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Abstract: We study the value of binomial coefficients modulo
given prime powers, and prove a wide variety of results, both old
and new. Our main new theorem is a generalization of Lucas’
Theorem to arbitrary prime powers, which allows us to evaluate
() (mod p?) in O (log2 n + ¢*lognlogp + ¢*plog? p) elementary
operations. We also provide three quite different proofs of Lucas’
Theorem, establish various extensions of Wolstenholme’s Theorem,
generalize a result of Morley, and quite a bit else besides. We
have collected together some of the diverse directions taken in this
subject, discussing connections with cellular automata, Fermat’s
Last Theorem and the prime recognition problem, providing proofs
where it seems appropriate.

1. Introduction

Many great mathematicians of the nineteenth century considered problems involving
binomial coefficients modulo a prime power (for instance Babbage, Cauchy, Cayley, Gauss,
Hensel, Hermite, Kummer, Legendre, Lucas and Stickelberger — see [Di]). They discovered
a variety of elegant and surprising Theorems which are often easy to prove. In this article
we shall exhibit most of these results, extend them in a variety of ways, and give some
new results. We start with a discussion of some of what is known and state selected parts
of our new results:

In 1852 Kummer showed that the power of prime p that divides the binomial coefficient
(T’;) is given by the number of ‘carries’ when we add m and n —m in base p. In 1878 Lucas
gave a method to easily determine the value of (') (mod p): Let mg and ng be the least
non—negative residues of m and n (mod p), respectively. Then

W (o) = (i) () €mot

where, as usual, [z] denotes the largest integer < z, and we use the convention (2) =0if
r < s. Re—writing n = ng + nip + nep® + ... + ngp® and m = mg + mip + ... + mgp? in

* The author is supported, in part, by the National Science Foundation (grant number
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base p (so that 0 < m;,n; < p—1 for each 7), this may also be expressed as

()= (o) () () oo

Also, in this notation, Kummer’s Theorem states that the power of p dividing (:ﬁl) is

precisely the number of indices i for which n; < m;. We will give three very different
proofs of Lucas’ Theorem: the first, via number theory, in section 2; the second, via
cellular automata, in section 5; and the third, via the combinatorics of power series, in
section 6.

If p divides (::L) then (1) follows easily from Kummer’s Theorem. However, if p* is the
exact power of p dividing (::L), then we might ask for the value of pik(:l) (mod p). This
is given by a result discovered by each of Anton (1869), Stickelberger (1890) and Hensel
(1902) (and many others since !), which shows that

@) 2%(;;) =1 (mz?r'*o') (m?vl;p) (mz;id') (med p),

where r = n — m. Numerous authors have asked whether there is an analogous formula,

modulo p9, for arbitrary ¢ > 1. In section 2 we show the following:
For a given integer n define (n!), to be the product of those integers < n that are not
divisible by p.

Theorem 1. Suppose that prime power p? and positive integers m = n + r are given.
Write n = ng + nip + ... + ngp® in base p, and let N; be the least positive residue of
[n/p?] (mod p?) for each j > 0 (so that Nj = nj + nj1p+ ...+ njie—1p7"1): also make
the corresponding definitions for mj, M;,r;, R;. Let e; be the number of indices i > j for
which n; < m; (that is, the number of ‘carries’, when adding m and r in base p, on or
beyond the jth digit). Then

(3)

() = 0 () (annen;) - (s, (e e

where (£1) is (—1) except if p=2 and q > 3.

Taking ¢ = 1in (3) gives (2). Note that (3) may be re-written in terms of factorials, as
each (k!), = k!/[k/p]lp!*/Pl. Davis and Webb [DW] have also generalized Lucas’ Theorem
to prime powers, though their result is slightly more complicated, and they have the
restriction that ¢ < d + 1 — ey — Although it is 112 years since Lucas’ proved (1), it is
only within the last twelve months that it has been generalized to higher powers, and then
in two independant papers !

Theorem 1 provides a quick way to compute the value of binomial coefficients modulo
arbitrary prime powers, as it is straightforward to determine each of the n;, N;, e;, ... etc.,
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and then we need only determine the values of (k!), (mod p?) (in (3)) with & < p? (which
would take O (log2 n + p?log? (p?)) elementary operations). By showing that we actually
only need to determine the values of (k!), (mod p?) for k& < gp, we will speed this up to
O (1og2 n+ ¢*lognlogp + ¢*plog® p) elementary operations, in section 3.

Wilson’s Theorem (which was actually discovered by Liebnitz) states that (p — 1)! =
—1 (mod p) for all primes p. An easy consequence of this is that (”p 1) =1 (mod p) for
all integers n. In 1819 Babbage noticed that, further, (2;’_ 1) =1 (mod p?) for all primes
p > 3, and Wolstenholme, in 1862, that

() (7)) =1 toa s

p—1

for all primes p > 5. In 1952 Ljunggren generalized this to (;fg)) = (:1) (mod p?); and
Jacobsthal to

(/) = somar

for any integers n > m > 0 and prime p > 5, where ¢ is the power of p dividing p*nm(n—m)
(this exponent ¢ can only be increased if p divides B,_3, the (p — 3)rd Bernoulli number).

These results, as well as many other similar congruences with larger exponents ¢,
follow easily from Proposition 5 below. For example, if prime p > 7 then

® )/ () =0)/C) o

Ljunggren’s result above may be re-written as ((z+2)p!),(zp!),/((z+1)p!); =1 (mod p?)
for any integer x > 0 and p > 5. Proposition 5 implies the generalization

2ry(—1)2r7
(@ + )5 = 1 (mod pPhy,

(7)

<. o
Il : 3
o

unless p” = 2, or 2r + 1 = p or p?, when the congruence holds (mod p*).
Another generalization of Wolstenholme’s congruence is given by

Theorem 2. Suppose that prime p and positive integers u and r are given. Then

(8) (upl), = =+ H Gph)5 (mod p? 1),
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except if p” = 2 or 2r +1 = p or p?, when the congruence holds (mod p®"), where ‘+’ can
only be ‘=’ if p = 2 (which is easily determined by evaluating both sides of (8) modulo 4),
and the integer

U u? — 4
9) Bi(= Brgw) i= % I (— ) .
‘7 1<ilr ‘7 —t
i#j
Note how Theorem 2 allows us to express any (up!),(mod p?) in terms of (jp!), with
J < [q/2]. In Theorem 3 below we prove a similar result for any factorial, which allows us

to compute such factorials very rapidly.

In 1899 Glaisher observed that the number of odd entries in any given row of Pascal’s
Triangle is a power of 2. This follows from Kummer’s Theorem by noting that (:1) is odd
if and only if there are no carries when adding m and n —m in base 2; in other words that
the digits ‘1’ in the binary expansion of m are a subset of those in the binary expansion of
n. Clearly if there are k digits ‘1’ in the binary expansion of n, then there are 2% possible
subsets of these ‘1’s, and each corresponds to a value of m — thus there are 2% odd entries
in the nth row of Pascal’s Triangle.

Larry Roberts also has an elegant (unpublished) result, depending on Kummer’s The-
orem: Let z, be the binary number whose mth digit is = (:1) modulo 2; in other words,
the integer formed by reading the nth row of Pascal’s Triangle, modulo 2, from left to
right. Then z, = > 2™, where the sum is over those values of m, for which the digits ‘1’

in its binary expansion are a subset of those of n. Thus if S,:= {i: n; = 1} then

(10) w=3 ][22 =] &

ICS, el i€Sn

where F;:= 92" + 1 is the ith Fermat number.

In section 5 we give somewhat different proofs of these results, and of Lucas’ Theorem,
using cellular automata.

In a recent paper [Gr|, using methods from both elementary number theory and the
theory of cellular automata, we extended this result of Glaisher’s to the entries in Pascal’s
triangle that are 1 (mod 4): specifically we showed that in any given row of Pascal’s
triangle, the number of entries that are congruent to 1 (mod 4) is either 0 or a power of
2. Similarly for 3 (mod 4). We then extended this to 1 (mod 8), 3 (mod 8), 5 (mod 8)
and 7 (mod 8). The likelihood of a general result of this type begins to emerge, and to
find out more the reader is encouraged to look at [Gr].

In 1876 Hermite showed that if n is odd then the sum of the binomial coefficients (;;D’

over those positive integers m that are divisible by p—1, is divisible by p. In 1899 Glaisher
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generalized this by showing that for any given prime p and integers 1 < 5,k < p—1, we
have

s (1) () e

1<m<n
m=j (mod p-—1)

for all positive integers n = k (mod p — 1). We prove this in section 6. In 1953 Carlitz
generalized Hermite’s Theorem to prime powers: If p¢~! divides n, with ¢ > 1 and p > 3,
then

prp-1) Y @)zomodpq).

1<m<n-—1
m=0 ( mod p—1)

In 1913 Fleck gave the related result that for any given prime p and integers 0 < j <
p—1 < n, we have

(12) > (1) com =0 moap,

m=j ( mod p)

where ¢ = [(n—1)/(p—1)]. In 1965 Bhaskaran showed that if p is an odd prime then p+1
divides n if and only if

(13 > (1) o e 20 (modp
m=j ( mod p—1)

for j =1,3,5,...,p — 2. We present proofs of these two results in section 7.

In 1895 Morley [Mo] showed that for any prime p > 5,

(p—1) D — 1 > . 1 3
14 —1) = = 4P mod p~).
(1) 0 (S (mod p7)
His ingenious proof, which is based on an explicit form of De Moivre’s Theorem, can be
modified to show that (14) holds modulo p? if and only if p divides B,_3; however it cannot
be modified to investigate other binomial coefficients, and so we use different method for
this in section 9. Our first result is that

0 o <[];/_ml]> ([Sp%;) ([(m]i_l);/mo = e mod )

for any m > 2: In fact, this product is = m™ P~ (mod p?®) whenever the p—2nd Bernoulli

polynomial vanishes ( mod p) at 1/m,2/m, ..., (m—1)/m (which is immediate for m = 2).
In 1938 Emma Lehmer [Le] related the values of ([j’]’?ﬁn]) (mod p?),for1 < j<m <6,

to Fermat’s Last Theorem for exponent p. We shall show, in section 9, that recent, as yet
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unpublished, results of Skula and Cui—-Xiang imply that if the first case of Fermat’s Last
Theorem is false for prime exponent p (that is, there exist integers a, b, ¢, not divisible by
p, for which a” + bP = ¢P) then

(16) (p_1> = (=1)bP/m) (mod p?)

lip/m]
for 1 <7 <m < 12; moreover, Skula’a approach implies that the ‘12’ here may be changed

to any given number after a finite amount of computation.

There are many results in the literature that relate the value of binomial coefficients
of the form (TZ((I; 111))//2) (mod p), for a given, fixed d > 0 dividing p — 1, to representations
of the prime p by certain quadratic forms (see [HW]). The first such result, due to Gauss
(1828), is for d = 4: Write any prime p = 1 (mod 4) as p = a? + b2, and choose the sign
of a so that a =1 (mod 4); then ((p_l)/Q) = 2a (mod p). Recently, Beukers conjectured

that (p—1)/4
G£:BZ>EE<1+'2252> (20— 2) (mod p?),

and this was proved in [CDE]. In 1846, Jacobi showed that if we write any prime p =
1 (mod 3) as 4p = A? + 27B?, where the sign of A is chosen so that A = 1 (mod 3), then

<%p—1ﬂ3
(p—1)/3

and this has now been shown to be = —A + p/A (mod p?). These congruences, modulo

) = —A (mod p);

p?, have only been discovered quite recently (in [CDE]) and there are presumably many

others waiting to be found.

I’d like to thank Larry Roberts for allowing me to give here his unpublished result.

2. Elementary Number Theory and the Proof of Theorem 1.

Wilson’s Theorem, which states that (p!), = (p —1)! = —1 (mod p), may be general-
ized to prime powers as follows:

Lemma 1. For any given prime power p? we have
(p?!)p =0 (mod p?)

where 6 = §(p?) = —1 unless p =2,q > 3 when ¢ = 1.

To show this we modify Gauss’s proof of Wilson’s Theorem: If we pair up each m
in the product with its inverse (mod p?) then we see that (p?!), is congruent, modulo p?,
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to the product of those m < p? that are not distinct from their inverses (mod p?), that
is those m for which m? = 1 (mod p?). It is easy to show that the only such m are 1
and p? — 1 unless p? = 2 (when one only has m = 1) or p = 2,¢ > 3 when one has the
additional solutions 29~ — 1 and 29=! + 1. The result follows.

In 1808 Legendre showed that the exact power of p dividing n! is

(17) [n/p] + [n/p?] + In/P°] + ...

Writing n in base p as above, we define the sum of digits function o(n) = o,(n):= ng +
ny 4+ ng + ...+ ng. Then (17) equals

(18) (n—op(n))/(p—1).

These are both easily proved by an induction hypothesis: If n < p (that is n = ng) then
clearly p does not divide n! and both (17) and (23) equal zero. So, given n > p, note that
the set of integers m < n that are divisible by p are precisely the set of integers pk for
k < [n/p]. Thus the power of p dividing n! is exactly [n/p] plus the power of p dividing
[n/p]!. (17) then follows immediately from the induction hypothesis, and (18) after noting
that ng = n — pln/p| = 0,(n) — oy ([n/p).

Kummer’s Theorem follows easily from (18): Let n = m + r and write each of n,m
and r in base p. Let €; = 1 if there is a ‘carry’ in the jth digit when adding m and r in
base p, let ; = 0 otherwise. Clearly then ng = mo+ro—peo and n; = m; +r;+¢c;_1 —pe;
for each j > 1. Thus the power of p dividing ( ) is, by (18),

n
m

d _
0p(m) + 0p(r) = op(n) _ S Moy peo+ 35 (P55 —gj-1) di N
p—1 p—1 =

d
p—1 =
the total number of ‘carries’.
We note here that, for each j > 1, we have

(19) [n/p7] = [m/p’] = [r/P"] = €j-1.

This can be seen by letting n’, m’, r’ be the least residues, in absolute value, of n, m, r ( mod
p7), respectively, so that p’ times the left side of (19), plus n’ —m/ —r’ equals n—m—r = 0.

However,

|
_

J j—1
n—-—m —r = (ng —m; —r))p* = —peo + Z (ic1 —pei)pt = —DPlejq.
; i=1

@
|
=)

and (19) follows.
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The improvement, (2), of Lucas’ Theorem is easily deduced from the equation
(=1)Pl(nl), = ng! (mod p),

which was discovered by Anton, Stickelberger and then Hensel. For an arbitrary prime
power p?, this may be generalized as follows: Define Ny to be the least non—negative residue
of n (mod p?), and § = §(p?). Then, writing each r in the product below as ip? + j, we

get
\ , , [n/p?]—1 ,
sy = oL = | o IT @ +a) | TI (m/pt +3)
r<n 1<j<p? 1<j<No
(20) = (0(p™)p)"*") (Nol)p = (Nol)p (mod p?)

by Lemma 1, where H/ signifies, here and henceforth, a product over integers not divisible

by p.
Now, with definitions as in Theorem 1, we have, for any given j > 0,

/17 A fp N = ([P, = 6P NN, (mod p?)

by (20). Multiplying together this congruence for each j > 0 we get
Proposition 1. For any integer n and prime power p?, we have
n!/p2j21[n/pj] = 5ijq["/pj] H(Nj!)p (mod p?),
j=0
where ¢ is defined as in Lemma 1 and each N; as in Theorem 1.

Theorem 1 then follows from dividing the equation in Proposition 1 by the corre-

sponding ones for m and r, and then using (19) to sort out the exponents of ¢ and p.

3. Fast computation of binomial coefficients (mod p?).

In (20) above we saw how any (n!), may be expressed, modulo p?, in terms of values
of (k!), (mod p?) with k£ < p?: this was the key fact behind Proposition 1 and Theorem
1. In this section we prove the following result which allows us to express (n!),, modulo
p?, in terms of (k!), (mod p?) with k& < gp: Given integers n > m > 0 define (;)p::

(”!)p/(ml)p(” - m!)p-
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Theorem 3. Suppose that prime power p? and non-negative integers u and v are given
withp —12> v > 0. Then

N R (G

J p

where the integer

as(=ags) = 5 ] (“—)

1<i<q—1 J—t
i#£]

Now, given (up + v)!,, where p —1 > v > 0, u > 0, first write (up + v)!, =

vl (up!), (“p;”’)p, and then compute (up!), using Theorem 2, and (“pjv)

» using Theorem
3: We are thus able to express (up + v)!,(mod p?) in terms of (jp!), and (jp + v)!,, with
0<j<qg-—1

Notice that any (jp;"”)p = 1 (mod p), so that (jpj”)iq 1 = 1 (mod p?): Thus, in
(21), we need only consider the value of a;(u) (mod p?~!) (and similarly 8;(u) (mod p?")
in (8)). Therefore, in order to compute pik(;fb) (mod p?) rapidly (where k is as (2)), we
suggest the following algorithm:

i) Use Theorem 1 to re—express # (:1) (mod p?) as a product of integers of the form
(al), with a < p9.

ii) Write each such a as up +v with p — 1 > v > 0, and then use Theorems 2 and 3
to write each such (up +v)!, in terms of (b!), with b < gp, to powers no larger than p?—1.

iii) Compute each (b!), (mod p?) with b < gp, and then take each of these to the
required power.

An elementary analysis reveals that (i) requires O(log? n), (ii) requires O(g* log n log p)
and (iii) requires O(q*plog®p) elementary operations, so that this algorithm typically
produces enormous savings over just using Theorem 1.

In order to prove Theorem 3, we need the following

Proposition 2. For any given prime power p?, integer u and rational y, whose denomi-
nator is not divisible by p, we have

qg—1

(22) (1 —upy) = Iﬂl—ﬂwW“” (mod p?).

Theorem 3 then follows by taking the product of the equation in Proposition 2, with
y = —1/m, for each m < v that is not divisble by p.

Henceforth let p’ = pif p > 3 and p’ = 4 if p = 2. Eisenstein (1850) and Kummer
(1851) introduced the p—adic logarithm and p-adic exponential functions: Given a rational
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number z, define p—adic numbers

log,(1 —x):= — Z % when p|lz and exp,(z):= Z % when p'|z.

n>1 n>0

Various properties of these functions are discussed in section 5 of [Wal: For instance if p
divides both z and y then log,((1 — z)(1 —y)) = log,(1 — z)log,(1 —y). Moreover if p’
divides z then log,(exp,(z)) = x and exp,(log,(1 —x)) = 1 — z; also the highest power of
p dividing x is the same as that dividing logp(l — z). These properties will be vital in our
proofs of Theorems 2 and 3.

The Proof of Propositon 2: If p? = 2 then the result is trivial, so assume p? >
3. Now take the p—adic logarithm of the quotient of the two sides of (22), so that the
result is equivalent to proving that Y -, p"y™Hy(u)/m =0 (mod p?), where H,,(u): =
Z?;i a;(u)j™ — u™. We shall actually_prove that each individual term, p™y™ H,,(u)/m,
of the sum is = 0 (mod p?). For those terms with 1 < m < ¢ — 1 we use

Lemma 2. Given yq and distinct y1,Yys, - . .Yn, we have
biyl" + bayst 4+ ..+ bpyy = Yo form=0,1,...,n—1

where

for each j, 1 < j < n.

This may be verified in a number of ways, for instance by inverting the relevant
Vandermonde determinant.

Now, taking n = ¢ — 1, yo = u and each other y; = j in Lemma 2, we find that
bj = jaj/u for each j > 1, and so H,,(u) = 0 for 1 < m < ¢ — 1. Note that each
aj = (-1)9177 (ufj) (“;ﬁ;l), and so is an integer.

For those terms with ¢ < m < 2q — 1 we use

Lemma 3. Suppose that integers by, by, . ..b,, Yo, Y1, - ..Yn are given with Z?:o bjyi* = 0
for 1 <m < r. Then Z?:o bjy;” is divisible by m, whenever r +1 < m < 2r + 1.

Proof: If p? divides m then ¢(p?) divides m — m/p and r > m/p > p? ! > ¢, so that
>0 by =370 bjy;-n/ P =0 (mod p?). The result follows from the Chinese Remainder
Theorem.

Thus taking by = —1 and, otherwise, the b;’s and y;’s as before, we find that H,,(u)/m
is an integer for ¢ < m < 2¢ — 1, by Lemma 3, and so p"'y™ H,,(u)/m =0 (mod p?).
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Finally note that the power of p dividing m is (trivially) < m/p, so that the power of
p dividing p™/m is > m/2. Thus p™y™ H,,(u)/m =0 (mod p?) whenever m > 2q as each
y™ H,,(u) is an integer.

4. Recognizing the primes.

Gauss (Disquisitiones Arithmeticae, 1801, art. 329) wrote:

The problem of distinguishing prime numbers from composite numbers ... is
known to be one of the most important and useful in arithmetic. ... The dignity
of the science itself seems to require that every possible means be explored for

the solution of a problem so elegant and so celebrated.

In 1773 Lagrange observed that Wilson’s Theorem could be used to identify primes
by writing it in the form

An integer n > 2 is prime if and only if n divides (n — 1)! + 1.

In connection with the solution of Hilbert’s Tenth Problem, Matijasevi¢ (1971) con-
structed an integer polynomial f (in many variables) such that the set of positive values
of f is exactly the set of prime numbers (see [JSWW] for an elegant construction). The
construction is based on Lagrange’s reformulation of Wilson’s Theorem. Professor J.P.
Jones has asked whether a similar criteria to identify primes can be obtained from Wol-
stenholme’s congruence: that is, whether it is true that (4) holds if and only if p is a
prime > 5. (R. McIntosh has shown that the congruence can hold (mod p) for compos-
ite p = 29 % 937 and even (mod p?) for p = 168432%; thus the ‘3’ is certainly necessary.)
One might also ask the same question based on the generalization (5) of Wolstenholme’s
Theorem, or of (6).

As far back as 1819, Babbage gave an easily proved characterization of the primes,

based on a number of simultaneous congruences:

An integer n > 2 is prime if and only if ("+m) =1 (mod n) forallm, 0 <m<n-1

n
(notice that the range for m may be shortened to 0 < m < /n).
In 1972, Mann and Shanks [MS] came up with another characterization involving a

number of simultaneous congruences:

An integer n > 3 is prime if and only if m divides ( mm) for all m,0 <2m <mn

n—2

(notice that the range for m may be shortened to n — \/n < 2m < n). To prove this note

(m,n — 2m) = 1. On the other hand, if even n is composite take m = n/2 so that m does

first that if n is prime then ( ), which is clearly divisible by m, as

not divide () = 1, and if odd n is composite and divisible by prime p take m = (n—p)/2.
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If p” is the highest power of p that divides m (note that r > 1) then it is easy to show that
p"~! is the highest power of p that divides (Tg), by Kummer’s Theorem.

In 1915 Fleck gave an imaginative generalization of Wilson’s Theorem, that can be
used to characterize primes after a certain amount of trial division:

For any integers a > 1 and n, free of prime factors < a, we have that n is prime if and
only if

@ (L) = ) i

(Actually Fleck did not include the condition that n is free of prime factors < a but some

such condition is essential as (23) holds for the example a = 6, n = 15.)

To see this, note first that if n is composite with prime factor ¢, a < ¢ < n, then ¢
divides the left side of (23) (as ¢ divides ()), but not the right side. On the other hand
suppose that n = p is prime. We prove (23) for 1 < a < p — 1 by induction on a: For
a = 1 this is just Wilson’s Theorem. Thereafter, the ratio of (23) for a + 1 to (23) for a, is
(p—1—a)!/(a+1)?»"172 on the left side and (—1)%"!(a + 1)%/a! on the right side, which
are congruent, modulo p, by Fermat’s Theorem and Wilson’s Theorem.

5. Pascal’s triangle via cellular automata.

A beautiful aspect of Pascal’s triangle modulo 2 is that the ‘pattern’ inside any triangle
of 1’s is similar in design to that of any subtriangle, though larger in size. If we extend
Pascal’s triangle to infinitely many rows, and reduce the scale of our picture in half each
time that we double the number of rows, then the resulting design is called self-similar —
that is, our picture can be reproduced by taking any subtriangle and magnifying it. Such
an approach to Pascal’s triangle is taken in [Wo]; and many examples of self-similarity
have been investigated by Mandelbrot [Ma].

We can study the value of entries in Pascal’s triangle (mod p) by such a ‘pictorial
approach’:

From Kummer’s Theorem we know that the pth row of Pascal’s triangle (mod p) has
1’s on either end with 0’s all the way in—between; and from the fact that any entry of the
triangle is just the sum of the two adjacent entries on the line immediately above, we form
a triangle underneath each of these 1’s whose entries are the same as those of Pascal’s
triangle (mod p). These two triangles stay independant of one another until they meet in
the 2pth row. Thus, in that row, we have two copies of the pth row of Pascal’s triangle, side—
by-side, except that the middle term, has the corner terms of our two triangles overlayed:

Therefore this row has a 1 on either end, a 2 in the middle, and 0’s all the way in—between.
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Again, underneath each of these 1’s we form a triangle whose entries are the same
as those of Pascal’s triangle (mod p), while underneath the 2 we form a triangle whose
entries are twice that in Pascal’s triangle (mod p). These three triangles meet in the 3pth
row, which thus has 1’s on either end, 3’s at one-third and two—thirds of the way across
and 0’s everywhere else. Now underneath each of the 1’s we again form a triangle whose
entries are the same as those of Pascal’s triangle (mod p), while underneath the 3’s we
form a triangle whose entries are three times that in Pascal’s triangle (mod p).

Continuing this process, we see that the npth row of Pascal’s triangle (mod p) is a
copy of the nth row, with p — 1 0’s placed between consecutive entries; and that the p — 1
rows immediately beneath the npth row are given by forming triangles underneath each

non—zero entry of the npth row (say, (ZI;) = (:ﬂb) (mod p)), that are (::») times Pascal’s
triangle (mod p). Thus (;fb’;:;) = (") (];)( mod p), so that Lucas’ Theorem may be viewed

as a result about automata with p possible states !

Wolfram gave an elegant proof of Glaisher’s Theorem (that the number of odd entries
in a given row of Pascal’s triangle is a power of 2), via the following induction hypothesis:
For each n > 1, rows 2" to 2" "1 — 1 modulo 2 are given by taking two copies of rows 0 to
2" — 1 of Pascal’s triangle, modulo 2, side-by—side, and filling the space in—between with
0’s; moreover Glaisher’s result holds for each of these rows. For n = 1 we observe this by
computation. For n > 2 note that row 2™ — 1 must be all 1’s so that row 2" has 1’s on
either end with 0’s all the way in—between. Thus, underneath each of these 1’s we obtain
a triangle whose entries are the same as those of Pascal’s triangle, and the triangles don’t
meet until after the (2"*t! — 1)th row. Therefore the (2" + r)th row (0 < r < 2" — 1)
modulo 2 is just two copies of the rth row modulo 2, with some 0’s in—between, and so has
twice as many odd entries as the rth row; this completes the proof.

Also, as row k = 2" + r is two copies of row r, whose first entries are seperated by
2™ — 1 0’s, thus Roberts’ integer

wo= (2" +1)z% = [ F=I]F
1€{n}US, 1€SK

The above approach has a further pretty consequence (see also [Lo]): If we cut Pascal’s
triangle modulo p into subtriangles whose boundaries have p* entries, in the obvious way
(that is, with rows 0 to p* — 1 in the first such triangle, then rows p* to 2p* — 1 cut into
three subtriangles, two outer and one inner inverted triangle, etc. etc.), then any given
subtriangle is exactly the sum of the two adjacent subtriangles, in the row of subtriangles
immediately above. In other words these subtriangles obey the same addition law as
Pascal’s triangle itself. The behaviour of Pascal’s triangle modulo higher powers of p is
somewhat more complicated, but still follows certain rules which are discussed in [Gr].

Finally we mention a result of Trollope (1968): Let s(z):= 1Y _ 09(n). A typical

Tz

integer n < z has log x/log 2 digits, half of which one expects to be 1’s; so that s(z) should
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be approximately logx/2log2. Therefore, we compare s(z) with s(z’), when log 2/ log 2
and logx’/log2 have the same fractional part, by considering the function

f(z) = lim {s(zkg;)_ M}’

for each x, 1 < x < 2. One can easily show that this limit exists and that the function
f(x) is continuous. However Trollope proved the surprising result that f(z) is nowhere
differentiable. For more on such questions see [BCM].

6. Studying binomial coefficients through their generating func-
tion.

We start this section by giving another proof of Lucas’ Theorem (due to Fine (1947)),
based on the obvious generating function for (;:L)

Start by noting that (1 + X)pj =1+ x7 (mod p) as each (pij) is divisible by p, by
Kummer’s Theorem, unless i = 0 or p’. Therefore, writing n in base p, we have

> () = e = 11 (00 207)”

m=0 7=0

Il
—
/N
—

_+_
S

o]
—
S
I
.:&
N
QS k;
N——
S
3
FBQ

and the result follows.

We can use the same approach to try to prove the analogue of Lucas’ Theorem modulo
p?, and arbitrary prime powers, but the details become much more complicated than in
the proof given in section 2. We may also generalize this method to evaluate, modulo p,
the coefficients of powers of any given polynomial:

Given an integer polynomial f(X) of degree d, define f(X)" =>" """, (:1) fX m™oa
let (:l)f = 0if m < 0 or m > nd (note that () = (;fb)f when f(X) X +1). Clearly

f(X)P = f(XP) (mod p) using Fermat’s Theorem, and so

) = ey = 3 ([”/p])f("O)prt” (mod p).

t r
r,t>0
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But if m = pt+r then r is of the form mq+ kp and so we obtain the following generalization

of (1):

2 (1) = () () mean.

k=0
We use a similar approach in the
Proof of (11): By induction on n: For 1 <n < p — 1 we must have n = k and the only
possible value of m in the sum is j, so that the result is trivial. Now assume that n > p,
and write m and n in base p. Then

(25) mo+mi+...+mg = op(m) = m = j (mod p—1)

for each m in the sum in (11), as p* = 1 (mod p— 1) for each i. Thus, by Lucas’ Theorem,

the sum in (11) is congruent to

2 () ()~ (oi) oot

where the sum is over all (d + 1)-tuples of integers (mg,m1,..., mq) satisfying (25) and
not all zero. This is exactly the sum of the coefficients of
X3, X3+p=1 X920 in (14 X)™0 (14 X)™ ... (14+X)™ = (14 X)) which equals

s (4)

1<r<op(n)
r=j ( mod p—1)

(11) then follows from the induction hypothesis as 1 < o,(n) < n — 1 and o,(n) =
n (mod p —1).

7. A little algebraic number theory.

Proof of (12): Let ¢ be a primitive p th root of unity and recall that (p) = (1 — ¢)P~!
as ideals in Q((). Define f; to be the sum on the left side of (12) for each j, so that
9i:= Yo<j<p Fi€¥ = (1 = ¢")" which belongs to the ideal (1 — )", for 0 <i < p — 1.
Therefore f; = % > 0<i<p1 gi¢™Y, belongs to (1 — )" PTL, but as each f; is a rational
integer, it is divisible by p? where (p — 1)q is the smallest multiple of (p — 1), which is
>n—p+ 1, and (12) follows immediately.

Proof of (13): Let d be a quadratic non—residue (mod p) and a,b and n any positive

integers. Define the sequence {u, },>0 of integers by

ug =0, uy =1 and Upyo = 2aupiq — (a® — db*)u, for all n >0,
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so that, from the binomial theorem,

(a+bVd)" — (a — bVd)"
20V/d

p—1 -
Z I/ja"_jbj_ld% (mod p),
=1

jodd

(26) Up =

(27)

as dP~1/2 = —1 (mod p), where v; is the sum in (13).

Now, by Kummer’s Theorem,

1 1
Upy1 = (pi_ )apb—l— (p—; )abp(—l) =0 (mod p);

and so, if p 4 1 divides n then p divides up41, which divides u,, by (26). So by selecting
a = b =1 and letting d run through all quadratic non-residues (mod p), we have pT_l
equations in the pT_l unknowns v;. Therefore each v; must be divisible by p as these
equations give rise to a Vandermonde matrix whose determinant is not divisible by p.

On the other hand if (13) holds for all odd j then w,, is divisible by p for any admissible
choices of a,b and d, by (27). Now fix d and select a and b so that a + bV/d is a primitive
root modulo p in the field Q(v/d). Note that (a + bv/d)? = a — bv/d (mod p), so that
(a +bV/d)P~! = (a — bV/d)/(a + bVd) (mod p). By (26), we see that {(a — bvVd)/(a +
bv/d)}" = 1 (mod p), and so (a + bv/d)*=D =1 (mod p). But a + bv/d is a primitive

root modulo p and so p? — 1 divides (p — 1)n, giving that p + 1 divides n.

8. Bernoulli numbers and polynomials.

The Bernoulli numbers, {B,},>0, and the Bernoulli polynomials, {B,,(t)},>0, are
defined by the power series

X X" XetX X"
w7 = 2By awd =g = ) Bat)r

n>0 n>0

so that B,, = B,,(0) and B, (t) = >_}_, (1) Bet™ *. Some useful facts, that follow straight
from these definitions, are that each B, is a rational number, B,, = 0 if n is odd and > 3,

and

(28) o S (Bn (%) —Bn) — mB,(1—m")

=1
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for all integers n > 0.

In 1840 Clausen and Von Staudt showed that the denominator of B, (n even) is
precisely the product of those primes p for which p — 1 divides n; and further that pB,, =
p—1 (mod p) for each such p (actually one also has pByz_, = p — 1 (mod p?)). In 1851
Kummer showed that B,,/m = B,/n (mod p") for any even integers m and n, satisfying
m>n>r+1 m=mn (mod ¢(p")) and n Z 0 (mod p — 1); and one can use this in
showing that

(29) (Bm — B,) = 0 (mod p")

whenever m = n (mod ¢(p"+1)) and m >n >r + 2.
For any positive integers ¢t and n, we have

1

(30) > 0" = g (Bani(t) = Buya).

From this, it is easy to deduce analogues of the Von Staudt—Clausen Theorem and Kum-
mer’s congruences for Bernoulli polynomials. Consequently, if m divides up + v, for given
integers 1 < u,v < m < p, then, by combining the identity

o (55) -2 () - 3 (7)) (G

J=1

with (30), we obtain

osgh;p/mjn_l - % U () =B+ g % (?)Bn‘i () (%)
(31) = % {Bn <%> —Bn} + % B,_, (%) (mod p?)

for primes p > 5 provided n #Z 2 (mod p — 1).

9. Theorems of Morley and Emma Lehmer and their generaliza-
tions.

Taking n = p — 1 in (31) gives

v () - ()

j<up/m

1-p > i

1<j<((uptv)/m)—1

(32) =1-p {Bpl () _Bpl} (mod p?),

p—1
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which implies (15) after summing over each u, 1 < u < m—1, applying (28) and then using
Fermat’s Theorem and the Von Staudt—Clausen Theorem.

In 1909, Wieferich showed that if the first case of Fermat’s Last Theorem is false for
prime exponent p then p? divides 2P~ —1; thus (( 1)/2) (—=1)P=1/2 (mod p?) by (15).
In 1914, Frobenius gave an induction hypothesis which should allow one to extend this
to p? divides mP~! — 1, for each successive integer m; however, because of the enormous
amount of computation required for each step of the hypothesis, this is currently known
to hold only up to m = 89.

In 1938, Emma Lehmer used identities like (28) to show that if the first case of
Fermat’s Last Theorem is false for prime exponent p then B, 1(j/m) = 0 (mod p) for
1 < j < m < 6. Recently Skula has modified Frobenius’s induction hypothesis so that the
mth step might also show that B,_1(v/m) — B,_1 =0 (mod p) for 1 <v <m —1: (32)
would then give (16) for 1 < j = u < m — 1. (Skula has done this for m < 10; Zhong
Cui—Xiang has obtained the same result for ¢(m) < 6, independantly.)

The left side of (15) is

2

1 p? 1 p? 1 3
(33) El_pZ;‘i‘? Z—. —72—2 (modp),
J J J

J J

where Z Z Zl<]<[up/m]

Taking n = p?> —p and n = p — 2 in (31), and then using a number of the well-known
congruences quoted in section 8 as well as (28), we obtain

R R WO e

and > 1 /j?> = 0 (mod p). Substituting these equations into (33), and using the fact
that (m?" P —1)/p? = ¢ — pq?/2 (mod p?) for ¢ = (mP~' —1)/p, we see that the left side
of (15) is

o m—1

= mme-D) _ T Zqu 2( ) (mod p?).

10. Some useful p—adic numbers.

In section 11 we apply the results from here to binomial coefficients. We start by

proving
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Proposition 3. If x is divisible by prime p then

(34) log,(1—) = lim (- -1

r—00 pr ’

where the limit is taken p—adically.
Proof: Suppose that r > ¢ > 1. If j > r + ¢ then p? divides the numerator of both x7/j

and 1% (pjr)(—a:)j. If1<j<r+q—1and r is sufficiently large then

1 (p" 19y o —i (—1)i!
7<p') =P = B Gmoa )
P\ J jok i j
so that
(l—xp -1 ot g
- = Z Z 5 = = log,(1—x) (mod p?).

=P j=1

Therefore, letting r — oo and then ¢ — oo, we obtain (34).

For each n > 1, define
B_n = lim B¢(pr) —n»

where the limit here is taken p-adically: Note that this limit exists and is well defined by
(29); moreover B_,, = 0 for all odd n. (Using Theorem 5.11 of [Wa], one can also show
that B_,, = nLy(n + 1,w™"), where L,(s,x) is the p-adic L-function, and w(a) is that
p-adic (p — 1)st root of unity for which w(a) = a (mod p).)

Our main result of this section is

Proposition 4. For any integer x we have

T k
(35) R

k>3
k odd

where 1, (= £1) is chosen so that n,(px)!, =1 (mod p’), and

. pBypry—(p—1)
Ap:= lim .
p r—00 QS(pT)

1—s

(Using Theorem 5.11 of [Wal, one can also show that A\, = lims_,; {—pr(s, xo0) — =1 },
where xo = 1: note that L,(s, xo) has a pole at s = 1.)
Proof: As j¢®) =1 (mod p’) whenever p does not divide j, we have

/

/ pd)(p)_l
o o )l = Y o) = 30 I,

1<j<pz 1<j<pz
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by Proposition 3. Now, fix ¢ > 1 and take n = p"¢(p’) in (30), so that

pr—1

1
- —(p—1=z d »?
- Z] (mod p?)

S|
|
|'M
S
<o
3
|
—
N—
Il

1<j<pzx
q+r+1
1 n+1 r (p—1Dz
= - Bpi1 _ P IT hod pf
> n<n+1>( o) Brcato = P2 (anod
+r+1
B, —(p—1) ' Bk (p2)*
= d q
o (22 Y P B (mod )

k odd

1 (n+1) _ (=D*
n(n+1) — k(k-1)
Therefore, letting r — oo and then ¢ — oo, we obtain (35).

for all sufficiently large r, as (mod p?) for those k in the sum.

11. Congruences modulo higher powers of primes.

The main result of this section is the most difficult of the paper:

Proposition 5. Suppose that 1 <r <k —1 and ay,as,...,a, x1,T2,...,T, with each
x; > 0, are integers such that

(36) ar ] + a4+ ...+ agzl’ = 0

for each odd integer m, 1 < m < 2r — 1. Given prime p, let n = 1, unless p = 2 and

%Zj:wj «« odq @ 1s odd, in which case n = —1. Then
k
(37) H pr;)ls7 = 1 (mod p* ),
=1

unless (i) p" =2; or

(ii) 2r +1 = p and p? does not divide Z] L @l
(iii) 2r +1 = p* and p does not divide > ple; %5(@5/p)-

In each of these three cases the congruence in (36) holds (mod p*").

or

(Note that n was chosen so that the left side of (37) is =1 (mod p').)

From this we can easily derive the
Proof of Theorem 2: Take y, = u? and each other Y = 42 in Lemma 2, so that
bj = jB;/x and thus S11™ + 522" + ...+ B,n™ = u™ for each odd m, 1 <m < 2n — 1.
Note that 8; = (—1)"7 ((Zf;) (Z:ij) - (Zi;) (;‘ffnj)), and so is an integer. The result
follows from taking » =n and k = n + 1 in Proposition 5.
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Note that (6) follows from Theorem 2 with » = 2 and v = 3. We can also give the
Proof of (7): Take y; = x + j and n = 2r in Lemma 2 so that

i(%)(—l)”‘j(wﬂ)m =0

=0 N

for each odd integer m, 1 < m < 2r — 1. The result then follows from taking k = 2r + 1
in Proposition 5.
Now assume that (36) holds for m = 1. Proposition 4 then implies that

5 1—-m m
7j=1 m>3
m odd

k k

a; Blfm pm m

(38) log, | 7 | |(pacj)!pJ = g — E a;x}
i=1

The idea will be to apply the p-adic exponential function exp, to both sides of this equa-
tion. For example, let k = p+ 1, ap41 = =1, zpy1 = p? and a; = 1, z; = pd~1t for
1 < j <p. Then (38) gives that

(39) (T, = (PI)E (mod p***tt)

for p > 5, and modulo p3? ! for p = 2,3 except if p? = 2.

For another example let £k =3, a1 =1 and as = a3 = —1, so that z1 = x9 + x3; note
that this implies that 7" — 5" — 5" is divisible by xjz9z3 for all odd m > 1. Jacobsthal’s
result (5) then follows easily from (38), as well as a version for primes 2 and 3 ((5) holds
if p? divides 18mn(m — n)).

We now proceed to the
Proof of Proposition 5: Start by noting that the proof of Lemma 3 is easily modified to
show that Z?Zl ajzy" is divisible by both m —1 and m for all odd m, 2r+1 <m < 4r -3,
given that (36) holds for all odd m < 2r — 1. Therefore, as each pB;_,, is a p—adic unit,
(38) implies that

k

(40) log, ’OH(p.’L‘j)!;j = p*"*! B_,, * an integer (mod p*"?),
j=1

other than in those few cases where the terms for m > 4r — 1 (in (38)) are relevant
(namely for r =1, m =5, p=2and 5, forr =2, m =7, p = 2,3 and 7, and for
r=2, m=9, p=2; however they are all = 0 (mod p?" '), except r =1, m =5, p=2).

Evidently the right side of (40) is = 0 (mod p?"*!) unless p divides the denominator
of B_y,, in which case p — 1 divides 2r, by the Von Staudt—Clausen Theorem. For such

cases we will prove
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Lemma 4. In addition to the hypothesis of Proposition 5, assume that p — 1 divides 2r,
and let p? be the power of p that divides 2r(2r + 1). Then p?*! divides Z?Zl ajx?"“,
except in cases (ii) and (iii) of Proposition 5.

From this we deduce that p divides the ‘integer’ in (40) whenever p — 1 divides 2r,
except in cases (ii) and (iii); and Proposition 5 follows immediately.

It remains to give a
Proof of Lemma 4: By hypothesis 2r + 1 = ¢t (mod ¢(p?™!)), where t = 1 or p?. If
2r + 1 > t then Z?Zl aja:§T+1 = 25:1 a;x’ = 0 (mod pi*!), and we are done. Clearly
t > 3 and so we may assume that 2r + 1 = p?, which implies that p is odd. If ¢ = 1 we get
case (ii) so assume that ¢ > 2.
Now, if p does not divide a given integer = then zP~! =1 (mod p? 1) for z = :rpqd,

so that

2

=P = {1+ (P -1))P -1} = 2p(zPt —1) = p(zP - z) (mod p?T),

—1 q—2

and thus :1:?”’1 =(p+ l)a:g-’q — pa®

7 (mod p?™') whenever p does not divide z;. This

implies that

k k &
T _ g—1 q—2 a—2
Z%’:E? +1 — (p—l— 1) Zaj$§ — pZajxg + pZajx§ (mod pq—H) .
j=1 j=1 j=1

plz;

The first two sums here are 0 by (36) and the last is = 0 (mod p?*?!) except in case (iii).

12. Concluding remarks.

There have been numerous papers over the last few years that have been concerned
with sequences of integers for which a ‘Kummer—type’ Theorem, a ‘Lucas—type’ Theorem
and/or a ‘Wolstenholme—type’ Theorem holds. One nice example is the Apéry numbers,

n 2 2

w3 () ()

- m m )
m=0

which were introduced in Apéry’s proof of the irrationality of ((3). At first, a few seemingly

surprising congruences were found for these numbers, but in 1982, Gessel [Ge] showed that

these were all consequences of the fact that the Apéry numbers satisfy ‘Lucas-type’ and

‘Wolstenholme-type’ Theorems (that is anpim = anay (mod p) and an, = a, (mod p?)
foralln > 0, p—1 < m < 0 and primes p > 5). R. McIntosh has asked whether a
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non—trivial sequence of integers, satisfying a ‘Lucas—type’ Theorem, can grow slower than
a, = 2" 7

One can also generalize the notion of binomial coefficients, as follows, and obtain
‘Kummer—type’ and ‘Lucas—type’ Theorems: Given a sequence A:= {an},>0 of integers,
define (n!) o1 = anGn_1...ay and (1) ,:= (n!)a/(m!) a((n—m)!) 4, and ask what power of a

and also for the value of () , (mod p). The first of these questions

n
A’ m/ A
is attacked systematically in [KW]. A nice example was given by Fray [Fr|, who proved

prime p divides ()

‘Kummer—type’ and ‘Lucas—type’ Theorems for the sequence of ‘g—binomial coefficients’
(where each a,, = ¢ — 1).

There are a number of questions that have recieved a lot of attention in the literature
which do not concern us here. Many require straightforward manipulations of some of the
results given here (for instance, how many entries of a given row of Pascal’s triangle are
not divisible by p), others easy generalizations (for instance to multinomial coefficients —
most results in that area follow immediately from the fact that multinomial coefficients
can be expressed as a product of binomial coefficients). People have also investigated the
density of entries in Pascal’s triangle divisible by any given integer n, and strong estimates
of the average (and various connections therein to fractals and cellular automata). For
these questions, and some others that are not covered here, the reader should look at
[BCM], [Si] and [St].
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