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Abstract: In this article we determine the minimal set for some sets of natural numbers. The
concept of minimal sets (in the context of natural numbers) appeared first in an article of Shallit,
who determined, among others, the minimal set of the primes. By now, there are several articles
about minimal sets. In this article we will expand results of Baoulina, Kreh and Steuding, who
determined the minimal set of the sets ϕ(N) and ϕ(N) + 3. To this end, we will determine the
minimal set of the sets ϕ(N) + a for 1 ≤ a ≤ 5.
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1 Introduction

In 2000, Shallit [10] introduced a problem concerning the decimal expansion of natural numbers.
Given two natural numbers x and y, we call x a substring of y, written x / y, if x = y or if we can
obtain x from y by deleting some of the digits of y. If x is not a substring of y, we write x 6/ y.
For example, we have 134/918234/98188293894 but 123 6/ 43021. We call two natural numbers
comparable, if x / y or y / x, otherwise x and y are called incomparable. For a set M ⊂ N we
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want to find the smallest subset A ⊂M such that for all m ∈M there exists an a ∈ A with a/m.
The set

S(M) := {m ∈M : {n ∈M : n < m, n / m} = ∅}

solves this problem, since any element of M contains an element of S(M) as substring. The set
S(M) is called minimal set of M and its elements are called minimal. As a matter of fact, S(M)

is finite for every M ⊂ N. This is due to Higman’s lemma, cf. [7, 11].

In [10], Shallit determined the minimal set of the primes and of the composite numbers. He
showed

S(P) = {2, 3, 5, 7, 11, 19, 41, 61, 89, 409, 449, 499, 881, 991, 6469, 6949, 9001,

9049, 9649, 9949, 60649, 666649, 946669, 60000049, 66000049, 66600049}

and

S(C) = {4, 6, 8, 9, 10, 12, 15, 20, 21, 22, 25, 27, 30, 32, 33, 35, 50, 51, 52, 55, 57, 70,

72, 75, 77, 111, 117, 171, 371, 711, 713, 731},

where C denotes the composite numbers, i.e., C = N\(P ∪ {1}). Furthermore, he raised the
conjecture, that

S({2n : n ∈ N0}) = {1, 2, 4, 8, 65536}

and noted that this conjecture is true if any number 16m with m ≥ 4 contains at least one of the
digits 1, 2, 4, 8. This conjecture is still unsolved. This shows that it can be difficult to determine
the minimal set of a given set of natural numbers.

Recently, Bright, Devillers and Shallit [2] determined the minimal set of the primes in base
b for 2 ≤ b ≤ 30 (for some of these bases under some conjectures). Gruber, Holzer and Kutrib
[4, 5] have considered the problem of finding the minimal set from the viewpoint of theoretical
computer science.

In [8], some more minimal sets have been determined, among them the minimal set of the
set of natural numbers that can be written as a sum of two squares, as well as minimal sets of
congruence classes. For congruence classes, an algorithm is developed that explicitly determines
the minimal set. Furthermore, structural properties of minimal sets are examined.

In [6], the minimal set for the squarefree numbers has been determined. In [3], Baoulina,
Kreh and Steuding determined some more minimal sets, among others, those of the set of natural
numbers that can be written as a sum of three squares, as well as the minimal set for quadratic
residues modulo m and minimal sets of sets of values of arithmetic functions. The authors show,
that

S(ψ(N)) = {1, 3, 4, 6, 8, 20, 72, 90, 222, 252, 500, 522, 552, 570, 592, 750, 770,

992, 7000, 55 . . . 5︸ ︷︷ ︸
69

0}
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and
S(ϕ(N)) = {1, 2, 4, 6, 8, 30, 70, 500, 900, 990, 5590, 9550, 555555555550},

where ψ is the Dedekind ψ-function,

ψ(n) :=
n∏
i=1

(p+ 1)pei−1i if n =
n∏
i=1

peii ,

and ϕ is the Euler totient function,

ϕ(n) :=
n∑

k=1
gcd(k,n)=1

1 =
n∏
i=1

(p− 1)pei−1i if n =
n∏
i=1

peii .

The authors also state, without proof, the minimal set of the set ϕ(N) + 3 := {ϕ(n) + 3 : n ∈ N}.

In this article, we want to extend this result by considering the set

ϕ(N) + a := {ϕ(n) + a : n ∈ N}

for a ∈ {1, 2, 3, 4, 5} and determining the respective minimal sets.
Here we restrict ourselves to the Euler totient function since it is one of the most important

arithmetic functions. As will become clear later, some of the minimal sets can only be obtained
subject to certain conjectures. These conjectures deal with questions of whether numbers of a
certain form occur as the value of the Euler totient function. Heuristically, the more one-digit
numbers are contained in ϕ(N) + a, the less numbers have to be considered (since all numbers
that contain one of these digits cannot be contained in the minimal set). This is the reason why
we deal only with the minimal sets for a ≤ 5. For a = 6, ϕ(N) + 6 contains only two one-digit
numbers. We hope that this article encourages others to develop methods to decide if numbers of
a certain form can occur as the value of the Euler totient function.

We will use the following lemma, that has been proved as a part of a result in [3]:

Lemma 1.1 ([3, Theorem 4]). We have 555555555551 ∈ P, hence

ϕ(555555555551) = 555555555550

For l ≤ 10 we have 5 . . . 5︸ ︷︷ ︸
l times

0 /∈ ϕ(N).

2 Notation

First we want to fix some notation. We consider natural numbers N = {1, 2, . . .} and their unique
decimal representation, where each n ∈ N is given by n =

∑k
j=0 αj10j for k0 ∈ N and a

digit sequence αkαk−1 . . . α0 with αk 6= 0. Since this article is only concerned with the decimal
representation, we will, by abuse of notation, call this digit sequence n.
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If x and y are two natural numbers, we denote with x ∗ y or xy the natural number that is
obtained by concatenation of the two digit sequences of x and y. For two sets M,L ⊂ N we let

ML := M ∗ L := {z ∈ N : z = x ∗ y, x ∈M, y ∈ L}.

For x, k ∈ N we define inductively x∗k := x∗(k−1) ∗ x, x∗1 := x and let

{x}∗ = {x∗k : k ∈ N0}.

Here x∗0 means, that x does not occur. This can be formalized with the empty word ε, for which
we have x ∗ ε = ε ∗ x = x. For a set M ⊂ {0, . . . , 9} of digits we let

M∗ := {x ∈ N0 : (d / x, d ∈ {0, . . . , 9})⇒ d ∈M} ∪ ε.

Hence M∗ contains (besides the empty word) all natural numbers that contain only the digits of
M . For example, we have

{2}{1, 3}∗{4}{5}∗ = {24, 214, 234, 245, 2145, 2345, 21345, 23145, 2114, 2334, 2134, . . .}.

3 Results

For some of the sets ϕ(N) + a we can determine the minimal sets only by assuming certain
conjectures. We have checked these conjectures for the first few cases (see also section 9), thus
the conjectures seem reasonable to us.

Conjecture 1. Numbers of the form n = 69∗k8 with k ∈ N0 cannot occur as values of the Euler
totient function.

Conjecture 2. Let α ∈ {3, 9}∗. Then, numbers of the form α26 and α86 cannot occur as values
of the Euler totient function.

Conjecture 3. Numbers of the form n = 39∗k8 with k ∈ N0 cannot occur as values of the Euler
totient function.

We show the following results:

Theorem 3.1. We have

S(ϕ(N) + 1) = {2, 3, 5, 7, 9, 11, 41, 61, 81}.

Theorem 3.2. If Conjecture 1 is correct, we have

S(ϕ(N) + 2) = {3, 4, 6, 8, 10, 12, 20, 22, 50, 72, 90, 770, 992, 5592, 9552, 555555555552}.

If Conjecture 1 is wrong, we have

S(ϕ(N) + 2) = {3, 4, 6, 8, 10, 12, 20, 22, 50, 72, 90, 770, 992, 5592, 9552,

555555555552, 70∗m0},

where m is the smallest natural number such that 69∗m8 ∈ ϕ(N).
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Theorem 3.3. We have

S(ϕ(N) + 3) = {4, 5, 7, 9, 11, 13, 21, 23, 31, 33, 61, 63, 81, 83}.

Theorem 3.4. If Conjecture 2 is correct, we have

S(ϕ(N) + 4) = {5, 6, 8, 10, 12, 14, 20, 22, 24, 32, 34, 40, 44, 70, 74, 92,

300, 472, 772, 900, 904, 994}.

If Conjecture 2 is wrong, S(ϕ(N) + 4) contains the above values and in addition all mini-
mal elements of the form α30 and α90 with α ∈ {3, 9}∗ such that α26 ∈ ϕ(N), respectively,
α86 ∈ ϕ(N).

Theorem 3.5. If Conjecture 3 is correct, we have

S(ϕ(N) + 5) = {6, 7, 9, 11, 13, 15, 21, 23, 25, 33, 35, 41, 45, 51, 53, 83, 85, 301, 443, 505,

801, 881, 555555555555}.

If Conjecture 3 is wrong, we have

S(ϕ(N) + 5) = {6, 7, 9, 11, 13, 15, 21, 23, 25, 33, 35, 41, 45, 51, 53, 83, 85, 301, 443, 505,

801, 881, 555555555555, 40∗m3},

where m is the smallest natural number such that 39∗m8 ∈ ϕ(N).

In the following five sections, we will prove the results for the respective minimal sets. We
will finish with some remarks about the above conjectures.

To determine minimal sets, we first note that a subset of M consisting of pairwise incom-
parable elements is not necessarily a subset of the minimal set of M (for example, all two-digit
numbers are incomparable, but none of them is contained in S(N) = {1, . . . , 9}). If, however, for
any element x in a set A ⊂M of pairwise incomparable elements there is no y ∈M, y 6= x such
that y / x, then A is contained in the minimal set of M .

Thus, to determine the minimal sets, we first determine which digits lie in M (these are also
contained in S(M)). Then, one checks, which elements with exactly n digits (for increasing
n > 1) are contained in M and cannot be truncated to some already obtained minimal element.
This can be done by successively excluding certain combinations of digits. This process leads to
the result, if one can successively exclude all possible combinations of digits. To this end, one
needs to efficiently decide which elements are contained in M .

Hence for a number m ∈ N we need to decide whether m can occur as a value of the Euler
totient function or not. We will show this exemplarily for two numbers that appear in the proof
for the sets ϕ(N) + 2 and ϕ(N) + 5, respectively. In the further course, the proof that certain
numbers are not contained in ϕ(N) is left to the reader.

We want to show that 5950 /∈ ϕ(N) and 376 /∈ ϕ(N). Since neither 5951 = 11 · 541 nor
377 = 13 · 29 is a prime, a potential n with ϕ(n) = 5950 or ϕ(n) = 376 needs to be composite.
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Let n =
∏k

i=1 p
ei
i . Assume that k = 1, i.e., n = pl for a prime p 6= 2 and l ≥ 2. Then, we get

(p− 1)pl−1 = ϕ(n) = 5950 = 2 · 52 · 7 · 17. Thus we get p ∈ {5, 7, 17}, but none of the numbers
4, 6, 16 is a divisor of 5950. For 376 we can argue analogously. Hence we have k ≥ 2. Since the
Euler totient function is multiplicative, we get ϕ(pe11 ) · · ·ϕ(pekk ) = 5950 = 2 · 52 · 7 · 17 in the
first case. Since ϕ(peii ) is even for every i, the left-hand side is divisible by 4, but the right-hand
side is not, hence we get 5950 /∈ ϕ(N). For 376 we get ϕ(pe11 ) · · ·ϕ(pekk ) = 376 = 23 · 47. Hence
we have 2 ≤ k ≤ 3 and 94 = 2 · 47 or 188 = 22 · 47 has to occur as a value of the Euler totient
function. Again these numbers are not of the form p − 1 for p ∈ P and we can show, exactly as
we did above in the case m = 5950, that a number m with ϕ(n) = 94 or ϕ(n) = 188 cannot be
composite. Thus we also have 376 /∈ ϕ(N).

For concrete numbers m we can show, using prime factorization, that m cannot occur as a
value of the Euler totient function. For general numbers of a certain form this can get difficult.
This is why we need Conjectures 1, 2 and 3.

4 The set S(ϕ(N) + 1)

To begin with, all of the numbers mentioned in Theorem 3.1 are in ϕ(N) + 1, since

ϕ(1) + 1 = 2, ϕ(3) + 1 = 3, ϕ(5) + 1 = 5,

ϕ(7) + 1 = 7, ϕ(16) + 1 = 9, ϕ(11) + 1 = 11,

ϕ(41) + 1 = 41, ϕ(61) + 1 = 61, ϕ(123) + 1 = 81.

Furthermore, we have 1, 4, 6, 8 /∈ ϕ(N) + 1. Let x ∈ S(ϕ(N) + 1) have at least two digits.
Then, we have x ∈ {1, 4, 6, 8}{0, 1, 4, 6, 8}∗ since otherwise 2, 3, 5, 7, 9 / x. Since ϕ(n) is even
for n ≥ 2, x is odd, hence its last digit is 1. If x contains another 1, we have 11 / x and
11 ∈ S(ϕ(N) + 1). If x contains a 4, 6 or an 8, we can argue analogously. This covers all cases.

5 The set S(ϕ(N) + 2)

First we have

ϕ(1) + 2 = 3, ϕ(3) + 2 = 4, ϕ(5) + 2 = 6, ϕ(7) + 2 = 8,

ϕ(16) + 2 = 10, ϕ(11) + 2 = 12, ϕ(19) + 2 = 20, ϕ(25) + 2 = 22,

ϕ(65) + 2 = 50, ϕ(71) + 2 = 72, ϕ(89) + 2 = 90, ϕ(769) + 2 = 770,

ϕ(991) + 2 = 992, ϕ(5591) + 2 = 5592, ϕ(9551) + 2 = 9552

and
ϕ(555555555551) + 2 = 5555555555552,

hence these elements are contained in ϕ(N) + 2. Furthermore, we have 1, 2, 5, 7, 9 /∈ ϕ(N) + 2.
Now let x ∈ S(ϕ(N) + 2) have at least two digits. Since x is even, we get

x ∈ {1, 2, 5, 7, 9}{0, 1, 2, 5, 7, 9}∗{0, 2}.
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We have 52, 70, 92 /∈ ϕ(N)+2, all other possible two-digit numbers are contained in S(ϕ(N)+2).
So let x have at least three digits. We consider two different cases.

1. The last digit of x is 2.

Then, x is of the form x = α2 with α ∈ {1, 2, 5, 7, 9}{0, 1, 2, 5, 7, 9}∗. If 1, 2, 7/α, we have
12, 22, 72 / x and x cannot be contained in S(ϕ(N) + 2). Hence let α ∈ {5, 9}{0, 5, 9}∗.
Again, we distinguish two cases.

(a) The first digit of x is 5.

Then, x is of the form x = 5β2 with β ∈ {0, 5, 9}∗. If 0 / β, we have 50 / x, and if
99 / β, we have 992 / x. Hence x cannot be contained in S(ϕ(N) + 2) in these cases.
If β only contains the digit 5, we have 555555555552 / x, since for 1 ≤ k ≤ 9 we
have 55∗k2 /∈ ϕ(N) + 2 due to Lemma 1.1. It remains to consider the cases where β
contains exactly one 9 and at most nine times the digit 5. Since 5592 ∈ S(ϕ(N) + 2),
we only need to consider the case x = 595∗k2 with 1 ≤ k ≤ 9. For k = 1 we have
x = 5952, which is not contained in ϕ(N) + 2 (as shown above). For k ≥ 2 we have
9552 / x, hence x cannot be contained in S(ϕ(N) + 2).

(b) The first digit of x is 9.

Then, x is of the form x = 9β2 with β ∈ {0, 5, 9}∗. If 0 / β, we have 90 / x, and if
9 / β, we have 992 / x and 992 ∈ S(ϕ(N) + 2). So let us suppose that β contains only
the digit 5. We have 952 /∈ ϕ(N) + 2, and if β contains at least two times the digit 5,
we have 9552 / x.

2. The last digit of x is 0.

Hence x is of the form x = α0 with α ∈ {1, 2, 5, 7, 9}{0, 1, 2, 5, 7, 9}∗. If 1, 2, 5, 9 / α, we
have 10, 20, 50, 90 / x. It remains to consider the case x = 7β0 with β ∈ {0, 7}∗. If 7 / β,
we have 770 / x. Thus it only remains to consider the case x = 70∗k0 with k ∈ N, which is
covered by Conjecture 1.

6 The set S(ϕ(N) + 3)

Here we give the proof for the minimal set that is already mentioned in [3]. We have

ϕ(2) + 3 = 4, ϕ(3) + 3 = 5, ϕ(5) + 3 = 7, ϕ(7) + 3 = 9,

ϕ(16) + 3 = 11, ϕ(11) + 3 = 13, ϕ(19) + 3 = 21, ϕ(25) + 3 = 23,

ϕ(58) + 3 = 31, ϕ(31) + 3 = 33, ϕ(59) + 3 = 61, ϕ(61) + 3 = 63,

ϕ(79) + 3 = 81, ϕ(123) + 3 = 83

and 1, 2, 3, 6, 8 /∈ ϕ(N)+3. If x ∈ S(ϕ(N)+3) has at least two digits, then x is odd, hence its last
digit is 1 or 3. Then, we always have y / x for some y ∈ {11, 13, 21, 23, 31, 33, 61, 63, 81, 83}.
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7 The set S(ϕ(N) + 4)

First we have

ϕ(1) + 4 = 5, ϕ(3) + 4 = 6, ϕ(5) + 4 = 8, ϕ(7) + 4 = 10,

ϕ(16) + 4 = 12, ϕ(11) + 4 = 14, ϕ(17) + 4 = 20, ϕ(19) + 4 = 22,

ϕ(25) + 4 = 24, ϕ(29) + 4 = 32, ϕ(31) + 4 = 34, ϕ(37) + 4 = 40,

ϕ(41) + 4 = 44, ϕ(67) + 4 = 70, ϕ(71) + 4 = 74, ϕ(89) + 4 = 92,

ϕ(447) + 4 = 300, ϕ(553) + 4 = 472, ϕ(769) + 4 = 772, ϕ(1347) + 4 = 900,

ϕ(1057) + 4 = 904, ϕ(991) + 4 = 994.

Further we have 1, 2, 3, 4, 7, 9 /∈ ϕ(N) + 4. If x ∈ S(ϕ(N) + 4) has at least two digits, we get,
since x is even, that x ∈ {1, 2, 3, 4, 7, 9}{0, 1, 2, 3, 4, 7, 9}∗{0, 2, 4}. We have 30, 42, 72, 90, 94 /∈
ϕ(N) + 4, the other possible values for x are contained in ϕ(N) + 4, and hence they are also
contained in S(ϕ(N) + 4). Now let x have at least three digits. We consider three cases.

1. The last digit of x is 2.

Hence x = α2 with α ∈ {1, 2, 3, 4, 7, 9}{0, 1, 2, 3, 4, 7, 9}∗. If 1, 2, 3, 9 / α, then we have
12, 22, 32, 92 / x and thus x /∈ S(ϕ(N) + 4). Now assume that α ∈ {4, 7}{0, 4, 7}∗.

(a) Suppose that the first digit of x is 7, i.e., x = 7β2 with β ∈ {0, 4, 7}∗. If 0, 4, 7 / β,
we get 70, 74, 772 / x and this covers all cases.

(b) Suppose that the first digit of x is 4, i.e., x = 4β2 with β ∈ {0, 4, 7}∗. If 0, 4, 7 / β,
we get 40, 44, 472 / x and this covers all cases.

2. The last digit of x is 4.

Hence we have x = α4 with α ∈ {1, 2, 3, 4, 7, 9}{0, 1, 2, 3, 4, 7, 9}∗. If 1, 2, 3, 4, 7 / α,
we get 14, 24, 34, 44, 74 / x. So suppose that the first digit of x is 9, i.e., x = 9β4 with
β ∈ {0, 9}∗. If 0, 9 / β, we have 904, 994 / x and this covers all cases.

3. The last digit of x is 0.

Hence we have x = α0 with α ∈ {1, 2, 3, 4, 7, 9}{0, 1, 2, 3, 4, 7, 9}∗. If 1, 2, 4, 7 / α, we
get 10, 20, 40, 70 / x. Now let α ∈ {3, 9}{0, 3, 9}∗. If 0 / α, we have 300 / x or 900 / x. It
remains to consider the case x = α0 with α ∈ {3, 9}∗. This is covered by Conjecture 2.
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8 The set S(ϕ(N) + 5)

We have

ϕ(1) + 5 = 6, ϕ(3) + 5 = 7, ϕ(5) + 5 = 9, ϕ(7) + 5 = 11,

ϕ(16) + 5 = 13, ϕ(11) + 5 = 15, ϕ(17) + 5 = 21, ϕ(19) + 5 = 23,

ϕ(25) + 5 = 25, ϕ(29) + 5 = 33, ϕ(31) + 5 = 35, ϕ(37) + 5 = 41,

ϕ(41) + 5 = 45, ϕ(47) + 5 = 51, ϕ(65) + 5 = 53, ϕ(79) + 5 = 83,

ϕ(123) + 5 = 85, ϕ(447) + 5 = 301, ϕ(439) + 5 = 443, ϕ(625) + 5 = 505,

ϕ(797) + 5 = 801, ϕ(877) + 5 = 881

and
ϕ(555555555551) + 5 = 555555555555.

We further have 1, 2, 3, 4, 5, 8 /∈ ϕ(N) + 5. Let x ∈ S(ϕ(N) + 5) have at least two digits.
Since x is odd, we have x ∈ {1, 2, 3, 4, 5, 8}{0, 1, 2, 3, 4, 5, 8}∗{1, 3, 5}. We have 31, 43, 55, 81 /∈
ϕ(N) + 5, all other possible values of x are contained in S(ϕ(N) + 5). Now let x have at least
three digits. We consider three cases.

1. The last digit of x is 1.

Then, x = α1 with α ∈ {1, 2, 3, 4, 5, 8}{0, 1, 2, 3, 4, 5, 8}∗. If 1, 2, 4, 5 / α, we have
11, 21, 41, 51 / x. Now let α ∈ {3, 8}{0, 3, 8}∗.

(a) Suppose that the first digit of x is 3, i.e., x = 3β1 with β ∈ {0, 3, 8}. If 3, 0, 88 / β,
we have 33, 301, 881 / x. It remains to consider the case x = 381, but we have
381 /∈ ϕ(N) + 5.

(b) Suppose that the first digit of x is 8, i.e., x = 8β1 with β ∈ {0, 3, 8}. If 3, 0, 8 / β, we
have 83, 801, 881 / x and this covers all cases.

2. The last digit of x is 5.

Hence x = α5 with α ∈ {1, 2, 3, 4, 5, 8}{0, 1, 2, 3, 4, 5, 8}∗. If 1, 2, 3, 4, 8 / α, we have
15, 25, 35, 45, 85 / x. Now let α ∈ {5}{0, 5}∗. If 0 / α, we have 505 / x. It remains to
consider the case x = 5∗k. Due to Lemma 1.1, we get that 555555555555 is the first such
natural number that is contained in ϕ(N) + 5.

3. The last digit of x is 3.

Then, x = α3 with α ∈ {1, 2, 3, 4, 5, 8}{0, 1, 2, 3, 4, 5, 8}∗. If 1, 2, 3, 5, 8 / α, we have
13, 23, 33, 53, 83 / x. Let α ∈ {4}{0, 4}∗. If 4 / α, we have 443 / x. In the other case, we
have x = 40∗k3, which is covered by Conjecture 3.
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9 Remarks about the conjectures

In this section we will give some remarks and possible approaches on the conjectures. There are
similar conjectures in related work on minimal sets, see, for example, [8, 2]. These conjectures
involve only sets A∗ with |A| = 1 (as in Conjectures 1 and 3). Since Conjecture 2 involves a set
A∗ with |A| = 2, this seems to be more inaccesible (since there are more numbers to check) and
also (at least heuristically) more unlikely to hold.

Similar to Shallit’s conjecture about the powers of 2, it seems to be difficult to prove Con-
jectures 1, 2 and 3. Let us denote the number 69∗l8 by αl and the number 39∗l8 by βl. Since
αl + 1 ≡ βl + 1 ≡ 0 mod 3, these numbers are not of the form p− 1 for a prime p. Since further
αl ≡ βl ≡ 2 mod 4, a potential m with ϕ(m) = αl or ϕ(m) = βl has to be of the form m = pk or
m = 2pk with a prime p ≡ 3 mod 4 and k ≥ 2, since any other prime factor and any other power
of 2 would imply the divisibility of ϕ(m) by 4. Since ϕ(pk) = ϕ(2pk), we can restrict ourselves
to the case αl = ϕ(pk) = pk−1(p − 1), respectively, βl = ϕ(pk) = pk−1(p − 1). We can further
deduce that k ≥ 3: If k = 2, we are looking for primes that satisfy the equation x2 − x− αl = 0.
Using the formula for quadratic equations we get as solutions 1

2
±
√
4αl+1
2

. This can only be an
integer if 4αl + 1 is a square. Since 4αl + 1 ≡ 3 mod 10, this is not possible. The same argument
for βl shows that we necessarily have k ≥ 3.

Computer calculations show that for 1 ≤ l ≤ 100 neither αl nor βl are of this form. In fact,
in these 200 cases there are only 4 cases in which we have a prime factor p in the factorization of
αl or βl with an exponent greater than 1. In all these cases, the product of the remaining prime
factors is far greater than p− 1.

One can also use further congruence considerations to get more restrictions on a potential
prime p with ϕ(pk) = αl or ϕ(pk) = βl. We show this exemplarily for the case ϕ(pk) = αl.

We have αl ≡ 2 mod 3. Since αl = pk−1(p − 1), we get p − 1 6≡ 0 mod 3. This implies
p ≡ 2 mod 3. We also get k ≡ 0 mod 2, since otherwise pk−1(p − 1) ≡ 1 mod 3. Since
αl ≡ 3 mod 5 and k needs to be even, we further get p ≡ 2 mod 5 and k ≡ 0 mod 4. Moreover,
αl ≡ 5 mod 9 implies either p ≡ 2 mod 9 and k ≡ 0 mod 6 or p ≡ 5 mod 9 and k ≡ 4 mod 6.

Combining these congruences with the Chinese Remainder Theorem, we get that either p ≡
2 mod 45 and k ≡ 0 mod 12, or p ≡ 32 mod 45 and l ≡ 4 mod 12.

If l is big enough, we can get further congruence conditions modulo powers of 2. For example,
if l ≥ 2, we have αl ≡ 6 mod 8, which implies p ≡ 3 mod 8. If l ≥ 3, an analogous argument
yields p ≡ 11 mod 16.

Starting from p ≡ a mod 2m, we get p ≡ a mod 2m+1 or p ≡ a + 2m mod 2m+1. Which
of these cases occurs can be determined with Hensel’s Lemma: If we consider the polynomial
f(x) = xk−xk−1−αl, we get f(a) ≡ f(p) = pk−pk−1−αl = 0 mod 2m and f ′(a) = kak−2(a−
1) + ak−2 ≡ 1 mod 2. Thus, there exists a unique s modulo 2m+1 such that f(s) ≡ 0 mod 2m+1

and s ≡ a mod 2m. This is given by s = a+ f(a). But since k is not fixed, different possibilities
can occur if k varies.

If one could give congruence conditions on p and k for general powers of 2, one could try to
use the congruences p ≡ a mod m and k ≡ b mod n to conclude that pk−1 > αl, which would
yield the impossibility of the representation αl = pk−1(p − 1). Using the congruence conditions
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developed above, this works for l small enough: If l ≥ 3, we get p ≥ 587 and k ≥ 12 or p ≥ 347

and k ≥ 4, and this yields pk−1 > αl for l ≤ 8.
To show the conjecture for αl, one could also consider the Diophantine exponential equation

7 · 10l = pk − pk−1 + 2, since αl−1 = 7 · 10l − 2. Equations of this type have, for example,
been considered by Baker. In [1], he develops upper bounds on p, but these bounds are increasing
when l increases (besides, these bounds are so huge that the remaining cases cannot be checked
with computer calculations). Maybe a consideration of the particular equation above with similar
methods can yield a solution to Conjecture 1.

In Conjecture 2 we have to consider much more natural numbers for a given number of digits.
Here computer calculations show that the conjecture holds for all such numbers with at most 20

digits.
Finally, note that Maier and Pomerance [9] showed that the number of distinct values of the

Euler totient function not exceeding x is equal to

x

log x
exp((C + o(1))(log log log x)2)

for a positive constant C.
Hence, the probability that a ‘random’ number not exceeding x is in the image of the totient

function is roughly 1
log x

. So if x has k digits, the probability that x is in the image of the to-
tient function is roughly 1

k
. If we suppose that the numbers considered in the conjectures are

‘random’, this means that large counterexamples get more unlikely, but since the harmonic series
diverges, this would predict infinitely many counterexamples (and even small counterexamples
for Conjecture 2).

On the other hand, as shown above, counterexamples to Conjectures 1 and 3 have to be of
the form pk − pk−1 with p, k ≥ 3. Note that each number of this form is the value of the totient
function of a prime power pk with p, k ≥ 3 and if pk−pk−1 ≤ x, we have pk ≤ p

p−1x < 2x. Hence
the number of integers not exceeding x of this form is less than the number of prime powers pk

not exceeding 2x with p, k ≥ 3. If we denote this number by Π3(2x), we have

Π3(2x) =

blog3(2x)c∑
k=3

π((2x)
1
k ),

where π(x) denotes the number of primes not exceeding x and bxc denotes the greatest integer
less than or equal to x. Using the prime number theorem, we get as a rough estimate

Π3(2x) = O

blog3(2x)c∑
k=3

(2x)
1
k

1
k

log 2x


= O

 x
1
3

log x

blog3(2x)c∑
k=3

k


= O

(
x

1
3

log x
(log3(2x))2

)
= O

(
x

1
3 log x

)
.
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This implies, that the probability, that a ‘random’ k-digit number is of the above form, is at most
O
(
k · 10−

2k
3

)
. Hence, if αl and βl are ‘random’ numbers, at most finitely many counterexamples

to Conjectures 1 and 3 exist.
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