Base | Conjectured Sierpinski k | Covering set | k's that make a full covering set with all or partial algebraic factors | Trivial k's (factor) | Remaining k to find prime (n testing limit) |
Top 10 k's with largest first primes: k (n) | Comments / GFn's without a prime / accounting of all k's |
---|---|---|---|---|---|---|---|
3 | 125050976086 | 5, 7, 13, 17, 19, 37, 41, 193, 757 | k = = 1 mod 2 (2) | 411412 k's remaining at n>=50K. See k's and test limits at Sierpinski Base 3 remain. |
125030472038 (945719) 125035448126 (933576) 125000536756 (774704) 125026898182 (751689) 125033255936 (690611) 125023497122 (550124) 125046722746 (542844) 125011623424 (536110) 608558012 (498094) 961852454 (495371) |
See all primes for n>25K at prime-sierp-base3-gt-25K.zip. | |
5 | 159986 | 3, 7, 13, 31, 601 | k = = 1 mod 2 (2) | 30 k's remaining at n=4.3M. See k's at Sierpinski Base 5 remain. |
118568 (3112069) 138514 (2771922) 81556 (2539960) 92158 (2145024) 77072 (2139921) 154222 (2091432) 144052 (2018290) 109208 (1816285) 133778 (1785689) 24032 (1768249) |
All k's are being worked on by PrimeGrid's
Sierpinski/Riesel Base 5 project. See k's and test limits at
Sierpinski/Riesel Base 5
project stats. all-ks-sierp-base5.txt |
|
6 | 174308 | 7, 13, 31, 37, 97 | k = = 4 mod 5 (5) | 13215 (4M) 14505 (4M) 50252 (4M) 76441 (4M) 87800 (4M) 97131 (4M) 112783 (4M) 127688 (4M) 166753 (4M) 168610 (4M) |
124125 (2018254) 139413 (1279992) 33706 (910462) 125098 (896696) 31340 (833096) 59506 (780877) 10107 (559967) 113966 (511831) 172257 (349166) 121736 (298935) |
k = 1296, 7776, and 46656 are GFn's with no known prime. all-ks-sierp-base6.zip |
|
7 | 1112646039348 | 5, 13, 19, 43, 73, 181, 193, 1201 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) |
19917 k's remaining for k<=1G at n>=25K. See k's and test limits at Sierpinski Base 7 remain. |
1952376 (293352) 5452324 (277094) 5071026 (261921) 4325044 (260713) 4377694 (242365) 1711614 (240590) 2084536 (231987) 2506872 (226342) 7467202 (214914) 4205358 (214504) |
See all primes for n>25K at Sierpinski Base 7 primes. | |
9 | 2344 | 5, 7, 13, 73 | k = = 1 mod 2 (2) | 2036 (5M) | 1846 (65376) 1804 (44103) 1884 (16093) 1306 (3374) 914 (1813) 1746 (1320) 1934 (935) 1076 (828) 1272 (480) 1468 (382) |
all-ks-sierp-base9.txt | |
10 | 9175 | 7, 11, 13, 37 | k = = 2 mod 3 (3) | 7666 (3M) | 5028 (83982) 7404 (44826) 8194 (21129) 4069 (12095) 7809 (11793) 6172 (10740) 9021 (8090) 8889 (7588) 804 (5470) 1024 (4554) |
k = 100 and 1000 are GFn's with no known prime. all-ks-sierp-base10.txt |
|
11 | 1490 | 3, 7, 19, 37 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) |
none - proven | 958 (300544) 1468 (26258) 416 (12741) 1046 (3201) 1420 (2564) 626 (991) 1292 (575) 908 (573) 502 (432) 1370 (383) |
all-ks-sierp-base11.txt | |
12 | 521 | 5, 13, 29 | k = = 10 mod 11 (11) | none - proven | 404 (714558) 378 (2388) 261 (644) 407 (367) 354 (291) 37 (199) 30 (144) 88 (113) 17 (78) 239 (71) |
k = 12 and 144 are GFn's with no known prime. all-ks-sierp-base12.txt |
|
13 | 132 | 5, 7, 17 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) |
none - proven | 48 (6267) 120 (1552) 106 (56) 64 (26) 112 (12) 118 (11) 18 (11) 36 (8) 30 (4) 130 (3) |
all-ks-sierp-base13.txt | |
14 | 4 | 3, 5 | k = = 12 mod 13 (13) | none - proven | 3 (1) 2 (1) |
all-ks-sierp-base14.txt | |
15 | 91218919470156 | 13, 17, 113, 211, 241, 1489, 3877 | k = = 1 mod 2 (2) k = = 6 mod 7 (7) |
10362 k's remaining for k<=1G at n>=25K. See k's and test limits at Sierpinski Base 15 remain. |
3859132 (195563) 1868998 (186814) 734268 (180565) 4713672 (83962) 3429436 (78867) 4149714 (72183) 4989408 (67951) 913244 (67709) 3049998 (67110) 1295982 (66064) |
See all primes for n>25K at Sierpinski Base 15 primes. | |
17 | 278 | 3, 5, 29 | k = = 1 mod 2 (2) | 244 (5M) | 262 (186768) 160 (166048) 92 (51311) 88 (4868) 10 (1356) 166 (1068) 208 (984) 104 (871) 128 (225) 106 (144) |
all-ks-sierp-base17.txt | |
18 | 398 | 5, 13, 19 | k = = 16 mod 17 (17) | none - proven | 122 (292318) 381 (24108) 291 (2415) 37 (457) 362 (258) 123 (236) 183 (171) 363 (163) 209 (79) 318 (78) |
k = 18 and 324 are GFn's with no known prime. all-ks-sierp-base18.txt |
|
19 | 765174 | 5, 7, 13, 127, 769 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) |
525 k's remaining at n=200K. See k's at Sierpinski Base 19 remain. |
256134 (199223) 624466 (198780) 353334 (198135) 477744 (197605) 721306 (197530) 142656 (197148) 314326 (196612) 375546 (195324) 60874 (195067) 669456 (194952) |
all-ks-sierp-base19.zip | |
20 | 8 | 3, 7 | k = = 18 mod 19 (19) | none - proven | 6 (15) 7 (2) 4 (2) 5 (1) 3 (1) 2 (1) |
all-ks-sierp-base20.txt | |
21 | 1002 | 11, 13, 17 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) |
none - proven | 118 (19849) 922 (230) 736 (215) 976 (84) 978 (43) 582 (39) 818 (35) 456 (31) 632 (28) 472 (25) |
all-ks-sierp-base21.txt | |
22 | 6694 | 5, 23, 97 | k = = 2 mod 3 (3) k = = 6 mod 7 (7) |
5128 (2M) | 1611 (738988) 1908 (355313) 4233 (304046) 5659 (97758) 6462 (45507) 5061 (24048) 942 (18359) 6234 (16010) 2991 (10484) 5751 (4272) |
k = 22 and 484 are GFn's with no known prime. all-ks-sierp-base22.txt | |
23 | 182 | 3, 5, 53 | k = = 1 mod 2 (2) k = = 10 mod 11 (11) |
none - proven | 68 (365239) 8 (119215) 122 (14049) 124 (3118) 154 (2898) 80 (575) 82 (474) 108 (350) 4 (342) 136 (140) |
all-ks-sierp-base23.txt | |
24 | 30651 | 5, 7, 13, 73, 79 | k = = 22 mod 23 (23) | 61 k's remaining at n=400K. See k's at Sierpinski base 24 remain. |
13984 (397259) 3846 (383526) 23981 (360062) 8369 (359371) 3706 (353908) 12799 (353083) 29009 (338099) 28099 (332519) 21526 (329368) 26804 (266195) |
all-ks-sierp-base24.txt | |
25 | 262638 | 7, 13, 31, 601 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) |
81 k's remaining at n>=350K. See k's and test limits at Sierpinski base 25 remain. |
138514 (1385961) 81556 (1269980) 92158 (1072512) 154222 (1045716) 144052 (1009145) 120160 (884124) 186460 (743994) 92182 (567631) 110488 (458550) 35970 (325889) |
k's < 159986 where k = = 1 mod 3 are being worked on by PrimeGrid's
Sierpinski/Riesel Base 5 project. k's and primes are converted from base 5. all-ks-sierp-base25.zip | |
26 | 221 | 3, 7, 19, 37 | k = = 4 mod 5 (5) | 65 (1M) 155 (1M) |
32 (318071) 217 (11454) 95 (1683) 178 (1154) 138 (827) 157 (308) 175 (276) 211 (98) 197 (71) 13 (68) |
all-ks-sierp-base26.txt | |
27 | 538 | 5, 7, 73 | All k = m^3 for all n; factors to: (m*3^n + 1) * (m^2*9^n - m*3^n + 1) |
k = = 1 mod 2 (2) k = = 12 mod 13 (13) |
398 (2M) | 342 (36291) 526 (7668) 316 (384) 244 (335) 160 (155) 414 (138) 208 (77) 396 (64) 212 (47) 274 (34) |
k = 8, 216, and 512 proven composite by full algebraic factors. all-ks-sierp-base27.txt |
28 | 4554 | 5, 29, 157 | k = = 2 mod 3 (3) | 871 (1M) 4552 (1M) |
3394 (427262) 4233 (331135) 2377 (104621) 1291 (22811) 2203 (13911) 1797 (5681) 2467 (4956) 4177 (3566) 1623 (3295) 2452 (2552) |
all-ks-sierp-base28.txt | |
29 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 6 mod 7 (7) |
none - proven | 2 (1) | all-ks-sierp-base29.txt | |
30 | 867 | 7, 13, 19, 31 | k = = 28 mod 29 (29) | 278 (1M) 588 (1M) |
699 (11837) 242 (5064) 659 (4936) 311 (1760) 559 (1654) 557 (1463) 740 (1135) 12 (1023) 83 (644) 293 (361) |
all-ks-sierp-base30.txt | |
31 | 6360528 | 7, 13, 19, 37, 331 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 4 mod 5 (5) |
503 k's remaining at n=100K. See k's at Sierpinski Base 31 remain. |
3419662 (97826) 1751346 (97378) 2983422 (97021) 3298528 (96957) 4238758 (96859) 2858922 (96460) 10366 (95452) 3679330 (94827) 2645352 (94350) 3866062 (93130) |
||
33 | 1854 | 5, 17, 109 | k = = 1 mod 2 (2) | none - proven | 766 (610412) 1818 (79815) 1678 (46632) 36 (23615) 1718 (16176) 1580 (9213) 1240 (6953) 154 (6846) 596 (6244) 288 (4583) |
||
34 | 6 | 5, 7 | k = = 2 mod 3 (3) k = = 10 mod 11 (11) |
none - proven | 4 (1) 3 (1) |
||
35 | 214018 | 3, 13, 97, 397 | k = = 1 mod 2 (2) k = = 16 mod 17 (17) |
325 k's remaining at n=100K. See k's at Sierpinski Base 35 remain. |
102644 (98619) 166252 (97338) 60878 (97091) 78608 (96777) 16036 (96730) 134618 (96177) 109808 (95759) 105700 (95078) 111398 (94149) 2006 (91431) |
||
36 | 1886 | 13, 31, 37, 43 | k = = 4 mod 5 (5) k = = 6 mod 7 (7) |
none - proven | 960 (1571) 716 (1554) 526 (698) 1096 (407) 1570 (352) 667 (302) 1115 (280) 1517 (192) 128 (172) 1751 (147) |
k = 1296 is a GFn with no known prime. | |
37 | 2604 | 5, 19, 137 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) |
94 (1M) 1272 (1M) 2224 (1M) |
1866 (48305) 2512 (9932) 936 (8608) 334 (6841) 1296 (6196) 1522 (3431) 1774 (3362) 664 (2149) 52 (1628) 1728 (1577) |
||
38 | 14 | 3, 13 | k = = 36 mod 37 (37) | none - proven | 2 (2729) 9 (21) 4 (10) 8 (7) 10 (4) 7 (4) 3 (3) 13 (2) 12 (1) 11 (1) |
k = 1 is a GFn with no known prime. | |
39 | 166134 | 5, 7, 223, 1483 | k = = 1 mod 2 (2) k = = 18 mod 19 (19) |
259 k's remaining at n=100K. See k's at Sierpinski Base 39 remain. |
103164 (99999) 44446 (98862) 52026 (98648) 97926 (98302) 53884 (97647) 46846 (97412) 143834 (96785) 104044 (96577) 64076 (96342) 29984 (96207) |
||
40 | 826477 | 7, 41, 223, 547 | k = = 2 mod 3 (3) k = = 12 mod 13 (13) |
238 k's remaining at n=100K. See k's at Sierpinski Base 40 remain. |
106681 (98153) 201885 (97900) 326236 (97481) 804421 (96594) 284908 (95843) 213609 (95297) 808029 (95230) 234888 (94799) 529965 (93483) 457108 (93385) |
k = 1600 and 64000 are GFn's with no known prime. | |
41 | 8 | 3, 7 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) |
none - proven | 6 (3) 2 (1) |
||
42 | 13372 | 5, 43, 353 | k = = 40 mod 41 (41) | 988 (1M) 1117 (1M) 1421 (1M) 3226 (1M) 4127 (1M) 5503 (1M) 6707 (1M) 8298 (1M) 8601 (1M) 9074 (1M) 11093 (1M) 11717 (1M) 11738 (1M) 11912 (1M) 12256 (1M) |
8343 (560662) 12001 (312245) 12042 (277646) 4643 (143933) 4297 (142044) 4731 (141968) 3897 (136780) 10009 (132629) 2794 (126595) 8300 (116404) |
k = 42 and 1764 are GFn's with no known prime. | |
43 | 2256 | 5, 11, 37 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 6 mod 7 (7) |
166 (1M) | 648 (194123) 1468 (10855) 2146 (3388) 1792 (2569) 450 (1299) 1638 (1043) 2122 (777) 1486 (660) 1954 (546) 618 (542) |
||
44 | 4 | 3, 5 | k = = 42 mod 43 (43) | none - proven | 3 (9) 2 (1) |
||
45 | 53474 | 7, 19, 23, 109 | k = = 1 mod 2 (2) k = = 10 mod 11 (11) |
26 k's remaining at n=250K. See k's at Sierpinski Base 45 remain. |
12260 (238642) 36716 (238457) 9774 (234077) 19022 (213592) 35120 (209441) 47356 (170867) 47910 (160144) 23760 (150560) 20860 (141393) 37556 (106036) |
||
46 | 14992 | 7, 19, 47, 103 | k = = 2 mod 3 (3) k = = 4 mod 5 (5) |
892 (700K) 976 (700K) 1132 (700K) 1798 (700K) 3477 (700K) 3961 (700K) 4842 (700K) 6015 (700K) 9918 (700K) 11686 (700K) 12585 (700K) 13725 (700K) |
11796 (599707) 7675 (424840) 7566 (420563) 3261 (381439) 10950 (301087) 6816 (291720) 14166 (242276) 11751 (163218) 5395 (131937) 13443 (99244) |
||
47 | 8 | 3, 5, 13 | k = = 1 mod 2 (2) k = = 22 mod 23 (23) |
none - proven | 2 (175) 4 (2) 6 (1) |
||
48 | 1219 | 7, 13, 61, 181 | k = = 46 mod 47 (47) | 36 (700K) 62 (700K) 153 (700K) 561 (700K) 1114 (700K) 1168 (700K) |
622 (584089) 937 (309725) 701 (284564) 1077 (216501) 1086 (136352) 1121 (133656) 29 (133042) 841 (84732) 1099 (81106) 359 (35671) |
||
49 | 2944 | 5, 19, 73, 181, 193 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) |
1414 (1M) 1456 (1M) |
1134 (66183) 2694 (60523) 2746 (49438) 186 (33764) 2488 (29737) 774 (18341) 2134 (11099) 1494 (7823) 2922 (7498) 1156 (3206) |
||
50 | 16 | 3, 17 | k = = 6 mod 7 (7) | none - proven | 7 (516) 4 (10) 11 (9) 10 (4) 9 (2) 15 (1) 14 (1) 12 (1) 8 (1) 5 (1) |
k = 1 is a GFn with no known prime. | |
51 | 5183582 | 7, 13, 379, 2551 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) |
4319 k's remaining at n=80K. See k's at Sierpinski Base 51 remain. |
1353756 (79990) 1486278 (79956) 678898 (79935) 2751152 (79848) 440506 (79836) 3878486 (79826) 4176346 (79772) 3420612 (79669) 4380648 (79663) 4701280 (79649) |
||
52 | 28674 | 5, 53, 541 | k = = 2 mod 3 (3) k = = 16 mod 17 (17) |
3232 (500K) 3418 (500K) 8638 (500K) 9943 (500K) 15157 (500K) 15424 (500K) 15901 (500K) 17277 (500K) 18328 (500K) 19081 (500K) 23586 (500K) 24697 (500K) 25492 (500K) 25494 (500K) 26923 (500K) 27877 (500K) |
23902 (382687) 24328 (310932) 2386 (308276) 5619 (231302) 10188 (208273) 28198 (189440) 15636 (186996) 6147 (157091) 16273 (134573) 27082 (131415) |
k = 52 and 2704 are GFn's with no known prime. | |
53 | 1966 | 3, 5, 281 | k = = 1 mod 2 (2) k = = 12 mod 13 (13) |
4 (2.24M) 62 (700K) 152 (700K) 184 (700K) 346 (700K) 866 (700K) 1066 (700K) 1084 (700K) 1154 (700K) 1174 (700K) 1238 (700K) 1298 (700K) 1328 (700K) 1414 (700K) 1426 (700K) 1838 (700K) 1862 (700K) 1892 (700K) |
280 (333574) 8 (227183) 1534 (171870) 544 (157878) 872 (131625) 196 (85016) 338 (82923) 1480 (58038) 1276 (46496) 1816 (42232) |
||
54 | 21 | 5, 11 | k = = 52 mod 53 (53) | none - proven | 19 (103) 16 (30) 13 (7) 12 (4) 4 (3) 20 (2) 18 (2) 11 (2) 6 (2) 17 (1) |
||
55 | 4416 | 7, 17, 89 | k=2500: odd n: factor of 7 n = = 2 mod 4: factor of 17 n = = 0 mod 4: let n=4q and let m=5*55^q; factors to: (2*m^2 + 2m + 1) * (2*m^2 - 2m + 1) |
k = = 1 mod 2 (2) k = = 2 mod 3 (3) |
36 (1M) 778 (1M) 2274 (1M) 3940 (1M) |
4360 (29655) 3886 (27868) 2010 (26234) 1462 (24481) 834 (18504) 610 (12616) 810 (11241) 1114 (7862) 3058 (5259) 3480 (4718) |
|
56 | 20 | 3, 19 | k = = 4 mod 5 (5) k = = 10 mod 11 (11) |
none - proven | 13 (6) 7 (6) 3 (5) 16 (2) 15 (2) 18 (1) 17 (1) 12 (1) 11 (1) 8 (1) |
||
57 | 1188 | 5, 13, 29 | k = = 1 mod 2 (2) k = = 6 mod 7 (7) |
none - proven | 378 (67340) 150 (15759) 14 (14955) 1132 (2636) 1074 (2270) 460 (738) 784 (494) 892 (446) 1178 (372) 564 (311) |
||
58 | 43071 | 5, 59, 673 | k = = 2 mod 3 (3) k = = 18 mod 19 (19) |
96 k's remaining at n=125K. See k's at Sierpinski Base 58 remain. |
12108 (122896) 29124 (122559) 15417 (116850) 7612 (116790) 23424 (116434) 35976 (112155) 34632 (109065) 28321 (95320) 25639 (92935) 29454 (92155) |
k = 58 and 3364 are GFn's with no known prime. | |
59 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 28 mod 29 (29) |
none - proven | 2 (3) | ||
60 | 16957 | 13, 61, 277 | k = = 58 mod 59 (59) | 853 (500K) 1646 (500K) 2075 (500K) 4025 (500K) 4406 (500K) 4441 (500K) 5064 (500K) 6772 (500K) 7262 (500K) 7931 (500K) 10226 (500K) 11406 (500K) 12323 (500K) 13785 (500K) 14958 (500K) 15007 (500K) 15452 (500K) 15676 (500K) 16050 (500K) |
14066 (324990) 16014 (227010) 5767 (201439) 12927 (191870) 11441 (180105) 8923 (109088) 13846 (90979) 2497 (88149) 10405 (77541) 6465 (37209) |
k = 60 and 3600 are GFn's with no known prime. | |
61 | 15168 | 7, 13, 97, 523 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 4 mod 5 (5) |
1642 (500K) 3442 (500K) 3936 (500K) 6852 (500K) 8772 (500K) 9208 (500K) 9268 (500K) 11626 (500K) 12778 (500K) |
8710 (165595) 9952 (111514) 1570 (55386) 8902 (49779) 12678 (47731) 11736 (45311) 3390 (42464) 7348 (40894) 14052 (32735) 12336 (20138) |
||
62 | 8 | 3, 7 | k = = 60 mod 61 (61) | none - proven | 7 (308) 2 (43) 3 (12) 4 (2) 6 (1) 5 (1) |
k = 1 is a GFn with no known prime. | |
63 | 37565868 | 5, 13, 37, 109, 3907 | k=3511808 & 27000000: n = = 1 mod 3: factor of 37 n = = 2 mod 3: factor of 109 n = = 0 mod 3: let n=3q and k=m^3; factors to: (m*63^q + 1) * [m^2*63^(2q) - m*63^q + 1] |
k = = 1 mod 2 (2) k = = 30 mod 31 (31) |
33772 k's remaining at n=25K. See k's at Sierpinski base 63 remain. |
28843694 (24999) 1927378 (24999) 101058 (24999) 26532412 (24998) 30295674 (24997) 22636574 (24997) 15492974 (24995) 4150428 (24995) 33206820 (24994) 401440 (24993) |
|
65 | 10 | 3, 11 | k = = 1 mod 2 (2) | none - proven | 6 (5) 4 (2) 8 (1) 2 (1) |
||
66 | 21314443 | 7, 17, 37, 67, 73, 4357 | k = = 4 mod 5 (5) k = = 12 mod 13 (13) |
10856 k's remaining at n>=25K. See k's and test limits at Sierpinski base 66 remain. |
2268485 (99969) 1885047 (99777) 2014756 (99023) 2760682 (98888) 2935271 (98566) 2199818 (98471) 1896235 (98372) 3182540 (98311) 352890 (98272) 730435 (98236) |
k = 4356, 287496, and 18974736 are GFn's with no known prime. | |
67 | 18342 | 5, 17, 449 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 10 mod 11 (11) |
33 k's remaining at n=250K. See k's at Sierpinski Base 67 remain. |
13294 (215689) 17800 (197288) 8142 (187107) 6516 (181499) 2872 (174623) 12802 (170944) 5668 (170478) 15930 (152250) 15112 (142915) 10758 (115057) |
||
68 | 22 | 3, 23 | k = = 66 mod 67 (67) | 17 (1M) | 12 (656921) 11 (3947) 8 (319) 16 (36) 5 (29) 13 (26) 19 (6) 10 (6) 4 (6) 18 (2) |
k = 1 is a GFn with no known prime. | |
69 | 6 | 5, 7 | k = = 1 mod 2 (2) k = = 16 mod 17 (17) |
none - proven | 4 (1) 2 (1) |
||
70 | 11077 | 13, 29, 71 | k = = 2 mod 3 (3) k = = 22 mod 23 (23) |
10438 (1M) | 9231 (515544) 5608 (429979) 3762 (347127) 4119 (157484) 9471 (28526) 285 (24906) 9586 (24102) 4351 (20359) 7552 (17091) 5857 (12975) |
k = 70 and 4900 are GFn's with no known prime. | |
72 | 731 | 5, 61, 73 | k = = 70 mod 71 (71) | none - proven | 493 (480933) 647 (60536) 489 (20201) 559 (9626) 395 (8171) 444 (6071) 499 (2998) 292 (2779) 649 (2658) 521 (1208) |
k = 72 is a GFn with no known prime. | |
73 | 1444 | 5, 13, 37 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) |
none - proven | 1344 (355570) 778 (220782) 214 (22874) 628 (16143) 432 (2673) 1192 (1696) 1116 (1084) 468 (839) 636 (375) 502 (342) |
||
74 | 4 | 3, 5 | k = = 72 mod 73 (73) | none - proven | 3 (1) 2 (1) |
||
75 | 4086 | 7, 13, 19, 61 | k = = 1 mod 2 (2) k = = 36 mod 37 (37) |
1312 (1.3M) | 2564 (610753) 2336 (43523) 3782 (41086) 2500 (38755) 1082 (15609) 1844 (13296) 2188 (11903) 948 (10963) 1920 (9704) 360 (6333) |
||
76 | 43 | 7, 11 | k = = 2 mod 3 (3) k = = 4 mod 5 (5) |
none - proven | 36 (26) 22 (16) 15 (6) 42 (4) 33 (4) 13 (3) 37 (2) 18 (2) 12 (2) 7 (2) |
||
77 | 14 | 3, 13 | k = = 1 mod 2 (2) k = = 18 mod 19 (19) |
none - proven | 4 (6098) 10 (4) 12 (3) 2 (3) 8 (1) 6 (1) |
||
78 | 186123 | 5, 79, 1217 | k = = 6 mod 7 (7) k = = 10 mod 11 (11) |
120 k's remaining at n=100K. See k's at Sierpinski Base 78 remain. |
117079 (99186) 146623 (98607) 31738 (98568) 184622 (96429) 83107 (95785) 113423 (86660) 149783 (84567) 25281 (83932) 22344 (83678) 12325 (83516) |
k = 78 and 6084 are GFn's with no known prime. | |
79 | 2212516 | 5, 7, 43, 6163 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 12 mod 13 (13) |
6978 k's remaining at n>=50K. See k's and test limits at Sierpinski base 79 remain. |
2626 (170700) 1654 (66839) 1755634 (49957) 1933566 (49954) 62886 (49902) 598776 (49898) 2115426 (49858) 1318392 (49854) 889062 (49817) 2212084 (49809) |
||
80 | 1039 | 3, 7, 13, 43, 173 | k = = 78 mod 79 (79) | 86 (500K) 92 (500K) 166 (500K) 370 (500K) 393 (500K) 472 (500K) 556 (500K) 623 (500K) 692 (500K) 778 (500K) 818 (500K) 968 (500K) |
628 (491322) 295 (404886) 326 (398799) 188 (142291) 433 (121106) 770 (107149) 857 (106007) 787 (48156) 1024 (46306) 233 (36917) |
||
81 | 6068 | 7, 13, 73 | All k=4*q^4 for all n: let k=4*q^4 and let m=q*3^n; factors to: (2*m^2 + 2m + 1) * (2*m^2 - 2m + 1) |
k = = 1 mod 2 (2) k = = 4 mod 5 (5) |
1650 (504K) 2036 (2.5M) 2350 (504K) 2976 (533K) 3440 (504K) 3566 (504K) 3702 (504K) 4016 (504K) 5946 (504K) |
3072 (469325) 2378 (240056) 2182 (204681) 4730 (76088) 2950 (58681) 4470 (56874) 4810 (56535) 558 (51992) 1846 (32688) 5490 (30630) |
k = 2500 proven composite by full algebraic factors. |
82 | 19587 | 5, 7, 13, 37, 83 | k = = 2 mod 3 (3) | 55 k's remaining at n=100K. See k's at Sierpinski Base 82 remain. |
5652 (96054) 7288 (94205) 5101 (88245) 5977 (85004) 9676 (84109) 17692 (82887) 17091 (82407) 19134 (82154) 18168 (71000) 19098 (69654) |
||
83 | 8 | 3, 7 | k = = 1 mod 2 (2) k = = 40 mod 41 (41) |
none - proven | 4 (5870) 6 (1) 2 (1) |
||
84 | 16 | 5, 17 | k = = 82 mod 83 (83) | none - proven | 14 (47) 15 (6) 10 (5) 2 (4) 11 (2) 7 (2) 6 (2) 3 (2) 13 (1) 12 (1) |
||
85 | 346334170 | 37, 43, 193, 2437 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 6 mod 7 (7) |
358422 k's remaining at n>=2.5K. To be shown later. | 340278348 (10000) 310803528 (10000) 344056974 (9999) 340169688 (9999) 324601882 (9999) 320161146 (9998) 341994922 (9996) 335243590 (9996) 316360860 (9994) 314393598 (9994) |
||
86 | 28 | 3, 29 | k = = 4 mod 5 (5) k = = 16 mod 17 (17) |
8 (1M) | 6 (40) 17 (17) 7 (12) 27 (4) 25 (2) 22 (2) 21 (2) 13 (2) 10 (2) 3 (2) |
k = 1 is a GFn with no known prime. | |
87 | 274 | 7, 11, 19, 31 | k = = 1 mod 2 (2) k = = 42 mod 43 (43) |
32 (1M) | 34 (13654) 56 (2176) 12 (1214) 254 (1102) 150 (161) 198 (112) 8 (112) 166 (92) 252 (91) 100 (38) |
||
88 | 4093 | 5, 7, 31, 37, 89 | k = = 2 mod 3 (3) k = = 28 mod 29 (29) |
244 (500K) 958 (500K) 1452 (500K) 1585 (500K) 1678 (500K) 2007 (500K) |
2838 (348438) 1779 (335783) 192 (225546) 978 (198087) 3396 (146911) 2617 (139862) 3292 (39901) 1491 (31709) 2022 (31585) 2749 (30642) |
||
89 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 10 mod 11 (11) |
none - proven | 2 (1) | ||
90 | 27 | 7, 13 | k = = 88 mod 89 (89) | none - proven | 14 (14) 8 (14) 22 (6) 19 (6) 5 (6) 16 (4) 12 (3) 23 (2) 21 (2) 15 (2) |
||
91 | 89586 | 23, 41, 101 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 4 mod 5 (5) |
1678 (500K) 11706 (500K) 14236 (500K) 29970 (500K) 39492 (500K) 39582 (500K) 45058 (500K) 47080 (500K) 51036 (500K) 53742 (500K) 60466 (500K) 64792 (500K) |
58582 (427818) 26472 (357645) 52600 (285235) 252 (219177) 23520 (205187) 12306 (194666) 49656 (144447) 65158 (128927) 6970 (103568) 46062 (95151) |
||
92 | 32 | 3, 31 | k = = 6 mod 7 (7) k = = 12 mod 13 (13) |
none - proven | 31 (416) 8 (109) 17 (59) 29 (47) 24 (38) 10 (24) 16 (12) 7 (6) 23 (5) 22 (4) |
k = 1 is a GFn with no known prime. | |
93 | 24394 | 5, 47, 173 | k = = 1 mod 2 (2) k = = 22 mod 23 (23) |
70 k's remaining at n=100K. See k's at Sierpinski Base 93 remain. |
12092 (97182) 1652 (96929) 9754 (73359) 15818 (68946) 7286 (68324) 8604 (66022) 19568 (62463) 18752 (60545) 14306 (58632) 18658 (57219) |
||
94 | 39 | 5, 19 | k = = 2 mod 3 (3) k = = 30 mod 31 (31) |
none - proven | 9 (263) 31 (54) 16 (26) 34 (19) 24 (7) 36 (4) 37 (3) 33 (3) 4 (3) 21 (2) |
||
95 | 41354 | 3, 7, 13, 229 | k = = 1 mod 2 (2) k = = 46 mod 47 (47) |
365 k's remaining at n=100K. See k's at Sierpinski Base 95 remain. |
35494 (96388) 18898 (95996) 38734 (94144) 22328 (93803) 11728 (93156) 4354 (92390) 14444 (92317) 2138 (91207) 23618 (90989) 12250 (89932) |
||
96 | 353081 | 13, 97, 709 | k = = 4 mod 5 (5) k = = 18 mod 19 (19) |
387 k's remaining at n=100K. See k's at Sierpinski Base 96 remain. |
298488 (99533) 251423 (98967) 171982 (97726) 303045 (96350) 196135 (94894) 337107 (94556) 299632 (94253) 126108 (94133) 319350 (93707) 227977 (93619) |
||
97 | 15996 | 5, 7, 941 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) |
82 k's remaining at n=100K. See k's at Sierpinski Base 97 remain. |
14230 (89409) 11668 (78153) 15436 (76224) 12018 (75277) 13714 (71410) 5088 (66905) 7972 (64231) 6756 (61420) 12888 (57402) 10128 (55229) |
||
98 | 10 | 3, 11 | k = = 96 mod 97 (97) | none - proven | 4 (294) 8 (119) 6 (32) 7 (8) 3 (2) 9 (1) 5 (1) 2 (1) |
k = 1 is a GFn with no known prime. | |
99 | 684 | 5, 13, 29 | k = = 1 mod 2 (2) k = = 6 mod 7 (7) |
none - proven | 284 (48911) 464 (14551) 376 (2758) 294 (2439) 456 (1896) 452 (1497) 126 (590) 546 (456) 614 (313) 316 (198) |
||
100 | 2469 | 7, 13, 37 | k = = 2 mod 3 (3) k = = 10 mod 11 (11) |
433 (1M) 922 (1M) 2145 (1M) |
684 (563559) 64 (529397) 1269 (24225) 75 (16392) 591 (13007) 985 (11049) 2425 (5370) 1026 (4109) 594 (2932) 804 (2735) |
k = 100 is a GFn with no known prime. | |
101 | 16 | 3, 17 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) |
none - proven | 2 (192275) 10 (1506) 12 (1) 8 (1) 6 (1) |
||
102 | 293 | 7, 19, 79 | k = = 100 mod 101 (101) | 122 (400K) 178 (400K) 236 (400K) |
46 (50451) 278 (10941) 94 (6421) 12 (2739) 73 (2040) 131 (1112) 202 (610) 56 (499) 48 (305) 271 (300) |
||
103 | 13794 | 5, 13, 1061 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 16 mod 17 (17) |
44 k's remaining at n=100K. See k's at Sierpinski Base 103 remain. |
6694 (88879) 2944 (83517) 5598 (83136) 7944 (69106) 5290 (68543) 4666 (53415) 2934 (46883) 586 (39616) 12258 (37951) 13768 (30962) |
||
104 | 4 | 3, 5 | k = = 102 mod 103 (103) | none - proven | 2 (1233) 3 (1) |
k = 1 is a GFn with no known prime. | |
105 | 181632 | 37, 53, 149 | k = = 1 mod 2 (2) k = = 12 mod 13 (13) |
51 k's remaining at n=100K. See k's at Sierpinski Base 105 remain. |
35562 (97725) 41890 (84065) 54854 (79861) 104888 (78110) 138596 (76698) 53582 (76673) 8510 (76498) 116334 (72325) 42870 (70202) 30252 (70108) |
||
106 | 495090 | 17, 107, 661 | k = = 2 mod 3 (3) k = = 4 mod 5 (5) k = = 6 mod 7 (7) |
184 k's remaining at n=100K. See k's at Sierpinski Base 106 remain. |
258636 (99237) 172665 (97658) 430320 (96786) 88875 (95150) 242356 (93316) 395056 (89089) 292216 (88771) 48196 (86064) 106317 (85497) 255600 (84993) |
||
107 | 122 | 3, 5, 229 | k = = 1 mod 2 (2) k = = 52 mod 53 (53) |
38 (1M) 68 (1M) |
62 (219967) 94 (105926) 46 (94296) 4 (32586) 40 (4458) 114 (3477) 92 (2247) 76 (736) 70 (584) 56 (137) |
||
108 | 26270 | 7, 13, 109, 127 | k = = 106 mod 107 (107) | 132 k's remaining at n=100K. See k's at Sierpinski Base 108 remain. |
7612 (99261) 7304 (94930) 15874 (94153) 8034 (93577) 2874 (91402) 20666 (91335) 7631 (90728) 9187 (90213) 6759 (89530) 21101 (88027) |
k=108 and 11664 are GFn's with no known prime. | |
109 | 34 | 5, 11 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) |
none - proven | 28 (16) 4 (3) 18 (2) 16 (2) 12 (2) 6 (2) 30 (1) 24 (1) 22 (1) 10 (1) |
||
110 | 38 | 3, 37 | k = = 108 mod 109 (109) | none - proven | 20 (933) 34 (356) 11 (161) 13 (124) 19 (66) 25 (58) 2 (51) 22 (42) 28 (12) 18 (11) |
all-ks-sierp-base110.txt | |
111 | 24340 | 7, 61, 101 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 10 mod 11 (11) |
526 (400K) 3646 (400K) 5230 (400K) 5998 (400K) 6992 (400K) 7260 (400K) 10200 (400K) 11530 (400K) 13630 (400K) 14958 (400K) 17970 (400K) 19200 (400K) 19298 (400K) 20532 (400K) 24242 (400K) 24296 (400K) |
18922 (383954) 4990 (242169) 11628 (221902) 14526 (198094) 6656 (173037) 6966 (172910) 9920 (169700) 3340 (167092) 20922 (145003) 7246 (128084) |
||
112 | 3502 | 5, 13, 113 | k = = 2 mod 3 (3) k = = 36 mod 37 (37) |
1696 (1M) | 3303 (210284) 2757 (80039) 1780 (62794) 547 (8124) 1920 (5333) 2082 (5308) 3132 (3751) 1807 (3619) 1470 (3096) 1131 (2768) |
||
113 | 94 | 3, 19 | k = = 1 mod 2 (2) k = = 6 mod 7 (7) |
none - proven | 4 (2958) 46 (2732) 82 (616) 68 (375) 42 (213) 38 (71) 18 (47) 8 (47) 16 (40) 36 (35) |
||
114 | 24 | 5, 23 | k = = 112 mod 113 (113) | none - proven | 12 (15) 3 (12) 22 (11) 11 (10) 9 (5) 16 (4) 23 (3) 19 (3) 15 (3) 10 (3) |
||
115 | 49794 | 7, 13, 17, 29, 433 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 18 mod 19 (19) |
32 k's remaining at n=100K. See k's at Sierpinski Base 115 remain. |
47086 (83695) 19402 (74778) 44980 (65084) 36976 (60596) 47346 (49848) 30 (47376) 38832 (43260) 47356 (36091) 13426 (35863) 11068 (33692) |
||
116 | 25 | 3, 13 | k = = 4 mod 5 (5) k = = 22 mod 23 (23) |
none - proven | 12 (47) 20 (5) 10 (4) 7 (4) 23 (3) 5 (3) 16 (2) 13 (2) 6 (2) 21 (1) |
||
117 | 2184 | 5, 37, 59 | k = = 1 mod 2 (2) k = = 28 mod 29 (29) |
1474 (1M) | 58 (460033) 386 (287544) 1082 (235482) 2172 (180355) 1776 (141799) 1778 (68489) 884 (16717) 1276 (8565) 882 (7896) 1678 (6953) |
||
118 | 69 | 7, 17 | k = = 2 mod 3 (3) k = = 12 mod 13 (13) |
48 (1M) | 43 (106) 36 (96) 18 (80) 33 (67) 52 (48) 3 (46) 15 (22) 58 (11) 21 (7) 61 (5) |
||
119 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 58 mod 59 (59) |
none - proven | 2 (1) | ||
121 | 360 | 7, 19, 37 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 4 mod 5 (5) |
none - proven | 306 (960) 172 (96) 352 (86) 42 (60) 166 (57) 160 (53) 76 (44) 60 (31) 88 (27) 250 (21) |
||
122 | 40 | 3, 41 | k = = 10 mod 11 (11) | 34 (1M) | 37 (1622) 31 (1236) 16 (764) 2 (755) 25 (674) 23 (389) 17 (371) 4 (358) 5 (135) 28 (108) |
k = 1 is a GFn with no known prime. | |
123 | 2138 | 5, 17, 31 | k = = 1 mod 2 (2) k = = 60 mod 61 (61) |
122 (400K) 404 (400K) 650 (400K) 1816 (400K) 1826 (400K) 1952 (400K) |
1706 (339764) 166 (23517) 222 (21728) 94 (16302) 1172 (11889) 1520 (10146) 1868 (8507) 1024 (7098) 526 (6223) 1272 (4260) |
||
125 | 8 | 3, 7 | k = = 1 mod 2 (2) k = = 30 mod 31 (31) |
none - proven | 4 (2) 6 (1) 2 (1) |
||
126 | 766700 | 13, 19, 127, 829 | k = = 4 mod 5 (5) | 1217 k's remaining at n=25K. See k's at Sierpinski Base 126 remain. |
207250 (24988) 439292 (24955) 583385 (24932) 340961 (24891) 38705 (24871) 693735 (24829) 142776 (24809) 665688 (24666) 757192 (24606) 269233 (24597) |
k = 15876 is a GFn with no known prime. | |
129 | 14 | 5, 13 | k = = 1 mod 2 (2) | none - proven | 6 (16796) 4 (19) 2 (6) 12 (1) 10 (1) 8 (1) |
||
130 | 1021537 | 7, 31, 131, 541 | k = = 2 mod 3 (3) k = = 42 mod 43 (43) |
1572 k's remaining at n=25K. See k's at Sierpinski Base 130 remain. |
907203 (24984) 639295 (24904) 160212 (24889) 317236 (24886) 896167 (24839) 46542 (24839) 172609 (24708) 521769 (24660) 800425 (24648) 335919 (24634) |
k = 16900 is a GFn with no known prime. | |
131 | 10 | 3, 11 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 12 mod 13 (13) |
none - proven | 8 (1) 6 (1) 2 (1) |
||
132 | 13 | 5, 7, 17 | k = = 130 mod 131 (131) | none - proven | 6 (5) 7 (3) 12 (2) 9 (2) 8 (2) 4 (2) 2 (2) 11 (1) 10 (1) 5 (1) |
||
133 | 1944 | 5, 29, 67 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 10 mod 11 (11) |
88 (300K) 1138 (300K) 1336 (300K) |
220 (4172) 672 (3929) 180 (2758) 336 (1736) 1122 (1520) 1876 (1488) 1114 (1474) 1158 (1427) 114 (1114) 474 (455) |
||
134 | 4 | 3, 5 | k = = 6 mod 7 (7) k = = 18 mod 19 (19) |
none - proven | 3 (4) 2 (1) |
||
135 | 1112 | 7, 43, 61 | k = = 1 mod 2 (2) k = = 66 mod 67 (67) |
222 (400K) 734 (400K) 766 (400K) 1106 (400K) |
304 (114227) 80 (47646) 832 (40885) 868 (26204) 50 (4875) 964 (3007) 118 (2747) 460 (1608) 1084 (1328) 278 (1284) |
||
136 | 90693 | 7, 43, 61, 137 | k = = 2 mod 3 (3) k = = 4 mod 5 (5) |
58 k's remaining at n=100K. See k's at Sierpinski Base 136 remain. |
52681 (98043) 14797 (96356) 10183 (93483) 42913 (92663) 36052 (90860) 71902 (86837) 89793 (78866) 11425 (78018) 4528 (77633) 54271 (70410) |
k = 136 and 18496 are GFn's with no known prime. | |
137 | 22 | 3, 23 | k = = 1 mod 2 (2) k = = 16 mod 17 (17) |
none - proven | 2 (327) 10 (102) 14 (93) 4 (18) 12 (3) 20 (1) 18 (1) 8 (1) 6 (1) |
||
138 | 2781 | 5, 13, 139 | k = = 136 mod 137 (137) | 211 (500K) 344 (500K) 678 (500K) 1188 (500K) 1444 (500K) 1494 (500K) 1818 (500K) 2371 (500K) 2627 (500K) |
2636 (469911) 2189 (345010) 2354 (314727) 1019 (274533) 1789 (271671) 141 (244616) 2416 (214921) 866 (212835) 2062 (192750) 47 (136218) |
k = 138 is a GFn with no known prime. | |
139 | 6 | 5, 7 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 22 mod 23 (23) |
none - proven | 4 (1) | ||
140 | 46 | 3, 47 | k = = 138 mod 139 (139) | 8 (1M) | 16 (251178) 34 (136) 29 (103) 38 (79) 13 (64) 28 (44) 11 (37) 44 (31) 10 (24) 14 (23) |
||
141 | 129697332 | 13, 19, 71, 1039, 4201 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 6 mod 7 (7) |
283945 k's remaining at n=2.5K. To be shown later. | 129423588 (2500) 128781292 (2500) 123868692 (2500) 122492042 (2500) 120910090 (2500) 120890778 (2500) 120342712 (2500) 120340292 (2500) 116209530 (2500) 112200232 (2500) |
||
142 | 12 | 11, 13 | k = = 2 mod 3 (3) k = = 46 mod 47 (47) |
none - proven | 10 (407) 7 (23) 3 (2) 9 (1) 6 (1) 4 (1) |
||
143 | 7628 | 3, 5, 409 | k = = 1 mod 2 (2) k = = 70 mod 71 (71) |
117 k's remaining at n=100K. See k's at Sierpinski Base 143 remain. |
5840 (97373) 1396 (91188) 4954 (89862) 3878 (89327) 5662 (88798) 5410 (88240) 6064 (88138) 7568 (78631) 2386 (78380) 6520 (76102) |
||
144 | 59 | 5, 29 | k = = 10 mod 11 (11) k = = 12 mod 13 (13) |
none - proven | 34 (3061) 37 (1154) 6 (782) 31 (102) 55 (88) 30 (72) 35 (42) 17 (39) 46 (16) 40 (15) |
k = 1 is a GFn with no known prime. | |
145 | 430482 | 7, 19, 73, 157 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) |
264 k's remaining at n=100K. See k's at Sierpinski Base 145 remain. |
331056 (99382) 235308 (99155) 17098 (97461) 262782 (96171) 135346 (95557) 257472 (94968) 366096 (94770) 84024 (93402) 328878 (93201) 204180 (92711) |
||
146 | 8 | 3, 7 | k = = 4 mod 5 (5) k = = 28 mod 29 (29) |
none - proven | 5 (3) 7 (2) 6 (1) 3 (1) 2 (1) |
||
147 | 17946 | 5, 37, 97, 137 | k = = 1 mod 2 (2) k = = 72 mod 73 (73) |
37 k's remaining at n=100K. See k's at Sierpinski Base 147 remain. |
8818 (99720) 15726 (87760) 5884 (80094) 9478 (75558) 976 (72664) 10306 (66309) 9878 (65829) 4772 (64147) 3442 (57146) 6992 (52487) |
||
148 | 4471 | 5, 13, 149 | k = = 2 mod 3 (3) k = = 6 mod 7 (7) |
2361 (1M) | 802 (114769) 3193 (104224) 4336 (103383) 2548 (85454) 876 (64416) 684 (31329) 1638 (18523) 3708 (15935) 4165 (15920) 3225 (15617) |
k = 148 is a GFn with no known prime. | |
149 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 36 mod 37 (37) |
none - proven | 2 (3) | ||
150 | 49074 | 7, 31, 103, 151 | k = = 148 mod 149 (149) | 69 k's remaining at n=100K. See k's at Sierpinski Base 150 remain. |
2529 (95448) 25295 (93740) 43789 (91123) 30505 (91058) 15402 (88775) 610 (87338) 41663 (83930) 22810 (81558) 26349 (75650) 22237 (72247) |
||
151 | 83316 | 13, 19, 877 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 4 mod 5 (5) |
92 k's remaining at n=200K. See k's at Sierpinski Base 151 remain. |
83110 (184411) 81112 (179764) 48166 (174188) 71422 (162094) 1728 (155323) 53676 (153270) 74476 (149055) 43438 (141982) 26580 (124195) 22602 (122888) |
||
152 | 16 | 3, 17 | k = = 150 mod 151 (151) | none - proven | 11 (837) 6 (27) 4 (18) 13 (8) 9 (7) 12 (4) 2 (3) 10 (2) 7 (2) 15 (1) |
||
153 | 34 | 7, 11 | k = = 1 mod 2 (2) k = = 18 mod 19 (19) |
none - proven | 32 (33) 16 (9) 22 (6) 26 (3) 28 (2) 12 (2) 8 (2) 30 (1) 24 (1) 20 (1) |
||
154 | 61 | 5, 31 | k = = 2 mod 3 (3) k = = 16 mod 17 (17) |
none - proven | 40 (9256) 36 (138) 31 (88) 37 (79) 43 (15) 9 (15) 21 (4) 55 (3) 28 (3) 51 (2) |
||
155 | 14 | 3, 13 | k = = 1 mod 2 (2) k = = 6 mod 7 (7) k = = 10 mod 11 (11) |
4 (1.7M) | 8 (5) 12 (1) 2 (1) |
||
157 | 1344 | 5, 17, 79 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 12 mod 13 (13) |
1174 (1M) 1228 (1M) |
684 (375674) 78 (15433) 1072 (15383) 1186 (11196) 898 (10569) 222 (4187) 18 (3873) 1242 (1819) 394 (929) 706 (761) |
||
158 | 52 | 3, 53 | k = = 156 mod 157 (157) | none - proven | 8 (123475) 48 (24191) 32 (13401) 38 (10519) 27 (4966) 20 (1633) 37 (1034) 4 (874) 43 (178) 47 (141) |
||
159 | 36 | 5, 13, 37, 97 | k = = 1 mod 2 (2) k = = 78 mod 79 (79) |
none - proven | 12 (121) 4 (29) 24 (9) 26 (6) 8 (5) 18 (4) 14 (3) 10 (3) 2 (3) 32 (2) |
||
160 | 22 | 7, 23 | k = = 2 mod 3 (3) k = = 52 mod 53 (53) |
none - proven | 18 (27) 16 (4) 9 (4) 7 (4) 6 (3) 15 (2) 12 (2) 3 (2) 21 (1) 19 (1) |
||
161 | 1760 | 3, 13, 17, 41 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) |
122 (300K) 560 (300K) 632 (300K) 892 (300K) 1228 (300K) 1600 (300K) |
1682 (261371) 1328 (99591) 898 (94352) 1256 (56609) 1178 (48001) 350 (42125) 512 (41767) 1586 (19361) 1526 (12903) 1702 (12482) |
||
162 | 6193 | 5, 13, 37, 61, 163 | k = = 6 mod 7 (7) k = = 22 mod 23 (23) |
1248 (300K) 1438 (300K) 2609 (300K) 3096 (300K) 4831 (300K) 5706 (300K) 5869 (300K) |
6102 (230090) 2212 (227663) 3052 (200790) 1764 (76926) 3496 (60128) 1250 (58127) 933 (55381) 2163 (49760) 2377 (47102) 1398 (33797) |
||
163 | 4192 | 7, 19, 67 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) |
12 (500K) 94 (500K) 1188 (500K) 1242 (500K) 1272 (500K) 1986 (500K) 2008 (500K) 2298 (500K) 2362 (500K) 2656 (500K) 2712 (500K) 3552 (500K) 3648 (500K) |
3286 (135773) 3660 (132815) 66 (107651) 2442 (104888) 1224 (33589) 2820 (29308) 1774 (28413) 216 (28267) 3856 (21892) 4060 (19818) |
||
164 | 4 | 3, 5 | k = = 162 mod 163 (163) | none - proven | 3 (4) 2 (3) |
||
165 | 2974 | 7, 13, 43 | k = = 1 mod 2 (2) k = = 40 mod 41 (41) |
1252 (300K) 1486 (300K) 1798 (300K) |
194 (196199) 1154 (82091) 500 (55335) 550 (39769) 1104 (32462) 1426 (32448) 220 (27349) 1742 (27091) 2792 (26111) 2846 (18005) |
||
166 | 140947 | 7, 13, 43, 167 | k = = 2 mod 3 (3) k = = 4 mod 5 (5) k = = 10 mod 11 (11) |
85 k's remaining at n=100K. See k's at Sierpinski Base 166 remain. |
66558 (98155) 136200 (88570) 75156 (82754) 125121 (82419) 58225 (77829) 136560 (76666) 36240 (74390) 79845 (72275) 99792 (68181) 49372 (68028) |
k = 166 and 27556 are GFn's with no known prime. | |
167 | 8 | 3, 7 | k = = 1 mod 2 (2) k = = 82 mod 83 (83) |
none - proven | 2 (6547) 6 (25) 4 (10) |
||
168 | 9244 | 5, 13, 17, 73 | k = = 166 mod 167 (167) | 70 k's remaining at n=100K. See k's at Sierpinski Base 168 remain. |
1561 (97864) 1398 (80456) 5942 (77280) 4432 (73477) 8072 (68617) 7188 (62211) 3394 (55546) 2614 (54002) 7240 (50425) 6892 (48868) |
k = 1 and 168 are GFn's with no known prime. | |
169 | 16 | 5, 17 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 6 mod 7 (7) |
none - proven | 10 (2) 12 (1) 4 (1) |
||
170 | 20 | 3, 19 | k = = 12 mod 13 (13) | none - proven | 7 (178) 5 (175) 19 (36) 17 (21) 13 (4) 3 (3) 2 (3) 16 (2) 10 (2) 4 (2) |
||
171 | 18790 | 7, 13, 37, 43, 67 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 16 mod 17 (17) |
988 (300K) 1420 (300K) 3998 (300K) 4448 (300K) 9418 (300K) 10356 (300K) 10708 (300K) 11826 (300K) 13290 (300K) 13698 (300K) 13716 (300K) |
8300 (472170) 10020 (274566) 13460 (241448) 30 (229506) 8986 (162913) 17852 (130704) 8046 (122785) 18448 (85558) 17606 (62387) 14940 (59132) |
||
172 | 108 | 7, 13, 109 | k = = 2 mod 3 (3) k = = 18 mod 19 (19) |
none - proven | 73 (1701) 96 (669) 52 (259) 22 (108) 79 (79) 54 (35) 51 (35) 48 (26) 40 (23) 19 (15) |
||
173 | 28 | 3, 29 | k = = 1 mod 2 (2) k = = 42 mod 43 (43) |
none - proven | 10 (264234) 8 (323) 26 (23) 4 (10) 16 (8) 22 (4) 12 (4) 18 (2) 24 (1) 20 (1) |
||
174 | 6 | 5, 7 | k = = 172 mod 173 (173) | 4 (1M) | 5 (2) 3 (1) 2 (1) |
||
176 | 58 | 3, 59 | k = = 4 mod 5 (5) k = = 6 mod 7 (7) |
none - proven | 32 (3591) 37 (3088) 35 (995) 50 (213) 10 (146) 28 (24) 46 (16) 31 (14) 57 (12) 7 (12) |
||
177 | 3648 | 5, 13, 89 | k = = 1 mod 2 (2) k = = 10 mod 11 (11) |
446 (500K) 558 (500K) 1074 (500K) 1158 (500K) 1622 (500K) 1868 (500K) 2226 (500K) 2250 (500K) 2758 (500K) 3292 (500K) |
1126 (391360) 1536 (347600) 2152 (270059) 1338 (183598) 2036 (182624) 622 (111511) 242 (83855) 1762 (79972) 2798 (78238) 2692 (71820) |
||
178 | 1585 | 13, 19, 43 | k = = 2 mod 3 (3) k = = 58 mod 59 (59) |
126 (300K) 357 (300K) 480 (300K) 550 (300K) 639 (300K) 688 (300K) 730 (300K) 844 (300K) 859 (300K) 867 (300K) 1461 (300K) |
136 (147501) 582 (146568) 576 (109608) 283 (81663) 372 (42160) 96 (41696) 474 (28627) 610 (28243) 1383 (24207) 768 (12906) |
k = 178 is a GFn with no known prime. | |
179 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 88 mod 89 (89) |
none - proven | 2 (1) | ||
180 | 1679679 | 7, 31, 181, 1051 | k = = 178 mod 179 (179) | 11748 k's remaining at n=10K. See k's at Sierpinski Base 180 remain. |
445633 (10000) 56291 (9999) 835414 (9998) 223612 (9998) 1554393 (9996) 65664 (9994) 811059 (9988) 607956 (9988) 251990 (9983) 758834 (9982) |
||
181 | 118 | 7, 13 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 4 mod 5 (5) |
none - proven | 78 (56) 66 (48) 28 (40) 90 (17) 88 (13) 106 (10) 112 (9) 100 (8) 40 (6) 36 (4) |
||
182 | 23 | 3, 5, 53 | k = = 180 mod 181 (181) | 8 (1M) | 9 (263) 19 (90) 4 (70) 2 (15) 13 (12) 20 (5) 18 (4) 16 (4) 7 (4) 17 (3) |
k = 1 is a GFn with no known prime. | |
183 | 1036 | 5, 17, 23 | k = = 1 mod 2 (2) k = = 6 mod 7 (7) k = = 12 mod 13 (13) |
none - proven | 866 (262883) 392 (26836) 548 (2436) 344 (793) 758 (699) 786 (516) 212 (489) 500 (315) 24 (298) 856 (276) |
||
184 | 36 | 5, 37 | k = = 2 mod 3 (3) k = = 60 mod 61 (61) |
none - proven | 16 (298) 6 (40) 4 (29) 3 (11) 12 (10) 10 (9) 24 (3) 19 (3) 15 (3) 31 (2) |
||
185 | 32 | 3, 31 | k = = 1 mod 2 (2) k = = 22 mod 23 (23) |
10 (1M) | 4 (414) 6 (170) 28 (102) 30 (5) 26 (5) 2 (3) 16 (2) 24 (1) 20 (1) 18 (1) |
||
186 | 67 | 11, 17 | k = = 4 mod 5 (5) k = = 36 mod 37 (37) |
none - proven | 65 (18879) 56 (300) 35 (134) 16 (107) 40 (98) 52 (72) 45 (58) 50 (25) 3 (12) 41 (11) |
k = 1 is a GFn with no known prime. | |
187 | 798 | 5, 13, 47 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 30 mod 31 (31) |
none - proven | 486 (212627) 328 (63925) 742 (24856) 502 (12082) 430 (907) 544 (609) 642 (515) 282 (343) 684 (297) 720 (268) |
||
188 | 8 | 3, 7 | k = = 10 mod 11 (11) k = = 16 mod 17 (17) |
none - proven | 4 (26) 2 (9) 7 (2) 3 (2) 6 (1) 5 (1) |
||
189 | 56 | 5, 19 | k = = 1 mod 2 (2) k = = 46 mod 47 (47) |
none - proven | 18 (171175) 36 (44) 16 (42) 20 (36) 54 (35) 6 (34) 24 (15) 50 (9) 28 (9) 30 (7) |
||
190 | 3146151 | 13, 191, 2777 | k = = 2 mod 3 (3) k = = 6 mod 7 (7) |
4749 k's remaining at n=10K. See k's at Sierpinski Base 190 remain. |
2743963 (9999) 1034733 (9999) 3114759 (9998) 2853439 (9998) 776442 (9998) 2843040 (9996) 2709387 (9989) 2692249 (9988) 1612521 (9984) 245298 (9980) |
||
191 | 302 | 3, 17, 37 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 18 mod 19 (19) |
52 (300K) 68 (300K) 172 (300K) |
178 (52494) 150 (44271) 292 (10014) 48 (4936) 28 (4490) 38 (4043) 130 (4008) 238 (3138) 248 (1619) 10 (1314) |
||
192 | 7879 | 5, 7, 13, 31, 101 | k = = 190 mod 191 (191) | 56 k's remaining at n=100K. See k's at Sierpinski Base 192 remain. |
1122 (89238) 5594 (86270) 5675 (74618) 3473 (69049) 4566 (67168) 2829 (63997) 6878 (60430) 5375 (54124) 6898 (52349) 7586 (49923) |
k = 192 is a GFn with no known prime. | |
193 | 14454 | 5, 97, 149 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) |
39 k's remaining at n=100K. See k's at Sierpinski Base 193 remain. |
5182 (99278) 11758 (98298) 12172 (98288) 2062 (81308) 3874 (79825) 9112 (75416) 12846 (70045) 9166 (67795) 6642 (66646) 6796 (65716) |
||
194 | 4 | 3, 5 | k = = 192 mod 193 (193) | none - proven | 3 (2) 2 (1) |
||
196 | 2730222 | 41, 197, 937 | k = = 2 mod 3 (3) k = = 5 mod 5 (5) k = = 12 mod 13 (13) |
2518 k's remaining at n=25K. See k's at Sierpinski Base 196 remain. |
2024692 (24964) 755131 (24950) 2575696 (24928) 831511 (24921) 645081 (24908) 1023205 (24896) 890665 (24845) 1893760 (24835) 2089113 (24831) 748560 (24814) |
k = 196 and 38416 are GFn's with no known prime. | |
197 | 10 | 3, 11 | k = = 1 mod 2 (2) k = = 6 mod 7 (7) |
none - proven | 4 (6) 8 (5) 2 (3) |
||
198 | 4105 | 7, 13, 19, 2053 | k = = 196 mod 197 (197) | 36 k's remaining at n=100K. See k's at Sierpinski Base 198 remain. |
1074 (86150) 2976 (78439) 4014 (73851) 2864 (62462) 2084 (56478) 706 (55247) 2253 (54740) 621 (53839) 3962 (49750) 758 (47832) |
||
199 | 13224 | 5, 7, 13, 433 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 10 mod 11 (11) |
41 k's remaining at n=100K. See k's at Sierpinski Base 199 remain. |
5626 (99962) 1096 (96048) 2176 (95974) 8154 (82511) 4866 (77902) 11476 (73026) 2358 (64862) 9634 (57503) 10876 (56846) 96 (54582) |
||
200 | 47 | 3, 13, 17 | k=16: odd n: factor of 3 n = = 0 mod 4: factor of 17 n = = 2 mod 4: let n = 4*q - 2 and let m = 20^q*10^(q-1); factors to: (2*m^2 + 2m + 1) * (2*m^2 - 2m + 1) |
k = = 198 mod 199 (199) | 40 (1M) | 25 (21874) 10 (6036) 13 (1858) 38 (1669) 26 (1011) 5 (767) 34 (710) 19 (528) 46 (226) 43 (124) |
k = 1 is a GFn with no known prime. |
201 | 4613782 | 7, 19, 101, 2137 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) |
29202 k's remaining at n=2.5K. To be shown later. | 3299008 (2500) 1774450 (2500) 1419250 (2500) 1391226 (2500) 581390 (2500) 42642 (2500) 1716392 (2499) 1589032 (2499) 992568 (2499) 731790 (2499) |
||
202 | 57 | 7, 29 | k = = 2 mod 3 (3) k = = 66 mod 67 (67) |
none - proven | 27 (17723) 36 (1268) 24 (453) 19 (158) 9 (30) 12 (22) 13 (21) 43 (18) 49 (10) 22 (10) 16 (7) |
k = 1 is a GFn with no known prime. | |
203 | 16 | 3, 17 | k = = 1 mod 2 (2) k = = 100 mod 101 (101) |
none - proven | 10 (2956) 2 (105) 8 (7) 6 (3) 4 (2) 14 (1) 12 (1) |
||
204 | 81 | 5, 41 | k = = 6 mod 7 (7) k = = 28 mod 29 (29) |
4 (1M) | 21 (6096) 12 (4586) 54 (159) 79 (145) 8 (79) 56 (52) 11 (50) 74 (39) 29 (27) 64 (25) |
||
205 | 138330 | 7, 13, 103, 3217 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 16 mod 17 (17) |
76 k's remaining at n=100K. See k's at Sierpinski Base 205 remain. |
84412 (90949) 36154 (88060) 31002 (86633) 9064 (81140) 48460 (80884) 16294 (80850) 122860 (78381) 130914 (77588) 106378 (76573) 57522 (74097) |
||
206 | 22 | 3, 23 | k = = 4 mod 5 (5) k = = 40 mod 41 (41) |
none - proven | 2 (46205) 16 (860) 8 (13) 20 (5) 17 (5) 13 (4) 10 (4) 7 (4) 15 (2) 21 (1) |
||
207 | 9426 | 5, 13, 857 | k = = 1 mod 2 (2) k = = 102 mod 103 (103) |
74 k's remaining at n=100K. See k's at Sierpinski Base 207 remain. |
4252 (95004) 4718 (93969) 2742 (84791) 976 (77008) 6278 (75593) 8854 (75514) 6956 (74720) 3782 (70879) 3576 (64880) 532 (58927) |
||
208 | 153 | 11, 19 | k = = 2 mod 3 (3) k = = 22 mod 23 (23) |
none - proven | 88 (130796) 96 (5836) 73 (3546) 111 (1120) 13 (142) 120 (121) 54 (83) 7 (69) 37 (33) 106 (31) |
||
209 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 12 mod 13 (13) |
none - proven | 2 (1) | ||
211 | 20238 | 13, 31, 37 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 4 mod 5 (5) k = = 6 mod 7 (7) |
1962 (300K) 3130 (300K) 5152 (300K) 5248 (300K) 6942 (300K) 7686 (300K) 11820 (300K) 13732 (300K) 14778 (300K) 15318 (300K) 15636 (300K) 16026 (300K) 18420 (300K) |
5758 (244970) 13212 (162393) 9906 (72179) 10440 (44039) 16600 (42863) 7050 (38592) 18750 (37130) 20212 (35583) 3378 (31594) 17250 (29927) |
||
212 | 70 | 3, 71 | k = = 210 mod 211 (211) | 4 (1.0058M) 6 (500K) 64 (1M) 68 (500K) |
56 (88905) 38 (81053) 62 (48955) 47 (6187) 27 (3082) 49 (734) 32 (547) 40 (382) 46 (216) 51 (119) |
k = 1 is a GFn with no known prime. | |
213 | 4174 | 5, 13, 107 | k = = 1 mod 2 (2) k = = 52 mod 53 (53) |
164 (300K) 1052 (300K) 1604 (300K) 1794 (300K) 1906 (300K) 2142 (300K) 2848 (300K) 2956 (300K) 3372 (300K) 3396 (300K) 3518 (300K) 3838 (300K) 4156 (300K) 4166 (300K) |
1806 (229825) 1586 (214993) 3814 (175867) 2890 (167162) 1026 (151285) 2032 (140757) 1962 (112173) 3602 (85261) 2984 (74663) 710 (69185) |
||
214 | 171 | 5, 43 | k = = 2 mod 3 (3) k = = 70 mod 71 (71) |
87 (500K) 106 (500K) |
39 (42495) 24 (33015) 31 (13468) 34 (12217) 19 (5711) 76 (2242) 129 (835) 159 (125) 63 (59) 54 (53) |
k = 1 is a GFn with no known prime. | |
215 | 19924 | 3, 29, 797 | k = = 1 mod 2 (2) k = = 106 mod 107 (107) |
304 k's remaining at n=100K. See k's at Sierpinski Base 215 remain. |
15482 (99473) 14356 (98992) 2642 (94327) 11798 (84763) 11978 (82309) 15632 (80503) 16876 (78514) 8474 (78239) 8948 (77815) 19700 (75163) |
||
216 | 92 | 7, 31 | All k = m^3 for all n; factors to: (m*6^n + 1) * (m^2*36^n - m*6^n + 1) |
k = = 4 mod 5 (5) k = = 42 mod 43 (43) |
none - proven | 50 (306) 43 (112) 5 (49) 67 (43) 66 (35) 47 (34) 20 (33) 41 (31) 68 (16) 78 (14) |
k = 1, 8, and 27 proven composite by full algebraic factors. k = 36 is a GFn with no known prime. |
217 | 1854 | 5, 17, 109 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) |
1356 (600K) | 1278 (57970) 1546 (26135) 834 (14519) 778 (14176) 558 (5669) 576 (4648) 1048 (3806) 744 (2955) 762 (1931) 844 (1441) |
||
218 | 74 | 3, 73 | k = = 6 mod 7 (7) k = = 30 mod 31 (31) |
17 (1M) | 2 (333925) 50 (11339) 70 (9538) 49 (6766) 59 (3669) 46 (560) 38 (443) 52 (396) 72 (289) 73 (282) |
k = 1 is a GFn with no known prime. | |
219 | 34 | 5, 11 | k = = 1 mod 2 (2) k = = 108 mod 109 (109) |
none - proven | 12 (29230) 16 (106) 32 (13) 26 (6) 10 (5) 20 (4) 6 (4) 24 (3) 22 (2) 30 (1) |
||
220 | 103 | 13, 17 | k = = 2 mod 3 (3) k = = 72 mod 73 (73) |
none - proven | 27 (205486) 79 (132) 88 (36) 7 (25) 58 (18) 66 (16) 51 (15) 33 (13) 28 (13) 31 (12) |
||
221 | 38 | 3, 37 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 10 mod 11 (11) |
none - proven | 28 (80) 18 (21) 36 (11) 22 (6) 8 (5) 16 (4) 26 (3) 12 (3) 30 (2) 20 (1) |
||
222 | 389359 | 7, 31, 43, 223 | k = = 12 mod 13 (13) k = = 16 mod 17 (17) |
1235 k's remaining at n=100K. See k's at Sierpinski Base 222 remain. |
321791 (99908) 234897 (98884) 92406 (98431) 45939 (97926) 311434 (97755) 230201 (97635) 171877 (97623) 117924 (97501) 297037 (97048) 300607 (96895) |
k = 222 and 49284 are GFn's with no known prime. | |
223 | 57814 | 5, 7, 13, 31, 61 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 36 mod 37 (37) |
529 k's remaining at n=30K. See k's at Sierpinski Base 223 remain. |
48126 (29852) 11964 (29642) 38256 (29340) 35176 (29268) 40512 (29192) 19594 (28690) 8632 (27960) 8458 (27919) 45396 (27896) 14134 (27682) |
||
224 | 4 | 3, 5 | k = = 222 mod 223 (223) | none - proven | 3 (1) 2 (1) |
||
225 | 117406 | 17, 113, 1489 | k=114244: for even n let k=4*q^4 and let m=q*15^(n/2); factors to: (2*m^2 + 2m + 1) * (2*m^2 - 2m + 1) odd n: factor of 113 |
k = = 1 mod 2 (2) k = = 6 mod 7 (7) |
80 k's remaining at n=100K. See k's at Sierpinski Base 225 remain. |
42156 (96360) 6598 (94326) 74940 (91226) 21364 (90399) 67914 (89558) 73228 (89023) 84184 (85983) 58884 (85226) 116214 (84861) 57204 (82597) |
|
226 | 1547460 | 7, 211, 227, 241 | k = = 2 mod 3 (3) k = = 4 mod 5 (5) |
14985 k's remaining at n=2.5K. To be shown later. | 1367716 (2499) 1140963 (2499) 420523 (2499) 1516717 (2498) 1118088 (2498) 999421 (2498) 730162 (2498) 492097 (2498) 318135 (2498) 824910 (2497) |
k = 226 and 51076 are GFn's with no known prime. | |
227 | 20 | 3, 19 | k = = 1 mod 2 (2) k = = 112 mod 113 (113) |
18 (1M) | 4 (13346) 16 (1156) 10 (84) 6 (20) 8 (5) 14 (3) 2 (3) 12 (2) |
||
228 | 1146 | 5, 37, 229 | k = = 226 mod 227 (227) | 327 (500K) 915 (500K) |
188 (374503) 196 (156032) 292 (50916) 586 (32685) 754 (27026) 223 (23944) 1063 (23822) 1047 (14536) 727 (8617) 469 (6070) |
||
229 | 24 | 5, 23 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 18 mod 19 (19) |
none - proven | 6 (308) 4 (21) 16 (6) 10 (2) 22 (1) 12 (1) |
||
230 | 8 | 3, 7 | k = = 228 mod 229 (229) | 4 (1M) | 7 (6) 6 (1) 5 (1) 3 (1) 2 (1) |
||
231 | 251748 | 13, 29, 61, 67 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 22 mod 23 (23) |
95 k's remaining at n=100K. See k's at Sierpinski Base 231 remain. |
56058 (97376) 14702 (95801) 123512 (91534) 3798 (90267) 139868 (90022) 16618 (89804) 244616 (88082) 168546 (87682) 225328 (84550) 17430 (82482) |
||
232 | 447592 | 5, 233, 2153 | k = = 2 mod 3 (3) k = = 6 mod 7 (7) k = = 10 mod 11 (11) |
807 k's remaining at n=25K. See k's at Sierpinski Base 232 remain. |
223813 (24865) 48352 (24751) 202512 (24747) 82524 (24614) 181963 (24596) 287908 (24585) 124188 (24317) 355863 (24314) 319662 (24299) 65376 (24253) |
k = 232 and 53824 are GFn's with no known prime. | |
233 | 14 | 3, 13 | k = = 1 mod 2 (2) k = = 28 mod 29 (29) |
none - proven | 8 (35) 10 (2) 4 (2) 12 (1) 6 (1) 4 (1) |
||
234 | 46 | 5, 47 | k = = 232 mod 233 (233) | none - proven | 24 (2415) 14 (547) 37 (71) 41 (58) 29 (53) 18 (28) 34 (25) 36 (20) 43 (17) 44 (9) |
||
235 | 15706 | 7, 19, 139 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 12 mod 13 (13) |
27 k's remaining at n=100K. See k's at Sierpinski Base 235 remain. |
12592 (77810) 6744 (76960) 14458 (70234) 10914 (68925) 10044 (47812) 7080 (36163) 6786 (35662) 4660 (33837) 1984 (24582) 6432 (24278) |
||
236 | 80 | 3, 79 | k = = 4 mod 5 (5) k = = 46 mod 47 (47) |
53 (500K) 67 (500K) |
32 (251993) 2 (161229) 22 (116792) 68 (5413) 26 (2757) 30 (2360) 10 (2046) 70 (894) 7 (346) 55 (310) |
||
237 | 50 | 7, 17 | k = = 1 mod 2 (2) k = = 58 mod 59 (59) |
none - proven | 12 (206) 36 (204) 32 (67) 18 (16) 42 (15) 22 (10) 40 (9) 20 (7) 48 (5) 30 (2) |
||
238 | 5613633 | 13, 67, 239, 283 | k = = 2 mod 3 (3) k = = 78 mod 79 (79) |
58571 k's remaining at n=2.5K. To be shown later. | 5518566 (2500) 4320762 (2500) 4296496 (2500) 3282811 (2500) 3184848 (2500) 3097012 (2500) 2634282 (2500) 773182 (2500) 5214648 (2499) 4398513 (2499) |
||
239 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 6 mod 7 (7) k = = 16 mod 17 (17) |
none - proven | 2 (1) | ||
240 | 1722187 | 7, 13, 19, 241, 397 | k = = 238 mod 239 (239) | 32558 k's remaining at n=2.5K. To be shown later. | 1657542 (2500) 1649534 (2500) 1574922 (2500) 1435649 (2500) 1254944 (2500) 665530 (2500) 653805 (2500) 603260 (2500) 537682 (2500) 353061 (2500) |
||
241 | 636076 | 11, 113, 257 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 4 mod 5 (5) |
1815 k's remaining at n=25K. See k's at Sierpinski Base 241 remain. |
99406 (24863) 109636 (24843) 165892 (24668) 181996 (24606) 538462 (24584) 157420 (24505) 80488 (24504) 362832 (24479) 402346 (24475) 340000 (24474) |
||
242 | 8 | 3, 5, 13 | k = = 240 mod 241 (241) | none - proven | 4 (4206) 5 (45) 2 (11) 7 (6) 6 (1) 3 (1) |
||
243 | 40078 | 7, 13, 31, 61 | All k = m^5 for all n; factors to: (m*3^n + 1) * (m^4*81^n - m^3*27^n + m^2*9^n - m*3^n + 1) |
k = = 1 mod 2 (2) k = = 10 mod 11 (11) |
97 k's remaining at n=400K. See k's at Sierpinski Base 243 remain. |
38804 (382795) 34202 (381760) 32582 (380358) 24704 (375427) 14804 (355706) 27602 (351918) 38490 (341891) 33016 (339396) 14336 (312792) 11996 (311879) |
k = 1024 proven composite by full algebraic factors. |
244 | 6 | 5, 7 | k = = 2 mod 3 (3) | none - proven | 4 (1) 3 (1) |
k = 1 is a GFn with no known prime. | |
245 | 40 | 3, 41 | k = = 1 mod 2 (2) k = = 60 mod 61 (61) |
none - proven | 22 (316) 16 (46) 8 (23) 14 (15) 28 (4) 10 (4) 26 (3) 20 (3) 34 (2) 18 (2) |
||
246 | 77 | 13, 19 | k = = 4 mod 5 (5) k = = 6 mod 7 (7) |
none - proven | 61 (104) 40 (56) 30 (37) 35 (30) 18 (27) 53 (12) 57 (11) 67 (9) 58 (6) 56 (5) |
k = 1 is a GFn with no known prime. | |
247 | 71392 | 5, 17, 31, 1009 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 40 mod 41 (41) |
171 k's remaining at n=100K. See k's at Sierpinski Base 247 remain. |
36214 (97283) 37912 (89307) 10170 (87505) 51180 (86529) 41782 (86063) 51238 (85245) 38034 (84975) 61914 (81638) 70648 (80317) 49530 (79014) |
||
248 | 82 | 3, 83 | k = = 12 mod 13 (13) k = = 18 mod 19 (19) |
16 (500K) 23 (500K) 31 (500K) 73 (500K) |
53 (368775) 9 (39510) 34 (9494) 61 (1232) 65 (609) 57 (605) 2 (321) 5 (261) 20 (227) 67 (56) |
||
249 | 824 | 5, 7, 13, 29, 37 | k = = 1 mod 2 (2) k = = 30 mod 31 (31) |
436 (500K) 684 (500K) 706 (500K) |
674 (365445) 656 (348030) 202 (299162) 704 (137167) 394 (123679) 754 (54387) 286 (52498) 136 (40974) 546 (30876) 454 (17413) |
||
250 | 5496397 | 7, 13, 19, 37, 251, 1009 | k = = 2 mod 3 (3) k = = 82 mod 83 (83) |
61066 k's remaining at n=2.5K. To be shown later. | 5355138 (2500) 4734378 (2500) 4273203 (2500) 4176898 (2500) 3211522 (2500) 2789884 (2500) 2780374 (2500) 1553304 (2500) 542359 (2500) 5231307 (2499) |
k = 62500 is a GFn with no known prime. | |
251 | 8 | 3, 7 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) |
none - proven | 6 (17) 2 (1) |
||
252 | 45 | 11, 23 | k = = 250 mod 251 (251) | 27 (600K) | 31 (124) 40 (96) 44 (14) 42 (10) 21 (9) 22 (7) 6 (7) 34 (6) 20 (5) 16 (4) |
k = 1 is a GFn with no known prime. | |
253 | 25018 | 5, 37, 127 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 6 mod 7 (7) |
9096 (300K) 9436 (300K) 11488 (300K) 11746 (300K) 15118 (300K) 17818 (300K) 19684 (300K) 21208 (300K) 23748 (300K) 24262 (300K) |
9678 (188400) 3874 (165449) 21484 (144437) 18604 (128933) 2188 (112983) 23404 (95194) 13284 (91465) 2566 (62820) 2502 (59748) 13666 (58159) |
||
254 | 4 | 3, 5 | k = = 10 mod 11 (11) k = = 22 mod 23 (23) |
none - proven | 3 (2) 2 (1) |
||
255 | 110094 | 7, 19, 41, 61, 97 | k = = 1 mod 2 (2) k = = 126 mod 127 (127) |
156 k's remaining at n=100K. See k's at Sierpinski Base 255 remain. |
97284 (99554) 53782 (99272) 53990 (89792) 100164 (82757) 35986 (80599) 80590 (80127) 27266 (80029) 107862 (79096) 109240 (77772) 87524 (77280) |
||
257 | 44 | 3, 43 | k = = 1 mod 2 (2) | 40 (600K) | 4 (160422) 34 (33062) 2 (12183) 16 (684) 32 (531) 8 (29) 10 (12) 18 (8) 26 (7) 22 (6) |
||
258 | 36 | 7, 37 | k = = 256 mod 257 (257) | none - proven | 24 (5745) 29 (1038) 18 (316) 15 (128) 20 (79) 9 (59) 23 (54) 22 (40) 28 (20) 7 (20) |
k = 1 is a GFn with no known prime. | |
259 | 144 | 5, 13 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 42 mod 43 (43) |
64 (1M) | 118 (150) 4 (111) 30 (62) 126 (34) 78 (19) 76 (12) 100 (10) 22 (10) 108 (9) 102 (8) |
||
260 | 28 | 3, 29 | k = = 6 mod 7 (7) k = = 36 mod 37 (37) |
none - proven | 4 (650) 14 (593) 25 (158) 18 (20) 16 (12) 19 (4) 10 (4) 24 (3) 21 (3) 15 (3) |
||
261 | 8837652 | 7, 79, 131, 859 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 12 mod 13 (13) |
39028 k's remaining at n=2.5K. To be shown later. | 8315258 (2500) 6724708 (2500) 5746342 (2500) 5674528 (2500) 2889598 (2500) 1657020 (2500) 780148 (2500) 8098982 (2499) 7888340 (2499) 7217626 (2499) |
||
262 | 110724 | 5, 7, 13, 103, 263 | k = = 2 mod 3 (3) k = = 28 mod 29 (29) |
832 k's remaining at n=25K. See k's at Sierpinski Base 262 remain. |
82251 (24884) 79651 (24821) 84442 (24767) 27960 (24765) 10714 (24747) 33289 (24570) 28705 (24553) 94854 (24546) 70012 (24536) 108739 (24298) |
k = 262 and 68644 are GFn's with no known prime. | |
263 | 10 | 3, 11 | k = = 1 mod 2 (2) k = = 130 mod 131 (131) |
8 (1M) | 2 (957) 4 (50) 6 (1) |
||
264 | 54 | 5, 53 | k = = 262 mod 263 (263) | 41 (1M) | 29 (68009) 4 (9647) 50 (1241) 16 (430) 45 (90) 11 (46) 51 (32) 46 (16) 31 (14) 36 (12) |
||
265 | 246 | 7, 19 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 10 mod 11 (11) |
none - proven | 94 (1997) 18 (163) 36 (146) 162 (118) 6 (75) 220 (67) 130 (48) 106 (46) 232 (36) 144 (24) |
||
266 | 88 | 3, 89 | k = = 4 mod 5 (5) k = = 52 mod 53 (53) |
none - proven | 55 (32246) 46 (3378) 16 (668) 5 (509) 22 (500) 37 (226) 57 (121) 43 (82) 41 (71) 80 (53) |
||
267 | 1343016 | 5, 13, 37, 67, 163 | k = = 1 mod 2 (2) k = = 6 mod 7 (7) k = = 18 mod 19 (19) |
3728 k's remaining at n=25K. See k's at Sierpinski Base 267 remain. |
489926 (24971) 1226032 (24911) 351270 (24888) 665242 (24855) 314452 (24838) 903498 (24822) 1248814 (24786) 61244 (24785) 1195058 (24764) 387584 (24719) |
||
268 | 8338 | 5, 13, 269 | k = = 2 mod 3 (3) k = = 88 mod 89 (89) |
76 k's remaining at n=100K. See k's at Sierpinski Base 268 remain. |
7138 (97848) 6892 (95386) 985 (93675) 2761 (92465) 5776 (91503) 6748 (82851) 1828 (81414) 783 (80368) 7278 (78058) 2194 (76193) |
k = 268 is a GFn with no known prime. | |
269 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 66 mod 67 (67) |
none - proven | 2 (3) | ||
270 | 62060 | 7, 37, 151, 271 | k = = 268 mod 269 (269) | 428 k's remaining at n=25K. See k's at Sierpinski Base 270 remain. |
27865 (24644) 43942 (24565) 25742 (24564) 25367 (24410) 40932 (24220) 54456 (24121) 46164 (23962) 26365 (23644) 54805 (23545) 7104 (23386) |
||
272 | 8 | 3, 7 | k = = 270 mod 271 (271) | none - proven | 7 (22) 2 (15) 6 (3) 4 (2) 3 (2) 5 (1) |
||
273 | 3974 | 5, 29, 137 | k = = 2 mod 3 (3) k = = 16 mod 17 (17) |
464 (300K) 1234 (300K) 1718 (300K) 2858 (300K) 3266 (300K) 3566 (300K) |
1642 (295670) 956 (135149) 2988 (134144) 1224 (113453) 278 (35500) 476 (35348) 886 (32227) 2444 (31845) 2072 (29402) 512 (22742) |
||
274 | 21 | 5, 11 | k = = 2 mod 3 (3) k = = 6 mod 7 (7) k = = 12 mod 13 (13) |
none - proven | 19 (5) 16 (2) 7 (2) 18 (1) 15 (1) 10 (1) 9 (1) 4 (1) 2 (1) |
||
275 | 22 | 3, 23 | k = = 1 mod 2 (2) k = = 136 mod 137 (137) |
none - proven | 4 (158) 8 (19) 16 (4) 6 (4) 2 (3) 10 (2) 20 (1) 18 (1) 14 (1) 12 (1) |
||
276 | 622697 | 7, 13, 277, 1549 | k = = 4 mod 5 (5) k = = 10 mod 11 (11) |
1669 k's remaining at n=25K. See k's at Sierpinski Base 276 remain. |
336086 (24994) 117823 (24920) 283666 (24883) 126786 (24874) 608698 (24848) 281033 (24811) 484436 (24803) 555071 (24799) 200022 (24771) 175342 (24764) |
||
277 | 19578 | 7, 19, 193 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 22 mod 23 (23) |
82 k's remaining at n=100K. See k's at Sierpinski Base 277 remain. |
2748 (95994) 1144 (92827) 12904 (88546) 13402 (83438) 13242 (82178) 9558 (82053) 13992 (78883) 16264 (76258) 12822 (69543) 8916 (65901) |
||
278 | 8 | 3, 5, 13 | k = = 276 mod 277 (277) | none - proven | 3 (54) 5 (15) 7 (2) 4 (2) 6 (1) 2 (1) |
||
279 | 6 | 5, 7 | k = = 1 mod 2 (2) k = = 138 mod 139 (139) |
none - proven | 2 (4) 4 (1) |
||
281 | 46 | 3, 47 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 6 mod 7 (7) |
none - proven | 8 (1843) 32 (63) 28 (46) 40 (36) 38 (7) 22 (6) 42 (2) 36 (2) 16 (2) 10 (2) |
||
282 | 10807 | 7, 13, 877 | k = = 280 mod 281 (281) | 148 k's remaining at n=100K. See k's at Sierpinski Base 282 remain. |
8704 (98169) 4306 (95892) 4073 (92140) 5745 (90967) 10443 (89140) 1652 (86218) 5074 (85030) 7993 (79297) 5654 (78457) 7487 (73687) |
k = 282 is a GFn with no known prime. | |
283 | 106714 | 7, 13, 71, 367 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 46 mod 47 (47) |
559 k's remaining at n=25K. See k's at Sierpinski Base 283 remain. |
99880 (24950) 97896 (24805) 43182 (24772) 29308 (24644) 82156 (24639) 44788 (24412) 66084 (24363) 14244 (24315) 24276 (24185) 93396 (23801) |
||
284 | 4 | 3, 5 | k = = 282 mod 283 (283) | none - proven | 3 (1) 2 (1) |
||
285 | 12 | 11, 13 | k = = 1 mod 2 (2) k = = 70 mod 71 (71) |
none - proven | 6 (5) 4 (2) 10 (1) 8 (1) 2 (1) |
||
286 | 370 | 7, 41 | k = = 2 mod 3 (3) k = = 4 mod 5 (5) k = = 18 mod 19 (19) |
none - proven | 106 (5542) 141 (450) 300 (375) 223 (131) 330 (76) 111 (69) 190 (54) 117 (53) 258 (49) 351 (48) |
k = 1 and 286 are GFn's with no known prime. | |
287 | 7142 | 3, 5, 17, 457 | k = = 1 mod 2 (2) k = = 10 mod 11 (11) k = = 12 mod 13 (13) |
88 k's remaining at n=100K. See k's at Sierpinski Base 287 remain. |
1532 (99787) 5734 (98362) 1294 (97258) 2096 (90201) 5266 (89464) 3754 (86670) 4474 (86350) 1292 (81511) 2044 (79614) 7024 (79246) |
||
288 | 2704 | 5, 17, 53 | k = = 6 mod 7 (7) k = = 40 mod 41 (41) |
203 (300K) 218 (300K) 1514 (300K) 1769 (300K) 1818 (300K) 1871 (300K) 2296 (300K) |
968 (235591) 2415 (209272) 2437 (120654) 2107 (61213) 1257 (43061) 2041 (41088) 2362 (35629) 2006 (29876) 1748 (27603) 964 (27046) |
||
289 | 204 | 5, 29 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) |
none - proven | 160 (83024) 156 (58234) 88 (2434) 10 (678) 166 (534) 6 (200) 106 (72) 96 (72) 126 (26) 66 (26) |
||
290 | 98 | 3, 97 | k = = 16 mod 17 (17) | 73 (500K) 88 (500K) 91 (500K) |
74 (26295) 42 (4605) 44 (3441) 49 (1782) 53 (1597) 70 (1018) 43 (702) 82 (612) 31 (420) 65 (323) |
||
291 | 33232 | 7, 61, 199 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 28 mod 29 (29) |
68 k's remaining at n=100K. See k's at Sierpinski Base 291 remain. |
16726 (89370) 16516 (89071) 10050 (86640) 9400 (81127) 16540 (80519) 11030 (75869) 22538 (69242) 30392 (68232) 31902 (67720) 10506 (66520) |
||
292 | 40393 | 5, 7, 13, 19, 79 | k = = 2 mod 3 (3) k = = 96 mod 97 (97) |
262 k's remaining at n=100K. See k's at Sierpinski Base 292 remain. |
6574 (98058) 9246 (96976) 5262 (96958) 31288 (96082) 26557 (95711) 14857 (92435) 15693 (91688) 26536 (91000) 25624 (89847) 26478 (89822) |
k = 292 is a GFn with no known prime. | |
293 | 8 | 3, 7 | k = = 1 mod 2 (2) k = = 72 mod 73 (73) |
none - proven | 4 (1034) 6 (1) 2 (1) |
||
294 | 119 | 5, 59 | k = = 292 mod 293 (293) | 61 (1M) | 116 (78734) 99 (53407) 101 (11674) 112 (6582) 80 (6290) 51 (2170) 6 (2088) 96 (826) 109 (373) 11 (364) |
k = 1 is a GFn with no known prime. | |
295 | 394902 | 37, 53, 821 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 6 mod 7 (7) |
542 k's remaining at n=25K. See k's at Sierpinski Base 295 remain. |
224002 (24986) 214044 (24955) 138246 (24952) 202056 (24785) 167190 (24782) 205182 (24686) 377956 (24642) 100710 (24574) 288268 (24572) 337698 (24461) |
||
296 | 10 | 3, 11 | k = = 4 mod 5 (5) k = = 58 mod 59 (59) |
none - proven | 8 (187) 7 (56) 3 (3) 6 (1) 5 (1) 2 (1) |
||
297 | 133654 | 5, 7, 13, 19, 149 | k = = 1 mod 2 (2) k = = 36 mod 37 (37) |
695 k's remaining at n=25K. See k's at Sierpinski Base 297 remain. |
114782 (24875) 37486 (24779) 42106 (24767) 92098 (24665) 50718 (24478) 45624 (24359) 120840 (24218) 80212 (23960) 13460 (23917) 106652 (23846) |
||
298 | 183 | 13, 23 | k = = 2 mod 3 (3) k = = 10 mod 11 (11) |
66 (500K) 168 (500K) |
48 (24515) 105 (23516) 73 (15171) 24 (2226) 12 (293) 106 (277) 117 (270) 22 (229) 180 (168) 124 (93) |
k = 1 is a GFn with no known prime. | |
299 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 148 mod 149 (149) |
none - proven | 2 (1) | ||
300 | 85 | 7, 43 | k = = 12 mod 13 (13) k = = 22 mod 23 (23) |
none - proven | 55 (2251) 29 (672) 83 (275) 63 (163) 50 (146) 28 (44) 8 (26) 49 (25) 36 (24) 9 (20) |
||
301 | 1061982 | 89, 151, 509 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 4 mod 5 (5) |
705 k's remaining at n=25K. See k's at Sierpinski Base 301 remain. |
185356 (24957) 979522 (24905) 36402 (24880) 736350 (24853) 563382 (24672) 621562 (24587) 233158 (24550) 478816 (24282) 918436 (24195) 1023798 (24157) |
||
302 | 16 | 3, 5, 17 | k = = 6 mod 7 (7) k = = 42 mod 43 (43) |
none - proven | 4 (18) 10 (16) 2 (15) 7 (8) 15 (4) 12 (2) 14 (1) 11 (1) 9 (1) 8 (1) |
k = 1 is a GFn with no known prime. | |
303 | 174742 | 5, 19, 9181 | k = = 1 mod 2 (2) k = = 150 mod 151 (151) |
2225 k's remaining at n=25K. See k's at Sierpinski Base 303 remain. |
10848 (24915) 39534 (24907) 38384 (24806) 65646 (24800) 55072 (24798) 145122 (24774) 143962 (24717) 59288 (24706) 74050 (24684) 122814 (24658) |
||
304 | 121 | 5, 61 | k = = 2 mod 3 (3) k = = 100 mod 101 (101) |
60 (1M) | 69 (70969) 51 (4422) 19 (2493) 21 (2246) 61 (692) 16 (182) 88 (159) 94 (127) 96 (104) 106 (60) |
k = 1 is a GFn with no known prime. | |
305 | 16 | 3, 17 | k = = 1 mod 2 (2) k = = 18 mod 19 (19) |
none - proven | 2 (16807) 10 (1522) 4 (126) 12 (2) 14 (1) 8 (1) 6 (1) |
||
306 | 431937 | 7, 37, 199, 2539 | k = = 4 mod 5 (5) k = = 60 mod 61 (61) |
1385 k's remaining at n=25K. See k's at Sierpinski Base 306 remain. |
174101 (25000) 207985 (24948) 300413 (24942) 218410 (24865) 261596 (24855) 428972 (24833) 161520 (24691) 66233 (24555) 98478 (24530) 357902 (24524) |
||
307 | 34 | 7, 11 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 16 mod 17 (17) |
none - proven | 10 (3423) 6 (549) 12 (490) 22 (24) 30 (4) 28 (1) 24 (1) 18 (1) 4 (1) |
||
308 | 104 | 3, 103 | k = = 306 mod 307 (307) | 5 (300K) 36 (300K) 53 (300K) 83 (300K) 88 (300K) |
25 (20372) 4 (1966) 31 (1904) 46 (1440) 67 (1026) 20 (669) 62 (237) 56 (183) 76 (116) 28 (114) |
k = 1 is a GFn with no known prime. | |
309 | 94 | 5, 31 | k = = 1 mod 2 (2) k = = 6 mod 7 (7) k = = 10 mod 11 (11) |
none - proven | 16 (180) 26 (146) 74 (51) 80 (40) 56 (38) 66 (16) 88 (13) 46 (8) 22 (6) 30 (5) |
||
310 | 268392 | 7, 13, 17, 37, 311 | k = = 2 mod 3 (3) k = = 102 mod 103 (103) |
1091 k's remaining at n=25K. See k's at Sierpinski Base 310 remain. |
175719 (24993) 205722 (24979) 40617 (24914) 56220 (24905) 49272 (24886) 147801 (24732) 240826 (24708) 139522 (24676) 84552 (24608) 90342 (24462) |
k = 310 and 96100 are GFn's with no known prime. | |
311 | 142 | 3, 13 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 30 mod 31 (31) |
none - proven | 10 (314806) 76 (135562) 46 (8480) 106 (754) 40 (492) 90 (361) 126 (292) 88 (130) 58 (84) 38 (59) |
||
312 | 890797 | 5, 7, 19, 277, 313 | k = = 310 mod 311 (311) | 32149 k's remaining at n=2.5K. To be shown later. | 12 (21162) 821948 (2500) 656057 (2500) 294396 (2500) 43112 (2500) 832655 (2499) 460686 (2499) 404472 (2499) 368517 (2499) 267720 (2499) |
||
313 | 111312 | 5, 101, 157 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 12 mod 13 (13) |
234 k's remaining at n=100K. See k's at Sierpinski Base 313 remain. |
55458 (99530) 104208 (98624) 29838 (95751) 28342 (93842) 29758 (92210) 58348 (90762) 64138 (90154) 88084 (89439) 75844 (87002) 36748 (84791) |
||
314 | 4 | 3, 5 | k = = 312 mod 313 (313) | none - proven | 3 (280) 2 (3) |
||
315 | 1642 | 13, 19, 31 | k = = 1 mod 2 (2) k = = 156 mod 157 (157) |
550 (500K) 836 (500K) |
278 (180134) 1390 (101935) 1186 (18580) 1252 (18342) 940 (16389) 168 (13346) 1466 (12888) 286 (9448) 1018 (4839) 1576 (3706) |
||
316 | 287520 | 13, 19, 31, 317 | k = = 2 mod 3 (3) k = = 4 mod 5 (5) k = = 6 mod 7 (7) |
145 k's remaining at n=100K. See k's at Sierpinski Base 316 remain. |
177877 (98900) 258658 (98469) 260776 (97297) 42796 (96540) 252490 (95911) 108592 (94552) 70470 (94256) 116887 (92271) 136432 (91116) 32907 (91007) |
||
317 | 52 | 3, 53 | k = = 1 mod 2 (2) k = = 78 mod 79 (79) |
44 (600K) | 20 (218953) 6 (1465) 40 (1296) 32 (1051) 38 (465) 8 (433) 34 (370) 46 (268) 16 (100) 12 (82) |
||
318 | 144 | 11, 29 | k = = 316 mod 317 (317) | 89 (600K) | 56 (288096) 116 (18547) 59 (6718) 51 (2620) 92 (1588) 78 (908) 121 (737) 122 (624) 14 (302) 111 (188) |
||
319 | 684 | 5, 17, 73 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 52 mod 53 (53) |
64 (300K) 256 (300K) 286 (300K) 366 (300K) 574 (300K) |
334 (188699) 624 (2817) 678 (2632) 306 (2396) 672 (2266) 436 (1388) 546 (884) 318 (564) 244 (469) 346 (436) |
||
320 | 106 | 3, 107 | k = = 10 mod 11 (11) k = = 28 mod 29 (29) |
97 (600K) | 8 (52003) 25 (35754) 49 (2580) 46 (2480) 11 (1263) 92 (301) 95 (219) 13 (160) 94 (158) 61 (132) |
||
321 | 22 | 7, 23 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) |
none - proven | 8 (478) 16 (19) 6 (13) 10 (2) 20 (1) 18 (1) 12 (1) 2 (1) |
||
322 | 18 | 17, 19 | k = = 2 mod 3 (3) k = = 106 mod 107 (107) |
none - proven | 12 (4) 13 (2) 9 (2) 7 (2) 16 (1) 15 (1) 10 (1) 6 (1) 4 (1) 3 (1) |
k = 1 is a GFn with no known prime. | |
323 | 2284 | 3, 5, 13, 37, 457 | k = = 1 mod 2 (2) k = = 6 mod 7 (7) k = = 22 mod 23 (23) |
31 k's remaining at n=100K. See k's at Sierpinski Base 323 remain. |
1040 (82177) 1108 (66274) 1456 (41240) 1876 (36140) 1820 (34937) 2206 (27420) 1928 (23659) 274 (19466) 578 (18315) 2224 (15730) |
||
324 | 14 | 5, 13 | k = = 16 mod 17 (17) k = = 18 mod 19 (19) |
none - proven | 10 (6) 13 (5) 3 (3) 11 (2) 6 (2) 2 (2) 12 (1) 9 (1) 8 (1) 7 (1) |
k = 1 is a GFn with no known prime. | |
326 | 110 | 3, 109 | k = = 4 mod 5 (5) k = = 12 mod 13 (13) |
none - proven | 5 (400785) 17 (350899) 13 (56864) 73 (7036) 43 (5596) 87 (406) 53 (299) 33 (236) 58 (184) 70 (168) |
||
327 | 1844 | 13, 37, 41, 97, 379 | k = = 1 mod 2 (2) k = = 162 mod 163 (163) |
38 (300K) 122 (300K) 704 (300K) 1086 (300K) 1352 (300K) 1376 (300K) 1378 (300K) 1516 (300K) 1648 (300K) 1696 (300K) 1762 (300K) |
1764 (289322) 1482 (278686) 1072 (176435) 1752 (138892) 328 (135981) 1770 (125824) 782 (81263) 222 (55884) 1076 (50035) 206 (45156) |
||
328 | 48 | 7, 47 | k = = 2 mod 3 (3) k = = 108 mod 109 (109) |
27 (1M) | 22 (592) 36 (292) 30 (201) 4 (30) 45 (19) 34 (13) 6 (7) 3 (6) 42 (4) 37 (4) |
||
329 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 40 mod 41 (41) |
none - proven | 2 (1) | ||
330 | 16636723 | 13, 331, 8377 | k = = 6 mod 7 (7) k = = 46 mod 47 (47) |
101096 k's remaining at n=2.5K. To be shown later. | 16027380 (2500) 15961583 (2500) 15595009 (2500) 15502536 (2500) 13386508 (2500) 13356747 (2500) 11875154 (2500) 11545292 (2500) 11499685 (2500) 9575909 (2500) |
||
331 | 280458 | 7, 13, 19, 29, 83 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 4 mod 5 (5) k = = 10 mod 11 (11) |
253 k's remaining at n=100K. See k's at Sierpinski Base 331 remain. |
180358 (99393) 257766 (99333) 107292 (97697) 47458 (97552) 51868 (97186) 222358 (96954) 245986 (96320) 126300 (96095) 99730 (95893) 61990 (94974) |
||
332 | 38 | 3, 37 | k = = 330 mod 331 (331) | 4 (770K) 16 (700K) |
31 (367560) 27 (4366) 17 (1327) 10 (552) 9 (310) 23 (269) 5 (105) 32 (79) 26 (61) 20 (31) |
||
333 | 6514 | 5, 13, 167 | k = = 1 mod 2 (2) k = = 82 mod 83 (83) |
18 (250K) 118 (250K) 824 (250K) 962 (250K) 1476 (250K) 1504 (250K) 1678 (250K) 1806 (250K) 2172 (250K) 2224 (250K) 2504 (250K) 2506 (250K) 3268 (250K) 4308 (250K) 4542 (250K) 4842 (250K) 4954 (250K) 5010 (250K) 5052 (250K) 5242 (250K) 5592 (250K) 5738 (250K) 6096 (250K) 6310 (250K) 6408 (250K) |
3748 (218908) 2428 (202852) 6326 (188895) 2484 (182603) 1846 (164232) 1712 (117912) 4642 (115616) 4674 (112314) 40 (105533) 3868 (99848) |
||
334 | 66 | 5, 67 | k = = 2 mod 3 (3) k = = 36 mod 37 (37) |
4 (500K) 51 (500K) |
12 (83333) 49 (951) 9 (339) 27 (103) 61 (82) 6 (44) 39 (39) 52 (35) 25 (32) 18 (26) |
||
335 | 8 | 3, 7 | k = = 1 mod 2 (2) k = = 166 mod 167 (167) |
4 (1M) | 2 (13) 6 (1) |
||
336 | 92000 | 17, 29, 337 | k = = 4 mod 5 (5) k = = 66 mod 67 (67) |
107 k's remaining at n=100K. See k's at Sierpinski Base 336 remain. |
84737 (99515) 78876 (99491) 18648 (97397) 65993 (95154) 55501 (91303) 84958 (89747) 53970 (85991) 12355 (83084) 87070 (80980) 45831 (79065) |
k = 336 is a GFn with no known prime. | |
337 | 534 | 5, 13, 41 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 6 mod 7 (7) |
none - proven | 168 (61657) 222 (3910) 402 (2155) 282 (1327) 42 (548) 234 (346) 352 (342) 66 (300) 348 (149) 196 (108) |
||
338 | 112 | 3, 113 | k = = 336 mod 337 (337) | 10 (300K) 23 (300K) 34 (300K) 46 (300K) 53 (300K) 61 (300K) 76 (300K) 77 (300K) 98 (300K) 103 (300K) |
13 (37612) 82 (35952) 83 (28199) 97 (18802) 32 (8089) 45 (7958) 40 (5632) 64 (3202) 62 (1325) 7 (792) |
k = 1 is a GFn with no known prime. | |
339 | 16 | 5, 17 | k = = 1 mod 2 (2) k = = 12 mod 13 (13) |
none - proven | 14 (7) 4 (7) 6 (4) 2 (3) 10 (1) 8 (1) |
||
340 | 309 | 11, 31 | k = = 2 mod 3 (3) k = = 112 mod 113 (113) |
199 (1M) | 210 (104298) 75 (2445) 123 (2039) 34 (1946) 249 (1618) 166 (1038) 217 (765) 103 (401) 175 (367) 30 (325) |
||
341 | 20 | 3, 19 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 16 mod 17 (17) |
none - proven | 10 (106008) 18 (5) 6 (2) 12 (1) 8 (1) 2 (1) |
||
342 | 552 | 5, 7, 149 | k = = 10 mod 11 (11) k = = 30 mod 31 (31) |
36 (300K) 204 (300K) 341 (300K) 468 (300K) 491 (300K) |
27 (232379) 246 (168008) 71 (57384) 237 (41199) 412 (39987) 498 (20368) 62 (13143) 344 (3494) 504 (2509) 313 (2057) |
||
343 | 1936 | 5, 13, 43 | All k = m^3 for all n; factors to: (m*7^n + 1) * (m^2*49^n - m*7^n + 1) |
k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 18 mod 19 (19) |
616 (300K) 904 (300K) 924 (300K) 1678 (300K) |
1084 (287519) 1470 (223429) 646 (108636) 1852 (52708) 1506 (48204) 1906 (18092) 472 (9909) 1438 (7926) 1762 (5085) 826 (5053) |
k = 64, 216, and 1000 proven composite by full algebraic factors. |
344 | 4 | 3, 5 | k = = 6 mod 7 (7) | none - proven | 2 (17) 3 (1) |
k = 1 is a GFn with no known prime. | |
347 | 28 | 3, 29 | k = = 1 mod 2 (2) k = = 172 mod 173 (173) |
none - proven | 4 (370) 22 (126) 2 (123) 10 (72) 20 (19) 16 (12) 14 (7) 26 (3) 12 (2) 24 (1) |
||
348 | 26523 | 5, 53, 349 | k = = 346 mod 347 (347) | 257 k's remaining at n=100K. See k's at Sierpinski Base 348 remain. |
13638 (99714) 6634 (98921) 8831 (98423) 4201 (97292) 4883 (96722) 13263 (93018) 25323 (92456) 9838 (90747) 11624 (90009) 26133 (88450 |
||
349 | 6 | 5, 7 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 28 mod 29 (29) |
none - proven | 4 (3) | ||
350 | 14 | 3, 13 | k = = 348 mod 349 (349) | none - proven | 5 (20391) 10 (1294) 7 (84) 13 (6) 9 (3) 6 (2) 4 (2) 12 (1) 11 (1) 8 (1) |
||
351 | 115752 | 11, 229, 269 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 6 mod 7 (7) |
102 k's remaining at n=100K. See k's at Sierpinski Base 351 remain. |
12618 (94570) 85416 (92750) 56200 (91900) 91092 (91694) 97998 (88799) 88692 (87161) 67638 (86425) 58992 (85985) 55340 (84595) 89068 (84412) |
||
352 | 7990 | 7, 61, 97 | k = = 2 mod 3 (3) k = = 12 mod 13 (13) |
183 (500K) 1837 (500K) 1902 (500K) 2073 (500K) 2119 (500K) 2812 (500K) 3178 (500K) 3454 (500K) 3531 (500K) 3552 (500K) 4387 (500K) 4989 (500K) 5647 (500K) 5697 (500K) 5703 (500K) 6706 (500K) 6729 (500K) 6852 (500K) 7243 (500K) 7978 (500K) |
2707 (161776) 1173 (89793) 3484 (88810) 7923 (86434) 1977 (77376) 5794 (72574) 5346 (66463) 6363 (57245) 6114 (53991) 7941 (40220) |
||
353 | 16 | 3, 5, 17 | k = = 1 mod 2 (2) k = = 10 mod 11 (11) |
8 (700K) | 12 (20261) 2 (2313) 4 (2086) 6 (3) 14 (1) |
||
354 | 141 | 5, 71 | k = = 352 mod 353 (353) | 12 (500K) 75 (500K) 134 (500K) |
64 (19921) 104 (4495) 43 (2808) 96 (1994) 89 (1403) 94 (1357) 101 (1246) 44 (735) 124 (623) 90 (397) |
k = 1 is a GFn with no known prime. | |
355 | 23586 | 7, 13, 89, 103 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 58 mod 59 (59) |
40 k's remaining at n=100K. See k's at Sierpinski Base 355 remain. |
4840 (88061) 8986 (78137) 3628 (71696) 12906 (67056) 18630 (63648) 20136 (63131) 13246 (58166) 10572 (56966) 424 (54435) 3442 (52451) |
||
356 | 8 | 3, 7 | k = = 4 mod 5 (5) k = = 70 mod 71 (71) |
none - proven | 5 (595) 2 (3) 7 (2) 6 (1) 3 (1) |
k = 1 is a GFn with no known prime. | |
357 | 456628 | 5, 179, 2549 | k = = 1 mod 2 (2) k = = 88 mod 89 (89) |
1428 k's remaining at n=25K. See k's at Sierpinski Base 357 remain. |
188042 (24996) 320674 (24955) 404114 (24870) 142138 (24853) 368846 (24812) 327688 (24800) 219286 (24760) 287548 (24756) 250092 (24663) 385344 (24575) |
||
359 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 178 mod 179 (179) |
none - proven | 2 (1) | ||
360 | 628 | 7, 13, 19, 37 | k = = 358 mod 359 (359) | 77 (300K) 172 (300K) 303 (300K) 381 (300K) 506 (300K) |
552 (230680) 219 (168699) 343 (165674) 39 (35844) 286 (27214) 20 (19670) 581 (17429) 179 (12302) 137 (11328) 517 (11075) |
||
361 | 1671172 | 7, 13, 17, 181, 4297 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 4 mod 5 (5) |
5510 k's remaining at n>=10K. See k's and test limits at Sierpinski Base 361 remain. |
624466 (99390) 721306 (98765) 142656 (98574) 314326 (98306) 375546 (97662) 1156606 (97533) 669456 (97476) 249556 (97358) 353986 (96124) 397276 (95784) |
||
362 | 10 | 3, 11 | k = = 18 mod 19 (19) | none - proven | 4 (30) 2 (15) 6 (9) 7 (6) 9 (1) 8 (1) 5 (1) 3 (1) |
k = 1 is a GFn with no known prime. | |
363 | 64 | 7, 13 | k = = 1 mod 2 (2) k = = 180 mod 181 (181) |
none - proven | 48 (4283) 38 (299) 36 (128) 14 (26) 40 (14) 52 (9) 16 (9) 62 (5) 56 (5) 42 (5) |
||
364 | 291 | 5, 73 | k = = 2 mod 3 (3) k = = 10 mod 11 (11) |
none - proven | 46 (7308) 145 (2197) 144 (1045) 231 (468) 279 (329) 214 (281) 169 (277) 289 (267) 151 (260) 9 (165) |
||
365 | 304 | 3, 61 | k = = 1 mod 2 (2) k = = 6 mod 7 (7) k = = 12 mod 13 (13) |
2 (500K) 176 (500K) |
268 (10808) 40 (4662) 226 (2798) 88 (1708) 158 (717) 172 (492) 140 (385) 262 (352) 214 (344) 248 (325) |
||
366 | 79231 | 7, 31, 619 | k = = 4 mod 5 (5) k = = 72 mod 73 (73) |
357 k's remaining at n=100K. See k's at Sierpinski Base 366 remain. |
77822 (99456) 43651 (99049) 34967 (98821) 78956 (98810) 51642 (98276) 59076 (95805) 45590 (95600) 66491 (95487) 64226 (94788) 46126 (93434) |
k = 366 is a GFn with no known prime. | |
367 | 3462 | 7, 13, 619, 3463 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 60 mod 61 (61) |
24 (300K) 160 (300K) 766 (300K) 888 (300K) 1096 (300K) 1458 (300K) 1632 (300K) 1780 (300K) 1954 (300K) 2092 (300K) 2598 (300K) 2782 (300K) 3106 (300K) 3202 (300K) |
838 (198905) 2368 (117513) 3216 (33961) 2742 (29246) 552 (27584) 1018 (19541) 1726 (19044) 1824 (17835) 2446 (16284) 3130 (14635) |
||
368 | 40 | 3, 41 | k = = 366 mod 367 (367) | 8 (500K) 12 (500K) 34 (500K) |
24 (19350) 2 (7045) 23 (4699) 29 (371) 38 (319) 16 (280) 5 (207) 6 (107) 4 (82) 39 (25) |
k = 1 is a GFn with no known prime. | |
369 | 36 | 5, 37 | k = = 1 mod 2 (2) k = = 22 mod 23 (23) |
none - proven | 6 (3418) 24 (53) 18 (27) 4 (23) 32 (11) 26 (4) 16 (4) 12 (3) 20 (2) 34 (1) |
||
370 | 160 | 7, 53 | k = = 2 mod 3 (3) k = = 40 mod 41 (41) |
none - proven | 34 (4981) 52 (757) 76 (525) 78 (484) 85 (178) 27 (151) 109 (84) 16 (75) 154 (59) 97 (59) |
||
371 | 32 | 3, 31 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 36 mod 37 (37) |
none - proven | 22 (252) 26 (113) 20 (19) 10 (12) 6 (7) 28 (4) 16 (4) 12 (2) 30 (1) 18 (1) |
||
372 | 9699 | 5, 13, 373 | k = = 6 mod 7 (7) k = = 52 mod 53 (53) |
51 k's remaining at n=100K. See k's at Sierpinski Base 372 remain. |
5449 (96877) 8104 (96018) 6430 (92755) 9186 (73167) 1327 (62755) 1513 (61478) 6016 (59952) 362 (55491) 3782 (46611) 5033 (45089) |
k = 372 is a GFn with no known prime. | |
373 | 120 | 11, 17 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 30 mod 31 (31) |
108 (700K) | 118 (105239) 82 (16926) 48 (5171) 34 (14) 106 (9) 10 (9) 90 (8) 40 (7) 16 (7) 66 (5) |
||
374 | 4 | 3, 5 | k = = 372 mod 373 (373) | none - proven | 2 (33) 3 (1) |
||
375 | 7509988 | 7, 47, 139, 1009 | k = = 1 mod 2 (2) k = = 10 mod 11 (11) k = = 16 mod 17 (17) |
46406 k's remaining at n=2.5K. To be shown later. | 6419062 (2500) 5838528 (2500) 3152008 (2500) 2230010 (2500) 1523882 (2500) 1339222 (2500) 743658 (2500) 7253116 (2499) 6327284 (2499) 6218710 (2499) |
||
376 | 610 | 13, 29 | k = = 2 mod 3 (3) k = = 4 mod 5 (5) |
246 (500K) 298 (500K) |
222 (121432) 463 (59011) 477 (29831) 157 (20880) 118 (12818) 265 (7759) 412 (2807) 523 (2152) 430 (2036) 450 (712) |
||
377 | 8 | 3, 7 | k = = 1 mod 2 (2) k = = 46 mod 47 (47) |
none - proven | 4 (74) 6 (45) 2 (19) |
||
378 | 6444 | 5, 17, 379 | k = = 12 mod 13 (13) k = = 28 mod 29 (29) |
288 (300K) 327 (300K) 460 (300K) 534 (300K) 729 (300K) 757 (300K) 829 (300K) 953 (300K) 1854 (300K) 2784 (300K) 3588 (300K) 3879 (300K) |
3478 (260076) 5428 (249058) 1818 (217098) 4355 (152156) 6102 (108197) 2275 (85190) 305 (83923) 4810 (81803) 5301 (75809) 4499 (64018) |
||
379 | 246 | 5, 19 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 6 mod 7 (7) |
156 (1M) | 24 (66097) 136 (43454) 96 (344) 126 (86) 150 (74) 30 (37) 210 (34) 226 (30) 208 (19) 186 (18) |
||
380 | 128 | 3, 127 | k = = 378 mod 379 (379) | 64 (500K) 85 (500K) |
61 (273136) 106 (182846) 89 (19069) 95 (6513) 14 (2157) 73 (1958) 103 (946) 48 (884) 46 (758) 101 (597) |
k = 1 is a GFn with no known prime. | |
381 | 18526 | 7, 13, 43, 191 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 18 mod 19 (19) |
5976 (300K) 6772 (300K) 9260 (300K) 10942 (300K) 12692 (300K) 14668 (300K) 15570 (300K) 15640 (300K) 16826 (300K) 18100 (300K) |
1322 (128493) 14056 (104273) 2292 (93814) 4952 (65623) 1966 (56007) 5762 (43890) 13250 (43466) 2852 (41505) 10016 (40735) 16998 (40145) |
||
382 | 11491 | 5, 13, 383 | k = = 2 mod 3 (3) k = = 126 mod 127 (127) |
93 k's remaining at n=100K. See k's at Sierpinski Base 382 remain. |
7563 (94114) 5316 (92775) 7132 (86578) 4752 (86356) 10762 (85942) 2082 (83098) 10804 (79485) 7773 (76365) 6303 (71272) 6291 (68279) |
||
383 | 1022 | 3, 5, 17, 41 | k = = 1 mod 2 (2) k = = 190 mod 191 (191) |
37 k's remaining at n>=519K. See k's and test limits at Sierpinski Base 383 remain. |
50 (463313) 104 (408249) 454 (354814) 134 (225187) 740 (185249) 518 (126363) 220 (116742) 944 (75703) 46 (55808) 876 (55720) |
||
384 | 6 | 5, 7 | k = = 382 mod 383 (383) | none - proven | 4 (21) 5 (2) 3 (1) 2 (1) |
||
385 | 3301264 | 13, 193, 5701 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) |
3407 k's remaining at n=10K. See k's at Sierpinski Base 385 remain. |
150670 (9994) 435264 (9988) 2684260 (9987) 855234 (9987) 1403730 (9984) 1116282 (9982) 3001384 (9972) 2251122 (9965) 2534266 (9961) 44224 (9958) |
||
386 | 85 | 3, 43 | k = = 4 mod 5 (5) k = = 6 mod 7 (7) k = = 10 mod 11 (11) |
none - proven | 30 (225439) 31 (1010) 25 (784) 36 (413) 3 (183) 40 (140) 7 (120) 53 (63) 52 (44) 60 (21) |
||
387 | 1798 | 5, 7, 13, 17, 19 | k = = 1 mod 2 (2) k = = 192 mod 193 (193) |
502 (300K) 594 (300K) 612 (300K) 696 (300K) 1004 (300K) 1070 (300K) 1268 (300K) 1314 (300K) 1456 (300K) 1532 (300K) |
958 (95552) 1630 (82885) 236 (76425) 1616 (76153) 264 (29733) 1596 (27933) 766 (27587) 1466 (26076) 290 (23117) 94 (18818) |
||
388 | 90249 | 5, 7, 13, 19, 389 | k = = 2 mod 3 (3) k = = 42 mod 43 (43) |
832 k's remaining at n=25K. See k's at Sierpinski Base 388 remain. |
1194 (24973) 48250 (24971) 13576 (24935) 36447 (24900) 37902 (24850) 47583 (24762) 957 (24696) 4732 (24564) 6348 (24515) 55012 (24470) |
k = 388 is a GFn with no known prime. | |
389 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 96 mod 97 (97) |
none - proven | 2 (5) | ||
390 | 137 | 17, 23 | k = = 388 mod 389 (389) | none - proven | 65 (8188) 16 (421) 101 (345) 114 (223) 94 (146) 68 (123) 116 (98) 135 (87) 24 (44) 93 (26) |
k = 1 is a GFn with no known prime. | |
391 | 206662 | 7, 19, 1399, 2689 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 4 mod 5 (5) k = = 12 mod 13 (13) |
247 k's remaining at n=100K. See k's at Sierpinski Base 391 remain. |
153346 (98323) 25962 (97635) 147006 (97453) 138942 (93353) 63706 (90871) 197590 (90764) 14160 (89705) 146308 (86392) 82132 (86290) 95122 (85567) |
||
392 | 130 | 3, 131 | k = = 16 mod 17 (17) k = = 22 mod 23 (23) |
23 (500K) 94 (500K) 103 (500K) |
125 (444161) 61 (68204) 92 (57111) 76 (16584) 79 (3050) 28 (1942) 47 (1895) 107 (1711) 122 (739) 11 (411) |
||
393 | 58608 | 13, 43, 277 | k = = 1 mod 2 (2) k = = 6 mod 7 (7) |
166 k's remaining at n=100K. See k's at Sierpinski Base 393 remain. |
33856 (95601) 27514 (95166) 52636 (94444) 21752 (92218) 24236 (91416) 30840 (90638) 46274 (90607) 19486 (90563) 40546 (89137) 29578 (87438) |
||
394 | 159 | 5, 79 | k = = 2 mod 3 (3) k = = 130 mod 131 (131) |
129 (500K) 136 (500K) |
99 (5557) 61 (2272) 69 (707) 10 (626) 73 (492) 85 (381) 36 (294) 157 (257) 28 (218) 106 (180) |
k = 1 is a GFn with no known prime. | |
395 | 10 | 3, 11 | k = = 1 mod 2 (2) k = = 196 mod 197 (197) |
4 (1M) 8 (500K) |
2 (2625) 6 (1) |
||
396 | 5253 | 7, 37, 607 | k = = 4 mod 5 (5) k = = 78 mod 79 (79) |
2358 (500K) 3267 (500K) 4245 (500K) 5228 (500K) |
2136 (285974) 3338 (280633) 4821 (263301) 1693 (228140) 1153 (149297) 4651 (129805) 3240 (105962) 4155 (92698) 398 (86708) 1713 (73752) |
||
397 | 10546 | 7, 31, 37, 199 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 10 mod 11 (11) |
28 k's remaining at n=100K. See k's at Sierpinski Base 397 remain. |
7596 (77651) 8916 (69232) 2196 (57783) 4818 (56714) 9306 (52185) 9696 (44736) 3078 (42177) 6936 (38644) 9636 (36888) 4024 (35337) |
||
398 | 8 | 3, 7 | k = = 396 mod 397 (397) | none - proven | 7 (17472) 4 (30) 5 (13) 3 (11) 6 (1) 2 (1) |
||
400 | 12492354 | 13, 127, 401, 421 | k = = 2 mod 3 (3) k = = 6 mod 7 (7) k = = 18 mod 19 (19) |
68114 k's remaining at n=2.5K. To be shown later. | 10957630 (2500) 9216358 (2500) 8093443 (2500) 7469107 (2500) 7449103 (2500) 7389330 (2500) 7354531 (2500) 5771554 (2500) 5529904 (2500) 4249677 (2500) |
k = 160000 is a GFn with no known prime. | |
401 | 68 | 3, 67 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) |
20 (1M) | 16 (4212) 22 (2848) 62 (751) 32 (183) 52 (122) 38 (69) 66 (47) 58 (16) 6 (16) 28 (12) |
||
402 | 92 | 13, 31 | k = = 400 mod 401 (401) | 61 (600K) | 66 (10840) 30 (4637) 83 (1148) 87 (942) 6 (679) 56 (664) 36 (560) 63 (260) 40 (258) 2 (159) |
k = 1 is a GFn with no known prime. | |
403 | 11412 | 5, 101, 109 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 66 mod 67 (67) |
31 k's remaining at n=100K. See k's at Sierpinski Base 403 remain. |
9798 (94424) 166 (90779) 9822 (83001) 2092 (74365) 7932 (67802) 3588 (66688) 8146 (64887) 1114 (63457) 5974 (58039) 3466 (54204) |
||
404 | 4 | 3, 5 | k = = 12 mod 13 (13) k = = 30 mod 31 (31) |
none - proven | 3 (1) 2 (1) |
k = 1 is a GFn with no known prime. | |
405 | 146 | 7, 29 | k = = 1 mod 2 (2) k = = 100 mod 101 (101) |
none - proven | 106 (120952) 78 (5158) 34 (2325) 8 (1504) 6 (717) 132 (685) 120 (132) 46 (123) 86 (93) 94 (73) |
||
406 | 186 | 11, 37 | k = = 2 mod 3 (3) k = = 4 mod 5 (5) |
none - proven | 100 (543228) 16 (420) 76 (361) 183 (337) 12 (178) 70 (158) 36 (67) 177 (54) 75 (22) 67 (22) |
||
407 | 16 | 3, 17 | k = = 1 mod 2 (2) k = = 6 mod 7 (7) k = = 28 mod 29 (29) |
none - proven | 2 (291) 14 (13) 4 (6) 12 (2) 10 (2) 8 (1) |
||
408 | 5318 | 13, 197, 409 | k = = 10 mod 11 (11) k = = 36 mod 37 (37) |
68 (300K) 729 (300K) 768 (300K) 1021 (300K) 1104 (300K) 1804 (300K) 1931 (300K) 2068 (300K) 2114 (300K) 2271 (300K) 2718 (300K) 3106 (300K) 3199 (300K) 3219 (300K) 3506 (300K) 3792 (300K) 3874 (300K) 4107 (300K) 5239 (300K) |
3580 (222030) 3086 (160483) 2134 (127675) 4562 (90529) 5024 (77122) 3986 (75032) 3897 (71241) 486 (69543) 2306 (67124) 1184 (65975) |
k = 408 is a GFn with no known prime. | |
409 | 124 | 5, 41 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 16 mod 17 (17) |
none - proven | 6 (369832) 30 (3329) 48 (539) 42 (450) 96 (38) 106 (26) 66 (24) 46 (22) 100 (20) 114 (17) |
||
410 | 136 | 3, 137 | k = = 408 mod 409 (409) | 103 (500K) 110 (500K) |
119 (304307) 8 (279991) 67 (250678) 4 (144078) 20 (11647) 40 (2568) 18 (670) 28 (524) 84 (409) 88 (210) |
k = 1 is a GFn with no known prime. | |
411 | 46246 | 13, 89, 103 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 40 mod 41 (41) |
88 k's remaining at n=100K. See k's at Sierpinski Base 411 remain. |
14838 (99817) 1156 (97861) 43726 (90110) 23382 (82998) 39750 (82223) 20798 (81042) 25280 (80486) 26380 (74936) 42808 (73183) 2098 (68729) |
||
412 | 132 | 5, 7, 17 | k = = 2 mod 3 (3) k = = 136 mod 137 (137) |
36 (500K) 64 (500K) |
117 (294963) 21 (45032) 106 (2528) 99 (838) 118 (325) 55 (183) 88 (134) 72 (102) 127 (92) 16 (71) |
||
413 | 22 | 3, 23 | k = = 1 mod 2 (2) k = = 102 mod 103 (103) |
none - proven | 10 (16) 6 (11) 16 (8) 8 (7) 18 (4) 20 (3) 4 (2) 14 (1) 12 (1) 2 (1) |
||
414 | 84 | 5, 83 | k = = 6 mod 7 (7) k = = 58 mod 59 (59) |
none - proven | 24 (391179) 61 (236) 21 (142) 81 (88) 3 (66) 36 (28) 16 (24) 82 (19) 5 (18) 46 (10) |
||
416 | 140 | 3, 139 | k = = 4 mod 5 (5) k = = 82 mod 83 (83) |
none - proven | 73 (253392) 118 (28046) 31 (23572) 13 (18232) 10 (3186) 48 (2680) 2 (2517) 20 (2411) 110 (2247) 125 (1661) |
k = 1 is a GFn with no known prime. | |
417 | 56 | 11, 19 | k = = 1 mod 2 (2) k = = 12 mod 13 (13) |
10 (700K) | 54 (8501) 34 (298) 40 (8) 44 (6) 48 (5) 26 (5) 52 (3) 32 (3) 50 (2) 42 (2) |
||
418 | 8398 | 5, 7, 29, 37, 79 | k = = 2 mod 3 (3) k = = 138 mod 139 (139) |
28 k's remaining at n=100K. See k's at Sierpinski Base 418 remain. |
7873 (83802) 5364 (75889) 3018 (75443) 6807 (74905) 6703 (71519) 3858 (71195) 6172 (70560) 1114 (70230) 8092 (68764) 387 (65726) |
k = 418 is a GFn with no known prime. | |
419 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 10 mod 11 (11) k = = 18 mod 19 (19) |
none - proven | 2 (1) | ||
420 | 2288555 | 13, 151, 421, 1171 | k = = 418 mod 419 (419) | 9707 k's remaining at n=10K. See k's at Sierpinski Base 420 remain. |
2130839 (10000) 551118 (9999) 1753090 (9998) 81759 (9994) 2033139 (9993) 779053 (9990) 742483 (9989) 489229 (9985) 1422755 (9984) 812265 (9982) |
k = 176400 is a GFn with no known prime. | |
421 | 53806 | 13, 17, 211 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 4 mod 5 (5) k = = 6 mod 7 (7) |
970 (300K) 1750 (300K) 2770 (300K) 3132 (300K) 5266 (300K) 11182 (300K) 17640 (300K) 24036 (300K) 24300 (300K) 25110 (300K) 36772 (300K) 37348 (300K) 39288 (300K) 42856 (300K) 43776 (300K) 44116 (300K) 44706 (300K) |
26040 (251428) 26362 (244658) 24838 (224768) 14296 (216090) 9216 (191802) 9726 (166757) 26850 (164666) 3472 (114140) 3186 (91460) 36520 (67040) |
||
422 | 46 | 3, 47 | k = = 420 mod 421 (421) | 8 (500K) 13 (500K) 17 (500K) |
22 (268038) 16 (176284) 31 (33728) 37 (13020) 19 (7302) 41 (4319) 10 (2978) 4 (2634) 33 (1302) 23 (989) |
k = 1 is a GFn with no known prime. | |
423 | 9698 | 5, 29, 53 | k = = 1 mod 2 (2) k = = 210 mod 211 (211) |
69 k's remaining at n=100K. See k's at Sierpinski Base 423 remain. |
6254 (97095) 3392 (96909) 9502 (93490) 8422 (92388) 8612 (92386) 5116 (88813) 2124 (86809) 2724 (81553) 7792 (79126) 7802 (74137) |
||
424 | 16 | 5, 17 | k = = 2 mod 3 (3) k = = 46 mod 47 (47) |
none - proven | 3 (1105) 9 (23) 13 (2) 12 (2) 6 (2) 15 (1) 10 (1) 7 (1) 4 (1) |
k = 1 is a GFn with no known prime. | |
425 | 70 | 3, 71 | k = = 1 mod 2 (2) k = = 52 mod 53 (53) |
none - proven | 8 (94661) 64 (718) 4 (562) 34 (496) 38 (389) 62 (197) 50 (55) 46 (48) 58 (32) 28 (30) |
||
426 | 62 | 7, 61 | k = = 4 mod 5 (5) k = = 16 mod 17 (17) |
8 (600K) | 43 (278) 15 (194) 42 (75) 23 (43) 31 (32) 53 (28) 28 (15) 13 (13) 48 (9) 61 (8) |
||
427 | 5852794 | 5, 107, 18233 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 70 mod 71 (71) |
48534 k's remaining at n=2.5K. To be shown later. | 4156686 (2500) 3966132 (2500) 2218618 (2500) 2142628 (2500) 1219012 (2500) 5770342 (2499) 5358804 (2499) 4912204 (2499) 3419896 (2499) 1227534 (2499) |
||
428 | 10 | 3, 11 | k = = 6 mod 7 (7) k = = 60 mod 61 (61) |
8 (600K) | 4 (14) 7 (2) 3 (2) 9 (1) 5 (1) 2 (1) |
||
429 | 44 | 5, 43 | k = = 1 mod 2 (2) k = = 106 mod 107 (107) |
none - proven | 26 (2794) 4 (175) 34 (65) 12 (54) 10 (45) 40 (15) 36 (6) 30 (5) 42 (3) 24 (3) |
||
430 | 22413 | 7, 19, 379, 431 | k = = 2 mod 3 (3) k = = 10 mod 11 (11) k = = 12 mod 13 (13) |
15321 (600K) | 17872 (228564) 859 (218562) 5370 (134491) 19125 (116506) 9024 (98827) 7858 (87160) 3399 (84495) 19638 (84214) 14566 (83829) 14448 (80945) |
||
431 | 20138 | 3, 7, 67, 379 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 42 mod 43 (43) |
316 k's remaining at n=100K. See k's at Sierpinski Base 431 remain. |
19810 (99512) 10148 (99117) 19126 (96304) 5626 (96228) 14628 (94881) 6146 (92197) 3280 (90562) 1036 (89558) 1720 (89402) 6680 (86265) |
||
432 | 46765 | 7, 13, 67, 433 | k = = 430 mod 431 (431) | 964 k's remaining at n=25K. See k's at Sierpinski Base 432 remain. |
38596 (24973) 15243 (24882) 38765 (24829) 45186 (24821) 44483 (24618) 15649 (24573) 46539 (24542) 21034 (24277) 8420 (24239) 28218 (24060) |
||
433 | 342 | 7, 31 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) |
118 (500K) 264 (500K) |
108 (138703) 22 (32432) 106 (21228) 16 (8740) 64 (3686) 36 (1580) 276 (1116) 288 (1030) 316 (828) 156 (496) |
||
434 | 4 | 3, 5 | k = = 432 mod 433 (433) | none - proven | 2 (9) 3 (1) |
||
436 | 208 | 19, 23 | k = = 2 mod 3 (3) k = = 4 mod 5 (5) k = = 28 mod 29 (29) |
none - proven | 45 (481613) 73 (1553) 198 (203) 25 (203) 58 (156) 201 (139) 112 (87) 180 (81) 18 (73) 75 (49) |
||
437 | 8 | 3, 5, 13 | k = = 1 mod 2 (2) k = = 108 mod 109 (109) |
none - proven | 2 (423) 4 (18) 6 (3) |
||
438 | 2633 | 5, 37, 439 | k = = 18 mod 19 (19) k = = 22 mod 23 (23) |
30 k's remaining at n=100K. See k's at Sierpinski Base 438 remain. |
2147 (91976) 2106 (89704) 101 (77631) 1658 (72299) 1371 (65081) 1075 (60386) 1473 (59628) 888 (56704) 2099 (49301) 783 (43748) |
k = 438 is a GFn with no known prime. | |
439 | 34 | 5, 11 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 72 mod 73 (73) |
none - proven | 12 (94) 4 (89) 22 (70) 24 (7) 18 (5) 28 (2) 16 (2) 6 (2) 30 (1) 10 (1) |
||
440 | 8 | 3, 7 | k = = 438 mod 439 (439) | none - proven | 4 (56086) 5 (825) 7 (14) 6 (11) 3 (1) 2 (1) |
||
441 | 118 | 13, 17 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 10 mod 11 (11) |
none - proven | 66 (11078) 62 (23) 86 (20) 72 (16) 22 (13) 78 (8) 88 (5) 60 (5) 12 (5) 52 (4) |
||
442 | 36768 | 5, 41, 443 | k = = 2 mod 3 (3) k = = 6 mod 7 (7) |
50 k's remaining at n=100K. See k's at Sierpinski Base 442 remain. |
17076 (96005) 35539 (94242) 10096 (89736) 4524 (80651) 33519 (80649) 29460 (80163) 25993 (79794) 10383 (78161) 36346 (68852) 28863 (66386) |
||
443 | 184 | 3, 37 | k = = 1 mod 2 (2) k = = 12 mod 13 (13) k = = 16 mod 17 (17) |
8 (500K) 22 (500K) 94 (500K) |
166 (432000) 136 (57948) 24 (17867) 170 (12345) 46 (2044) 154 (1178) 124 (606) 70 (262) 76 (248) 48 (158) |
||
444 | 179 | 5, 89 | k = = 442 mod 443 (443) | 46 (500K) 111 (500K) |
88 (122491) 41 (22682) 106 (9800) 53 (3295) 121 (1950) 8 (1247) 21 (872) 76 (532) 81 (364) 68 (270) |
||
445 | 14986 | 7, 13, 727 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 36 mod 37 (37) |
42 k's remaining at n=100K. See k's at Sierpinski Base 445 remain. |
9306 (96393) 9910 (90591) 5326 (87980) 12828 (75399) 12066 (54702) 10228 (52935) 1998 (47925) 10254 (47320) 8532 (46763) 7552 (40843) |
||
446 | 148 | 3, 149 | k = = 4 mod 5 (5) k = = 88 mod 89 (89) |
52 (300K) 53 (300K) 98 (300K) 115 (300K) 120 (300K) 136 (300K) |
67 (121154) 70 (89454) 143 (55765) 107 (20379) 145 (17512) 46 (890) 146 (645) 125 (505) 76 (398) 103 (352) |
k = 1 is a GFn with no known prime. | |
447 | 204 | 5, 7, 29 | k = = 1 mod 2 (2) k = = 222 mod 223 (223) |
86 (500K) 148 (500K) |
202 (60143) 146 (37159) 132 (36439) 96 (32360) 106 (30608) 174 (10619) 144 (2323) 188 (857) 92 (160) 64 (158) |
||
448 | 139191 | 5, 137, 449 | k = = 2 mod 3 (3) k = = 148 mod 149 (149) |
961 k's remaining at n=25K. See k's at Sierpinski Base 448 remain. |
81789 (24957) 115471 (24916) 50088 (24826) 90709 (24787) 18118 (24763) 94239 (24742) 109192 (24676) 82504 (24543) 130977 (24525) 75651 (24437) |
||
449 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 6 mod 7 (7) |
none - proven | 2 (435) | ||
450 | 122 | 11, 41 | k = = 448 mod 449 (449) | 87 (600K) | 109 (31885) 54 (6981) 45 (2676) 110 (2217) 61 (1024) 67 (770) 38 (683) 83 (518) 115 (141) 89 (130) |
k = 1 is a GFn with no known prime. | |
451 | 97068 | 7, 13, 79, 113 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 4 mod 5 (5) |
104 k's remaining at n=100K. See k's at Sierpinski Base 451 remain. |
27516 (96417) 90388 (95078) 51640 (89803) 57886 (88923) 32868 (88020) 63660 (85642) 64012 (84696) 6166 (84519) 42052 (82269) 14026 (80809) |
||
452 | 152 | 3, 151 | k = = 10 mod 11 (11) k = = 40 mod 41 (41) |
23 (300K) 37 (300K) 41 (300K) 68 (300K) 96 (300K) 101 (300K) 124 (300K) 136 (300K) |
151 (61688) 4 (14154) 128 (7893) 75 (3587) 91 (3496) 115 (2266) 31 (1516) 62 (1411) 85 (1236) 71 (1203) |
||
453 | 4863476 | 5, 227, 20521 | k = = 1 mod 2 (2) k = = 112 mod 113 (113) |
100879 k's remaining at n=2.5K. To be shown later. | 4544168 (2500) 4417450 (2500) 4201646 (2500) 4000406 (2500) 3948610 (2500) 3388200 (2500) 3050648 (2500) 2458860 (2500) 2132898 (2500) 2028692 (2500) |
||
454 | 6 | 5, 7 | k = = 2 mod 3 (3) k = = 150 mod 151 (151) |
none - proven | 4 (3) 3 (2) |
k = 1 is a GFn with no known prime. | |
455 | 20 | 3, 19 | k = = 1 mod 2 (2) k = = 226 mod 227 (227) |
none - proven | 14 (1679) 8 (13) 12 (11) 16 (6) 10 (4) 4 (2) 18 (1) 6 (1) 2 (1) |
||
456 | 14836963 | 269, 457, 773 | k = = 4 mod 5 (5) k = = 6 mod 7 (7) k = = 12 mod 13 (13) |
51825 k's remaining at n=2.5K. To be shown later. | 14703278 (2500) 14131216 (2500) 12292077 (2500) 12247287 (2500) 11714270 (2500) 11183177 (2500) 10358955 (2500) 8188646 (2500) 8011733 (2500) 7668482 (2500) |
||
457 | 84958 | 5, 17, 89, 229 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 18 mod 19 (19) |
422 k's remaining at n=25K. See k's at Sierpinski Base 457 remain. |
74268 (24993) 48072 (24122) 10038 (24056) 46408 (23922) 40708 (23321) 35038 (22806) 24256 (22747) 4332 (22607) 37584 (22390) 29424 (22266) |
||
458 | 16 | 3, 17 | k = = 456 mod 457 (457) | none - proven | 13 (306196) 10 (5952) 3 (107) 2 (105) 14 (79) 4 (66) 12 (13) 8 (11) 5 (7) 7 (6) |
k = 1 is a GFn with no known prime. | |
459 | 24 | 5, 23 | k = = 1 mod 2 (2) k = = 228 mod 229 (229) |
none - proven | 16 (30) 6 (10) 12 (3) 4 (3) 22 (1) 20 (1) 18 (1) 14 (1) 10 (1) 8 (1) |
||
460 | 37803 | 13, 41, 461 | k = = 2 mod 3 (3) k = = 16 mod 17 (17) |
75 k's remaining at n=100K. See k's at Sierpinski Base 460 remain. |
24273 (93772) 22662 (84216) 35505 (81439) 32427 (80544) 1117 (79130) 35064 (74195) 4506 (73296) 4411 (68018) 13114 (67128) 17344 (67045) |
k = 460 is a GFn with no known prime. | |
461 | 8 | 3, 7 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 22 mod 23 (23) |
2 (600K) | 6 (1) | ||
462 | 6880642 | 5, 13, 73, 373, 463 | k = = 460 mod 461 (461) | 123504 k's remaining at n=2.5K. To be shown later. | 6508000 (2500) 6383896 (2500) 5644032 (2500) 5637852 (2500) 5610546 (2500) 5604935 (2500) 5566091 (2500) 5438712 (2500) 5220801 (2500) 4930826 (2500) |
k = 462 and 213444 are GFn's with no known prime. | |
463 | 1188 | 5, 13, 29 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 6 mod 7 (7) k = = 10 mod 11 (11) |
616 (500K) 1072 (500K) |
30 (43298) 436 (43228) 178 (42858) 684 (22942) 1152 (6772) 574 (2953) 1068 (964) 438 (406) 768 (296) 840 (247) |
||
464 | 4 | 3, 5 | k = = 462 mod 463 (463) | none - proven | 3 (2) 2 (1) |
||
465 | 78056 | 7, 13, 233, 337 | k = = 1 mod 2 (2) k = = 28 mod 29 (29) |
127 k's remaining at n=100K. See k's at Sierpinski Base 465 remain. |
17822 (98145) 53838 (96113) 14612 (94883) 57474 (88244) 77494 (85597) 74802 (84919) 1094 (82546) 51086 (78670) 64874 (78048) 6618 (76985) |
||
466 | 6492 | 7, 43, 241 | k = = 2 mod 3 (3) k = = 4 mod 5 (5) k = = 30 mod 31 (31) |
222 (300K) 321 (300K) 556 (300K) 1077 (300K) 1272 (300K) 1867 (300K) 3783 (300K) 4252 (300K) 4296 (300K) 4786 (300K) 5326 (300K) 5370 (300K) 6072 (300K) 6102 (300K) 6256 (300K) 6345 (300K) |
6070 (273937) 2826 (58289) 4737 (57300) 3076 (54058) 4780 (52720) 5437 (43209) 6060 (40601) 730 (33269) 3421 (32222) 3498 (28329) |
||
467 | 8 | 3, 5, 7, 19, 37 | k = = 1 mod 2 (2) k = = 232 mod 233 (233) |
4 (1M) | 2 (126775) 6 (1) |
||
468 | 202 | 7, 67 | k = = 466 mod 467 (467) | 97 (1.186M) | 188 (535963) 29 (232718) 191 (78529) 160 (63873) 120 (48842) 183 (18276) 172 (11834) 20 (11537) 197 (7378) 128 (6759) |
k = 1 is a GFn with no known prime. | |
469 | 46 | 5, 47 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 12 mod 13 (13) |
none - proven | 22 (26) 34 (7) 40 (6) 6 (6) 36 (4) 28 (3) 16 (2) 42 (1) 30 (1) 24 (1) |
||
470 | 158 | 3, 157 | k = = 6 mod 7 (7) k = = 66 mod 67 (67) |
none - proven | 32 (683151) 136 (159762) 16 (88936) 64 (63338) 91 (6500) 4 (5218) 85 (4092) 82 (2978) 122 (1021) 112 (1006) |
||
471 | 4562 | 7, 13, 31, 37 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 46 mod 47 (47) |
1046 (300K) 1170 (300K) 1592 (300K) 2378 (300K) 2768 (300K) 2818 (300K) 2890 (300K) 2922 (300K) 3526 (300K) 3768 (300K) 4072 (300K) 4378 (300K) |
1700 (196669) 2560 (158236) 3652 (106792) 4098 (81150) 3722 (67209) 2430 (53443) 2740 (43077) 1882 (22465) 4560 (20925) 3482 (16508) |
||
472 | 87 | 11, 43 | k = = 2 mod 3 (3) k = = 156 mod 157 (157) |
21 (500K) 67 (500K) |
55 (2848) 82 (479) 54 (199) 63 (137) 79 (94) 12 (80) 34 (74) 51 (59) 76 (25) 33 (25) |
||
473 | 8 | 3, 5, 13 | k = = 1 mod 2 (2) k = = 58 mod 59 (59) |
none - proven | 6 (5) 4 (2) 2 (1) |
||
474 | 39 | 5, 19 | k = = 10 mod 11 (11) k = = 42 mod 43 (43) |
none - proven | 16 (1778) 18 (483) 34 (129) 26 (126) 4 (51) 20 (26) 31 (14) 36 (10) 25 (10) 6 (8) |
||
475 | 288 | 7, 17 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 78 mod 79 (79) |
none - proven | 34 (1387) 204 (1004) 190 (802) 76 (249) 216 (239) 202 (151) 22 (142) 118 (119) 184 (53) 16 (47) |
||
476 | 52 | 3, 53 | k = = 4 mod 5 (5) k = = 18 mod 19 (19) |
28 (600K) | 7 (42) 33 (16) 47 (15) 41 (11) 45 (10) 15 (10) 40 (8) 8 (7) 21 (6) 48 (4) |
||
477 | 78152 | 5, 61, 239 | k = = 1 mod 2 (2) k = = 6 mod 7 (7) k = = 16 mod 17 (17) |
168 k's remaining at n=100K. See k's at Sierpinski Base 477 remain. |
31796 (97796) 68026 (96248) 5532 (95712) 18888 (94118) 22846 (92569) 9136 (89760) 24822 (89714) 76106 (87085) 69736 (86316) 22954 (86095) |
||
478 | 523069 | 5, 17, 41, 479 | k = = 2 mod 3 (3) k = = 52 mod 53 (53) |
17110 k's remaining at n=2.5K. To be shown later. | 307111 (2500) 130543 (2500) 447745 (2499) 87094 (2499) 463786 (2497) 321676 (2496) 81000 (2495) 99588 (2494) 48424 (2494) 380481 (2493) |
||
479 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 238 mod 239 (239) |
none - proven | 2 (3) | ||
480 | 38 | 13, 37 | k = = 478 mod 479 (479) | 12 (600K) | 36 (3165) 13 (50) 5 (29) 14 (18) 27 (14) 2 (8) 23 (7) 22 (7) 21 (6) 25 (5) |
k = 1 is a GFn with no known prime. | |
481 | 11680548 | 7, 109, 241, 709 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 4 mod 5 (5) |
46637 k's remaining at n=2.5K. To be shown later. | 12 (45940) 10297996 (2500) 10129498 (2500) 9858696 (2500) 9720612 (2500) 9609132 (2500) 9133660 (2500) 9112426 (2500) 7911538 (2500) 7313752 (2500) |
||
482 | 8 | 3, 7 | k = = 12 mod 13 (13) k = = 36 mod 37 (37) |
none - proven | 4 (30690) 2 (11) 6 (3) 7 (2) 5 (1) 3 (1) |
k = 1 is a GFn with no known prime. | |
483 | 32 | 5, 11, 41 | k = = 1 mod 2 (2) k = = 240 mod 241 (241) |
none - proven | 8 (8680) 6 (153) 18 (14) 26 (8) 16 (4) 30 (3) 28 (2) 12 (2) 24 (1) 22 (1) |
||
484 | 96 | 5, 97 | k = = 2 mod 3 (3) k = = 6 mod 7 (7) k = = 22 mod 23 (23) |
none - proven | 54 (69515) 21 (1060) 78 (864) 36 (204) 84 (103) 15 (57) 30 (41) 39 (33) 88 (27) 66 (24) |
k = 1 is a GFn with no known prime. | |
485 | 3344 | 3, 7, 13, 223 | k = = 1 mod 2 (2) k = = 10 mod 11 (11) |
67 k's remaining at n=100K. See k's at Sierpinski Base 485 remain. |
1096 (96988) 3296 (83623) 850 (83154) 244 (65630) 2442 (64966) 1786 (64032) 38 (63059) 1942 (62882) 1252 (62248) 1336 (52796) |
||
486 | 301941 | 7, 19, 223, 487 | k = = 4 mod 5 (5) k = = 96 mod 97 (97) |
2844 k's remaining at n=10K. See k's at Sierpinski Base 486 remain. |
203222 (9997) 293691 (9976) 198321 (9970) 248177 (9958) 24528 (9952) 182883 (9930) 84758 (9929) 69447 (9916) 50235 (9901) 109876 (9886) |
k = 486 and 236196 are GFn's with no known prime. | |
487 | 6772 | 7, 13, 19, 37, 61 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) |
42 k's remaining at n=100K. See k's at Sierpinski Base 487 remain. |
5806 (83469) 804 (78502) 306 (72072) 1402 (59559) 6334 (59551) 346 (56445) 286 (55313) 820 (52051) 3454 (50815) 556 (47551) |
||
488 | 164 | 3, 163 | k = = 486 mod 487 (487) | 8 (300K) 106 (300K) 122 (300K) 128 (300K) 139 (300K) 145 (300K) |
141 (150192) 35 (58539) 31 (30060) 107 (23797) 154 (16642) 77 (8917) 150 (7165) 34 (6982) 19 (6798) 16 (5608) |
||
489 | 6 | 5, 7 | k = = 2 mod 3 (3) k = = 60 mod 61 (61) |
none - proven | 4 (5) 2 (2) |
||
490 | 15123 | 13, 31, 199 | k = = 2 mod 3 (3) k = = 162 mod 163 (163) |
29 k's remaining at n=100K. See k's at Sierpinski Base 490 remain. |
6075 (82357) 11496 (81141) 7708 (51506) 15010 (50571) 14619 (50449) 12321 (42008) 12555 (41726) 285 (40033) 9697 (37271) 2482 (37159) |
||
491 | 40 | 3, 41 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 6 mod 7 (7) |
none - proven | 26 (767) 32 (41) 36 (13) 38 (11) 22 (10) 28 (4) 10 (4) 16 (2) 12 (2) 30 (1) |
||
492 | 86 | 17, 29 | k = = 490 mod 491 (491) | 69 (600K) | 10 (42842) 31 (30359) 50 (11445) 54 (6883) 33 (381) 47 (366) 48 (304) 28 (277) 52 (246) 18 (202) |
||
493 | 324 | 13, 19 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 40 mod 41 (41) |
18 (300K) 64 (300K) 66 (300K) 118 (300K) 142 (300K) |
144 (26030) 298 (9247) 132 (4809) 168 (1751) 210 (244) 318 (192) 282 (162) 262 (142) 184 (70) 216 (64) |
||
494 | 4 | 3, 5 | k = = 16 mod 17 (17) k = = 28 mod 29 (29) |
none - proven | 2 (21) 3 (1) |
||
495 | 692446 | 17, 31, 41, 101 | k = = 2 mod 3 (3) k = = 12 mod 13 (13) k = = 18 mod 19 (19) |
1247 k's remaining at n=25K. See k's at Sierpinski Base 495 remain. |
439206 (24967) 403682 (24830) 352688 (24720) 215170 (24611) 265266 (24595) 657698 (24496) 13112 (24491) 418158 (24483) 113756 (24481) 90798 (24383) |
||
496 | 141 | 7, 71 | k = = 2 mod 3 (3) k = = 4 mod 5 (5) k = = 10 mod 11 (11) |
none - proven | 15 (44172) 27 (551) 97 (259) 127 (208) 118 (31) 85 (22) 36 (22) 72 (20) 135 (12) 96 (11) |
||
497 | 16 | 3, 5, 17 | k = = 1 mod 2 (2) k = = 30 mod 31 (31) |
8 (600K) | 4 (1898) 2 (1339) 6 (169) 12 (4) 10 (4) 14 (1) |
||
498 | 7983 | 5, 257, 499 | k = = 6 mod 7 (7) k = = 70 mod 71 (71) |
45 k's remaining at n=100K. See k's at Sierpinski Base 498 remain. |
4054 (96131) 5556 (92092) 7439 (78874) 298 (73851) 5694 (72499) 4779 (71567) 2042 (70742) 7021 (70024) 5033 (58711) 6508 (58232) |
||
499 | 2124 | 5, 13, 61 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 82 mod 83 (83) |
136 (100K) 174 (100K) 208 (100K) 216 (100K) 294 (100K) 306 (100K) 406 (100K) 586 (100K) 846 (100K) 936 (100K) 948 (100K) 1026 (100K) 1042 (100K) 1074 (100K) 1354 (100K) 1384 (100K) 1414 (100K) 1474 (100K) 1546 (100K) 1806 (100K) 1906 (100K) 1944 (100K) 2008 (100K) |
246 (81050) 1494 (78183) 1984 (70797) 1636 (46992) 1714 (39275) 1158 (30143) 754 (29709) 636 (22822) 606 (19962) 1018 (17765) |
||
500 | 166 | 3, 167 | k = = 498 mod 499 (499) | 22 (300K) 24 (300K) 52 (300K) 64 (300K) 65 (300K) 92 (300K) 116 (300K) 151 (300K) 160 (300K) 164 (300K) |
83 (145465) 29 (25213) 62 (5515) 94 (4492) 124 (2820) 145 (2588) 54 (2169) 7 (1996) 106 (1664) 60 (1123) |
k = 1 is a GFn with no known prime. | |
501 | 278 | 7, 19, 31 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) |
none - proven | 192 (116124) 12 (20139) 208 (5882) 26 (1251) 138 (351) 230 (329) 250 (315) 96 (257) 66 (244) 40 (195) |
||
502 | 8832 | 5, 7, 13, 61, 73 | k = = 2 mod 3 (3) k = = 166 mod 167 (167) |
89 k's remaining at n=100K. See k's at Sierpinski Base 502 remain. |
7447 (90086) 6441 (88783) 7852 (85644) 8737 (81775) 5238 (81370) 2766 (75500) 4023 (70853) 1501 (65459) 4744 (61537) 7012 (58954) |
k = 502 is a GFn with no known prime. | |
503 | 8 | 3, 7 | k = = 1 mod 2 (2) k = = 250 mod 251 (251) |
none - proven | 4 (714) 2 (9) 6 (1) |
||
504 | 201 | 5, 101 | k = = 502 mod 503 (503) | 79 (300K) 94 (300K) 116 (300K) |
76 (107254) 166 (61354) 121 (8792) 69 (5899) 91 (5494) 171 (3102) 26 (1998) 89 (1603) 36 (1522) 86 (630) |
||
505 | 208 | 11, 23 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 6 mod 7 (7) |
none - proven | 186 (31199) 190 (164) 100 (134) 166 (60) 30 (41) 78 (30) 136 (18) 24 (14) 126 (11) 88 (11) |
||
506 | 25 | 3, 13 | k = = 4 mod 5 (5) k = = 100 mod 101 (101) |
none - proven | 16 (1066) 11 (269) 22 (22) 20 (11) 7 (6) 23 (3) 17 (3) 3 (3) 13 (2) 10 (2) |
||
507 | 1142 | 5, 97, 127 | k = = 1 mod 2 (2) k = = 10 mod 11 (11) k = = 22 mod 23 (23) |
380 (300K) 702 (300K) 984 (300K) |
292 (142979) 360 (21897) 478 (14561) 734 (5581) 862 (5302) 936 (3996) 924 (3862) 1010 (3256) 872 (2310) 818 (1221) |
||
508 | 601128 | 5, 7, 37, 73, 509 | k = = 2 mod 3 (3) k = = 12 mod 13 (13) |
14811 k's remaining at n=2.5K. To be shown later. | 331305 (2500) 128433 (2500) 416908 (2498) 392328 (2498) 501451 (2497) 113341 (2497) 520851 (2496) 502407 (2496) 487182 (2496) 79917 (2496) |
||
509 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 126 mod 127 (127) |
none - proven | 2 (1) | ||
510 | 218 | 7, 73 | k = = 508 mod 509 (509) | 57 (500K) 195 (500K) |
148 (3310) 17 (1740) 30 (804) 113 (550) 129 (548) 90 (409) 169 (220) 141 (206) 31 (184) 190 (172) |
||
513 | 45828 | 7, 139, 271 | k = = 1 mod 2 (2) | 446 k's remaining at n=25K. See k's at Sierpinski Base 513 remain. |
14474 (24795) 6774 (24793) 2298 (24767) 40424 (24629) 42804 (24470) 4974 (24455) 23210 (24148) 28188 (24035) 33596 (23907) 25774 (23737) |
||
514 | 411 | 5, 103 | k = = 2 mod 3 (3) k = = 18 mod 19 (19) |
96 (500K) 99 (500K) 211 (500K) 271 (500K) 289 (500K) 309 (500K) 321 (500K) 381 (500K) |
249 (29583) 54 (18905) 79 (9431) 276 (5160) 199 (4951) 273 (4048) 301 (2096) 82 (2022) 387 (1940) 109 (1893) |
k = 1 is a GFn with no known prime. | |
515 | 44 | 3, 43 | k = = 1 mod 2 (2) k = = 490 mod 491 (491) |
none - proven | 26 (2477) 42 (1331) 22 (254) 12 (186) 4 (122) 16 (94) 24 (37) 40 (12) 8 (11) 10 (4) |
||
516 | 142 | 11, 47 | k = = 4 mod 5 (5) k = = 102 mod 103 (103) |
122 (600K) | 93 (1993) 140 (1401) 108 (115) 100 (86) 25 (83) 127 (74) 17 (54) 88 (33) 30 (31) 48 (28) |
||
517 | 36 | 7, 37 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 42 mod 43 (43) |
none - proven | 22 (10) 12 (8) 18 (5) 6 (3) 28 (2) 34 (1) 30 (1) 24 (1) 16 (1) 10 (1) |
||
518 | 172 | 3, 173 | k = = 10 mod 11 (11) k = = 46 mod 47 (47) |
68 (300K) 83 (300K) 107 (300K) 167 (300K) |
128 (293315) 16 (41876) 52 (28950) 91 (18940) 8 (11767) 44 (6703) 129 (5335) 2 (4453) 31 (3752) 64 (3526) |
k = 1 is a GFn with no known prime. | |
519 | 14 | 5, 13 | k = = 1 mod 2 (2) k = = 6 mod 7 (7) k = = 36 mod 37 (37) |
none - proven | 4 (1425) 10 (34) 12 (1) 8 (1) 2 (1) |
||
520 | 1006 | 7, 19, 97 | k = = 2 mod 3 (3) k = = 172 mod 173 (173) |
369 (1M) | 373 (342177) 880 (12438) 663 (8581) 157 (4854) 838 (3120) 810 (2329) 948 (2027) 432 (1134) 703 (1119) 31 (876) |
k = 520 is a GFn with no known prime. | |
521 | 28 | 3, 29 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 12 mod 13 (13) |
none - proven | 20 (301) 10 (42) 26 (9) 2 (9) 8 (5) 6 (4) 18 (3) 22 (2) 16 (2) |
||
522 | 32644 | 5, 7, 13, 31, 43 | k = = 520 mod 521 (521) | 781 k's remaining at n=25K. See k's at Sierpinski Base 522 remain. |
6 (52603) 15167 (24908) 11161 (24769) 16741 (24637) 13607 (24488) 8692 (24368) 9596 (24203) 26774 (24122) 5157 (24044) 16456 (24037) |
k = 522 is a GFn with no known prime. | |
523 | 10872 | 7, 13, 43, 131 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 28 mod 29 (29) |
45 k's remaining at n=100K. See k's at Sierpinski Base 523 remain. |
3694 (81154) 3792 (80629) 8884 (77166) 10362 (66513) 688 (66286) 888 (66056) 9898 (63512) 4416 (60043) 8448 (59091) 7102 (55236) |
||
524 | 4 | 3, 5 | k = = 522 mod 523 (523) | none - proven | 3 (2) 2 (1) |
k = 1 is a GFn with no known prime. | |
525 | 8639814 | 13, 263, 10601 | k = = 1 mod 2 (2) k = = 130 mod 131 (131) |
54690 k's remaining at n=2.5K. To be shown later. | 6299960 (2500) 5495304 (2500) 4222476 (2500) 3612414 (2500) 2408498 (2500) 664266 (2500) 629916 (2500) 629692 (2500) 7984138 (2499) 7778308 (2499) |
||
526 | 373 | 17, 31 | k = = 2 mod 3 (3) k = = 4 mod 5 (5) k = = 6 mod 7 (7) |
none - proven | 123 (3435) 186 (2927) 340 (401) 210 (262) 28 (223) 30 (191) 337 (126) 205 (120) 105 (89) 292 (68) |
||
527 | 10 | 3, 11 | k = = 1 mod 2 (2) k = = 262 mod 263 (263) |
none - proven | 2 (23) 4 (2) 8 (1) 6 (1) |
||
528 | 116 | 5, 13, 23 | k = = 16 mod 17 (17) k = = 30 mod 31 (31) |
none - proven | 64 (10186) 113 (618) 24 (334) 72 (333) 42 (261) 11 (248) 27 (97) 28 (88) 65 (74) 21 (48) |
k = 1 is a GFn with no known prime. | |
529 | 972 | 7, 13, 79 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 10 mod 11 (11) |
244 (394K) 376 (394K) 394 (394K) 426 (394K) 454 (394K) 544 (394K) 634 (394K) 906 (394K) 936 (394K) |
810 (113679) 922 (94889) 184 (59607) 264 (24831) 342 (12082) 696 (5506) 766 (4318) 850 (2799) 444 (2641) 174 (1753) |
||
530 | 58 | 3, 59 | k = = 22 mod 23 (23) | 14 (300K) 52 (300K) |
31 (74898) 40 (124) 13 (98) 39 (84) 9 (51) 55 (50) 5 (29) 23 (19) 53 (17) 35 (17) |
k = 1 is a GFn with no known prime. | |
531 | 20 | 7, 19 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 52 mod 53 (53) |
none - proven | 18 (43) 8 (28) 10 (17) 16 (10) 12 (1) 6 (1) 2 (1) |
||
532 | 40 | 13, 41 | k = = 2 mod 3 (3) k = = 58 mod 59 (59) |
none - proven | 37 (1331) 6 (9) 10 (7) 36 (5) 33 (4) 22 (4) 25 (3) 24 (3) 19 (3) 12 (3) |
||
533 | 88 | 3, 89 | k = = 1 mod 2 (2) k = = 6 mod 7 (7) k = = 18 mod 19 (19) |
38 (400K) 64 (400K) |
16 (7932) 40 (840) 52 (212) 8 (79) 44 (33) 14 (27) 66 (25) 28 (18) 2 (17) 32 (13) |
||
534 | 106 | 5, 107 | k = = 12 mod 13 (13) k = = 40 mod 41 (41) |
104 (600K) | 34 (117941) 24 (72261) 94 (21245) 19 (11311) 76 (9502) 13 (6760) 57 (718) 11 (688) 21 (618) 75 (405) |
k = 1 is a GFn with no known prime. | |
535 | 4653216 | 7, 61, 67, 40813 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 88 mod 89 (89) |
35050 k's remaining at n=2.5K. To be shown later. | 4498902 (2500) 3907806 (2500) 3237924 (2500) 2956032 (2500) 2891940 (2500) 2570110 (2500) 1884984 (2500) 1632000 (2500) 197220 (2500) 4402750 (2499) |
||
536 | 178 | 3, 179 | k = = 4 mod 5 (5) k = = 106 mod 107 (107) |
13 (500K) 75 (500K) |
81 (493229) 71 (169461) 32 (44419) 26 (36623) 77 (35657) 145 (26684) 97 (22426) 43 (20154) 5 (8789) 67 (2724) |
||
537 | 176734 | 5, 7, 13, 109, 269 | k = = 1 mod 2 (2) k = = 66 mod 67 (67) |
2347 k's remaining at n=10K. See k's at Sierpinski Base 537 remain. |
82700 (9963) 24480 (9946) 141236 (9939) 136608 (9936) 100624 (9935) 97900 (9923) 117342 (9916) 37096 (9899) 146910 (9893) 1304 (9874) |
||
538 | 27 | 5, 7, 73 | k = = 2 mod 3 (3) k = = 178 mod 179 (179) |
none - proven | 22 (1534) 13 (367) 3 (14) 18 (4) 24 (3) 15 (2) 12 (2) 9 (2) 25 (1) 21 (1) |
k = 1 is a GFn with no known prime. | |
539 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 268 mod 269 (269) |
none - proven | 2 (7) | ||
540 | 1091739 | 17, 541, 1009 | k = = 6 mod 7 (7) k = = 10 mod 11 (11) |
2632 k's remaining at n=10K. See k's at Sierpinski Base 540 remain. |
566289 (10000) 65445 (9997) 324095 (9992) 364598 (9987) 149697 (9987) 998687 (9984) 151301 (9981) 505043 (9977) 679792 (9972) 628358 (9972) |
||
541 | 15253776 | 13, 271, 11257 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 4 mod 5 (5) |
120506 k's remaining at n=2.5K. To be shown later. | 14911560 (2500) 14855220 (2500) 13835050 (2500) 13762366 (2500) 13045738 (2500) 12347766 (2500) 12284602 (2500) 12199662 (2500) 11403880 (2500) 11242420 (2500) |
||
542 | 32 | 3, 5, 41 | k = = 540 mod 541 (541) | 2 (500K) 13 (500K) |
19 (18950) 4 (15982) 11 (4909) 29 (859) 16 (364) 27 (334) 30 (156) 25 (116) 15 (109) 22 (98) |
||
543 | 6478 | 7, 13, 17, 19 | k = = 1 mod 2 (2) k = = 270 mod 271 (271) |
96 k's remaining at n=100K. See k's at Sierpinski Base 543 remain. |
798 (96135) 4350 (95038) 4514 (83623) 3280 (81575) 5616 (81047) 3660 (77360) 3160 (69334) 6240 (67126) 3792 (63578) 4274 (62891) |
||
544 | 64 | 5, 7, 19, 37 | k = = 2 mod 3 (3) k = = 180 mod 181 (181) |
none - proven | 9 (4705) 61 (1002) 6 (278) 31 (258) 40 (141) 49 (71) 4 (39) 30 (26) 42 (25) 39 (23) |
||
545 | 8 | 3, 7 | k = = 1 mod 2 (2) k = = 16 mod 17 (17) |
none - proven | 4 (558) 6 (1) 2 (1) |
||
547 | 1658658 | 5, 41, 113, 137 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 6 mod 7 (7) k = = 12 mod 13 (13) |
5063 k's remaining at n=10K. See k's at Sierpinski Base 547 remain. |
599232 (9990) 17400 (9984) 1521282 (9982) 776332 (9982) 395032 (9964) 589024 (9958) 1378876 (9956) 377394 (9954) 217962 (9950) 910912 (9947) |
||
548 | 16 | 3, 5, 17 | k = = 546 mod 547 (547) | none - proven | 8 (5311) 6 (115) 13 (22) 10 (12) 3 (6) 7 (4) 4 (2) 15 (1) 14 (1) 12 (1) |
||
549 | 34 | 5, 11 | k = = 1 mod 2 (2) k = = 136 mod 137 (137) |
none - proven | 30 (35) 22 (31) 6 (20) 2 (14) 16 (12) 4 (9) 20 (3) 10 (3) 26 (2) 12 (2) |
||
550 | 115 | 19, 29 | k = = 2 mod 3 (3) k = = 60 mod 61 (61) |
94 (600K) | 75 (5841) 88 (134) 33 (90) 54 (48) 24 (45) 48 (25) 61 (21) 3 (16) 55 (11) 82 (9) |
||
551 | 22 | 3, 23 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 10 mod 11 (11) |
none - proven | 16 (20) 20 (13) 18 (3) 12 (3) 8 (1) 6 (1) 2 (1) |
||
552 | 78 | 7, 79 | k = = 18 mod 19 (19) k = = 28 mod 29 (29) |
none - proven | 26 (22956) 43 (8714) 36 (2004) 50 (1530) 19 (1010) 61 (649) 8 (508) 64 (158) 14 (63) 77 (43) |
k = 1 is a GFn with no known prime. | |
553 | 1938 | 5, 53, 277 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 22 mod 23 (23) |
94 (300K) 172 (300K) 688 (300K) 1602 (300K) |
372 (73872) 1852 (52517) 984 (36330) 1498 (32100) 796 (20335) 1168 (11202) 1458 (8068) 1116 (7228) 1018 (5404) 282 (2749) |
||
554 | 4 | 3, 5 | k = = 6 mod 7 (7) k = = 78 mod 79 (79) |
none - proven | 3 (1) 2 (1) |
||
555 | 32388 | 139, 233, 661 | k = = 1 mod 2 (2) k = = 276 mod 277 (277) |
132 k's remaining at n=100K. See k's at Sierpinski Base 555 remain. |
28192 (98858) 22728 (94729) 11080 (93907) 27078 (89948) 31840 (88590) 14986 (85883) 13166 (84038) 23502 (84036) 26318 (82983) 28558 (80460) |
||
556 | 3353698 | 7, 13, 557, 3391 | k = = 2 mod 3 (3) k = = 4 mod 5 (5) k = = 36 mod 37 (37) |
32274 k's remaining at n=2.5K. To be shown later. | 1938673 (2500) 948756 (2500) 561532 (2500) 2268556 (2499) 2139952 (2499) 1602768 (2499) 1460175 (2499) 973497 (2499) 943011 (2499) 673357 (2499) |
||
557 | 16 | 3, 5, 17 | k = = 1 mod 2 (2) k = = 138 mod 139 (139) |
none - proven | 12 (50) 2 (19) 10 (18) 14 (17) 4 (10) 8 (1) 6 (1) |
||
558 | 259 | 13, 43 | k = = 556 mod 557 (557) | 8 (300K) 183 (300K) 198 (300K) |
118 (261698) 224 (34435) 174 (28067) 249 (10239) 144 (7622) 62 (4949) 73 (4751) 142 (4297) 42 (3529) 51 (3441) |
k = 1 is a GFn with no known prime. | |
559 | 6 | 5, 7 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 30 mod 31 (31) |
none - proven | 4 (1) | ||
560 | 10 | 3, 11 | k = = 12 mod 13 (13) k = = 42 mod 43 (43) |
none - proven | 4 (590) 2 (5) 9 (3) 7 (2) 3 (2) 8 (1) 6 (1) 5 (1) |
||
561 | 6290186 | 37, 281, 4253 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 6 mod 7 (7) |
7027 k's remaining at n=6.175K. To be shown later. | 5213332 (6173) 4307280 (6173) 1221868 (6172) 3981406 (6171) 1360200 (6171) 4879002 (6169) 1741880 (6168) 5021802 (6166) 5421848 (6165) 4805718 (6165) |
||
562 | 12 | 7, 13, 19 | k = = 2 mod 3 (3) k = = 10 mod 11 (11) k = = 16 mod 17 (17) |
none - proven | 7 (7) 3 (6) 4 (2) 9 (1) 6 (1) |
||
563 | 12 | 5, 7, 13, 19, 29 | k = = 1 mod 2 (2) k = = 280 mod 281 (281) |
none - proven | 4 (3958) 6 (303) 2 (81) 8 (7) 10 (6) |
||
564 | 114 | 5, 113 | k = = 562 mod 563 (563) | 68 (500K) 79 (500K) |
29 (326765) 106 (175330) 107 (42025) 109 (30771) 112 (8205) 73 (3297) 86 (3130) 83 (856) 44 (535) 47 (233) |
k = 1 is a GFn with no known prime. | |
565 | 8472 | 7, 13, 37, 67, 229 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 46 mod 47 (47) |
1146 (300K) 1942 (300K) 2416 (300K) 3684 (300K) 4192 (300K) 5376 (300K) 5872 (300K) 6462 (300K) 7132 (300K) 7266 (300K) 7570 (300K) 7642 (300K) 8040 (300K) |
6510 (245490) 6844 (219383) 360 (108195) 2284 (99835) 1920 (68974) 7648 (58824) 8136 (55996) 616 (41311) 1914 (34320) 2256 (28984) |
||
566 | 8 | 3, 7 | k = = 4 mod 5 (5) k = = 112 mod 113 (113) |
none - proven | 5 (35) 7 (10) 6 (3) 2 (3) 3 (1) |
||
567 | 924 | 5, 13, 71 | k = = 1 mod 2 (2) k = = 282 mod 283 (283) |
none - proven | 212 (98259) 704 (88673) 902 (14194) 424 (13083) 506 (9217) 252 (8956) 876 (7297) 78 (4789) 804 (4382) 898 (4297) |
||
568 | 23328 | 5, 29, 569 | k = = 2 mod 3 (3) k = = 6 mod 7 (7) |
86 k's remaining at n=100K. See k's at Sierpinski Base 568 remain. |
8956 (96517) 3666 (85165) 13660 (82952) 12052 (80318) 10308 (79159) 16222 (78098) 16741 (77448) 2742 (77198) 4789 (77174) 9172 (76649) |
||
569 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 70 mod 71 (71) |
none - proven | 2 (29) | ||
570 | 2972056 | 7, 13, 61, 271, 571 | k = = 568 mod 569 (569) | 56901 k's remaining at n=2.5K. To be shown later. | 2917923 (2500) 2775562 (2500) 2733002 (2500) 2425552 (2500) 2385903 (2500) 2020675 (2500) 1826290 (2500) 1089073 (2500) 699849 (2500) 2676772 (2499) |
k = 324900 is a GFn with no known prime. | |
571 | 12 | 11, 13 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 4 mod 5 (5) k = = 18 mod 19 (19) |
none - proven | 6 (7) 10 (1) |
||
572 | 190 | 3, 191 | k = = 570 mod 571 (571) | 8 (300K) 19 (300K) 29 (300K) 32 (300K) 80 (300K) 109 (300K) 121 (300K) 166 (300K) |
57 (235362) 92 (41699) 115 (38628) 152 (17923) 83 (16765) 31 (15576) 34 (12590) 124 (9526) 154 (5922) 172 (4068) |
k = 1 is a GFn with no known prime. | |
573 | 204 | 7, 41 | k = = 1 mod 2 (2) k = = 10 mod 11 (11) k = = 12 mod 13 (13) |
106 (500K) 132 (500K) 202 (500K) |
122 (4497) 172 (2556) 44 (929) 178 (631) 188 (359) 118 (359) 78 (324) 48 (99) 16 (72) 124 (62) |
||
574 | 24 | 5, 23 | k = = 2 mod 3 (3) k = = 190 mod 191 (191) |
16 (600K) | 15 (110) 13 (6) 22 (3) 19 (3) 12 (3) 21 (2) 6 (2) 18 (1) 10 (1) 9 (1) |
k = 1 is a GFn with no known prime. | |
575 | 136582 | 13, 73, 349 | k = = 1 mod 2 (2) k = = 6 mod 7 (7) k = = 40 mod 41 (41) |
1823 k's remaining at n=25K. See k's at Sierpinski Base 575 remain. |
7812 (24901) 32590 (24878) 100228 (24800) 78374 (24793) 31654 (24638) 129206 (24623) 134362 (24560) 14530 (24532) 133480 (24498) 115788 (24492) |
||
576 | 30651 | 7, 13, 73, 79 | k = = 4 mod 5 (5) k = = 22 mod 23 (23) |
151 k's remaining at n>=100K. See k's and test limits at Sierpinski Base 576 remain. |
3846 (191763) 23981 (180031) 3706 (176954) 21526 (164684) 29641 (115926) 27611 (109973) 29116 (108494) 23035 (99646) 5820 (94377) 10216 (91958) |
||
577 | 664 | 5, 13, 17 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) |
132 (300K) 274 (300K) 288 (300K) 424 (300K) 426 (300K) 492 (300K) |
84 (86565) 156 (26837) 106 (18716) 172 (18691) 120 (6988) 442 (4250) 616 (3504) 528 (3390) 30 (2974) 420 (2709) |
||
578 | 68 | 3, 5, 7, 19, 37 | k = = 576 mod 577 (577) | 17 (300K) 31 (300K) 38 (300K) |
64 (102614) 2 (44165) 61 (40892) 52 (39982) 8 (6143) 22 (5024) 20 (4177) 46 (1392) 47 (1089) 19 (950) |
k = 1 is a GFn with no known prime. | |
579 | 86 | 5, 29 | k = = 1 mod 2 (2) k = = 16 mod 17 (17) |
6 (600K) | 4 (67775) 78 (528) 44 (229) 24 (163) 18 (146) 46 (130) 56 (94) 2 (74) 72 (22) 76 (16) |
||
580 | 414 | 7, 83 | k = = 2 mod 3 (3) k = = 192 mod 193 (193) |
none - proven | 406 (22265) 183 (8364) 391 (2403) 73 (2360) 333 (1620) 294 (952) 108 (744) 78 (576) 384 (435) 118 (361) |
k = 1 is a GFn with no known prime. | |
581 | 98 | 3, 97 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 28 mod 29 (29) |
none - proven | 82 (1494) 50 (533) 46 (120) 22 (54) 76 (48) 48 (37) 88 (30) 16 (24) 66 (12) 58 (8) |
||
582 | 54 | 11, 53 | k = = 6 mod 7 (7) k = = 82 mod 83 (83) |
32 (600K) | 52 (1567) 12 (334) 4 (299) 38 (106) 21 (75) 53 (26) 11 (23) 9 (23) 16 (19) 37 (10) |
||
583 | 2994 | 5, 41, 73 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 96 mod 97 (97) |
706 (300K) 894 (300K) 1096 (300K) 1270 (300K) 1680 (300K) 1762 (300K) 1914 (300K) 2022 (300K) 2196 (300K) 2448 (300K) 2556 (300K) 2614 (300K) |
306 (179215) 528 (156444) 808 (100572) 1552 (45288) 2908 (34608) 862 (30241) 2274 (26374) 1608 (22879) 2778 (17923) 244 (13018) |
||
584 | 4 | 3, 5 | k = = 10 mod 11 (11) k = = 52 mod 53 (53) |
none - proven | 2 (111) 3 (1) |
||
585 | 13929512 | 137, 293, 1249 | k = = 1 mod 2 (2) k = = 72 mod 73 (73) |
134076 k's remaining at n=2.5K. To be shown later. | 13597884 (2500) 13235148 (2500) 12815354 (2500) 12649318 (2500) 12491656 (2500) 11649066 (2500) 10853922 (2500) 10028178 (2500) 9818812 (2500) 9434536 (2500) |
||
586 | 21262902 | 17, 37, 89, 587 | k = = 2 mod 3 (3) k = = 4 mod 5 (5) k = = 12 mod 13 (13) |
196149 k's remaining at n=2.5K. To be shown later. | 21212400 (2500) 21016413 (2500) 20948088 (2500) 20386258 (2500) 20214777 (2500) 18094411 (2500) 17768170 (2500) 17625852 (2500) 17616958 (2500) 17250678 (2500) |
k = 586 and 343396 are GFn's with no known prime. | |
587 | 8 | 3, 7 | k = = 1 mod 2 (2) k = = 292 mod 293 (293) |
none - proven | 6 (24119) 2 (195) 4 (2) |
||
588 | 94 | 19, 31 | k = = 586 mod 587 (587) | none - proven | 90 (110728) 89 (10781) 25 (5789) 18 (911) 43 (858) 68 (210) 30 (179) 21 (123) 56 (77) 9 (77) |
||
589 | 414 | 5, 59 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 6 mod 7 (7) |
none - proven | 186 (14952) 178 (3190) 108 (2617) 336 (1098) 226 (952) 354 (623) 94 (611) 136 (430) 172 (221) 198 (179) |
||
590 | 196 | 3, 197 | k = = 18 mod 19 (19) k = = 30 mod 31 (31) |
19 (300K) 26 (300K) 40 (300K) 64 (500K) 104 (300K) 118 (300K) 148 (300K) 157 (300K) 178 (300K) 179 (300K) |
145 (201814) 194 (131743) 17 (36593) 122 (14391) 103 (9670) 95 (8541) 41 (7195) 32 (6077) 164 (5517) 187 (4224) |
k = 1 is a GFn with no known prime. | |
591 | 16242 | 7, 37, 109, 181 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 58 mod 59 (59) |
33 k's remaining at n=100K. See k's at Sierpinski Base 591 remain. |
7442 (99283) 6390 (81466) 5232 (80302) 9510 (74086) 2478 (72995) 15856 (66210) 14096 (55289) 3110 (49851) 13652 (49721) 9066 (42186) |
||
592 | 23721 | 5, 29, 593 | k = = 2 mod 3 (3) k = = 196 mod 197 (197) |
247 k's remaining at n=100K. See k's at Sierpinski Base 592 remain. |
15468 (99036) 19867 (98006) 9 (96869) 7926 (96699) 12612 (96552) 3981 (94029) 21867 (91348) 7759 (91341) 2589 (90109) 21097 (89911) |
||
593 | 10 | 3, 11 | k = = 1 mod 2 (2) k = = 36 mod 37 (37) |
4 (1M) 8 (500K) |
6 (1) 2 (1) |
||
594 | 6 | 5, 7 | k = = 592 mod 593 (593) | none - proven | 2 (4) 5 (1) 4 (1) 3 (1) |
||
595 | 301128 | 13, 31, 43, 149 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 10 mod 11 (11) |
90 k's remaining at n=100K. See k's at Sierpinski Base 595 remain. |
284946 (98941) 250818 (93298) 26074 (89819) 157072 (87343) 168180 (87093) 151440 (85940) 250510 (74909) 114030 (71591) 130714 (70551) 59154 (69618) |
||
596 | 200 | 3, 199 | k = = 4 mod 5 (5) k = = 6 mod 7 (7) k = = 16 mod 17 (17) |
136 (600K) | 151 (278054) 8 (148445) 71 (124933) 121 (105308) 137 (20789) 96 (16348) 182 (4967) 145 (3970) 198 (1551) 170 (1463) |
||
597 | 12 | 5, 13, 29 | k = = 1 mod 2 (2) k = = 148 mod 149 (149) |
none - proven | 8 (100) 10 (3) 2 (2) 6 (1) 4 (1) |
||
598 | 18568 | 5, 37, 599 | k = = 2 mod 3 (3) k = = 198 mod 199 (199) |
93 k's remaining at n=100K. See k's at Sierpinski Base 598 remain. |
17023 (99335) 1294 (99243) 17007 (94820) 10383 (93327) 4224 (91174) 18109 (89186) 14172 (86544) 10144 (80094) 17803 (78174) 11112 (77789) |
||
599 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 12 mod 13 (13) k = = 22 mod 23 (23) |
none - proven | 2 (13) | ||
600 | 1906972 | 7, 13, 19, 37, 601 | k = = 598 mod 599 (599) | 48948 k's remaining at n=2.5K. To be shown later. | 12 (11241) 1528367 (2500) 1240660 (2500) 1695504 (2499) 1504520 (2499) 1418338 (2499) 1339113 (2499) 1302705 (2499) 814616 (2499) 782865 (2499) |
||
601 | 216 | 7, 43 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 4 mod 5 (5) |
none - proven | 18 (1322) 36 (844) 198 (761) 190 (428) 112 (319) 126 (196) 160 (141) 22 (68) 172 (61) 120 (34) |
||
602 | 68 | 3, 67 | k = = 600 mod 601 (601) | 16 (300K) 34 (300K) 43 (300K) 49 (300K) |
64 (130078) 27 (29560) 61 (20236) 32 (19527) 65 (3137) 4 (1330) 23 (817) 62 (695) 25 (316) 47 (135) |
k = 1 is a GFn with no known prime. | |
603 | 1964 | 5, 13, 151 | k = = 1 mod 2 (2) k = = 6 mod 7 (7) k = = 42 mod 43 (43) |
122 (300K) 1072 (300K) 1358 (300K) 1962 (300K) |
1286 (245567) 1396 (61512) 584 (54929) 1608 (42670) 688 (18222) 1256 (15880) 854 (14842) 1708 (13552) 556 (13309) 876 (12696) |
||
604 | 21 | 5, 11 | k = = 2 mod 3 (3) k = = 66 mod 67 (67) |
none - proven | 12 (17370) 16 (124) 19 (49) 15 (19) 6 (4) 18 (3) 10 (3) 3 (2) 13 (1) 9 (1) |
k = 1 is a GFn with no known prime. | |
605 | 100 | 3, 101 | k = = 1 mod 2 (2) k = = 150 mod 151 (151) |
70 (600K) | 10 (12394) 46 (2068) 40 (86) 30 (34) 48 (29) 8 (23) 78 (16) 66 (13) 32 (13) 96 (12) |
||
606 | 50380 | 13, 41, 607 | k = = 4 mod 5 (5) k = = 10 mod 11 (11) |
171 k's remaining at n=100K. See k's at Sierpinski Base 606 remain. |
45270 (97009) 47606 (96848) 39616 (95665) 44435 (94348) 4486 (92383) 48081 (89201) 46126 (88567) 35901 (85655) 16106 (85285) 47428 (84564) |
k = 606 is a GFn with no known prime. | |
607 | 420034 | 5, 19, 7369 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 100 mod 101 (101) |
5572 k's remaining at n=10K. See k's at Sierpinski Base 607 remain. |
338082 (9999) 255714 (9990) 48240 (9977) 108216 (9967) 386538 (9965) 317584 (9965) 370102 (9960) 75702 (9947) 218386 (9943) 41422 (9942) |
||
608 | 8 | 3, 7 | k = = 606 mod 607 (607) | none - proven | 4 (20706) 6 (9) 7 (2) 3 (2) 5 (1) 2 (1) |
k = 1 is a GFn with no known prime. | |
609 | 184 | 5, 61 | k = = 1 mod 2 (2) k = = 18 mod 19 (19) |
none - proven | 124 (5887) 50 (1599) 182 (421) 24 (351) 142 (118) 52 (102) 96 (78) 98 (58) 156 (56) 172 (51) |
||
610 | 142 | 13, 47 | k = = 2 mod 3 (3) k = = 6 mod 7 (7) k = = 28 mod 29 (29) |
none - proven | 96 (396) 18 (163) 33 (57) 123 (54) 21 (51) 9 (39) 105 (38) 117 (34) 51 (25) 25 (23) |
||
611 | 16 | 3, 17 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 60 mod 61 (61) |
none - proven | 6 (5) 10 (2) 12 (1) 8 (1) 2 (1) |
||
612 | 162446 | 5, 173, 613 | k = = 12 mod 13 (13) k = = 46 mod 47 (47) |
2152 k's remaining at n=10K. See k's at Sierpinski Base 612 remain. |
30623 (9993) 131654 (9985) 108256 (9984) 18930 (9983) 104536 (9963) 149362 (9930) 90156 (9917) 142203 (9894) 126422 (9887) 119099 (9866) |
k = 612 is a GFn with no known prime. | |
613 | 1536 | 5, 53, 307 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 16 mod 17 (17) |
328 (300K) 1294 (300K) 1438 (300K) 1504 (300K) |
502 (143534) 778 (110107) 306 (75741) 916 (29363) 1006 (27959) 678 (22927) 1230 (21908) 1368 (21624) 286 (18805) 1258 (10539) |
||
614 | 4 | 3, 5 | k = = 612 mod 613 (613) | none - proven | 3 (18) 2 (1) |
||
615 | 34 | 7, 11 | k = = 1 mod 2 (2) k = = 306 mod 307 (307) |
none - proven | 12 (976) 22 (120) 4 (13) 8 (8) 14 (5) 28 (3) 24 (2) 16 (2) 32 (1) 30 (1) |
||
616 | 53061 | 13, 17, 617 | k = = 2 mod 3 (3) k = = 4 mod 5 (5) k = = 40 mod 41 (41) |
50 k's remaining at n=100K. See k's at Sierpinski Base 616 remain. |
10323 (98019) 18747 (93948) 25765 (85583) 29695 (80413) 23778 (78240) 36262 (72284) 26196 (71883) 4212 (70740) 4948 (64121) 51633 (62524) |
||
617 | 514 | 3, 103 | k = = 1 mod 2 (2) k = = 6 mod 7 (7) k = = 10 mod 11 (11) |
44 (300K) 124 (300K) 136 (300K) 158 (300K) 242 (300K) 484 (300K) 488 (300K) |
424 (150210) 414 (46246) 70 (33760) 458 (24761) 122 (13631) 116 (9839) 420 (7744) 392 (3699) 248 (2757) 310 (2500) |
||
618 | 3995 | 7, 37, 211 | k = = 616 mod 617 (617) | 49 k's remaining at n=200K. See k's at Sierpinski Base 618 remain. |
3161 (199877) 1223 (193431) 111 (187244) 2369 (180975) 1649 (161163) 68 (146688) 2441 (144343) 2558 (142259) 1248 (142002) 3863 (140056) |
k = 618 is a GFn with no known prime. | |
619 | 94 | 5, 31 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 102 mod 103 (103) |
none - proven | 46 (5214) 84 (1837) 24 (537) 72 (59) 60 (58) 58 (15) 64 (13) 6 (8) 78 (6) 10 (6) |
||
620 | 22 | 3, 23 | k = = 618 mod 619 (619) | 12 (300K) 13 (300K) |
10 (138) 17 (91) 16 (54) 11 (53) 5 (41) 4 (18) 2 (13) 19 (12) 7 (6) 8 (5) |
k = 1 is a GFn with no known prime. | |
621 | 19592 | 29, 61, 311 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 30 mod 31 (31) |
36 k's remaining at n=100K. See k's at Sierpinski Base 621 remain. |
12168 (95200) 11602 (93867) 11380 (93327) 9482 (93215) 14066 (86829) 6442 (72626) 4010 (64906) 11508 (56084) 970 (54232) 1392 (49966) |
||
622 | 90 | 7, 89 | k = = 2 mod 3 (3) k = = 22 mod 23 (23) |
none - proven | 43 (57946) 46 (4115) 88 (577) 33 (274) 27 (155) 9 (126) 61 (69) 76 (59) 48 (49) 49 (42) |
k = 1 is a GFn with no known prime. | |
623 | 14 | 3, 13 | k = = 1 mod 2 (2) k = = 310 mod 311 (311) |
none - proven | 8 (467) 2 (5) 10 (2) 4 (2) 12 (1) 6 (1) |
||
624 | 712899 | 5, 41, 9497 | k = = 6 mod 7 (7) k = = 88 mod 89 (89) |
23326 k's remaining at n=2.5K. To be shown later. | 515336 (2500) 294081 (2500) 218389 (2499) 117574 (2499) 580706 (2498) 507131 (2498) 227291 (2498) 140061 (2498) 17491 (2498) 700624 (2497) |
||
625 | 17428 | 7, 31, 601 | All
k=4*q^4 for all n: let k=4*q^4 and let m=q*5^n; factors to: (2*m^2 + 2m + 1) * (2*m^2 - 2m + 1) |
k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 12 mod 13 (13) |
6 (300K) 222 (175K) 2362 (300K) 5634 (300K) 6436 (1.075M) 7306 (300K) 7528 (1.075M) 9616 (300K) 10218 (300K) 10794 (300K) 10918 (1.075M) 11326 (300K) 11434 (300K) 11632 (300K) 12460 (300K) 12864 (175K) 13422 (300K) 13548 (175K) 14332 (300K) 15006 (300K) 15588 (175K) 15760 (300K) 16894 (300K) |
9574 (292308) 17370 (222563) 15340 (209640) 15046 (150779) 8532 (131194) 11682 (98866) 7348 (95080) 10384 (86321) 426 (78769) 7752 (73983) |
k = 4, 1024, 2500, 5184, 9604, and 16384 proven composite by full
algebraic factors. Some k's are being worked on by PrimeGrid's Sierpinski/Riesel Base 5 project. |
626 | 10 | 3, 11 | k = = 4 mod 5 (5) | none - proven | 2 (174203) 5 (2069) 6 (5) 7 (2) 8 (1) 3 (1) |
k = 1 is a GFn with no known prime. | |
627 | 12354 | 7, 13, 4327 | k = = 1 mod 2 (2) k = = 312 mod 313 (313) |
84 k's remaining at n=100K. See k's at Sierpinski Base 627 remain. |
1018 (84057) 12234 (77165) 8798 (76240) 3974 (74907) 4892 (68828) 6836 (67552) 2784 (64199) 2476 (62040) 7776 (60277) 11068 (59982) |
||
628 | 1072 | 17, 37 | k = = 2 mod 3 (3) k = = 10 mod 11 (11) k = = 18 mod 19 (19) |
16 (300K) 295 (300K) 334 (300K) 426 (300K) 579 (300K) 889 (300K) 984 (300K) |
460 (182346) 730 (55623) 798 (40367) 69 (17578) 864 (14999) 367 (13536) 1021 (13316) 387 (12638) 178 (9547) 883 (9419) |
||
629 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 156 mod 157 (157) |
none - proven | 2 (1) | ||
631 | 8243256 | 79, 307, 331, 433 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 4 mod 5 (5) k = = 6 mod 7 (7) |
28048 k's remaining at n=2.5K. To be shown later. | 7808386 (2500) 6974332 (2500) 6917836 (2500) 6104806 (2500) 4372386 (2500) 4358068 (2500) 7562466 (2499) 7309552 (2499) 6909546 (2499) 3938032 (2499) |
||
632 | 8 | 3, 5, 13 | k = = 630 mod 631 (631) | none - proven | 7 (8446) 5 (321) 3 (57) 4 (14) 2 (3) 6 (1) |
k = 1 is a GFn with no known prime. | |
633 | 6022 | 5, 17, 317 | k = = 1 mod 2 (2) k = = 78 mod 79 (79) |
58 k's remaining at n=100K. See k's at Sierpinski Base 633 remain. |
1374 (87542) 1798 (80284) 5802 (77188) 5028 (75128) 1378 (73772) 3098 (61636) 5280 (55260) 3548 (54160) 1824 (53353) 1996 (48227) |
||
634 | 126 | 5, 127 | k = = 2 mod 3 (3) k = = 210 mod 211 (211) |
75 (300K) 106 (300K) |
27 (185354) 69 (92329) 121 (14936) 118 (5479) 103 (4631) 61 (2346) 66 (432) 31 (282) 9 (189) 96 (98) |
||
635 | 52 | 3, 53 | k = = 1 mod 2 (2) k = = 316 mod 317 (317) |
none - proven | 28 (34556) 32 (17309) 4 (11722) 2 (2535) 26 (969) 14 (911) 46 (120) 48 (63) 6 (58) 40 (28) |
||
636 | 27 | 7, 13 | k = = 4 mod 5 (5) k = = 126 mod 127 (127) |
none - proven | 15 (9850) 3 (141) 7 (11) 21 (8) 8 (8) 18 (5) 26 (4) 12 (3) 6 (3) 22 (2) |
||
637 | 144 | 11, 29 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 52 mod 53 (53) |
none - proven | 88 (350) 64 (77) 22 (56) 70 (53) 34 (42) 132 (27) 100 (12) 142 (11) 54 (11) 138 (8) |
||
638 | 70 | 3, 71 | k = = 6 mod 7 (7) k = = 12 mod 13 (13) |
32 (600K) | 52 (31966) 68 (11135) 58 (2582) 50 (1713) 23 (1439) 22 (536) 7 (264) 8 (163) 16 (92) 36 (52) |
k = 1 is a GFn with no known prime. | |
639 | 1664 | 5, 7, 19, 37 | k = = 1 mod 2 (2) k = = 10 mod 11 (11) k = = 28 mod 29 (29) |
146 (300K) 334 (300K) 514 (300K) 586 (300K) 796 (300K) 1566 (300K) 1646 (300K) |
1006 (291952) 1174 (123735) 1426 (70836) 696 (51672) 474 (49543) 316 (47778) 124 (46587) 1102 (42119) 1336 (36734) 1526 (19748) |
||
640 | 11925 | 7, 13, 37, 67 | k = = 2 mod 3 (3) k = = 70 mod 71 (71) |
39 k's remaining at n=100K. See k's at Sierpinski Base 640 remain. |
7513 (97535) 11463 (91507) 11353 (86613) 11920 (83947) 3946 (79149) 595 (71001) 3264 (62967) 1167 (59827) 11886 (50825) 4339 (50427) |
k = 640 is a GFn with no known prime. | |
641 | 106 | 3, 107 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) |
none - proven | 8 (87701) 46 (35514) 12 (26421) 82 (7080) 92 (1895) 48 (152) 80 (61) 28 (34) 40 (30) 62 (25) |
||
642 | 10932 | 13, 17, 643 | k = = 640 mod 641 (641) | 206 k's remaining at n=100K. See k's at Sierpinski Base 642 remain. |
2322 (99918) 6007 (99271) 3421 (98676) 612 (98131) 1481 (94923) 558 (93970) 5294 (92998) 9179 (91417) 6926 (89793) 1546 (89441) |
||
643 | 22 | 7, 23 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 106 mod 107 (107) |
none - proven | 6 (164915) 10 (42) 4 (5) 18 (3) 16 (1) 12 (1) |
||
644 | 4 | 3, 5 | k = = 642 mod 643 (643) | none - proven | 3 (1) 2 (1) |
||
645 | 18 | 17, 19 | k = = 1 mod 2 (2) k = = 6 mod 7 (7) k = = 22 mod 23 (23) |
none - proven | 14 (847) 8 (2) 4 (2) 16 (1) 12 (1) 10 (1) 2 (1) |
||
646 | 52701 | 7, 13, 1531 | k = = 2 mod 3 (3) k = = 4 mod 5 (5) k = = 42 mod 43 (43) |
133 k's remaining at n=100K. See k's at Sierpinski Base 646 remain. |
28558 (99075) 22963 (98906) 28552 (98539) 12247 (98155) 35598 (93747) 44446 (91199) 33955 (91099) 47883 (90333) 16800 (84501) 13485 (82533) |
||
647 | 124 | 3, 5, 41 | k = = 1 mod 2 (2) k = = 16 mod 17 (17) k = = 18 mod 19 (19) |
2 (300K) 74 (300K) 100 (300K) |
76 (130372) 58 (22212) 116 (7425) 98 (1857) 106 (1376) 34 (334) 122 (331) 38 (253) 86 (239) 62 (207) |
||
648 | 296 | 11, 59 | k = = 646 mod 647 (647) | 56 (300K) 89 (300K) 117 (300K) 166 (300K) 199 (300K) 218 (300K) |
144 (102694) 61 (54359) 34 (43670) 76 (13439) 236 (13176) 111 (10616) 234 (8359) 133 (7170) 188 (6502) 269 (4369) |
k = 1 is a GFn with no known prime. | |
649 | 144 | 5, 13 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) |
64 (600K) | 66 (10970) 120 (295) 16 (60) 72 (51) 40 (22) 78 (14) 124 (11) 130 (10) 114 (9) 136 (6) |
||
650 | 8 | 3, 7 | k = = 10 mod 11 (11) k = = 58 mod 59 (59) |
none - proven | 4 (96222) 6 (5) 7 (4) 5 (1) 3 (1) 2 (1) |
k = 1 is a GFn with no known prime. | |
651 | 4541342 | 163, 313, 677 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 12 mod 13 (13) |
13808 k's remaining at n=2.5K. To be shown later. | 2882280 (2500) 2745672 (2500) 2626912 (2500) 1779056 (2500) 1489772 (2500) 1890016 (2499) 4044372 (2498) 3782168 (2498) 3477280 (2498) 1720408 (2498) |
||
652 | 2491849 | 5, 13, 37, 43, 653 | k = = 2 mod 3 (3) k = = 6 mod 7 (7) k = = 30 mod 31 (31) |
39920 k's remaining at n=2.5K. To be shown later. | 2125356 (2500) 2098866 (2500) 1931706 (2500) 1700917 (2500) 1631025 (2500) 593622 (2500) 2302137 (2499) 2075179 (2499) 1269957 (2499) 1228497 (2499) |
k = 652 and 425104 are GFn's with no known prime. | |
653 | 110 | 3, 109 | k = = 1 mod 2 (2) k = = 162 mod 163 (163) |
56 (300K) 68 (300K) 94 (300K) 108 (300K) |
44 (105477) 50 (22537) 76 (16576) 106 (11128) 10 (9786) 22 (7710) 98 (5243) 46 (2808) 64 (2434) 38 (311) |
||
654 | 261 | 5, 131 | k = = 652 mod 653 (653) | 29 (300K) 101 (300K) 144 (300K) 251 (300K) |
219 (103409) 248 (81515) 198 (9929) 79 (9533) 106 (9196) 55 (7946) 39 (6541) 178 (3990) 185 (2292) 196 (2236) |
||
655 | 6930 | 13, 29, 41 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 108 mod 109 (109) |
32 k's remaining at n=100K. See k's at Sierpinski Base 655 remain. |
3874 (98812) 6310 (93460) 4552 (87094) 888 (70525) 1438 (55746) 5550 (41357) 2476 (36566) 6804 (36200) 3688 (33061) 4006 (32470) |
||
656 | 145 | 3, 73 | k = = 4 mod 5 (5) k = = 130 mod 131 (131) |
13 (300K) 26 (300K) 37 (300K) 52 (300K) 80 (300K) 85 (300K) |
47 (117409) 73 (38942) 72 (31813) 125 (24631) 137 (12785) 71 (5531) 68 (2745) 28 (922) 123 (347) 22 (272) |
||
657 | 48 | 7, 47 | k = = 1 mod 2 (2) k = = 40 mod 41 (41) |
none - proven | 8 (2368) 32 (1688) 20 (25) 42 (16) 36 (12) 26 (8) 22 (4) 34 (3) 12 (3) 30 (2) |
||
658 | 20428 | 5, 13, 659 | k = = 2 mod 3 (3) k = = 72 mod 73 (73) |
112 k's remaining at n=100K. See k's at Sierpinski Base 658 remain. |
13378 (95431) 1867 (89254) 7333 (86331) 13881 (85408) 14907 (84596) 19848 (82983) 4893 (82682) 12946 (75223) 20071 (72957) 12889 (69213) |
k = 658 is a GFn with no known prime. | |
659 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 6 mod 7 (7) k = = 46 mod 47 (47) |
none - proven | 2 (1) | ||
660 | 74031 | 37, 193, 661 | k = = 658 mod 659 (659) | 564 k's remaining at n=25K. See k's at Sierpinski Base 660 remain. |
1881 (24994) 40143 (24939) 69788 (24781) 66777 (24766) 1986 (24651) 26281 (24413) 40316 (24410) 17694 (24238) 7588 (24228) 44399 (24171) |
k = 660 is a GFn with no known prime. | |
662 | 14 | 3, 31 | k = = 660 mod 661 (661) | none - proven | 5 (13389) 6 (2839) 2 (183) 10 (154) 12 (83) 9 (6) 13 (2) 7 (2) 4 (2) 11 (1) |
k = 1 is a GFn with no known prime. | |
663 | 10042 | 5, 83, 113 | k = = 1 mod 2 (2) k = = 330 mod 331 (331) |
44 k's remaining at n=100K. See k's at Sierpinski Base 663 remain. |
2724 (99737) 7466 (98501) 2738 (96607) 7552 (96289) 4542 (88084) 6112 (77784) 2320 (77203) 7144 (70989) 7494 (66258) 3196 (64185) |
||
664 | 6 | 5, 7 | k = = 2 mod 3 (3) k = = 12 mod 13 (13) k = = 16 mod 17 (17) |
none - proven | 4 (1) 3 (1) |
||
665 | 38 | 3, 37 | k = = 1 mod 2 (2) k = = 82 mod 83 (83) |
none - proven | 36 (5749) 4 (1334) 20 (61) 2 (45) 32 (33) 22 (28) 28 (6) 10 (6) 8 (5) 34 (4) |
||
666 | 231 | 23, 29 | k = = 4 mod 5 (5) k = = 6 mod 7 (7) k = = 18 mod 19 (9) |
none - proven | 115 (2003) 88 (1612) 182 (1253) 30 (156) 106 (87) 183 (71) 42 (67) 173 (45) 95 (44) 156 (30) |
k = 1 is a GFn with no known prime. | |
667 | 26218 | 5, 17, 167 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 36 mod 37 (37) |
117 k's remaining at n=100K. See k's at Sierpinski Base 667 remain. |
26026 (96907) 15486 (94695) 25776 (93668) 10680 (91855) 20082 (90103) 13068 (90029) 12358 (90014) 22900 (89541) 24156 (86761) 6660 (86088) |
||
668 | 8 | 3, 5, 13 | k = = 22 mod 23 (23) k = = 28 mod 29 (29) |
none - proven | 5 (379) 2 (245) 4 (62) 6 (23) 7 (8) 3 (6) |
k = 1 is a GFn with no known prime. | |
669 | 66 | 5, 67 | k = = 1 mod 2 (2) k = = 166 mod 167 (167) |
none - proven | 34 (6089) 6 (5450) 64 (4175) 36 (250) 40 (92) 48 (53) 54 (47) 14 (7) 2 (7) 60 (5) |
||
670 | 243 | 11, 61 | k = = 2 mod 3 (3) k = = 222 mod 223 (223) |
none - proven | 153 (2367) 201 (523) 120 (367) 109 (347) 151 (196) 174 (166) 100 (124) 46 (110) 130 (107) 169 (100) |
k = 1 is a GFn with no known prime. | |
671 | 8 | 3, 7 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 66 mod 67 (67) |
none - proven | 2 (11) 6 (1) |
||
672 | 3366 | 5, 37, 673 | k = = 10 mod 11 (11) k = = 60 mod 61 (61) |
36 (300K) 168 (300K) 829 (300K) 1076 (300K) 1141 (300K) 1273 (300K) 1453 (300K) 1804 (300K) 2263 (300K) 2279 (300K) 2458 (300K) 2818 (300K) 3267 (300K) 3364 (300K) |
2018 (127129) 1018 (92322) 1747 (90016) 242 (86503) 1213 (72193) 922 (71884) 2729 (50950) 3314 (49574) 778 (48464) 2909 (47495) |
k = 672 is a GFn with no known prime. | |
673 | 687142 | 5, 13, 19, 97, 337 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 6 mod 7 (7) |
3328 k's remaining at n=10K. See k's at Sierpinski Base 673 remain. |
630348 (9987) 462414 (9987) 39532 (9981) 211534 (9966) 120466 (9964) 234586 (9955) 337438 (9946) 91672 (9938) 660076 (9932) 479992 (9924) |
||
674 | 4 | 3, 5 | k = = 672 mod 673 (673) | none - proven | 2 (5) 3 (3) |
||
675 | 293812 | 7, 13, 103, 181 | k = = 1 mod 2 (2) k = = 336 mod 337 (337) |
3017 k's remaining at n=10K. See k's at Sierpinski Base 675 remain. |
96100 (9992) 248676 (9991) 151906 (9976) 264738 (9961) 94808 (9959) 161474 (9954) 27156 (9939) 217112 (9937) 142076 (9907) 42964 (9901) |
||
676 | 825 | 7, 19, 37 | k = = 2 mod 3 (3) k = = 4 mod 5 (5) |
none - proven | 607 (544517) 120 (48949) 640 (33255) 715 (19347) 307 (18917) 633 (7368) 138 (5757) 217 (5727) 255 (4693) 373 (3443) |
k = 676 is a GFn with no known prime. | |
677 | 112 | 3, 113 | k = = 1 mod 2 (2) k = = 12 mod 13 (13) |
none - proven | 34 (82642) 56 (9471) 32 (5567) 30 (1744) 52 (1140) 106 (200) 58 (134) 10 (114) 92 (103) 18 (69) |
||
678 | 195 | 7, 97 | k = = 676 mod 677 (677) | 106 (600K) | 132 (78513) 171 (60397) 122 (45968) 188 (25679) 29 (10818) 99 (7866) 97 (4161) 153 (1435) 120 (1266) 55 (899) |
k = 1 is a GFn with no known prime. | |
679 | 16 | 5, 17 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 112 mod 113 (113) |
none - proven | 4 (69449) 12 (10) 6 (4) 10 (1) |
||
680 | 226 | 3, 227 | k = = 6 mod 7 (7) k = = 96 mod 97 (97) |
43 (300K) 53 (300K) 127 (300K) 131 (300K) 199 (300K) |
194 (59611) 173 (54713) 64 (10750) 47 (2217) 137 (2193) 40 (1796) 57 (1687) 154 (1672) 110 (1125) 176 (331) |
||
681 | 32 | 11, 31 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 16 mod 17 (17) |
none - proven | 2 (328) 12 (22) 20 (11) 10 (9) 18 (2) 6 (2) 30 (1) 28 (1) 26 (1) 22 (1) |
||
682 | 6831 | 5, 61, 683 | k = = 2 mod 3 (3) k = = 226 mod 227 (227) |
43 k's remaining at n=100K. See k's at Sierpinski Base 682 remain. |
3649 (99570) 684 (97590) 2626 (84828) 6462 (81943) 477 (77584) 5407 (74947) 279 (52707) 6772 (51635) 2286 (40815) 5202 (40250) |
||
683 | 20 | 3, 19 | k = = 1 mod 2 (2) k = = 10 mod 11 (11) k = = 30 mod 31 (31) |
none - proven | 18 (141239) 8 (91) 16 (84) 14 (25) 12 (5) 4 (2) 6 (1) 2 (1) |
||
684 | 86 | 5, 17, 29 | k = = 682 mod 683 (683) | 34 (300K) 41 (300K) |
8 (23386) 75 (12102) 29 (3911) 31 (836) 39 (489) 19 (459) 14 (291) 54 (195) 26 (126) 49 (107) |
k = 1 is a GFn with no known prime. | |
685 | 637524 | 7, 13, 61, 7681 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 18 mod 19 (19) |
4576 k's remaining at n=10K. See k's at Sierpinski Base 685 remain. |
98554 (9996) 7966 (9989) 300112 (9978) 585276 (9977) 180270 (9967) 144366 (9965) 206158 (9958) 396138 (9954) 590160 (9947) 148182 (9939) |
||
686 | 230 | 3, 229 | k = = 4 mod 5 (5) k = = 136 mod 137 (137) |
116 (600K) | 130 (115776) 211 (97950) 151 (13722) 32 (8867) 193 (3822) 178 (2694) 196 (1952) 218 (1141) 110 (1091) 208 (1068) |
||
687 | 7956 | 5, 43, 109 | k = = 1 mod 2 (2) k = = 6 mod 7 (7) |
32 k's remaining at n=100K. See k's at Sierpinski Base 687 remain. |
5502 (99392) 4600 (97735) 6892 (95391) 1678 (93460) 382 (73924) 4334 (59737) 1052 (58291) 2326 (56447) 274 (50407) 964 (46541) |
||
688 | 105 | 13, 53 | k = = 2 mod 3 (3) k = = 228 mod 229 (229) |
54 (500K) 103 (500K) |
67 (423893) 12 (2433) 25 (1999) 64 (1949) 40 (754) 24 (405) 96 (232) 88 (158) 19 (106) 90 (95) |
||
689 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 42 mod 43 (43) |
none - proven | 2 (3) | ||
691 | 9449088 | 7, 13, 19, 173, 193 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 4 mod 5 (5) k = = 22 mod 23 (23) |
62047 k's remaining at n=2.5K. To be shown later. | 8320818 (2500) 8164752 (2500) 7892688 (2500) 5870850 (2500) 5678356 (2500) 2270098 (2500) 1913356 (2500) 1426396 (2500) 1297902 (2500) 8691706 (2499) |
||
692 | 8 | 3, 7 | k = = 690 mod 691 (691) | none - proven | 4 (270) 2 (67) 7 (4) 3 (2) 6 (1) 5 (1) |
k = 1 is a GFn with no known prime. | |
693 | 6592 | 5, 17, 347 | k = = 1 mod 2 (2) k = = 172 mod 173 (173) |
324 (300K) 2122 (300K) 2276 (300K) 3124 (300K) 4184 (300K) 4736 (300K) 4746 (300K) 5558 (300K) 5976 (300K) 6252 (300K) 6316 (300K) 6354 (300K) |
5844 (213666) 4892 (206286) 5468 (188110) 4752 (93845) 1736 (75020) 6276 (70087) 4458 (69850) 3694 (61366) 1278 (60431) 3872 (59580) |
||
694 | 1111 | 5, 139 | k = = 2 mod 3 (3) k = = 6 mod 7 (7) k = = 10 mod 11 (11) |
511 (300K) 651 (300K) 655 (300K) 696 (300K) 831 (300K) 1026 (300K) |
411 (119838) 1009 (116285) 1039 (77087) 759 (62631) 634 (57297) 829 (45889) 781 (42356) 885 (37580) 969 (13333) 994 (10669) |
k = 1 and 694 are GFn's with no known prime. | |
695 | 28 | 3, 29 | k = = 1 mod 2 (2) k = = 346 mod 347 (347) |
none - proven | 2 (94625) 8 (39625) 26 (1771) 10 (192) 14 (105) 12 (27) 4 (6) 22 (4) 24 (2) 16 (2) |
||
696 | 288 | 17, 41 | k = = 4 mod 5 (5) k = = 138 mod 139 (139) |
none - proven | 135 (35285) 205 (24902) 120 (13046) 206 (8620) 18 (6544) 215 (518) 136 (393) 178 (297) 158 (200) 2 (189) |
||
697 | 14308 | 5, 13, 349 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 28 mod 29 (29) |
58 k's remaining at n=100K. See k's at Sierpinski Base 697 remain. |
9924 (96581) 3132 (85543) 1042 (82910) 10282 (77855) 14194 (69618) 2728 (66701) 1788 (63922) 9136 (58401) 12696 (58259) 11268 (57036) |
||
698 | 232 | 3, 233 | k = = 16 mod 17 (17) k = = 40 mod 41 (41) |
8 (300K) 23 (300K) 34 (300K) 91 (300K) 124 (300K) 140 (300K) 143 (300K) 158 (300K) |
205 (122244) 106 (109564) 95 (89463) 172 (83404) 151 (67920) 222 (26145) 76 (15212) 61 (13348) 136 (5472) 77 (4241) |
k = 1 is a GFn with no known prime. | |
699 | 6 | 5, 7 | k = = 1 mod 2 (2) k = = 348 mod 349 (349) |
none - proven | 4 (1) 2 (1) |
||
701 | 92 | 3, 13 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 6 mod 7 (7) |
none - proven | 52 (163776) 12 (969) 38 (671) 68 (669) 58 (548) 8 (379) 22 (150) 28 (54) 86 (31) 66 (24) |
||
702 | 75 | 19, 37 | k = = 700 mod 701 (701) | 39 (600K) | 47 (1422) 6 (1228) 62 (1087) 61 (408) 72 (388) 54 (307) 7 (87) 57 (72) 32 (68) 37 (63) |
||
703 | 538 | 5, 11, 73 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 12 mod 13 (13) |
354 (300K) 474 (300K) |
340 (280035) 430 (46194) 276 (27272) 406 (12501) 456 (2720) 222 (1049) 270 (903) 526 (844) 364 (550) 240 (413) |
||
704 | 4 | 3, 5 | k = = 18 mod 19 (19) k = = 36 mod 37 (37) |
none - proven | 3 (1) 2 (1) |
||
705 | 10159692 | 7, 13, 181, 229, 353 | k = = 1 mod 2 (2) k = = 10 mod 11 (11) |
93375 k's remaining at n=2.5K. To be shown later. | 9914126 (2500) 9467782 (2500) 9290642 (2500) 7589360 (2500) 7209792 (2500) 6814274 (2500) 6409010 (2500) 6395984 (2500) 5190078 (2500) 4968898 (2500) |
||
706 | 405 | 7, 101 | k = = 2 mod 3 (3) k = = 4 mod 5 (5) k = = 46 mod 47 (47) |
none - proven | 288 (169692) 118 (14617) 33 (6199) 30 (2839) 316 (2020) 258 (1785) 246 (1396) 318 (618) 57 (378) 162 (318) |
k=1 is a GFn with no known prime. | |
707 | 58 | 3, 59 | k = = 1 mod 2 (2) k = = 352 mod 353 (353) |
40 (600K) | 26 (45893) 28 (1776) 38 (953) 44 (259) 46 (152) 16 (84) 18 (82) 32 (51) 2 (51) 52 (38) |
||
708 | 28361 | 5, 29, 709 | k = = 6 mod 7 (7) k = = 100 mod 101 (101) |
190 k's remaining at n=100K. See k's at Sierpinski Base 708 remain. |
2598 (99964) 7094 (99897) 3073 (97462) 20153 (96115) 26222 (95989) 11376 (92188) 2651 (88828) 2118 (87687) 11341 (87060) 651 (86923) |
k=708 is a GFn with no known prime. | |
709 | 214 | 5, 71 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 58 mod 59 (59) |
none - proven | 66 (1296) 6 (722) 96 (696) 36 (330) 88 (324) 108 (297) 132 (284) 186 (168) 106 (148) 24 (105) |
||
710 | 80 | 3, 79 | k = = 708 mod 709 (709) | 8 (300K) 47 (300K) 52 (300K) |
16 (240014) 10 (31038) 11 (15271) 53 (10189) 50 (2563) 73 (1324) 40 (404) 19 (314) 44 (297) 25 (274) |
||
711 | 49572 | 7, 19, 37, 61, 89 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 70 mod 71 (71) |
201 k's remaining at n=100K. See k's at Sierpinski Base 711 remain. |
36620 (95122) 34622 (91188) 406 (90422) 31538 (87936) 28526 (87810) 45952 (87411) 9558 (86136) 34572 (82384) 28640 (81880) 34270 (81668) |
||
712 | 528 | 23, 31 | k = = 2 mod 3 (3) k = = 78 mod 79 (79) |
22 (300K) 94 (300K) 123 (300K) 211 (300K) 237 (300K) 346 (300K) 367 (300K) 369 (300K) 493 (300K) |
30 (215913) 300 (168722) 298 (138773) 246 (97696) 433 (84457) 114 (38517) 231 (18852) 337 (11051) 24 (9894) 61 (6675) |
k=1 is a GFn with no known prime. | |
713 | 8 | 3, 7 | k = = 1 mod 2 (2) k = = 88 mod 89 (89) |
none - proven | 4 (26) 6 (9) 2 (1) |
||
714 | 12 | 11, 13 | k = = 22 mod 23 (23) k = = 30 mod 31 (31) |
none - proven | 10 (7839) 11 (156) 8 (13) 6 (4) 9 (1) 7 (1) 5 (1) 4 (1) 3 (1) 2 (1) |
||
715 | 21508102 | 19, 97, 179, 277 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 6 mod 7 (7) k = = 16 mod 17 (17) |
33368 k's remaining at n=2.5K. To be shown later. | 21372754 (2500) 12614992 (2500) 12137800 (2500) 10366818 (2500) 3498534 (2500) 2540814 (2500) 2425378 (2500) 1043310 (2500) 17288950 (2499) 14573926 (2499) |
||
716 | 238 | 3, 239 | k = = 4 mod 5 (5) k = = 10 mod 11 (11) k = = 12 mod 13 (13) |
106 (300K) 121 (300K) 166 (300K) |
167 (71209) 83 (31267) 173 (25905) 80 (10035) 137 (7465) 17 (4637) 171 (2043) 157 (1886) 73 (1592) 35 (1533) |
||
717 | 179678 | 5, 7, 13, 101, 109, 509 | k = = 1 mod 2 (2) k = = 178 mod 179 (179) |
2703 k's remaining at n=10K. See k's at Sierpinski Base 717 remain. |
35374 (9987) 146646 (9969) 56262 (9963) 54424 (9907) 28414 (9899) 10418 (9896) 134396 (9883) 93192 (9868) 148510 (9866) 109620 (9860) |
||
718 | 243 | 7, 31, 61 | k = = 2 mod 3 (3) k = = 238 mod 239 (239) |
3 (300K) 69 (300K) 108 (300K) 153 (300K) 222 (300K) |
18 (4204) 75 (2688) 49 (1942) 54 (1538) 96 (1067) 232 (901) 201 (407) 139 (349) 183 (318) 127 (304) |
||
719 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 358 mod 359 (359) |
none - proven | 2 (1) | ||
720 | 104 | 7, 103 | k = = 718 mod 719 (719) | 13 (500K) | 90 (99529) 57 (26004) 22 (17920) 50 (13740) 83 (5331) 55 (1443) 97 (589) 18 (140) 86 (66) 29 (54) |
k = 1 is a GFn with no known prime. | |
721 | 3446248 | 19, 61, 4261 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 4 mod 5 (5) |
18229 k's remaining at n=2.5K. To be shown later. | 2866740 (2500) 830596 (2499) 140922 (2499) 2831856 (2498) 2574930 (2498) 3028008 (2497) 2871222 (2497) 2552590 (2497) 23122 (2497) 1358596 (2496) |
||
722 | 8 | 3, 5, 13, 73, 109 | k = = 6 mod 7 (7) k = = 102 mod 103 (103) |
none - proven | 4 (626) 5 (187) 3 (20) 2 (3) 7 (2) |
k = 1 is a GFn with no known prime. | |
723 | 2354 | 5, 13, 181 | k = = 1 mod 2 (2) k = = 18 mod 19 (19) |
14 (100K) 278 (100K) 544 (100K) 564 (100K) 712 (100K) 1028 (100K) 1058 (100K) 1308 (100K) 1312 (100K) 1392 (100K) 1396 (100K) 1412 (100K) 1704 (100K) 1888 (100K) 1902 (100K) 1906 (100K) 2076 (100K) 2124 (100K) 2134 (100K) 2296 (100K) 2352 (100K) |
1668 (99198) 1360 (57754) 728 (47090) 216 (45595) 1242 (38682) 1444 (34911) 1078 (21382) 1378 (18935) 460 (18472) 1268 (18092) |
||
724 | 204 | 5, 29 | k = = 2 mod 3 (3) k = = 240 mod 241 (241) |
9 (500K) | 30 (28548) 175 (15958) 66 (9484) 99 (3293) 124 (2151) 142 (1787) 93 (1164) 85 (1046) 129 (733) 169 (563) |
k = 1 is a GFn with no known prime. | |
725 | 10 | 3, 11 | k = = 1 mod 2 (2) k = = 180 mod 181 (181) |
none - proven | 6 (10) 4 (6) 8 (1) 2 (1) |
||
726 | 10923176 | 7, 13, 37, 601, 727 | k = = 4 mod 5 (5) k = = 28 mod 29 (29) |
119761 k's remaining at n=2.5K. To be shown later. | 10856606 (2500) 10757772 (2500) 10537982 (2500) 9959756 (2500) 9951008 (2500) 9881050 (2500) 9445688 (2500) 9152842 (2500) 8351656 (2500) 6894196 (2500) |
||
727 | 64 | 7, 13 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 10 mod 11 (11) |
none - proven | 12 (1907) 36 (344) 30 (91) 22 (42) 42 (15) 60 (7) 58 (4) 52 (4) 46 (4) 18 (4) |
||
728 | 953974 | 3, 5, 105997 | k = = 726 mod 727 (727) | 115651 k's remaining at n=2.5K. To be shown later. | 8 (7399) 933400 (2500) 867271 (2500) 605236 (2500) 449512 (2500) 362611 (2500) 274753 (2500) 172561 (2500) 154251 (2500) 53917 (2500) |
||
729 | 74 | 5, 73 | All k = m^3 for all n; factors to: (m*9^n + 1) * (m^2*81^n - m*9^n + 1) |
k = = 1 mod 2 (2) k = = 6 mod 7 (7) k = = 12 mod 13 (13) |
none - proven | 18 (53) 56 (28) 42 (24) 52 (16) 66 (6) 32 (6) 68 (4) 60 (3) 40 (3) 28 (3) |
k = 8 proven composite by full algebraic factors. |
730 | 171 | 17, 43 | k = = 2 mod 3 (3) | 84 (400K) | 85 (211537) 154 (178174) 132 (11966) 169 (7217) 129 (3143) 157 (1355) 27 (1069) 160 (881) 64 (599) 66 (480) |
||
731 | 62 | 3, 61 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 72 mod 73 (73) |
none - proven | 28 (138318) 10 (1102) 30 (72) 26 (37) 2 (35) 58 (10) 40 (8) 32 (7) 56 (5) 52 (4) |
||
732 | 81364 | 5, 7, 13, 37, 733 | k = = 16 mod 17 (17) k = = 42 mod 43 (43) |
1358 k's remaining at n=25K. See k's at Sierpinski Base 732 remain. |
38488 (24989) 71119 (24970) 51829 (24935) 66239 (24923) 39199 (24923) 66706 (24903) 78257 (24899) 8111 (24785) 18323 (24642) 11257 (24610) |
||
733 | 14314 | 5, 13, 367 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 60 mod 61 (61) |
77 k's remaining at n=100K. See k's at Sierpinski Base 733 remain. |
7798 (98299) 10594 (96159) 4726 (92461) 5130 (91705) 5262 (80182) 12378 (79770) 6882 (78788) 4966 (73632) 3666 (71429) 13374 (69561) |
||
734 | 4 | 3, 5 | k = = 732 mod 733 (733) | none - proven | 2 (3) 3 (1) |
k = 1 is a GFn with no known prime. | |
735 | 174778 | 17, 23, 15889 | k = = 1 mod 2 (2) k = = 366 mod 367 (367) |
721 k's remaining at n=25K. See k's at Sierpinski Base 735 remain. |
129978 (24952) 12996 (24778) 22670 (24773) 76016 (24682) 39674 (24425) 156146 (24033) 63180 (23999) 70792 (23739) 146730 (23051) 42324 (22964) |
||
736 | 133 | 11, 67 | k = = 2 mod 3 (3) k = = 4 mod 5 (5) k = = 6 mod 7 (7) |
12 (400K) | 78 (96) 21 (87) 100 (60) 88 (31) 130 (26) 127 (26) 67 (24) 85 (11) 10 (11) 102 (9) |
||
737 | 40 | 3, 41 | k = = 1 mod 2 (2) k = = 22 mod 23 (23) |
none - proven | 4 (269302) 38 (93785) 16 (7132) 14 (13) 32 (11) 24 (11) 28 (10) 12 (7) 36 (5) 2 (3) |
||
738 | 12767 | 7, 13, 31, 73 | k = = 10 mod 11 (11) k = = 66 mod 67 (67) |
129 k's remaining at n=100K. See k's at Sierpinski Base 738 remain. |
6806 (99875) 9416 (98317) 1389 (95939) 566 (86439) 9128 (82444) 2789 (79685) 10623 (78151) 9864 (77730) 6578 (74539) 4941 (73084) |
||
739 | 36 | 5, 37 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 40 mod 41 (41) |
none - proven | 18 (110) 16 (54) 6 (38) 10 (3) 22 (2) 12 (2) 34 (1) 30 (1) 28 (1) 24 (1) |
||
740 | 14 | 3, 13 | k = = 738 mod 739 (739) | 13 (1M) | 4 (58042) 11 (33519) 8 (83) 10 (12) 12 (5) 7 (2) 9 (1) 6 (1) 5 (1) 3 (1) |
||
741 | 160 | 7, 53 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 36 mod 37 (37) |
none - proven | 148 (3464) 50 (164) 76 (113) 108 (101) 142 (94) 30 (65) 112 (53) 38 (34) 78 (28) 120 (22) |
||
742 | 30462 | 5, 29, 743 | k = = 2 mod 3 (3) k = = 12 mod 13 (13) k = = 18 mod 19 (19) |
52 k's remaining at n=100K. See k's at Sierpinski Base 742 remain. |
4087 (98932) 15039 (95518) 21933 (95188) 8172 (87879) 7288 (74313) 18646 (70827) 26112 (70794) 28894 (69426) 19267 (67803) 29092 (66075) |
||
743 | 32 | 3, 31 | k = = 1 mod 2 (2) k = = 6 mod 7 (7) k = = 52 mod 53 (53) |
none - proven | 10 (285478) 14 (10449) 4 (246) 8 (71) 24 (42) 22 (12) 18 (6) 16 (4) 28 (2) 12 (2) |
||
744 | 299 | 5, 149 | k = = 742 mod 743 (743) | 21 (300K) 83 (300K) 89 (300K) 101 (300K) 103 (300K) 186 (300K) 199 (300K) 201 (300K) 269 (300K) 271 (300K) 289 (300K) 290 (300K) |
10 (137055) 86 (97852) 251 (55652) 256 (51360) 206 (48288) 261 (25338) 41 (15982) 96 (11484) 73 (6818) 171 (6416) |
k = 1 is a GFn with no known prime. | |
745 | 334816 | 7, 13, 61, 3037 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 30 mod 31 (31) |
784 k's remaining at n=25K. See k's at Sierpinski Base 745 remain. |
39172 (24998) 318678 (24990) 33270 (24934) 278586 (24859) 272406 (24852) 67498 (24591) 296670 (24522) 118614 (24466) 149298 (24426) 27012 (24418) |
||
746 | 82 | 3, 83 | k = = 4 mod 5 (5) k = = 148 mod 149 (149) |
8 (300K) 61 (300K) 67 (300K) 80 (300K) |
47 (47853) 41 (34969) 77 (21213) 68 (5261) 40 (4256) 66 (744) 70 (260) 53 (149) 31 (40) 6 (38) |
k = 1 is a GFn with no known prime. | |
747 | 32 | 5, 11, 41 | k = = 1 mod 2 (2) k = = 372 mod 373 (373) |
none - proven | 22 (3560) 12 (118) 10 (13) 18 (4) 2 (4) 30 (2) 28 (2) 20 (2) 8 (2) 4 (2) |
||
748 | 106 | 7, 107 | k = = 2 mod 3 (3) k = = 82 mod 83 (83) |
none - proven | 90 (116015) 27 (88373) 13 (32635) 36 (24344) 61 (6293) 21 (1273) 63 (224) 78 (116) 18 (103) 4 (43) |
||
749 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 10 mod 11 (11) k = = 16 mod 17 (17) |
none - proven | 2 (1) | ||
750 | 210779 | 13, 37, 1171 | k = = 6 mod 7 (7) k = = 106 mod 107 (107) |
1073 k's remaining at n=25K. See k's at Sierpinski Base 750 remain. |
162939 (24821) 144385 (24681) 154394 (24635) 164033 (24631) 89880 (24619) 51389 (24469) 92453 (24438) 123751 (24357) 24132 (24340) 10794 (24261) |
||
751 | 41032 | 7, 13, 37, 47 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 4 mod 5 (5) |
119 k's remaining at n=100K. See k's at Sierpinski Base 751 remain. |
516 (89247) 1738 (84911) 17566 (84272) 25198 (76728) 9376 (74640) 35460 (69972) 27970 (67501) 15250 (66683) 6426 (65475) 37080 (61373) |
||
752 | 16 | 3, 5, 17 | k = = 750 mod 751 (751) | none - proven | 2 (26163) 15 (1128) 10 (168) 8 (49) 13 (16) 3 (12) 7 (6) 9 (5) 12 (2) 4 (2) |
k = 1 is a GFn with no known prime. | |
753 | 144 | 13, 29 | k = = 1 mod 2 (2) k = = 46 mod 47 (47) |
12 (300K) 96 (300K) |
142 (92369) 66 (11920) 86 (9913) 106 (9225) 68 (1832) 38 (1315) 26 (585) 134 (517) 40 (444) 82 (354) |
||
754 | 301 | 5, 151 | k = = 2 mod 3 (3) k = = 250 mod 251 (251) |
99 (300K) 159 (300K) 199 (300K) |
214 (32727) 241 (15618) 46 (11428) 192 (4778) 66 (3462) 48 (1618) 276 (1548) 198 (1544) 186 (1538) 144 (1469) |
k = 1 is a GFn with no known prime. | |
755 | 8 | 3, 7 | k = = 1 mod 2 (2) k = = 12 mod 13 (13) k = = 28 mod 29 (29) |
none - proven | 4 (2118) 6 (329) 2 (1) |
||
757 | 47376 | 5, 73, 379 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 6 mod 7 (7) |
120 k's remaining at n=100K. See k's at Sierpinski Base 757 remain. |
28396 (98249) 1746 (95576) 38458 (92681) 19986 (90393) 5392 (89982) 46984 (88593) 6850 (88381) 31782 (86946) 30874 (84046) 38542 (79975) |
||
758 | 10 | 3, 11 | k = = 756 mod 757 (757) | 8 (500K) | 2 (8309) 4 (42) 5 (39) 3 (11) 7 (2) 9 (1) 6 (1) |
||
759 | 56 | 5, 19 | k = = 1 mod 2 (2) k = = 378 mod 379 (379) |
none - proven | 44 (1895) 6 (1564) 26 (710) 16 (290) 34 (37) 18 (31) 46 (20) 20 (14) 52 (10) 40 (5) |
||
761 | 128 | 3, 127 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 18 mod 19 (19) |
16 (300K) 32 (300K) 92 (300K) |
118 (243458) 38 (4773) 22 (3452) 82 (2178) 40 (1912) 72 (368) 50 (239) 116 (41) 122 (21) 20 (21) |
||
762 | 246 | 5, 7, 13 | k = = 760 mod 761 (761) | 27 (300K) 34 (300K) 57 (300K) 216 (300K) 222 (300K) |
203 (178410) 141 (149740) 202 (66399) 48 (24261) 96 (23173) 6 (11151) 195 (10393) 132 (8631) 99 (7710) 235 (6351) |
k = 1 is a GFn with no known prime. | |
763 | 151462 | 5, 17, 191, 193 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 126 mod 127 (127) |
814 k's remaining at n=25K. See k's at Sierpinski Base 763 remain. |
146364 (24821) 73194 (24759) 84186 (24741) 91746 (24676) 139266 (24605) 39402 (24589) 16042 (24482) 50320 (24366) 135294 (24329) 120546 (24308) |
||
764 | 4 | 3, 5 | k = = 6 mod 7 (7) k = = 108 mod 109 (109) |
none - proven | 2 (1189) 3 (1) |
||
765 | 2699768 | 53, 383, 5521 | k = = 1 mod 2 (2) k = = 190 mod 191 (191) |
32349 k's remaining at n=2.5K. To be shown later. | 2608338 (2500) 2119122 (2500) 1975398 (2499) 1817630 (2499) 1410748 (2499) 1040870 (2499) 844058 (2499) 2639024 (2498) 2567690 (2498) 2329274 (2498) |
||
766 | 235 | 13, 59 | k = = 2 mod 3 (3) k = = 4 mod 5 (5) k = = 16 mod 17 (17) |
58 (300K) 222 (300K) |
103 (5067) 51 (1569) 73 (289) 178 (276) 46 (204) 183 (152) 142 (129) 180 (122) 198 (80) 70 (68) |
k = 1 is a GFn with no known prime. | |
767 | 80 | 3, 7, 43, 79 | k = = 1 mod 2 (2) k = = 382 mod 383 (383) |
4 (555K) 16 (555K) 52 (555K) |
46 (134564) 62 (62239) 68 (18869) 36 (388) 64 (370) 8 (341) 20 (187) 32 (139) 76 (56) 74 (37) |
||
768 | 55367 | 7, 19, 103, 769 | k = = 12 mod 13 (13) k = = 58 mod 59 (59) |
685 k's remaining at n=40K. See k's at Sierpinski Base 768 remain. |
32159 (39814) 10974 (39639) 34388 (39492) 47639 (39318) 29339 (39310) 8656 (38996) 34154 (38806) 38214 (38783) 27069 (38498) 32852 (38168) |
||
769 | 6 | 5, 7 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) |
none - proven | 4 (3) | ||
770 | 256 | 3, 257 | k = = 768 mod 769 (769) | 8 (300K) 11 (300K) |
191 (81307) 182 (45297) 205 (36892) 140 (14355) 242 (13313) 188 (5781) 149 (5453) 56 (4763) 209 (4121) 83 (2307) |
k = 1 is a GFn with no known prime. | |
771 | 264218 | 29, 37, 193 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 6 mod 7 (7) k = = 10 mod 11 (11) |
202 k's remaining at n=100K. See k's at Sierpinski Base 771 remain. |
28756 (98207) 198368 (97819) 196908 (93458) 223680 (93345) 51648 (89405) 228316 (89219) 57158 (88869) 199162 (88443) 6772 (88363) 199588 (87662) |
||
772 | 23191 | 5, 13, 773 | k = = 2 mod 3 (3) k = = 256 mod 257 (257) |
342 k's remaining at n=100K. See k's at Sierpinski Base 772 remain. |
16329 (98295) 8691 (98219) 17406 (97339) 13482 (96596) 4609 (96410) 19521 (95436) 13842 (94560) 13801 (94069) 7080 (93654) 6546 (93637) |
||
773 | 44 | 3, 43 | k = = 1 mod 2 (2) k = = 192 mod 193 (193) |
2 (350K) 8 (350K) 10 (350K) 16 (350K) 32 (350K) |
34 (70958) 36 (2119) 28 (230) 14 (199) 18 (98) 38 (27) 40 (8) 30 (6) 22 (4) 26 (3) |
||
774 | 61 | 5, 31 | k = = 772 mod 773 (773) | 6 (300K) 19 (300K) |
24 (6333) 52 (3025) 30 (1399) 47 (269) 38 (207) 48 (67) 16 (60) 23 (57) 46 (56) 54 (39) |
||
775 | 862620 | 13, 97, 1777 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 42 mod 43 (43) |
3752 k's remaining at n=10K. See k's at Sierpinski Base 775 remain. |
737650 (9998) 753936 (9996) 226816 (9993) 272634 (9987) 747022 (9986) 513852 (9984) 542676 (9974) 300840 (9971) 430390 (9970) 126160 (9968) |
||
776 | 8 | 3, 7 | k = = 4 mod 5 (5) k = = 30 mod 31 (31) |
none - proven | 3 (10) 7 (6) 6 (1) 5 (1) 2 (1) |
||
777 | 24088826 | 5, 389, 60373 | k = = 1 mod 2 (2) k = = 96 mod 97 (97) |
394350 k's remaining at n=2.5K. To be shown later. | 23971582 (2500) 23927032 (2500) 23919436 (2500) 23487206 (2500) 23225942 (2500) 22892566 (2500) 22592082 (2500) 22585806 (2500) 22367112 (2500) 22237722 (2500) |
||
778 | 208 | 5, 17, 19 | k = = 2 mod 3 (3) k = = 6 mod 7 (7) k = = 36 mod 37 (37) |
163 (400K) | 18 (19927) 121 (1067) 87 (1029) 159 (594) 151 (587) 138 (526) 103 (428) 133 (407) 75 (329) 180 (298) |
||
779 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 388 mod 389 (389) |
none - proven | 2 (1) | ||
780 | 243 | 7, 11, 31, 61 | k = = 18 mod 18 (19) k = = 40 mod 41 (41) |
none - proven | 43 (205685) 230 (11159) 57 (4525) 241 (2251) 234 (1168) 133 (828) 192 (774) 14 (597) 135 (558) 142 (501) |
||
781 | 528 | 17, 23 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 4 mod 5 (5) k = = 12 mod 13 (13) |
370 (500K) | 346 (4210) 70 (2662) 418 (872) 516 (191) 438 (32) 118 (31) 58 (23) 72 (22) 46 (20) 502 (18) |
||
782 | 28 | 3, 29 | k = = 11 mod 12 (12) k = = 70 mod 71 (71) |
none - proven | 19 (594) 22 (150) 11 (93) 16 (72) 2 (55) 17 (15) 7 (12) 27 (7) 12 (4) 24 (3) |
||
783 | 36 | 5, 7, 37 | k = = 1 mod 2 (2) k = = 16 mod 17 (17) k = = 22 mod 23 (23) |
none - proven | 8 (274) 6 (231) 18 (46) 28 (18) 34 (7) 30 (6) 10 (3) 14 (2) 4 (2) 32 (1) |
||
784 | 156 | 5, 157 | k = = 2 mod 3 (3) k = = 28 mod 29 (29) |
151 (400K) | 139 (23965) 105 (14268) 46 (2876) 69 (1421) 31 (748) 34 (279) 81 (104) 49 (89) 21 (84) 141 (56) |
||
785 | 130 | 3, 131 | k = = 1 mod 2 (2) k = = 6 mod 7 (7) |
none - proven | 8 (900325) 112 (84676) 124 (2996) 82 (2184) 128 (1137) 116 (621) 14 (549) 88 (334) 96 (95) 74 (95) |
||
786 | 210082 | 7, 19, 4651 | k = = 4 mod 5 (5) k = = 156 mod 157 (157) |
3604 k's remaining at n=10K. See k's at Sierpinski Base 786 remain. |
10 (68168) 102358 (9997) 20842 (9995) 109186 (9994) 53645 (9993) 28627 (9973) 161075 (9958) 23260 (9952) 122321 (9938) 94411 (9937) |
||
787 | 7684 | 5, 7, 13, 19, 197 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 130 mod 131 (131) |
37 k's remaining at n=100K. See k's at Sierpinski Base 787 remain. |
5068 (78569) 6060 (66435) 6082 (65782) 4792 (65520) 7108 (63609) 7348 (51146) 3526 (47181) 198 (46620) 5976 (43548) 718 (42422) |
||
788 | 40 | 3, 13, 41 | k = = 786 mod 787 (787) | 14 (300K) 16 (300K) 38 (300K) |
2 (72917) 8 (11407) 31 (1588) 32 (389) 30 (304) 33 (183) 21 (92) 36 (89) 10 (78) 37 (60) |
||
789 | 236 | 5, 79 | k = = 1 mod 2 (2) k = = 196 mod 197 (197) |
96 (500K) | 4 (149139) 148 (136439) 80 (101124) 6 (27296) 174 (9317) 146 (6520) 12 (1261) 24 (623) 166 (570) 142 (332) |
||
790 | 225 | 7, 113 | k = = 2 mod 3 (3) k = = 262 mod 263 (263) |
127 (300K) 160 (300K) |
94 (209857) 64 (4646) 48 (2909) 139 (909) 85 (430) 189 (400) 27 (379) 178 (297) 223 (219) 145 (156) |
||
791 | 10 | 3, 11 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 78 mod 79 (79) |
none - proven | 6 (2) 8 (1) 2 (1) |
||
792 | 365 | 13, 61 | k = = 6 mod 7 (7) k = = 112 mod 113 (113) |
12 (300K) 77 (300K) 142 (300K) 233 (300K) |
182 (134655) 339 (60434) 243 (38377) 71 (9185) 144 (6742) 121 (5347) 262 (2679) 207 (2407) 53 (1900) 299 (390) |
k = 1 is a GFn with no known prime. | |
793 | 4492848 | 5, 41, 73, 397 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 10 mod 11 (11) |
47035 k's remaining at n=2.5K. To be shown later. | 4281780 (2500) 4058368 (2500) 3311566 (2500) 2680486 (2500) 1527846 (2500) 258930 (2500) 39052 (2500) 4434148 (2499) 3649240 (2499) 3452568 (2499) |
||
794 | 4 | 3, 5 | k = = 12 mod 13 (13) k = = 60 mod 61 (61) |
none - proven | 2 (3) 3 (1) |
k = 1 is a GFn with no known prime. | |
795 | 6566 | 17, 29, 199 | k = = 1 mod 2 (2) k = = 396 mod 397 (397) |
32 k's remaining at n=100K. See k's at Sierpinski Base 795 remain. |
6368 (92406) 4280 (82678) 3384 (80868) 1616 (58496) 2636 (38215) 6492 (29734) 374 (27489) 474 (24443) 3132 (23481) 3230 (22732) |
||
797 | 8 | 3, 7 | k = = 1 mod 2 (2) k = = 198 mod 199 (199) |
none - proven | 4 (468702) 2 (35) 6 (1) |
||
798 | 187 | 5, 13, 47 | k = = 796 mod 797 (797) | 33 (400K) | 107 (2889) 25 (2762) 28 (1255) 73 (1238) 81 (860) 31 (744) 125 (604) 57 (530) 171 (460) 113 (456) |
||
800 | 88 | 3, 89 | k = = 16 mod 17 (17) k = = 46 mod 47 (47) |
61 (500K) 82 (500K) |
26 (162819) 10 (15104) 24 (2444) 65 (1253) 47 (727) 40 (568) 31 (450) 71 (389) 19 (312) 25 (308) |
||
802 | 129 | 7, 13, 337 | k = = 2 mod 3 (3) k = = 88 mod 89 (89) |
none - proven | 10 (149319) 120 (7279) 61 (7104) 82 (6087) 115 (3373) 97 (928) 27 (427) 66 (228) 123 (186) 124 (173) |
k = 1 is a GFn with no known prime. | |
803 | 16 | 3, 5, 17 | k = = 1 mod 2 (2) k = = 400 mod 401 (401) |
4 (500K) | 8 (1243) 12 (13) 6 (9) 10 (6) 14 (1) 2 (1) |
||
804 | 6 | 5, 7 | k = = 10 mod 11 (11) k = = 72 mod 73 (73) |
none - proven | 3 (4) 5 (1) 4 (1) 2 (1) |
||
805 | 714 | 13, 31 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 66 mod 67 (67) |
none - proven | 588 (153593) 340 (125637) 430 (25396) 412 (2837) 100 (2538) 636 (2107) 216 (1117) 456 (446) 654 (363) 378 (262) |
||
806 | 268 | 3, 269 | k = = 4 mod 5 (5) k = = 6 mod 7 (7) k = = 22 mod 23 (23) |
140 (400K) | 122 (173475) 163 (155542) 121 (19766) 38 (19391) 142 (18496) 217 (10920) 227 (2447) 145 (1244) 100 (616) 247 (518) |
k = 1 is a GFn with no known prime. | |
807 | 53428 | 5, 101, 521 | k = = 1 mod 2 (2) k = = 12 mod 13 (13) k = = 30 mod 31 (31) |
508 k's remaining at n=25K. See k's at Sierpinski Base 807 remain. |
16554 (24661) 14794 (24537) 21174 (24478) 28972 (24443) 7244 (24322) 9068 (24069) 36926 (24012) 23096 (23952) 5946 (23856) 5582 (23660) |
||
808 | 24271 | 5, 37, 809 | k = = 2 mod 3 (3) k = = 268 mod 269 (269) |
267 k's remaining at n=100K. See k's at Sierpinski Base 808 remain. |
16414 (98133) 6942 (97388) 20317 (94902) 17344 (94047) 7468 (93391) 6898 (91763) 8461 (91520) 15126 (90980) 1141 (90087) 23095 (88418) |
||
809 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 100 mod 101 (101) |
none - proven | 2 (1) | ||
810 | 30008 | 7, 13, 43, 811 | k = = 808 mod 809 (809) | 165 k's remaining at n=100K. See k's at Sierpinski Base 810 remain. |
17065 (89480) 21425 (87145) 4628 (86573) 14509 (85813) 1850 (84355) 25296 (83962) 29800 (82374) 8341 (81382) 20341 (81140) 22008 (79430) |
||
811 | 552 | 7, 29 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 4 mod 5 (5) |
252 (300K) 450 (300K) 538 (300K) |
510 (124135) 358 (32640) 378 (6792) 196 (1427) 258 (1309) 456 (620) 88 (514) 42 (428) 216 (425) 202 (369) |
||
812 | 16 | 3, 5, 17 | k = = 810 mod 811 (811) | none - proven | 8 (3461) 2 (1003) 15 (31) 4 (26) 6 (19) 10 (18) 12 (6) 5 (5) 13 (2) 7 (2) |
k = 1 is a GFn with no known prime. | |
813 | 186 | 11, 37 | k = = 1 mod 2 (2) k = = 6 mod 7 (7) k = = 28 mod 29 (29) |
none - proven | 142 (2477) 166 (872) 78 (484) 126 (436) 108 (415) 80 (232) 46 (199) 18 (127) 138 (104) 64 (97) |
||
814 | 651 | 5, 163 | k = = 2 mod 3 (3) k = = 270 mod 271 (271) |
261 (300K) 276 (300K) 294 (300K) 391 (300K) 456 (300K) 559 (300K) 612 (300K) |
196 (263256) 162 (233173) 94 (140039) 376 (129690) 229 (48271) 496 (26446) 586 (25024) 615 (10999) 300 (10987) 394 (9405) |
k = 1 is a GFn with no known prime. | |
815 | 16 | 3, 17 | k = = 1 mod 2 (2) k = = 10 mod 11 (11) k = = 36 mod 37 (37) |
none - proven | 2 (119) 4 (10) 6 (2) 14 (1) 12 (1) 8 (1) |
||
816 | 343 | 19, 43 | k = = 4 mod 5 (5) k = = 162 mod 163 (163) |
153 (400K) | 246 (24975) 85 (3255) 292 (3033) 216 (2836) 40 (2582) 322 (1635) 96 (944) 23 (766) 187 (605) 160 (587) |
||
817 | 2063406 | 5, 41, 409, 1009 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 16 mod 17 (17) |
24181 k's remaining at n=2.5K. To be shown later. | 1021686 (2500) 753258 (2500) 1376274 (2499) 657856 (2499) 50070 (2499) 1016674 (2498) 973242 (2498) 483072 (2498) 411132 (2498) 191694 (2498) |
||
818 | 8 | 3, 7 | k = = 18 mod 19 (19) k = = 42 mod 43 (43) |
none - proven | 4 (7726) 7 (22) 3 (12) 6 (1) 5 (1) 2 (1) |
k = 1 is a GFn with no known prime. | |
819 | 124 | 5, 41 | k = = 1 mod 2 (2) k = = 408 mod 409 (409) |
none - proven | 40 (6493) 94 (2165) 76 (1268) 84 (501) 36 (96) 92 (58) 18 (49) 122 (43) 42 (40) 26 (40) |
||
820 | 30378 | 17, 37, 821 | k = = 2 mod 3 (3) k = = 6 mod 7 (7) k = = 12 mod 13 (13) |
339 (100K) 1453 (100K) 2665 (100K) 5292 (100K) 5623 (100K) 6955 (100K) 7054 (100K) 9397 (100K) 12355 (100K) 12475 (100K) 16723 (100K) 17665 (100K) 17889 (100K) 21283 (100K) 22696 (100K) 25062 (100K) 25314 (100K) 25827 (100K) 26380 (100K) 27120 (100K) 29113 (100K) |
14038 (95797) 13318 (84759) 21058 (83174) 24901 (80512) 4462 (70305) 20637 (69366) 3204 (64442) 16069 (64070) 24636 (58914) 10507 (46471) |
k = 820 is a GFn with no known prime. | |
821 | 136 | 3, 137 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 40 mod 41 (41) |
80 (500K) | 82 (139686) 110 (16855) 106 (14542) 98 (3309) 56 (1819) 6 (1360) 2 (945) 132 (544) 62 (437) 88 (268) |
||
822 | 278173 | 5, 337, 823 | k = = 820 mod 821 (821) | 16021 k's remaining at n=2.5K. To be shown later. | 62576 (2500) 250745 (2499) 228272 (2499) 189024 (2499) 227114 (2498) 221625 (2498) 47558 (2498) 129218 (2497) 39779 (2497) 203011 (2496) |
k = 822 is a GFn with no known prime. | |
823 | 9166 | 7, 13, 43, 103 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 136 mod 137 (137) |
69 k's remaining at n=100K. See k's at Sierpinski Base 823 remain. |
3138 (91588) 8484 (87406) 8452 (86872) 3520 (73141) 2418 (68362) 3246 (66116) 6738 (65119) 1668 (58267) 8362 (51378) 8808 (49240) |
||
824 | 4 | 3, 5 | k = = 822 mod 823 (823) | none - proven | 2 (7) 3 (1) |
||
825 | 176 | 7, 59 | k = = 1 mod 2 (2) k = = 102 mod 103 (103) |
58 (300K) 64 (300K) |
120 (238890) 20 (6961) 148 (3716) 132 (3151) 60 (1690) 146 (117) 118 (53) 152 (36) 140 (32) 36 (26) |
||
827 | 8 | 3, 5, 13 | k = = 1 mod 2 (2) k = = 6 mod 7 (7) k = = 58 mod 59 (59) |
none - proven | 2 (367) 4 (2) |
||
828 | 12 | 7, 13, 19 | k = = 826 mod 827 (827) | 8 (500K) | 5 (6) 10 (3) 9 (3) 7 (2) 3 (2) 11 (1) 6 (1) 4 (1) 2 (1) |
||
829 | 84 | 5, 83 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 22 mod 23 (23) |
none - proven | 66 (388) 76 (128) 16 (70) 52 (63) 24 (31) 46 (26) 54 (11) 34 (9) 4 (9) 64 (7) |
||
830 | 278 | 3, 277 | k = = 828 mod 829 (829) | 30 (300K) 37 (300K) 47 (300K) 55 (300K) 89 (300K) 94 (300K) 103 (300K) 139 (300K) 145 (300K) 160 (300K) 173 (300K) 208 (300K) 257 (300K) |
43 (65316) 86 (64645) 64 (41986) 61 (36578) 180 (35747) 155 (23123) 250 (18080) 227 (15501) 187 (9774) 20 (9763) |
||
831 | 1030522 | 13, 449, 769 | k = = 2 mod 3 (3) k = = 4 mod 5 (5) k = = 82 mod 83 (83) |
15039 k's remaining at n=2.5K. To be shown later. | 677952 (2499) 197382 (2498) 173330 (2498) 77616 (2498) 27582 (2498) 811316 (2497) 497988 (2497) 961760 (2496) 980616 (2494) 928292 (2494) |
||
832 | 69 | 7, 17 | k = = 2 mod 3 (3) k = = 276 mod 277 (277) |
36 (500K) 67 (500K) |
39 (15125) 13 (349) 30 (190) 52 (152) 10 (132) 37 (71) 21 (67) 57 (64) 64 (50) 66 (20) |
||
833 | 140 | 3, 139 | k = = 1 mod 2 (2) k = = 12 mod 13 (13) |
32 (300K) 106 (300K) |
8 (5735) 22 (670) 4 (650) 46 (396) 82 (70) 124 (58) 128 (55) 72 (50) 30 (41) 94 (26) |
||
834 | 166 | 5, 167 | k = = 6 mod 7 (7) k = = 16 mod 17 (17) |
89 (400K) | 151 (8828) 114 (2661) 126 (1580) 156 (318) 73 (297) 39 (173) 54 (163) 31 (126) 32 (57) 26 (56) |
||
835 | 474 | 11, 19 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 138 mod 139 (139) |
94 (300K) 276 (300K) |
244 (16024) 298 (6418) 12 (5632) 390 (3087) 438 (2058) 178 (1688) 96 (1122) 316 (1088) 406 (933) 150 (882) |
||
836 | 32 | 3, 31 | k = = 4 mod 5 (5) k = = 166 mod 167 (167) |
2 (400K) | 7 (5700) 16 (4292) 30 (251) 5 (43) 22 (34) 10 (24) 18 (16) 23 (15) 12 (15) 28 (8) |
k = 1 is a GFn with no known prime. | |
837 | 1032 | 7, 97, 1033 | k = = 1 mod 2 (2) k = = 10 mod 11 (11) k = = 18 mod 19 (19) |
334 (300K) 402 (300K) 696 (300K) 872 (300K) |
404 (163205) 908 (106337) 234 (96217) 38 (53782) 948 (42490) 482 (33683) 486 (31555) 22 (26331) 356 (18827) 96 (13919) |
||
838 | 1447276 | 5, 7, 13, 97, 839 | k = = 2 mod 3 (3) k = = 30 mod 31 (31) |
46353 k's remaining at n=2.5K. To be shown later. | 1321471 (2500) 1241347 (2500) 1065847 (2500) 1001161 (2500) 947871 (2500) 579231 (2500) 222795 (2500) 47238 (2500) 33751 (2500) 1299499 (2499) |
k = 838 and 702244 are GFn's with no known prime. | |
839 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 418 mod 419 (419) |
none - proven | 2 (5) | ||
840 | 9076 | 37, 61, 313 | k = = 838 mod 839 (839) | 54 k's remaining at n=100K. See k's at Sierpinski Base 840 remain. |
412 (94384) 7019 (85806) 2517 (82807) 8295 (80068) 217 (73775) 7773 (73438) 5772 (70860) 1451 (51944) 3220 (50514) 5182 (49799) |
k = 1 and 840 are GFn's with no known prime. | |
841 | 22312 | 13, 37, 61, 421 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 4 mod 5 (5) k = = 6 mod 7 (7) |
1278 (300K) 6900 (300K) 8722 (300K) 10518 (300K) 12310 (300K) 13840 (300K) 14362 (300K) 16788 (300K) 17262 (300K) 18022 (300K) 19140 (300K) 19786 (300K) |
15690 (266965) 1590 (172731) 18400 (152616) 4008 (131505) 6322 (127936) 9292 (117699) 700 (107773) 16950 (101338) 10956 (96215) 9822 (75757) |
||
842 | 68 | 3, 7, 31, 67 | k = = 28 mod 29 (29) | 13 (400K) 19 (400K) 31 (400K) |
17 (104679) 61 (100660) 23 (36037) 64 (17030) 47 (6387) 53 (2537) 2 (1919) 65 (1545) 10 (354) 12 (223) |
k = 1 is a GFn with no known prime. | |
843 | 28486 | 5, 61, 211 | k = = 1 mod 2 (2) k = = 420 mod 421 (421) |
250 k's remaining at n=100K. See k's at Sierpinski Base 843 remain. |
2744 (99026) 3694 (98009) 19622 (96553) 21550 (96128) 3844 (95467) 8942 (93246) 5776 (92681) 17298 (92120) 15898 (92096) 5174 (91111) |
||
844 | 51 | 5, 13 | k = = 2 mod 3 (3) k = = 280 mod 281 (281) |
none - proven | 40 (246524) 9 (9687) 31 (378) 45 (304) 27 (58) 36 (28) 10 (27) 6 (14) 4 (13) 19 (11) |
k = 1 is a GFn with no known prime. | |
845 | 46 | 3, 47 | k = = 1 mod 2 (2) k = = 210 mod 211 (211) |
none - proven | 34 (78106) 40 (2952) 4 (1646) 2 (877) 6 (325) 36 (41) 16 (28) 32 (17) 24 (15) 26 (11) |
||
846 | 43 | 7, 11 | k = = 4 mod 5 (5) k = = 12 mod 13 (13) |
none - proven | 27 (3371) 15 (408) 11 (88) 21 (13) 18 (13) 22 (8) 23 (6) 17 (5) 37 (3) 13 (3) |
||
847 | 150678 | 5, 41, 53, 401 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 46 mod 47 (47) |
557 k's remaining at n=25K. See k's at Sierpinski Base 847 remain. |
32004 (24895) 138384 (24890) 34588 (24786) 55588 (24778) 14262 (24731) 57846 (24708) 18324 (24682) 128418 (24565) 63594 (24549) 12862 (24383) |
||
848 | 284 | 3, 283 | k = = 6 mod 7 (7) k = = 10 mod 11 (11) |
4 (1M) 17 (300K) 46 (300K) 106 (300K) 121 (300K) 196 (300K) 217 (300K) 231 (300K) 233 (300K) 283 (300K) |
220 (187868) 107 (69105) 151 (58196) 185 (56253) 173 (29315) 238 (16692) 189 (13667) 215 (8459) 211 (5992) 22 (4800) |
k = 1 is a GFn with no known prime. | |
849 | 16 | 5, 17 | k = = 1 mod 2 (2) k = = 52 mod 53 (53) |
none - proven | 12 (28) 10 (17) 4 (11) 6 (2) 14 (1) 8 (1) 2 (1) |
||
850 | 369 | 23, 37 | k = = 2 mod 3 (3) k = = 282 mod 283 (283) |
252 (400K) | 346 (3142) 208 (2154) 79 (1671) 270 (1509) 114 (1443) 268 (1113) 36 (737) 145 (705) 289 (340) 331 (216) |
||
851 | 70 | 3, 71 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 16 mod 17 (17) |
none - proven | 32 (2079) 68 (893) 8 (113) 46 (18) 2 (15) 52 (12) 22 (12) 10 (12) 62 (11) 58 (8) |
||
852 | 34974 | 5, 41, 853 | k = = 22 mod 23 (23) k = = 36 mod 37 (37) |
627 k's remaining at n=25K. See k's at Sierpinski Base 852 remain. |
1647 (24891) 6102 (24835) 34866 (24805) 26436 (24704) 13318 (24617) 34968 (24381) 32602 (24375) 33730 (24233) 26001 (24135) 33849 (24113) |
||
853 | 204 | 5, 7, 29 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 70 mod 71 (71) |
106 (1M) | 42 (91322) 34 (267) 76 (203) 166 (156) 132 (129) 78 (96) 88 (76) 118 (71) 178 (55) 124 (49) |
||
854 | 4 | 3, 5 | k = = 852 mod 853 (853) | none - proven | 3 (4) 2 (1) |
k = 1 is a GFn with no known prime. | |
856 | 39457 | 7, 181, 193 | k = = 2 mod 3 (3) k = = 4 mod 5 (5) k = = 18 mod 19 (19) |
103 k's remaining at n=100K. See k's at Sierpinski Base 856 remain. |
28123 (97689) 18906 (95635) 27726 (90589) 36847 (89735) 3366 (88865) 34353 (86530) 33435 (86205) 27823 (85963) 8902 (85891) 16915 (82556) |
||
857 | 10 | 3, 11 | k = = 1 mod 2 (2) k = = 106 mod 107 (107) |
none - proven | 6 (80) 4 (6) 2 (3) 8 (1) |
||
858 | 35218 | 5, 29, 859 | k = = 856 mod 857 (857) | 567 k's remaining at n=25K. See k's at Sierpinski Base 858 remain. |
4130 (24454) 29256 (24229) 4406 (23977) 32206 (23908) 31481 (23905) 4455 (23830) 10071 (23693) 20225 (23322) 20678 (23144) 31776 (23095) |
k = 858 is a GFn with no known prime. | |
859 | 474 | 5, 43 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 10 mod 11 (11) k = = 12 mod 13 (13) |
136 (300K) 250 (300K) |
414 (41231) 394 (2913) 396 (1708) 226 (988) 304 (591) 214 (401) 256 (386) 336 (286) 196 (230) 466 (218) |
||
860 | 8 | 3, 7 | k = = 858 mod 859 (859) | none - proven | 6 (391) 5 (7) 7 (6) 4 (6) 3 (3) 2 (1) |
||
861 | 813160 | 13, 37, 1543 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 42 mod 43 (43) |
2692 k's remaining at n=10K. See k's at Sierpinski Base 861 remain. |
367828 (9981) 430550 (9977) 411096 (9970) 802702 (9968) 293240 (9956) 732138 (9948) 197838 (9932) 801852 (9928) 682172 (9913) 333508 (9913) |
||
862 | 6757 | 19, 31, 421 | k = = 2 mod 3 (3) k = = 6 mod 7 (7) k = = 40 mod 41 (41) |
38 k's remaining at n=100K. See k's at Sierpinski Base 862 remain. |
3808 (98309) 1828 (89429) 3846 (83765) 802 (81952) 3241 (81340) 5181 (78665) 5412 (78123) 1836 (77709) 2758 (75034) 1537 (69935) |
k = 862 is a GFn with no known prime. | |
863 | 8 | 3, 5, 13 | k = = 1 mod 2 (2) k = = 430 mod 431 (431) |
none - proven | 4 (62) 2 (25) 6 (1) |
||
864 | 174 | 5, 173 | k = = 862 mod 863 (863) | 74 (500K) | 136 (71418) 53 (56085) 15 (51510) 64 (27053) 41 (18064) 39 (12723) 27 (11230) 147 (6951) 144 (4507) 131 (2702) |
||
865 | 15460266 | 7, 13, 37, 61, 433 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) |
Testing just started. | |||
866 | 16 | 3, 17 | k = = 4 mod 5 (5) k = = 172 mod 173 (173) |
8 (500K) | 13 (1492) 12 (531) 11 (35) 15 (8) 3 (7) 5 (5) 10 (2) 7 (2) 6 (1) 2 (1) |
||
867 | 92 | 7, 31 | k = = 1 mod 2 (2) k = = 432 mod 433 (433) |
none - proven | 50 (63774) 36 (5504) 74 (3730) 2 (1280) 32 (362) 38 (290) 72 (278) 62 (267) 64 (122) 22 (54) |
||
868 | 78 | 11, 79 | k = = 2 mod 3 (3) k = = 16 mod 17 (17) |
none - proven | 61 (388) 7 (273) 34 (90) 43 (55) 45 (42) 12 (28) 48 (12) 13 (12) 39 (7) 18 (7) |
k =1 is a GFn with no known prime. | |
869 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 6 mod 7 (7) k = = 30 mod 31 (31) |
none - proven | 2 (49149) | ||
870 | 66 | 13, 67 | k = = 10 mod 11 (11) k = = 78 mod 79 (79) |
none - proven | 38 (29675) 55 (872) 12 (87) 50 (56) 14 (48) 5 (48) 35 (46) 46 (45) 6 (22) 4 (19) |
k = 1 is a GFn with no known prime. | |
871 | 21676 | 7, 17, 53, 103, 409 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 4 mod 5 (5) k = = 28 mod 29 (29) |
582 (100K) 618 (100K) 696 (100K) 2110 (100K) 2280 (100K) 3702 (100K) 4468 (100K) 6648 (100K) 6898 (100K) 7302 (100K) 9702 (100K) 10336 (100K) 10356 (100K) 11526 (100K) 13332 (100K) 14496 (100K) 17616 (100K) 18946 (100K) 19222 (100K) 20248 (100K) 20806 (100K) 21238 (100K) |
7050 (94061) 18682 (77041) 20382 (70537) 6472 (69628) 15726 (64212) 19512 (53106) 12550 (49403) 5778 (47932) 1752 (43331) 9300 (39775) |
||
872 | 98 | 3, 97 | k = = 12 mod 13 (13) k = = 66 mod 67 (67) |
19 (400K) 46 (400K) 68 (400K) |
94 (397354) 26 (45765) 13 (38782) 27 (7438) 79 (6794) 23 (6793) 62 (5987) 44 (4367) 32 (4203) 33 (1581) |
k = 1 is a GFn with no known prime. | |
873 | 208 | 19, 23 | k = = 1 mod 2 (2) k = = 108 mod 109 (109) |
116 (400K) 150 (400K) 206 (400K) |
24 (88530) 68 (81083) 88 (6970) 96 (5824) 164 (3271) 198 (2800) 172 (2600) 144 (509) 106 (391) 178 (348) |
||
874 | 6 | 5, 7 | k = = 2 mod 3 (3) k = = 96 mod 97 (97) |
none - proven | 4 (77) 3 (2) |
||
875 | 74 | 3, 73 | k = = 1 mod 2 (2) k = = 18 mod 19 (19) k = = 22 mod 23 (23) |
4 (1M) | 38 (52517) 46 (250) 52 (150) 58 (44) 10 (38) 16 (26) 72 (15) 64 (14) 50 (11) 2 (11) |
||
877 | 2182 | 5, 7, 13, 37, 139 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 72 mod 73 (73) |
438 (300K) 696 (300K) 748 (300K) 1146 (300K) 1272 (300K) 1348 (300K) 1434 (300K) 1602 (300K) |
1942 (237267) 1606 (150351) 1018 (138945) 1776 (125700) 1758 (60129) 1494 (48809) 672 (45992) 172 (41580) 1470 (29067) 564 (25366) |
||
878 | 23 | 3, 5, 53 | k = = 876 mod 877 (877) | 2 (400K) 13 (400K) 17 (400K) |
11 (227481) 10 (972) 18 (454) 16 (168) 19 (114) 14 (87) 3 (12) 8 (11) 22 (10) 20 (9) |
k = 1 is a GFn with no known prime. | |
879 | 34 | 5, 11 | k = = 1 mod 2 (2) k = = 438 mod 439 (439) |
none - proven | 10 (25003) 32 (4617) 24 (1183) 14 (167) 26 (24) 22 (6) 28 (4) 8 (4) 16 (2) 12 (2) |
||
880 | 25282 | 13, 103, 193 | k = = 2 mod 3 (3) k = = 292 mod 293 (293) |
79 k's remaining at n=100K. See k's at Sierpinski Base 880 remain. |
5458 (99301) 22465 (96712) 23655 (96567) 3858 (88554) 22923 (82182) 14247 (80185) 14148 (80028) 706 (76693) 13465 (71040) 13675 (70732) |
k = 880 is a GFn with no known prime. | |
881 | 8 | 3, 7 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 10 mod 11 (11) |
none - proven | 6 (63) 2 (27) |
||
882 | 5297 | 5, 37, 883 | k = = 880 mod 881 (881) | 46 k's remaining at n=100K. See k's at Sierpinski Base 882 remain. |
68 (98958) 1057 (96951) 2874 (95905) 623 (89706) 5232 (85756) 445 (85369) 64 (84322) 3452 (82495) 3029 (69511) 3350 (62647) |
k = 882 is a GFn with no known prime. | |
883 | 324 | 13, 17 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 6 mod 7 (7) |
66 (500K) | 154 (268602) 288 (12839) 222 (10326) 322 (1597) 58 (907) 192 (570) 18 (374) 274 (326) 28 (235) 136 (209) |
||
884 | 4 | 3, 5 | k = = 882 mod 883 (883) | none - proven | 2 (5) 3 (3) |
||
885 | 588746 | 7, 19, 73, 443 | k = = 1 mod 2 (2) k = = 12 mod 13 (13) k = = 16 mod 17 (17) |
2160 k's remaining at n=10K. See k's at Sierpinski Base 885 remain. |
143810 (10000) 179068 (9977) 444418 (9964) 347532 (9936) 177252 (9936) 162098 (9934) 345242 (9920) 179330 (9919) 179736 (9909) 160694 (9905) |
||
886 | 8170158 | 7, 13, 61, 181, 887 | k = = 2 mod 3 (3) k = = 4 mod 5 (5) k = = 58 mod 59 (59) |
142454 k's remaining at n=2.5K. To be shown later. | 7730176 (2500) 7416420 (2500) 6973543 (2500) 6738057 (2500) 6098103 (2500) 5628577 (2500) 5337247 (2500) 5317885 (2500) 5243605 (2500) 5176713 (2500) |
k = 886 and 784996 are GFn's with no known prime. | |
887 | 38 | 3, 37 | k = = 1 mod 2 (2) k = = 442 mod 443 (443) |
16 (300K) 34 (300K) |
2 (27771) 12 (13960) 24 (2687) 36 (1243) 22 (1008) 20 (545) 30 (123) 10 (12) 14 (7) 28 (6) |
||
888 | 13 | 5, 7, 17 | k = = 886 mod 887 (887) | none - proven | 8 (112) 3 (16) 4 (6) 10 (3) 6 (3) 12 (1) 11 (1) 9 (1) 7 (1) 5 (1) |
k = 1 is a GFn with no known prime. | |
889 | 624 | 5, 89 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 36 mod 37 (37) |
none - proven | 534 (71765) 174 (38647) 384 (20127) 576 (7422) 456 (7060) 6 (3450) 330 (3076) 604 (2299) 268 (1190) 96 (680) |
||
890 | 10 | 3, 11 | k = = 6 mod 7 (7) k = = 126 mod 127 (127) |
none - proven | 4 (10) 2 (7) 7 (4) 9 (1) 8 (1) 5 (1) 3 (1) |
. | |
892 | 187 | 5, 13, 47 | k = = 2 mod 3 (3) k = = 10 mod 11 (11) |
46 (500K) 93 (500K) 151 (500K) |
118 (373012) 51 (271541) 16 (5475) 138 (1494) 99 (1326) 96 (1224) 7 (156) 132 (151) 148 (114) 12 (91) |
||
893 | 32 | 3, 5, 41 | k = = 1 mod 2 (2) k = = 222 mod 223 (223) |
none - proven | 8 (86771) 26 (519) 16 (20) 10 (12) 4 (10) 12 (8) 30 (7) 6 (7) 28 (2) 22 (2) |
||
894 | 359 | 5, 179 | k = = 18 mod 19 (19) k = = 46 mod 47 (47) |
6 (300K) 29 (300K) 109 (300K) 144 (300K) 178 (300K) 181 (300K) 184 (300K) 204 (300K) 214 (300K) 271 (300K) 354 (300K) |
74 (201093) 327 (34066) 243 (20613) 101 (17754) 154 (7051) 304 (6407) 43 (5486) 319 (5079) 249 (5033) 24 (4007) |
||
895 | 953800 | 7, 97, 4129 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 148 mod 149 (149) |
13493 k's remaining at n=2.5K. To be shown later. | 745038 (2500) 860580 (2499) 698524 (2498) 105196 (2498) 742926 (2497) 599136 (2497) 586332 (2497) 318754 (2496) 226822 (2496) 666804 (2495) |
||
896 | 22 | 3, 23 | k = = 4 mod 5 (5) k = = 178 mod 179 (179) |
none - proven | 10 (436) 16 (150) 21 (7) 8 (7) 18 (5) 7 (4) 2 (3) 13 (2) 6 (2) 20 (1) |
k = 1 is a GFn with no known prime. | |
897 | 7634 | 5, 17, 449 | k = = 1 mod 2 (2) k = = 6 mod 7 (7) |
448 (300K) 798 (300K) 1246 (300K) 1296 (300K) 1968 (300K) 2444 (300K) 3568 (300K) 3692 (300K) 3962 (300K) 4858 (300K) 4938 (300K) 5002 (300K) 5084 (300K) 5762 (300K) 7428 (300K) |
5882 (185306) 3386 (167919) 5202 (146872) 5810 (141540) 4132 (63703) 6848 (49788) 2088 (47900) 1262 (47202) 3690 (33277) 7532 (31775) |
||
898 | 30 | 29, 31 | k = = 2 mod 3 (3) k = = 12 mod 13 (13) k = = 22 mod 23 (23) |
none - proven | 28 (98959) 19 (165) 13 (35) 24 (30) 6 (29) 9 (15) 3 (6) 15 (3) 18 (2) 10 (2) |
||
899 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 448 mod 449 (449) |
none - proven | 2 (15731) | ||
900 | 12 | 7, 13, 19 | k = = 28 mod 29 (29) k = = 30 mod 31 (31) |
none - proven | 8 (2270) 6 (47) 5 (3) 4 (3) 3 (3) 11 (1) 10 (1) 9 (1) 7 (1) 2 (1) |
||
901 | 12 | 7, 11, 13, 19 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 4 mod 5 (5) |
none - proven | 10 (1) 6 (1) |
||
902 | 8 | 3, 7 | k = = 16 mod 17 (17) k = = 52 mod 53 (53) |
none - proven | 5 (15) 4 (6) 2 (3) 7 (2) 6 (1) 3 (1) |
k = 1 is a GFn with no known prime. | |
903 | 338 | 5, 73, 113 | k = = 1 mod 2 (2) k = = 10 mod 11 (11) k = = 40 mod 41 (41) |
none - proven | 308 (13220) 290 (8582) 168 (1442) 212 (941) 14 (685) 94 (683) 182 (177) 162 (154) 192 (80) 298 (79) |
||
904 | 361 | 5, 181 | k = = 2 mod 3 (3) k = = 6 mod 7 (7) k = = 42 mod 43 (43) |
49 (300K) 99 (300K) 121 (300K) 211 (300K) 289 (300K) 294 (300K) |
136 (147230) 30 (124238) 180 (63687) 331 (32322) 31 (19068) 256 (15408) 81 (12738) 144 (2023) 168 (1158) 16 (972) |
k = 1 is a GFn with no known prime. | |
905 | 118 | 3, 13, 17 | k = = 1 mod 2 (2) k = = 112 mod 113 (113) |
62 (400K) 68 (400K) 88 (400K) |
90 (5989) 10 (5154) 108 (294) 98 (233) 16 (186) 94 (170) 82 (118) 76 (106) 30 (58) 46 (56) |
||
907 | 1350424 | 5, 7, 13, 227, 661 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 150 mod 151 (151) |
29433 k's remaining at n=2.5K. To be shown later. | 969112 (2500) 869068 (2500) 776188 (2500) 569218 (2500) 1019872 (2499) 961882 (2499) 863644 (2499) 219994 (2499) 1194514 (2498) 1018458 (2498) |
||
908 | 100 | 3, 101 | k = = 906 mod 907 (907) | 2 (300K) 32 (300K) 34 (300K) 49 (300K) 76 (300K) 79 (300K) 94 (300K) |
8 (243439) 36 (146460) 71 (49583) 77 (47301) 55 (23710) 41 (23083) 11 (9855) 68 (8091) 16 (5320) 63 (3876) |
k = 1 is a GFn with no known prime. | |
909 | 6 | 5, 7 | k = = 1 mod 2 (2) k = = 226 mod 227 (227) |
none - proven | 2 (10) 4 (1) |
||
911 | 208 | 3, 19 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 6 mod 7 (7) k = = 12 mod 13 (13) |
8 (300K) 18 (300K) 50 (300K) 172 (300K) |
158 (181509) 182 (57327) 56 (19695) 70 (4818) 28 (4530) 136 (3190) 196 (1734) 128 (1299) 22 (540) 10 (336) |
||
912 | 331 | 11, 83 | k = = 910 mod 911 (911) | 32 (300K) 67 (300K) 82 (300K) 98 (300K) 122 (300K) 138 (300K) 166 (300K) 197 (300K) 234 (300K) 248 (300K) |
34 (230098) 318 (143201) 3 (132173) 298 (118230) 80 (35967) 113 (33032) 158 (20282) 139 (20261) 271 (8604) 297 (7251) |
||
913 | 2540464 | 5, 7, 13, 109, 457 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 18 mod 19 (19) |
31687 k's remaining at n=2.5K. To be shown later. | 2379562 (2500) 1176462 (2500) 426838 (2500) 2115084 (2499) 1992696 (2499) 2149072 (2498) 1980012 (2498) 1085394 (2498) 696414 (2498) 148372 (2498) |
||
914 | 4 | 3, 5 | k = = 10 mod 11 (11) k = = 82 mod 83 (83) |
2 (400K) | 3 (12) | ||
915 | 4266956 | 13, 229, 2477 | k = = 1 mod 2 (2) k = = 456 mod 457 (457) |
61769 k's remaining at n=2.5K. To be shown later. | 3644646 (2500) 3525666 (2500) 3312666 (2500) 3108464 (2500) 2908460 (2500) 2415474 (2500) 2087660 (2500) 1986044 (2500) 1900478 (2500) 1336678 (2500) |
||
916 | 132 | 7, 131 | k = = 2 mod 3 (3) k = = 4 mod 5 (5) k = = 60 mod 61 (61) |
none - proven | 85 (1058) 33 (197) 57 (146) 22 (144) 82 (115) 73 (84) 130 (71) 31 (71) 111 (51) 76 (49) |
||
917 | 16 | 3, 17 | k = = 1 mod 2 (2) k = = 228 mod 229 (229) |
2 (500K) | 8 (53) 4 (22) 14 (9) 12 (4) 10 (2) 6 (1) |
||
918 | 24812 | 5, 13, 919 | k = = 6 mod 7 (7) k = = 130 mod 131 (131) |
156 k's remaining at n=100K. See k's at Sierpinski Base 918 remain. |
4971 (94549) 8208 (93900) 21715 (91845) 16167 (91042) 19357 (86816) 2956 (83981) 15186 (82888) 18924 (75089) 567 (74068) 13903 (71888) |
||
919 | 24 | 5, 23 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 16 mod 17 (17) |
none - proven | 12 (45358) 6 (5092) 18 (386) 10 (8) 22 (1) 4 (1) |
||
920 | 103 | 3, 7, 13, 19 | k = = 918 mod 919 (919) | 13 (300K) 14 (300K) 43 (300K) 64 (500K) 82 (300K) |
68 (212407) 8 (107821) 4 (103686) 79 (43780) 61 (9644) 73 (5802) 32 (5493) 46 (1254) 69 (770) 76 (686) |
||
922 | 285 | 13, 71 | k = = 2 mod 3 (3) k = = 306 mod 307 (307) |
30 (400K) 138 (400K) 214 (400K) |
142 (16611) 282 (14114) 144 (11670) 159 (5986) 126 (3644) 72 (3310) 58 (2338) 186 (1857) 25 (1641) 4 (1179) |
k = 1 is a GFn with no known prime. | |
923 | 8 | 3, 7 | k = = 1 mod 2 (2) k = = 460 mod 461 (461) |
none - proven | 6 (41) 4 (10) 2 (1) |
||
924 | 36 | 5, 37 | k = = 12 mod 13 (13) k = = 70 mod 71 (71) |
none - proven | 14 (8031) 16 (386) 24 (49) 23 (43) 19 (19) 29 (15) 26 (14) 21 (10) 6 (10) 13 (9) |
k = 1 is a GFn with no known prime. | |
926 | 205 | 3, 103 | k = = 4 mod 5 (5) k = = 36 mod 37 (37) |
17 (300K) 65 (300K) 103 (300K) 118 (300K) |
137 (166603) 13 (103582) 5 (40035) 52 (29706) 121 (10886) 82 (6096) 10 (4998) 18 (4090) 102 (3443) 150 (2304) |
k = 1 is a GFn with no known prime. | |
927 | 28624 | 5, 17, 29, 89 | k = = 1 mod 2 (2) k = = 462 mod 463 (463) |
454 k's remaining at n=25K. See k's at Sierpinski Base 927 remain. |
1206 (24612) 7570 (24550) 16356 (24223) 5476 (23793) 13948 (23773) 12288 (23758) 28188 (23344) 15874 (23329) 20270 (23111) 21682 (22799) |
||
928 | 27871 | 5, 13, 929 | k = = 2 mod 3 (3) k = = 102 mod 103 (103) |
529 k's remaining at n=25K. See k's at Sierpinski Base 928 remain. |
11722 (24808) 19512 (24114) 277 (23898) 13747 (23392) 18828 (23051) 15930 (22914) 3628 (22828) 17272 (22600) 21061 (22515) 481 (22383) |
||
929 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 28 mod 29 (29) |
none - proven | 2 (99) | ||
930 | 20 | 7, 19 | k = = 928 mod 929 (929) | 8 (400K) | 7 (217) 13 (207) 9 (24) 15 (12) 14 (7) 11 (7) 19 (3) 16 (3) 17 (2) 10 (2) |
||
931 | 37978 | 13, 53, 233 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 4 mod 5 (5) k = = 30 mod 31 (31) |
26 k's remaining at n=100K. See k's at Sierpinski Base 931 remain. |
28870 (99192) 29638 (98833) 36568 (97445) 1696 (91296) 37660 (74618) 24790 (70090) 23256 (69463) 35118 (68086) 8832 (61468) 4992 (61245) |
||
932 | 310 | 3, 311 | k = = 6 mod 7 (7) k = = 18 mod 19 (19) |
23 (300K) 28 (300K) 77 (300K) 98 (300K) 122 (300K) 169 (300K) 212 (300K) 218 (300K) 224 (300K) 238 (300K) 263 (300K) |
19 (187910) 241 (132236) 40 (71610) 154 (44138) 290 (37017) 134 (33535) 302 (25795) 278 (24761) 89 (19399) 145 (16936) |
k = 1 is a GFn with no known prime. | |
933 | 3343252 | 5, 7, 13, 37, 467 | k = = 1 mod 2 (2) k = = 232 mod 233 (233) |
113075 k's remaining at n=2.5K. To be shown later. | 3265912 (2500) 3160312 (2500) 2685828 (2500) 2640658 (2500) 2436352 (2500) 2186988 (2500) 1855706 (2500) 1801302 (2500) 1354218 (2500) 1349438 (2500) |
||
934 | 16 | 5, 17 | k = = 2 mod 3 (3) k = = 310 mod 311 (311) |
none - proven | 4 (101403) 9 (429) 12 (44) 7 (6) 6 (4) 15 (1) 13 (1) 10 (1) 3 (1) |
||
935 | 14 | 3, 13 | k = = 1 mod 2 (2) k = = 466 mod 467 (467) |
10 (400K) | 6 (8) 12 (3) 4 (2) 8 (1) 2 (1) |
||
936 | 100260 | 7, 31, 37, 937 | k = = 4 mod 5 (5) k = = 10 mod 11 (11) k = = 16 mod 17 (17) |
92 k's remaining at n=100K. See k's at Sierpinski Base 936 remain. |
87446 (97893) 36965 (94192) 50590 (92119) 60885 (91085) 79262 (88094) 74033 (87581) 3006 (86823) 18995 (82704) 74870 (81183) 72715 (78700) |
||
937 | 202 | 7, 67 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 12 mod 13 (13) |
none - proven | 78 (2696) 186 (1017) 76 (319) 22 (260) 132 (159) 120 (154) 162 (86) 52 (70) 174 (45) 16 (44) |
||
938 | 314 | 3, 313 | k = = 936 mod 937 (937) | 29 (300K) 31 (300K) 71 (300K) 91 (300K) 94 (300K) 124 (300K) 139 (300K) 151 (300K) 173 (300K) 181 (300K) 199 (300K) 216 (300K) 227 (300K) 278 (300K) 298 (300K) 304 (300K) |
182 (128989) 286 (128944) 161 (86753) 52 (71936) 25 (63532) 98 (62867) 164 (50781) 221 (26565) 26 (22411) 101 (20631) |
k = 1 is a GFn with no known prime. | |
939 | 46 | 5, 47 | k = = 1 mod 2 (2) k = = 6 mod 7 (7) k = = 66 mod 67 (67) |
none - proven | 30 (137000) 8 (520) 36 (88) 38 (31) 12 (20) 22 (19) 26 (6) 44 (3) 24 (3) 4 (3) |
||
940 | 5557 | 7, 73, 577 | k = = 2 mod 3 (3) k = = 312 mod 313 (313) |
45 k's remaining at n=100K. See k's at Sierpinski Base 940 remain. |
4525 (96497) 4291 (88651) 241 (81773) 5260 (70077) 2785 (63569) 2712 (62213) 4710 (50218) 3142 (46024) 2089 (43616) 3076 (39990) |
k = 940 is a GFn with no known prime. | |
941 | 158 | 3, 157 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 46 mod 47 (47) |
none - proven | 26 (127533) 156 (23309) 106 (14510) 118 (11780) 10 (8508) 42 (7988) 60 (2144) 80 (157) 142 (102) 66 (95) |
||
942 | 206 | 23, 41 | k = = 940 mod 941 (941) | 40 (400K) 137 (400K) 139 (400K) |
113 (56965) 202 (28850) 37 (25835) 166 (25140) 20 (17720) 24 (5886) 123 (5256) 93 (2768) 142 (2488) 103 (1998) |
k = 1 is a GFn with no known prime. | |
943 | 15636 | 5, 7, 13, 19, 59 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 156 mod 157 (157) |
53 k's remaining at n=100K. See k's at Sierpinski Base 943 remain. |
1306 (93200) 15304 (85197) 10068 (80828) 780 (77473) 13630 (75336) 3582 (73510) 58 (63523) 6588 (63467) 424 (63363) 13744 (60702) |
||
944 | 4 | 3, 5 | k = = 22 mod 23 (23) k = = 40 mod 41 (41) |
none - proven | 3 (1) 2 (1) |
k = 1 is a GFn with no known prime. | |
945 | 386 | 11, 43 | k = = 1 mod 2 (2) k = = 58 mod 59 (59) |
186 (400K) 296 (400K) 320 (400K) |
244 (85970) 350 (2918) 118 (727) 62 (713) 162 (480) 362 (419) 218 (377) 144 (350) 364 (294) 246 (287) |
||
947 | 80 | 3, 79 | k = = 1 mod 2 (2) k = = 10 mod 11 (11) k = = 42 mod 43 (43) |
2 (400K) 34 (400K) 68 (400K) |
22 (870) 16 (700) 48 (401) 56 (109) 64 (70) 72 (42) 36 (29) 70 (20) 38 (17) 62 (11) |
||
948 | 38 | 5, 13, 17 | k = = 946 mod 947 (947) | none - proven | 16 (2193) 2 (1242) 28 (358) 27 (196) 9 (194) 17 (97) 10 (79) 12 (69) 33 (54) 32 (26) |
k = 1 is a GFn with no known prime. | |
949 | 246 | 5, 19 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 78 mod 79 (79) |
none - proven | 208 (50171) 244 (35995) 54 (35319) 172 (1510) 94 (1245) 52 (885) 210 (770) 46 (770) 34 (329) 178 (316) |
||
950 | 316 | 3, 317 | k = = 12 mod 13 (13) k = = 72 mod 73 (73) |
32 (400K) 34 (400K) 52 (400K) 53 (400K) 100 (400K) |
22 (37424) 241 (24518) 170 (24241) 176 (11909) 55 (9596) 296 (8923) 139 (8540) 187 (6502) 244 (6074) 292 (4650) |
||
951 | 50 | 7, 17 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 18 mod 19 (19) |
none - proven | 36 (6892) 42 (1525) 20 (377) 48 (145) 30 (46) 12 (32) 26 (11) 38 (8) 32 (4) 22 (4) |
||
952 | 5503 | 5, 13, 37, 41, 43 | k = = 2 mod 3 (3) k = = 316 mod 317 (317) |
66 (100K) 147 (100K) 322 (100K) 583 (100K) 603 (100K) 712 (100K) 718 (100K) 790 (100K) 1401 (100K) 1492 (100K) 1617 (100K) 2329 (100K) 2703 (100K) 2779 (100K) 3676 (100K) 4006 (100K) 4092 (100K) 4170 (100K) 4354 (100K) 4363 (100K) 4444 (100K) 4552 (100K) 4794 (100K) 5167 (100K) 5412 (100K) |
5413 (99768) 207 (95930) 1111 (86803) 1108 (77720) 4944 (76370) 3195 (71184) 2793 (69268) 196 (65649) 5323 (61302) 706 (58148) |
||
953 | 52 | 3, 53 | k = = 1 mod 2 (2) k = = 6 mod 7 (7) k = = 16 mod 17 (17) |
8 (400K) | 14 (97789) 44 (5845) 22 (2050) 46 (844) 40 (232) 4 (18) 38 (11) 24 (10) 36 (8) 26 (7) |
||
954 | 381 | 5, 191 | k = = 952 mod 953 (953) | 34 (300K) 126 (300K) 174 (300K) 181 (300K) 184 (300K) 229 (300K) 261 (300K) 269 (300K) 304 (300K) 306 (300K) 324 (300K) 327 (300K) 336 (300K) 341 (300K) 376 (300K) |
119 (276761) 351 (41442) 334 (26017) 311 (18078) 13 (17159) 281 (15634) 164 (15017) 361 (10972) 374 (10971) 289 (10241) |
k = 1 is a GFn with no known prime. | |
955 | 981094 | 7, 31, 157, 239 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 52 mod 53 (53) |
2322 k's remaining at n=75K. See k's at Sierpinski Base 955 remain. |
274686 (74924) 184848 (74727) 833500 (74683) 284506 (74676) 415158 (74619) 424792 (74497) 918700 (74395) 259806 (74378) 232570 (74244) 879166 (74146) |
||
956 | 10 | 3, 11 | k = = 4 mod 5 (5) k = = 190 mod 191 (191) |
none - proven | 5 (9) 3 (3) 7 (2) 8 (1) 6 (1) 2 (1) |
||
957 | 19638 | 5, 13, 479 | k = = 1 mod 2 (2) k = = 238 mod 239 (239) |
143 k's remaining at n=100K. See k's at Sierpinski Base 957 remain. |
12966 (96860) 7442 (94519) 13008 (94432) 12052 (86915) 15224 (86275) 14974 (78578) 6820 (76118) 5156 (72284) 5756 (71539) 6592 (70624) |
||
958 | 412 | 7, 137 | k = = 2 mod 3 (3) k = = 10 mod 11 (11) k = = 28 mod 29 (29) |
48 (400K) 363 (400K) |
13 (101751) 342 (43041) 400 (40344) 183 (31062) 316 (8124) 309 (7850) 286 (6379) 141 (3708) 237 (2473) 387 (2234) |
k = 1 is a GFn with no known prime. | |
959 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 478 mod 479 (479) |
none - proven | 2 (5) | ||
961 | 1000 | 13, 37 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 4 mod 5 (5) |
630 (300K) 688 (300K) 766 (300K) 778 (300K) 846 (300K) 886 (300K) 892 (300K) |
820 (63536) 316 (30374) 586 (7864) 636 (4337) 508 (3594) 390 (1479) 682 (1352) 300 (1190) 456 (916) 696 (554) |
||
962 | 106 | 3, 107 | k = = 30 mod 31 (31) | 47 (300K) 68 (300K) 77 (300K) 94 (300K) |
62 (244403) 17 (192155) 4 (84234) 71 (69703) 8 (47221) 34 (34834) 79 (15814) 88 (10884) 23 (8493) 32 (3943) |
||
964 | 771 | 5, 193 | k = = 2 mod 3 (3) k = = 106 mod 107 (107) |
51 (300K) 99 (300K) 126 (300K) 184 (300K) 241 (300K) 451 (300K) 481 (300K) 486 (300K) 516 (300K) 546 (300K) 556 (300K) 564 (300K) 579 (300K) 694 (300K) |
34 (160951) 270 (136805) 271 (60072) 766 (58970) 631 (47742) 174 (45275) 354 (31733) 306 (28138) 411 (12600) 111 (7354) |
k = 1 is a GFn with no known prime. | |
965 | 8 | 3, 7 | k = = 1 mod 2 (2) k = = 240 mod 241 (241) |
none - proven | 4 (62) 6 (1) 2 (1) |
||
967 | 144 | 5, 11, 13 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 6 mod 7 (7) k = = 22 mod 23 (23) |
none - proven | 88 (1577) 142 (55) 54 (51) 112 (44) 102 (19) 78 (14) 136 (11) 40 (9) 52 (8) 72 (6) |
||
968 | 16 | 3, 17 | k = = 966 mod 967 (967) | 11 (400K) | 2 (917) 10 (162) 4 (90) 6 (40) 15 (20) 7 (8) 8 (7) 5 (3) 13 (2) 3 (2) |
k = 1 is a GFn with no known prime. | |
969 | 96 | 5, 97 | k = = 1 mod 2 (2) k = = 10 mod 11 (11) |
none - proven | 26 (8714) 6 (5888) 66 (1068) 52 (621) 94 (113) 44 (107) 86 (90) 24 (83) 46 (56) 30 (24) |
||
970 | 430152 | 13, 157, 971 | k = = 2 mod 3 (3) k = = 16 mod 17 (17) k = = 18 mod 19 (19) |
3258 k's remaining at n=10K. See k's at Sierpinski Base 970 remain. |
89554 (10000) 95269 (9994) 347085 (9986) 112507 (9973) 115477 (9971) 135537 (9961) 171939 (9960) 264507 (9959) 47011 (9958) 25926 (9954) |
k = 970 is a GFn with no known prime. | |
971 | 14876 | 3, 7, 13, 79 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 96 mod 97 (97) |
342 k's remaining at n=100K. See k's at Sierpinski Base 971 remain. |
4978 (100000) 3572 (99345) 1852 (96924) 10970 (96601) 1810 (96596) 8810 (93911) 10540 (90000) 10742 (89745) 9002 (88311) 4166 (84923) |
||
972 | 279 | 7, 139 | k = = 970 mod 971 (971) | 41 (300K) 64 (300K) 100 (300K) 162 (300K) 167 (300K) 176 (300K) 182 (300K) 183 (300K) |
138 (156865) 120 (124768) 36 (58552) 79 (50178) 106 (44032) 27 (41803) 194 (40475) 50 (29594) 274 (11102) 57 (5710) |
||
973 | 9252 | 5, 17, 487 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) |
27 k's remaining at n=100K. See k's at Sierpinski Base 973 remain. |
8242 (96058) 4254 (85066) 7816 (81736) 8178 (77348) 8502 (76933) 5286 (75587) 6408 (65882) 7050 (62382) 76 (59887) 2034 (49117) |
||
974 | 4 | 3, 5 | k = = 6 mod 7 (7) k = = 138 mod 139 (139) |
none - proven | 3 (7) 2 (1) |
k = 1 is a GFn with no known prime. | |
975 | 375364 | 7, 67, 2029 | k = = 1 mod 2 (2) k = = 486 mod 487 (487) |
2920 k's remaining at n=10K. See k's at Sierpinski Base 975 remain. |
29826 (9997) 249030 (9987) 46394 (9978) 366824 (9977) 96440 (9973) 355130 (9970) 238082 (9961) 231600 (9951) 195410 (9951) 172934 (9943) |
||
976 | 4492245 | 7, 19, 67, 977 | k = = 2 mod 3 (3) k = = 4 mod 5 (5) k = = 12 mod 13 (13) |
48740 k's remaining at n=2.5K. To be shown later. | 4211995 (2500) 3213487 (2500) 4394331 (2499) 3709747 (2499) 3181560 (2499) 3051561 (2499) 1257328 (2499) 569590 (2499) 3963817 (2498) 3917530 (2498) |
k = 976 and 952576 are GFn's with no known prime. | |
977 | 160 | 3, 7, 13, 19, 53 | k = = 1 mod 2 (2) k = = 60 mod 61 (61) |
34 (300K) 62 (300K) 68 (300K) 76 (300K) 110 (300K) 116 (300K) 122 (300K) |
38 (299737) 10 (125872) 80 (18615) 6 (6404) 124 (4278) 134 (3673) 96 (3000) 40 (1580) 158 (1297) 146 (649) |
||
978 | 177 | 11, 89 | k = = 976 mod 977 (977) | 12 (300K) 21 (300K) 43 (300K) 144 (300K) |
151 (71003) 173 (68898) 153 (41023) 34 (29366) 142 (6649) 129 (3311) 113 (2375) 103 (2167) 157 (1692) 162 (1526) |
k = 1 is a GFn with no known prime. | |
979 | 6 | 5, 7 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 162 mod 163 (163) |
none - proven | 4 (1) | ||
980 | 110 | 3, 109 | k = = 10 mod 11 (11) k = = 88 mod 89 (89) |
25 (400K) | 94 (129356) 44 (103071) 38 (60283) 77 (2309) 70 (592) 103 (426) 79 (324) 84 (243) 64 (238) 4 (182) |
k = 1 is a GFn with no known prime. | |
982 | 39640 | 7, 43, 1069 | k = = 2 mod 3 (3) k = = 108 mod 109 (109) |
816 k's remaining at n=25K. See k's at Sierpinski Base 982 remain. |
10387 (24983) 28990 (24588) 30268 (24328) 25791 (24065) 39421 (23913) 19782 (23912) 19707 (23804) 6471 (23780) 12465 (23680) 20572 (23551) |
||
983 | 40 | 3, 41 | k = = 1 mod 2 (2) k = = 490 mod 491 (491) |
8 (400K) | 16 (22248) 26 (673) 22 (442) 12 (141) 32 (69) 6 (20) 30 (17) 36 (11) 38 (7) 18 (6) |
||
984 | 196 | 5, 197 | k = = 982 mod 983 (983) | 129 (300K) 160 (300K) 194 (300K) |
19 (257291) 81 (214452) 101 (153924) 69 (27067) 178 (19420) 26 (12738) 98 (9161) 54 (4677) 86 (4266) 162 (4101) |
||
985 | 900 | 7, 29 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 40 mod 41 (41) |
526 (500K) 666 (500K) 766 (500K) |
88 (296644) 610 (63334) 288 (9869) 528 (1062) 282 (790) 222 (760) 838 (491) 178 (449) 324 (418) 256 (312) |
||
986 | 8 | 3, 7 | k = = 4 mod 5 (5) k = = 196 mod 197 (197) |
none - proven | 6 (21633) 7 (6) 3 (3) 5 (1) 2 (1) |
||
987 | 170 | 13, 19 | k = = 1 mod 2 (2) k = = 16 mod 17 (17) k = = 28 mod 29 (29) |
none - proven | 142 (45547) 92 (28564) 96 (13820) 22 (4174) 90 (1669) 134 (1254) 112 (499) 42 (138) 62 (68) 166 (51) |
||
988 | 1678 | 23, 43 | k = = 2 mod 3 (3) k = = 6 mod 7 (7) k = = 46 mod 47 (47) |
24 (300K) 343 (300K) 714 (300K) 732 (300K) 859 (300K) 898 (300K) 1542 (300K) |
1261 (246031) 1540 (84185) 730 (58605) 684 (51125) 162 (35078) 903 (28887) 1114 (22457) 582 (13608) 351 (13501) 702 (12136) |
k = 1 and 988 are GFn's with no known prime. | |
989 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 12 mod 13 (13) k = = 18 mod 19 (19) |
none - proven | 2 (1) | ||
990 | 838385 | 7, 13, 17, 61, 991 | k = = 22 mod 23 (23) k = = 42 mod 43 (43) |
11957 k's remaining at n=2.5K. To be shown later. | 779349 (2500) 247320 (2500) 197534 (2500) 578788 (2499) 339290 (2499) 9242 (2499) 774210 (2497) 62476 (2497) 722451 (2495) 716925 (2495) |
||
991 | 5262 | 7, 13, 277 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 4 mod 5 (5) k = = 10 mod 11 (11) |
402 (300K) 2196 (300K) 2662 (300K) 2778 (300K) 3832 (300K) 4612 (300K) 4620 (300K) |
2688 (246849) 1260 (218477) 2016 (178654) 4602 (106702) 2436 (60482) 4266 (44079) 3702 (38569) 4588 (37300) 2710 (25911) 2350 (25047) |
||
992 | 332 | 3, 331 | k = = 990 mod 991 (991) | 45 k's remaining at n=100K. See k's at Sierpinski Base 992 remain. |
295 (93988) 182 (77755) 151 (52836) 229 (26230) 185 (26147) 64 (25886) 62 (20515) 152 (20427) 32 (17619) 50 (12751) |
||
993 | 36 | 5, 7, 37 | k = = 1 mod 2 (2) k == 30 mod 31 (31) |
6 (520K) 8 (520K) |
34 (469245) 28 (104) 2 (39) 32 (13) 22 (8) 18 (3) 12 (2) 26 (1) 24 (1) 20 (1) |
||
994 | 399 | 5, 199 | k = = 2 mod 3 (3) k = = 330 mod 331 (331) |
30 (300K) 81 (300K) 201 (300K) 211 (300K) 261 (300K) |
354 (166791) 271 (127298) 19 (46333) 166 (22046) 46 (21588) 106 (18202) 244 (7935) 294 (6429) 112 (6069) 151 (4654) |
k = 1 is a GFn with no known prime. | |
995 | 82 | 3, 83 | k = = 1 mod 2 (2) k = = 6 mod 7 (7) k = = 70 mod 71 (71) |
none - proven | 64 (63550) 68 (1237) 46 (1220) 26 (63) 22 (56) 72 (42) 8 (35) 40 (34) 16 (30) 52 (24) |
||
996 | 5841 | 7, 19, 43, 127 | k = = 4 mod 5 (5) k = = 198 mod 199 (199) |
49 k's remaining at n=100K. See k's at Sierpinski Base 996 remain. |
3073 (99001) 1322 (90098) 4371 (79730) 1312 (75299) 3375 (58855) 2471 (55783) 4643 (54586) 5717 (47550) 2371 (42976) 3067 (39485) |
||
997 | 36048 | 7, 13, 31, 127 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 82 mod 83 (83) |
238 k's remaining at n=100K. See k's at Sierpinski Base 997 remain. |
8826 (99661) 21432 (97223) 22584 (95918) 34726 (92648) 9840 (92270) 17776 (92251) 9102 (91800) 19884 (91651) 32890 (89128) 14044 (86394) |
||
998 | 38 | 3, 37 | k = = 996 mod 997 (997) | 12 (400K) | 8 (81239) 34 (9454) 30 (1205) 16 (1092) 24 (591) 17 (321) 31 (268) 13 (160) 28 (106) 10 (88) |
k = 1 is a GFn with no known prime. | |
999 | 3234 | 5, 17, 149 | k = = 1 mod 2 (2) k = = 498 mod 499 (499) |
63 k's remaining at n=100K. See k's at Sierpinski Base 999 remain. |
1446 (97756) 846 (94984) 2166 (82938) 1798 (76539) 1294 (76205) 1608 (74987) 1566 (73780) 376 (73110) 1286 (72538) 2854 (71583) |
||
1000 | 12 | 11, 13 | All k = m^3 for all n; factors to: (m*10^n + 1) * (m^2*100^n - m*10^n + 1) |
k = = 2 mod 3 (3) k = = 36 mod 37 (37) |
none - proven | 6 (3) 9 (1) 7 (1) 4 (1) 3 (1) |
k = 1 proven composite by full algebraic factors. k = 10 is a GFn with no known prime. |
1001 | 166 | 3, 167 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) |
none - proven | 46 (50860) 110 (41547) 100 (5096) 32 (4719) 136 (4000) 22 (1466) 30 (619) 26 (269) 140 (151) 158 (121) |
||
1002 | 1240 | 17, 59 | k = = 6 mod 7 (7) k = = 10 mod 11 (11) k = = 12 mod 13 (13) |
492 (300K) 613 (300K) 707 (300K) 917 (300K) |
152 (235971) 1106 (79136) 171 (53356) 154 (48610) 409 (46198) 448 (10369) 341 (7996) 23 (7357) 877 (6024) 1020 (5770) |
k = 1 and 1002 are GFn's with no known prime. | |
1003 | 4768 | 5, 29, 251 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 166 mod 167 (167) |
94 (100K) 346 (100K) 768 (100K) 784 (100K) 1042 (100K) 1140 (100K) 1816 (100K) 1858 (100K) 2406 (100K) 2656 (100K) 3034 (100K) 3100 (100K) 3216 (100K) 3334 (100K) 3552 (100K) 3724 (100K) 3736 (100K) 4062 (100K) 4098 (100K) 4170 (100K) 4284 (100K) 4420 (100K) 4612 (100K) 4632 (100K) |
888 (95494) 262 (75384) 2490 (73779) 214 (73323) 958 (69104) 2232 (65221) 318 (53162) 1768 (53159) 4042 (47202) 2158 (45556) |
||
1004 | 4 | 3, 5 | k = = 16 mod 17 (17) k = = 58 mod 59 (59) |
2 (600K) | 3 (19) | ||
1005 | 54610 | 7, 97, 1489 | k = = 1 mod 2 (2) k = = 250 mod 251 (251) |
225 k's remaining at n=100K. See k's at Sierpinski Base 1005 remain. |
17086 (98113) 49292 (94596) 16238 (92256) 49462 (92007) 52230 (91759) 27196 (91724) 38694 (87998) 23222 (85950) 29446 (85398) 35072 (84389) |
||
1006 | 531 | 19, 53 | k = = 2 mod 3 (3) k = = 4 mod 5 (5) k = = 66 mod 67 (67) |
96 (500K) 151 (500K) 172 (500K) 303 (500K) 381 (500K) |
417 (62457) 183 (1376) 85 (1172) 447 (916) 382 (832) 411 (736) 340 (568) 478 (176) 298 (174) 235 (129) |
k = 1 is a GFn with no known prime. | |
1007 | 8 | 3, 7 | k = = 1 mod 2 (2) k = = 502 mod 503 (503) |
none - proven | 2 (7) 4 (6) 6 (1) |
||
1008 | 12730554 | 5, 17, 93, 241, 1009 | k = = 18 mod 19 (19) k = = 52 mod 53 (53) |
350616 k's remaining at n=2.5K. To be shown later. | 12394673 (2500) 12302175 (2500) 12246428 (2500) 12163756 (2500) 11753021 (2500) 11674941 (2500) 11541178 (2500) 11456848 (2500) 11219597 (2500) 11219266 (2500) |
k = 1008 and 1016064 are GFn's with no known prime. | |
1009 | 304 | 5, 101 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 6 mod 7 (7) |
144 (400K) | 294 (92571) 246 (80266) 46 (58772) 276 (5004) 66 (3456) 136 (2950) 138 (1128) 84 (203) 82 (194) 168 (147) |
||
1010 | 338 | 3, 337 | k = = 1008 mod 1009 (1009) | 43 (300K) 73 (300K) 75 (300K) 122 (300K) 125 (300K) 131 (300K) 138 (300K) 194 (300K) 215 (300K) 251 (300K) 269 (300K) 271 (300K) 283 (300K) 290 (300K) 313 (300K) |
68 (283267) 316 (150468) 336 (53583) 195 (51101) 337 (32704) 44 (19659) 151 (19070) 95 (17709) 238 (11164) 311 (9827) |
||
1011 | 208 | 11, 23 | k = = 1 mod 2 (2) k = = 4 mod 5 (5) k = = 100 mod 101 (101) |
none - proven | 116 (998) 138 (510) 186 (493) 122 (180) 22 (167) 38 (151) 196 (136) 86 (134) 142 (117) 178 (66) |
||
1012 | 16207 | 5, 257, 1013 | k = = 2 mod 3 (3) k = = 336 mod 337 (337) |
104 k's remaining at n=100K. See k's at Sierpinski Base 1012 remain. |
6016 (96459) 15657 (95876) 14670 (94932) 1305 (94375) 12886 (88973) 9439 (87789) 14041 (87713) 16204 (85465) 2904 (84878) 10389 (83635) |
k = 1012 is a GFn with no known prime. | |
1013 | 14 | 3, 13 | k = = 1 mod 2 (2) k = = 10 mod 11 (11) k = = 22 mod 23 (23) |
none - proven | 8 (43871) 4 (2) 12 (1) 6 (1) 2 (1) |
||
1014 | 6 | 5, 7 | k = = 1012 mod 1013 (1013) | none - proven | 5 (3) 3 (3) 4 (1) 2 (1) |
k = 1 is a GFn with no known prime. | |
1015 | 12079606 | 127, 373, 1381 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 12 mod 13 (13) |
45006 k's remaining at n=2.5K. To be shown later. | 11607448 (2500) 7372206 (2500) 6979038 (2500) 6674566 (2500) 4971162 (2500) 2402994 (2500) 2294754 (2500) 1435780 (2500) 1216276 (2500) 1006570 (2500) |
||
1016 | 112 | 3, 113 | k = = 4 mod 5 (5) k = = 6 mod 7 (7) k = = 28 mod 29 (29) |
none - proven | 103 (62932) 22 (3548) 46 (3250) 61 (614) 40 (566) 35 (335) 50 (149) 98 (147) 102 (129) 2 (119) |
k = 1 is a GFn with no known prime. | |
1017 | 1494 | 7, 13, 31 | k = = 1 mod 2 (2) k = = 126 mod 127 (127) |
52 (259K) 82 (259K) 88 (259K) 332 (259K) 432 (259K) 626 (259K) 706 (259K) 766 (259K) 818 (259K) 824 (259K) 882 (259K) 1018 (259K) 1156 (259K) 1272 (259K) 1468 (259K) |
40 (215605) 732 (115542) 1006 (99013) 278 (59509) 186 (39237) 212 (36396) 1060 (28767) 812 (27331) 956 (23796) 562 (21168) |
||
1018 | 77443 | 7, 19, 31, 1019 | k = = 2 mod 3 (3) k = = 112 mod 113 (113) |
1534 k's remaining at n=25K. See k's at Sierpinski Base 1018 remain. |
64392 (24970) 60513 (24932) 16137 (24924) 30699 (24825) 70629 (24778) 49108 (24756) 71334 (24747) 24483 (24591) 57499 (24590) 47242 (24573) |
||
1019 | 4 | 3, 5 | k = = 1 mod 2 (2) k = = 508 mod 509 (509) |
none - proven | 2 (1) | ||
1020 | 95696289 | 101, 1021, 10301 | k = = 1018 mod 1019 (1019) | No testing done. | k = 1020 and 1040400 are GFn's with no known prime. | ||
1021 | 2262 | 7, 73 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 4 mod 5 (5) k = = 16 mod 17 (17) |
636 (300K) 778 (300K) 820 (300K) 2050 (300K) |
1702 (208948) 1678 (138869) 120 (138704) 802 (110221) 1140 (104265) 930 (98125) 28 (89452) 1278 (44186) 1786 (42066) 1492 (17180) |
||
1022 | 8 | 3, 5, 13 | k = = 1020 mod 1021 (1021) | none - proven | 2 (727) 7 (36) 4 (6) 5 (5) 6 (1) 3 (1) |
||
1023 | 632462 | 13, 61, 1321 | k = = 1 mod 2 (2) k = = 6 mod 7 (7) k = = 72 mod 73 (73) |
2531 k's remaining at n=25K. See k's at Sierpinski Base 1023 remain. |
250626 (24979) 45588 (24942) 527492 (24940) 283176 (24924) 316220 (24923) 536774 (24894) 509428 (24804) 535078 (24799) 519216 (24756) 521102 (24681) |
||
1025 | 20 | 3, 19 | k = = 1 mod 2 (2) | none - proven | 14 (89) 10 (22) 2 (15) 8 (11) 16 (8) 4 (2) 18 (1) 12 (1) 6 (1) |
||
1026 | 157 | 13, 79 | k = = 4 mod 5 (5) k = = 40 mod 41 (41) |
none - proven | 38 (25645) 12 (5097) 66 (2140) 117 (342) 146 (277) 110 (245) 73 (244) 101 (229) 87 (144) 131 (56) |
k = 1 is a GFn with no known prime. | |
1027 | 84552 | 5, 29, 257 | k = = 1 mod 2 (2) k = = 2 mod 3 (3) k = = 18 mod 19 (19) |
222 k's remaining at n=200K. See k's at Sierpinski Base 1027 remain. |
68398 (199397) 6292 (198459) 30364 (194319) 56064 (193573) 63348 (191392) 72844 (191206) 46498 (187913) 73246 (184192) 11682 (179399) 62176 (175956) |
||
1028 | 8 | 3, 7 | k = = 12 mod 13 (13) k = = 78 mod 79 (79) |
none - proven | 6 (1437) 2 (669) 7 (16) 5 (9) 3 (8) 4 (2) |
||
1029 | 104 | 5, 103 | k = = 1 mod 2 (2) k = = 256 mod 257 (257) |
none - proven | 34 (106501) 54 (459) 100 (171) 76 (82) 4 (55) 26 (50) 52 (41) 36 (40) 80 (32) 32 (31) |
||
1030 | 75345 | 13, 73, 373 | k = = 2 mod 3 (3) k = = 6 mod 7 (7) |
193 k's remaining at n=100K. See k's at Sierpinski Base 1030 remain. |
8479 (99118) 3028 (98500) 15976 (98135) 58044 (96395) 40681 (93464) 3810 (93045) 5248 (92068) 22006 (87331) 41878 (86450) 3733 (85172) |
k = 1030 is a GFn with no known prime. |