 (300K)
2196 (300K)
2662 (300K)
2778 (300K)
3832 (300K)
4612 (300K)
4620 (300K)
2688 (246849)
1260 (218477)
2016 (178654)
4602 (106702)
2436 (60482)
4266 (44079)
3702 (38569)
4588 (37300)
2710 (25911)
2350 (25047)
 
992 332 3, 331   k = = 990 mod 991 (991) 45 k's remaining at n=100K.

See k's at Sierpinski Base 992 remain.
295 (93988)
182 (77755)
151 (52836)
229 (26230)
185 (26147)
64 (25886)
62 (20515)
152 (20427)
32 (17619)
50 (12751)
 
993 36 5, 7, 37   k = = 1 mod 2 (2)
k == 30 mod 31 (31)
6 (520K)
8 (520K)
34 (469245)
28 (104)
2 (39)
32 (13)
22 (8)
18 (3)
12 (2)
26 (1)
24 (1)
20 (1)
 
994 399 5, 199   k = = 2 mod 3 (3)
k = = 330 mod 331 (331)
30 (300K)
81 (300K)
201 (300K)
211 (300K)
261 (300K)
354 (166791)
271 (127298)
19 (46333)
166 (22046)
46 (21588)
106 (18202)
244 (7935)
294 (6429)
112 (6069)
151 (4654)
k = 1 is a GFn with no known prime.
995 82 3, 83   k = = 1 mod 2 (2)
k = = 6 mod 7 (7)
k = = 70 mod 71 (71)
none - proven 64 (63550)
68 (1237)
46 (1220)
26 (63)
22 (56)
72 (42)
8 (35)
40 (34)
16 (30)
52 (24)
 
996 5841 7, 19, 43, 127   k = = 4 mod 5 (5)
k = = 198 mod 199 (199)
49 k's remaining at n=100K.

See k's at Sierpinski Base 996 remain.
3073 (99001)
1322 (90098)
4371 (79730)
1312 (75299)
3375 (58855)
2471 (55783)
4643 (54586)
5717 (47550)
2371 (42976)
3067 (39485)
 
997 36048 7, 13, 31, 127   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 82 mod 83 (83)
238 k's remaining at n=100K.

See k's at Sierpinski Base 997 remain.
8826 (99661)
21432 (97223)
22584 (95918)
34726 (92648)
9840 (92270)
17776 (92251)
9102 (91800)
19884 (91651)
32890 (89128)
14044 (86394)
 
998 38 3, 37   k = = 996 mod 997 (997) 12 (400K) 8 (81239)
34 (9454)
30 (1205)
16 (1092)
24 (591)
17 (321)
31 (268)
13 (160)
28 (106)
10 (88)
k = 1 is a GFn with no known prime.
999 3234 5, 17, 149   k = = 1 mod 2 (2)
k = = 498 mod 499 (499)
63 k's remaining at n=100K.

See k's at Sierpinski Base 999 remain.
1446 (97756)
846 (94984)
2166 (82938)
1798 (76539)
1294 (76205)
1608 (74987)
1566 (73780)
376 (73110)
1286 (72538)
2854 (71583)
 
1000 12 11, 13 All k = m^3 for all n; factors to:
(m*10^n + 1) *
(m^2*100^n - m*10^n + 1)
k = = 2 mod 3 (3)
k = = 36 mod 37 (37)
none - proven 6 (3)
9 (1)
7 (1)
4 (1)
3 (1)
k = 1 proven composite by full algebraic factors.

k = 10 is a GFn with no known prime.
1001 166 3, 167   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
none - proven 46 (50860)
110 (41547)
100 (5096)
32 (4719)
136 (4000)
22 (1466)
30 (619)
26 (269)
140 (151)
158 (121)
 
1002 1240 17, 59   k = = 6 mod 7 (7)
k = = 10 mod 11 (11)
k = = 12 mod 13 (13)
492 (300K)
613 (300K)
707 (300K)
917 (300K)
152 (235971)
1106 (79136)
171 (53356)
154 (48610)
409 (46198)
448 (10369)
341 (7996)
23 (7357)
877 (6024)
1020 (5770)
k = 1 and 1002 are GFn's with no known prime.
1003 4768 5, 29, 251   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 166 mod 167 (167)
94 (100K)
346 (100K)
768 (100K)
784 (100K)
1042 (100K)
1140 (100K)
1816 (100K)
1858 (100K)
2406 (100K)
2656 (100K)
3034 (100K)
3100 (100K)
3216 (100K)
3334 (100K)
3552 (100K)
3724 (100K)
3736 (100K)
4062 (100K)
4098 (100K)
4170 (100K)
4284 (100K)
4420 (100K)
4612 (100K)
4632 (100K)
888 (95494)
262 (75384)
2490 (73779)
214 (73323)
958 (69104)
2232 (65221)
318 (53162)
1768 (53159)
4042 (47202)
2158 (45556)
 
1004 4 3, 5   k = = 16 mod 17 (17)
k = = 58 mod 59 (59)
2 (600K) 3 (19)  
1005 54610 7, 97, 1489   k = = 1 mod 2 (2)
k = = 250 mod 251 (251)
225 k's remaining at n=100K.

See k's at Sierpinski Base 1005 remain.
17086 (98113)
49292 (94596)
16238 (92256)
49462 (92007)
52230 (91759)
27196 (91724)
38694 (87998)
23222 (85950)
29446 (85398)
35072 (84389)
 
1006 531 19, 53   k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
k = = 66 mod 67 (67)
96 (500K)
151 (500K)
172 (500K)
303 (500K)
381 (500K)
417 (62457)
183 (1376)
85 (1172)
447 (916)
382 (832)
411 (736)
340 (568)
478 (176)
298 (174)
235 (129)
k = 1 is a GFn with no known prime.
1007 8 3, 7   k = = 1 mod 2 (2)
k = = 502 mod 503 (503)
none - proven 2 (7)
4 (6)
6 (1)
 
1008 12730554 5, 17, 93, 241, 1009   k = = 18 mod 19 (19)
k = = 52 mod 53 (53)
350616 k's remaining at n=2.5K. To be shown later. 12394673 (2500)
12302175 (2500)
12246428 (2500)
12163756 (2500)
11753021 (2500)
11674941 (2500)
11541178 (2500)
11456848 (2500)
11219597 (2500)
11219266 (2500)
k = 1008 and 1016064 are GFn's with no known prime.
1009 304 5, 101   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 6 mod 7 (7)
144 (400K) 294 (92571)
246 (80266)
46 (58772)
276 (5004)
66 (3456)
136 (2950)
138 (1128)
84 (203)
82 (194)
168 (147)
 
1010 338 3, 337   k = = 1008 mod 1009 (1009) 43 (300K)
73 (300K)
75 (300K)
122 (300K)
125 (300K)
131 (300K)
138 (300K)
194 (300K)
215 (300K)
251 (300K)
269 (300K)
271 (300K)
283 (300K)
290 (300K)
313 (300K)
68 (283267)
316 (150468)
336 (53583)
195 (51101)
337 (32704)
44 (19659)
151 (19070)
95 (17709)
238 (11164)
311 (9827)
 
1011 208 11, 23   k = = 1 mod 2 (2)
k = = 4 mod 5 (5)
k = = 100 mod 101 (101)
none - proven 116 (998)
138 (510)
186 (493)
122 (180)
22 (167)
38 (151)
196 (136)
86 (134)
142 (117)
178 (66)
 
1012 16207 5, 257, 1013   k = = 2 mod 3 (3)
k = = 336 mod 337 (337)
104 k's remaining at n=100K.

See k's at Sierpinski Base 1012 remain.
6016 (96459)
15657 (95876)
14670 (94932)
1305 (94375)
12886 (88973)
9439 (87789)
14041 (87713)
16204 (85465)
2904 (84878)
10389 (83635)
k = 1012 is a GFn with no known prime.
1013 14 3, 13   k = = 1 mod 2 (2)
k = = 10 mod 11 (11)
k = = 22 mod 23 (23)
none - proven 8 (43871)
4 (2)
12 (1)
6 (1)
2 (1)
 
1014 6 5, 7   k = = 1012 mod 1013 (1013) none - proven 5 (3)
3 (3)
4 (1)
2 (1)
k = 1 is a GFn with no known prime.
1015 12079606 127, 373, 1381   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 12 mod 13 (13)
45006 k's remaining at n=2.5K. To be shown later. 11607448 (2500)
7372206 (2500)
6979038 (2500)
6674566 (2500)
4971162 (2500)
2402994 (2500)
2294754 (2500)
1435780 (2500)
1216276 (2500)
1006570 (2500)
 
1016 112 3, 113   k = = 4 mod 5 (5)
k = = 6 mod 7 (7)
k = = 28 mod 29 (29)
none - proven 103 (62932)
22 (3548)
46 (3250)
61 (614)
40 (566)
35 (335)
50 (149)
98 (147)
102 (129)
2 (119)
k = 1 is a GFn with no known prime.
1017 1494 7, 13, 31   k = = 1 mod 2 (2)
k = = 126 mod 127 (127)
52 (259K)
82 (259K)
88 (259K)
332 (259K)
432 (259K)
626 (259K)
706 (259K)
766 (259K)
818 (259K)
824 (259K)
882 (259K)
1018 (259K)
1156 (259K)
1272 (259K)
1468 (259K)
40 (215605)
732 (115542)
1006 (99013)
278 (59509)
186 (39237)
212 (36396)
1060 (28767)
812 (27331)
956 (23796)
562 (21168)
 
1018 77443 7, 19, 31, 1019   k = = 2 mod 3 (3)
k = = 112 mod 113 (113)
1534 k's remaining at n=25K.

See k's at Sierpinski Base 1018 remain.
64392 (24970)
60513 (24932)
16137 (24924)
30699 (24825)
70629 (24778)
49108 (24756)
71334 (24747)
24483 (24591)
57499 (24590)
47242 (24573)
 
1019 4 3, 5   k = = 1 mod 2 (2)
k = = 508 mod 509 (509)
none - proven 2 (1)  
1020 95696289 101, 1021, 10301   k = = 1018 mod 1019 (1019)   No testing done. k = 1020 and 1040400 are GFn's with no known prime.
1021 2262 7, 73   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 4 mod 5 (5)
k = = 16 mod 17 (17)
636 (300K)
778 (300K)
820 (300K)
2050 (300K)
1702 (208948)
1678 (138869)
120 (138704)
802 (110221)
1140 (104265)
930 (98125)
28 (89452)
1278 (44186)
1786 (42066)
1492 (17180)
 
1022 8 3, 5, 13   k = = 1020 mod 1021 (1021) none - proven 2 (727)
7 (36)
4 (6)
5 (5)
6 (1)
3 (1)
 
1023 632462 13, 61, 1321   k = = 1 mod 2 (2)
k = = 6 mod 7 (7)
k = = 72 mod 73 (73)
2531 k's remaining at n=25K.

See k's at Sierpinski Base 1023 remain.
250626 (24979)
45588 (24942)
527492 (24940)
283176 (24924)
316220 (24923)
536774 (24894)
509428 (24804)
535078 (24799)
519216 (24756)
521102 (24681)
 
1025 20 3, 19   k = = 1 mod 2 (2) none - proven 14 (89)
10 (22)
2 (15)
8 (11)
16 (8)
4 (2)
18 (1)
12 (1)
6 (1)
 
1026 157 13, 79   k = = 4 mod 5 (5)
k = = 40 mod 41 (41)
none - proven 38 (25645)
12 (5097)
66 (2140)
117 (342)
146 (277)
110 (245)
73 (244)
101 (229)
87 (144)
131 (56)
k = 1 is a GFn with no known prime.
1027 84552 5, 29, 257   k = = 1 mod 2 (2)
k = = 2 mod 3 (3)
k = = 18 mod 19 (19)
222 k's remaining at n=200K.

See k's at Sierpinski Base 1027 remain.
68398 (199397)
6292 (198459)
30364 (194319)
56064 (193573)
63348 (191392)
72844 (191206)
46498 (187913)
73246 (184192)
11682 (179399)
62176 (175956)
 
1028 8 3, 7   k = = 12 mod 13 (13)
k = = 78 mod 79 (79)
none - proven 6 (1437)
2 (669)
7 (16)
5 (9)
3 (8)
4 (2)
 
1029 104 5, 103   k = = 1 mod 2 (2)
k = = 256 mod 257 (257)
none - proven 34 (106501)
54 (459)
100 (171)
76 (82)
4 (55)
26 (50)
52 (41)
36 (40)
80 (32)
32 (31)
 
1030 75345 13, 73, 373   k = = 2 mod 3 (3)
k = = 6 mod 7 (7)
193 k's remaining at n=100K.

See k's at Sierpinski Base 1030 remain.
8479 (99118)
3028 (98500)
15976 (98135)
58044 (96395)
40681 (93464)
3810 (93045)
5248 (92068)
22006 (87331)
41878 (86450)
3733 (85172)
k = 1030 is a GFn with no known prime.

Original information obtained from:
Mersenneforum Prime Search Projects Conjectures 'R Us threads:
   Sierpinski/Riesel-Base 22
   Sierpinski/Riesel bases 6 to 18
   Sierpinski base 4
   Sierpinski/Riesel Base 10
   Sierpinski/Riesel-Base 23
   Even k's and the Riesel conjecture
   Even k's and the Sierpinski conjecture
Mersenneforum Prime Search Projects Sierpinski/Riesel Base 5 forum
Riesel Prime database
Riesel Problem project
Seventeen or Bust project
Top 5000 primes


Contributors:
antiroach
appeldorff
Archetexture
Batalov
birtwistlecaleb
carpetpool
CGKIII
Cruelty
c10ck3r
dannyridel
Dougal
Dylan14
Embok345
firejuggler
Flatlander
gd_barnes
geoff
germanNinja
grobie
grueny
G30ffr3y
henryzz
japelprime
Jean Penne
jmblazek
kar_bon
KEP
KriZp
kruoli
k0r3
lalera
LaurV
Lennart
ltd
Luminescence
MagentaSunrise
masser
Mathew
Mattyp101
matzetoni
mdettweiler
michaf
Mini-Geek
MisterBitcoin
MrOzzy
MyDogBuster
Neo
NHoodMath
nuggetprime
odicin
paleseptember
pepi37
pinhodecarlos
pokemonlover123
Puzzle-Peter
rajula
rebirther
Rincewind
rob147147
rogue
Siemelink
snae
sjtjung
SRBase
storm5510
tcadigan
TheCount
tnerual
unconnected
VBCurtis
vmod
wombatman
Xentar