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Abstract

Consider the operation of adding the same number of identical digits to the left
and to the right of a number n. In OEIS sequence A090287, it was conjectured that
this operation will not produce a prime if and only if n is a palindrome with an even
number of digits. We show that this conjecture is false by showing that this property
also holds for n = 231, n = 420, and an infinite number of other values of n. The
analysis involves looking at the prime factors of repunits and we present an algorithm
to find n which do not produce a prime under this operation.

1 Introduction

The topic of this paper concerns the primality of numbers obtained by adding digits to the
left and/or to the right of a number. There has been many papers and OEIS sequences
[OEIS] denoted to this subject. For instance, Ref. [Angell & Godwin 1977] considers right
and left truncatable primes, i.e. primes that remained primes when successive digits in
base b are removed from the left and from the right respectively (see also OEIS sequences
A024785 and A133758). In Ref. [Kahan & Weintraub 1998] the authors consider restricted
left truncatable primes which are left truncatable primes that cannot be obtained by left
truncation of another prime. In Ref. [Honaker Jr. & Caldwell 2000] palindromic primes are
studied that remain palindromic primes when one (or more) digit is removed from both the
left and the right (see also OEIS sequences A256957 and A034276). In this paper we study
another such problem. OEIS sequence A090287 (http://oeis.org/A090287) is defined as
follows: a(n) is the smallest prime obtained by inserting n between two copies of a number
with identical digits, or 0 if no such prime exists. In other words, a(n) (when it is nonzero)
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is the smallest prime formed by concatenating (in decimal) u, n and u where all the digits
of u are identical. The author of the sequence conjectured that a(n) = 0 if and only if n
is a palindrome with an even number of digits. We show that this conjecture is false. In
particular, we show that there are an infinite number of counterexamples, with the first one
being n = 231.

2 Additional values of n for which a(n) = 0

Definition 1. Define a repunit as a number of the form R(n) = 10n−1

9
. It is represented in

decimal by n 1’s.

Definition 2. Define f(d,m, n) as the number obtained by concatenating m times the digit
d in front and after the number n, i.e. f(2, 3, 45) = 22245222. In other words, f(d,m, n) =
dR(m)10t+m + n10m + dR(m) is represented as a concatenation of dR(m), n and dR(m)
where t is the number of digits of n.

Then the conjecture in http://oeis.org/A090287 states that

Conjecture 1. f(d,m, n) is composite for all integers m, d with 0 < d < 10 and m > 0 if
and only if n is a palindrome with an even number of digits.

One direction of the conjecture is easy to prove. If n is a palindrome with an even
number of digits, then f(d,m, n) is a palindrome with an even number of digits. The sum
of the odd-numbered digits is the same as the sum of the even-numbered digits and the
well-known test to determine divisibility by 11 shows that f(d,m, n) is a multiple of 11.
Since f(d,m, n) > 11, it must be composite.

We now show that the other direction is false by giving a counterexample.

Theorem 1. f(d,m, 231) is composite for all 0 < d < 10 and m ≥ 0.

Proof. We will make frequent use of the following simple observation. If n is a concatenation
of numbers m and k, then p|n if p|m and p|k. This is due to the fact that n = m10i + k for
some integer i. Next note that f(d,m, n) is a concatenation of multiple copies of d and n.

Clearly if d is even, then f(d,m, 231) is even and since f(d,m, 231) > 2, it is composite.
Note that 231 = 3 · 7 · 11. Therefore the numers f(3, m, 231) > 3 and f(9, m, 231) > 9
are divisible by 3 by the observation above and thus composite. Similarly the number
f(7, m, 231) > 7 is divisible by 7. f(5, m, 231) > 5 has 5 as the last digit and is thus divisible
by 5. As for f(1, m, 231) we consider 2 cases. If m is even, then R(m) is divisible by 11
(as it is a concatenation of multiple 11’s). Since 231 is also divisible by 11, f(1, m, 231) is
divisible by 11.

If m is odd, then f(1, m, 231) is a concatenation of (possibly multiple copies of) 111111
and one of the following numbers: 12311, 111231111 and 1111123111111. The factorization
of these numbers are:

• 111111 = 3 · 7 · 11 · 13 · 37
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• 12311 = 13 · 947

• 111231111 = 3 · 19 · 193 · 10111

• 1111123111111 = 13 · 8231 · 10384037

Thus 111111 is divisible by both 3 and 13. The numbers 12311, 111231111 and 1111123111111
are divisible by either 3 or 13. By the observation above this implies that for odd m

f(1, m, 231) is divisible by either 3 or 13. Since f(1, m, 231) has at least 3 digits, it is
composite.

Theorem 2. f(d,m, 420) is composite for all 0 < d < 10 and m ≥ 0.

Proof. Since 420 = 22 · 3 · 5 · 7, similar to the proof of Theorem 1, f(d,m, 420) is composite
for all m ≥ 0 and 1 < d < 10. f(1, m, 420) is a concatenation of (possibly multiple copies
of) 111111 and one of the following numbers: 420, 14201, 1142011, 111420111, 11114201111,
1111142011111. The factorizations are:

• 14201 = 11 · 1291

• 1142011 = 13 · 107 · 821

• 111420111 = 3 · 11 · 317 · 10651

• 11114201111 = 13 · 179 · 293 · 16301

• 1111142011111 = 11 · 31 · 337 · 9669083

This implies that f(1, m, 420) is divisible by either 3, 11 or 13.

Theorem 3. f(d,m, 759) is composite for all 0 < d < 10 and m ≥ 0.

Proof. Since 759 = 3 · 11 · 23, similar to the proofs above, we only need to check d = 1 and
d = 7. Again, since 759 is divisible by 11, we only need to check for odd m. f(1, m, 759) is
a concatenation of (possibly multiple copies of) 111111 and one of the following numbers:
17591, 111759111, 1111175911111. The factorizations are:

• 17591 = 72 · 359

• 111759111 = 32 · 127 · 97777

• 1111175911111 = 7 · 12373 · 12829501

This implies that f(1, m, 420) is divisible by either 3 or 7. As for f(7, m, 759), it is a
concatenation of (possibly multiple copies of) 777777 and one of the following numbers:
77597, 777759777, 7777775977777. The factorizations are:

• 77597 = 13 · 47 · 127
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• 777759777 = 32 · 151 · 572303

• 7777775977777 = 13 · 1289 · 5189 · 89449

Thus f(7, m, 759) is divisible by either 3 or 13.

Theorem 4. f(d,m, 6363) is composite for all 0 < d < 10 and m ≥ 0.

Proof. Since 6363 = 32 · 7 · 101, similar to the proofs above, we only need to check d = 1.
Since 1111 = 11 · 101, f(1, m, 6363) is divisible by 101 for m a multiple of 4. For m not
a multiple of 4, f(1, m, 6363) is a concatenation of (possibly multiple copies of) R(12) =
3 ·7 ·11 ·13 ·37 ·101 ·9901 and f(1, m, 6363) for some m ∈ {0, 1, 2, 3, 5, 6, 7, 9, 10, 11}. Looking
at the factorizations of these numbers shows that for all m ≥ 0, f(1, m, 6363) is divisible by
one of the following prime factors: 3, 7, 13, 101.

Theorem 5. f(d,m, 10815) is composite for all 0 < d < 10 and m ≥ 0.

Proof. Since 10185 = 3·5·7·103, similar to the proof of Theorem 1, the number f(d,m, 10815)
is composite for all m ≥ 0 and 1 < d < 10. f(1, m, 231) is a concatenation of (possibly
multiple copies of) 111111 and one of the following numbers: 10815, 1108151, 111081511,
11110815111, 1111108151111, 111111081511111. The factorizations are:

• 1108151 = 11 · 100741

• 111081511 = 37 · 67 · 44809

• 11110815111 = 3 · 11 · 157 · 607 · 3533

• 1111108151111 = 7 · 158729735873

• 111111081511111 = 11 · 37 · 661 · 413010893

This implies that f(1, m, 10815) is divisible by either 7, 11 or 37.

Theorem 6. If n has an even number of digits and n is divisible by 11, then f(d,m, n) is
composite for all 0 ≤ d < 10 and m > 0.

Proof. This can be proved with the same argument as the one above that was used to prove
one direction of Conjecture 1, but let us prove this with the notation we have defined so far.
Similar to the proofs above, we only need to check d = 1, d = 3 and d = 7. Let q be the
number of digits of n. Define n2 as the concatenation of d, n and d, i.e. n2 = d10q+1+10n+d.
f(d,m, n) is a concatenation of (possibly multiple copies of) 11d (i.e. ‘dd’) and either n or
n2. The divisibility test for 11 shows that for even q, the number d10q+1 + d is divisible by
11. This implies that n2 is divisible by 11 and thus f(d,m, n) is divisible by 11.

The reasoning in the results above allows us to derive the following test to provide a
sufficient condition for when f(d,m, n) for fixed n, d is composite for all m > 1:
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1. Pick 1 < k ≤ kmax.

2. For each 0 ≤ i < k, let wi be the concatenation of dR(i), n and dR(i).

3. If gcd(dR(k), wi) > 1 for each i, then f(d,m, n) is composite for all m > 1.

with the convention that the concatenation of dR(0), n and dR(0) is equal to n. Implement-
ing this test in a computer program, we found the following values of n which have an odd
number of digits or are not divisible by 11 such that a(n) = 0: 231, 420, 759, 2814, 6363,
9177, 10815, 12663, 15666, 18669, 19362, 21672, 24675, .... We found 4919 such numbers for
n ≤ 107. In addition, we found that all of these 4919 numbers are multiples of 3 and satisfy
the test for all d (that need to be checked) with k = 6 except for 6363, 488649, 753774 which
needed k = 12, the numbers 921333 and 8872668 which needed k = 8 and 5391498 which
needed k = 30. The minimal k for each digit d may depend on d, but it is clear that the
least common multiple of all these k’s will work for all d.

Note that the proof in Theorem 1 relies on f(1, m, 231) sharing a prime factor with some
repunit R(k) for 0 ≤ m < k. In this case it is true for R(6) = 111111. This may suggest
that we focus on repunits with many prime factors such as R(k) for k = 6, 12, 15, 16, 18, 20,
etc.

Conjecture 2. If n is not a multiple of 11 with an even number of digits and a(n) = 0, then
n is a multiple of 3.

There are other values of n such as 366, 1407 for which a(n) is still unknown. An
interesting case is a(1414) = f(3, 1207, 1414) which has presumably1 2418 digits.

3 Prepending identical digits and appending identical

digits

Consider the following variations of the sequence a(n).

Definition 3. b(n) is the smallest prime obtained by appending n to a number with identical
digits, or 0 if no such prime exists (https: // oeis. org/ A256480 ). c(n) is the smallest
prime obtained by appending a number with identical digits to n, or 0 if no such prime exists
(https: // oeis. org/ A256481 ).

Clearly b(n) = 0 if n is even or divisible by 5. Furthermore c(n) coincides with OEIS
A030665 (https://oeis.org/A030665) for n < 20. The sufficient condition for testing
whether a(n) = 0 described above has corresponding versions for b(n) and c(n). For b(n) we
have:

1We use the word ”presumably” since we use a probabilistic primality test which even though it guarantees
the number is composite when the test determines it to be so, there is a very small chance that a number
determined by the test to be prime can be composite.
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1. Pick 1 ≤ d ≤ 9 such that the prime factors of d do not divide n.

2. Pick 1 < k ≤ kmax.

3. For each 0 ≤ i < k, let wi be the concatenation of dR(i) and n.

4. If for each d, gcd(dR(k), wi) > 1 for each i, then b(n) = 0.

For c(n) we have:

1. Pick d from the set {1, 3, 7, 9} such that the prime factors of d do not divide n.

2. Pick 1 < k ≤ kmax.

3. For each 0 ≤ i < k, let wi be the concatenation of n and dR(i).

4. If for each d, gcd(dR(k), wi) > 1 for each i, then c(n) = 0.

Conjecture 3. b(n) = 0 if and only if n is even or n is divisible by 5.

Conjecture 4. If c(n) = 0, then n is divisible by 3.

The decimal value of c(6069) has presumably 1529 digits. Furthermore, for n ≤ 15392,
it appears2 that c(n) = 0 if and only if n = 6930.

Probabilistic primality tests also suggest that Conjecture 2, Conjecture 3, Conjecture 4
are true for n ≤ 37443, n ≤ 107 and n ≤ 106 respectively.

Theorem 7. c(n) = 0 for n ∈ {6930, 50358, 56574, 72975, 76098, 79662, 82104, 118041,
160920}

Proof. Consider the case n = 6930. Since 6930 = 2 · 32 · 5 · 7 · 11, similar to the proofs above
we only need to check the primality of appending a repunit R(m) to 6930. Again we only
need to check for odd m since 11 divides 6930. The factorizations

• 69301 = 37 · 1873

• 6930111 = 3 · 109 · 21193

• 693011111 = 13 · 19 · 2805713

show that 6930 appended with R(m) all shared a factor with 111111 and is divisible by either
3, 11, 13 or 37. The other cases are similar, with the exception that some of these numbers
(such as 56574 and 72975) do not divide 11 and thus we need to consider the factorizations
of n appended with R(m) for 0 ≤ m ≤ 5 and show that they all share a nontrivial factor
with 111111.

In particular, we found 67 numbers less than 106 such that c(n) = 0 and for all these
numbers this is shown by appending n with R(m) for 0 ≤ m ≤ 5 and showing that they all
share a nontrivial factor with 111111.

2The probabilistic primality test has shown that c(n) > 0 for n 6= 6930 and n ≤ 15392. Even though we
have proven that c(6930) = 0, the cases where c(n) > 0 is highly likely to be correct, but not with certainty.
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4 Other bases

Even though the analysis above focuses on numbers and their decimal representations, it is
clear that this extends readily to other number bases as well.

Definition 4. Define a repunit in base b as a number of the form Rb(n) = bn−1

b−1
. It is

represented in b-ary representation by n 1’s.

Definition 5. For a number base b > 2 and d < b, define fb(d,m, n) as the number obtained
by concatenating m times the digit d in front and after the number n in base b. In other
words, fb(d,m, n) = dRb(m)bt+m + nbm + dRb(m) is represented as a concatenation in base
b of dRb(m), n and dRb(m) where t is the number of digits of n in base b.

For example, since 34 = 1000102, f2(1, 3, 34) = 1111000101112 = 3863. The proof of
Theorem 6 can be used with minor modification to prove:

Theorem 8. If n has an even number of digits in base b and n and b + 1 are not coprime
(i.e. gcd(n, b+ 1) > 1), then fb(d,m, n) is composite for all 0 ≤ d < b and m > 0.

Theorem 9. If b is odd and n is even, then fb(d,m, n) is composite for all 0 ≤ d < b and
m > 0.

Proof. Using the notation in Definition 5, we have for m > 0,

dRb(m)bt+m + dRb(m) = dRb(m)
(

bt+m + 1
)

> 2

which is even since bt+m+1 is even. Therefore fb(d,m, n) > 2 is even and thus composite.

Using the algorithm in Section 2 adapted to arbitrary bases, we found various values of
n which are not covered by Theorem 8 such that fb(d,m, n) is composite. Some of these
values are listed in Table 1.

base b Partial list of n such that fb(d,m, n) is composite for all 0 ≤ d < b and m > 0

2 2040, 8177, 18179, 32739, 71357, 71532, 101895, 131015, 318929, 403410, 404859
4 30, 72, 465, 1020, 3252, 4110, 4965, 4992, 5112, 5475, 6330, 6357, 6477, 6840, 7695
6 47215, 74090, 87110, 93870, 120745, 140525, 167400, 178500, 187180, 214055, 232545
8 255, 315, 4305, 5670, 7035, 8400, 9180, 9765, 11130, 12495, 13860, 15225, 16590
12 1155, 23695, 28875, 30800, 41965, 53130, 64295, 75460, 86625, 97790, 108955, 120120
14 46917, 9151272, 9382542, 11892387, 14402232, 16912077, 17638335, 19421922

Table 1: Some values of n and b such that fb(d,m, n) is composite for all 0 ≤ d < b and
m > 0 and were not covered by Theorem 8.

7



References

[OEIS] The on-line encyclopedia of integer sequences, founded in 1964 by N. J. A. Sloane.

[Angell & Godwin 1977] I. O. Angell and H. J. Godwin, On truncatable primes, Math. Com-
put. 31 (1977), 265–267.

[Honaker Jr. & Caldwell 2000] G. L. Honaker Jr. and C. Caldwell, Palindromic prime pyra-
mids, Journal of Recreational Mathematics 30(3) (2000), 169–176.

[Kahan & Weintraub 1998] S. Kahan and S. Weintraub, Left truncatable primes, Journal of
Recreational Mathematics 29 (1998), 254–264.

8


	1 Introduction
	2 Additional values of n for which a(n) = 0
	3 Prepending identical digits and appending identical digits
	4 Other bases

