The Efficient Calculation of a Combined
Fermat PRP and Lucas PRP Test

Paul Underwood

November 24, 2014

Abstract

By an elementary observation about the computation of the dif-
ference of squares for large integers, a deterministic probable prime
(PRP) test is given with a running time almost equivalent to that of
a Lucas PRP test but with the combined strength of a Fermat PRP
test and a Lucas PRP test.

1 Introduction

Much has been written about Fermat PRP tests [1, 2, 3], Lucas PRP tests [4,
5], Frobenius PRP tests [6, 7, 8, 9, 10, 11, 12] and combinations of these [13,
14, 15]. These tests provide a probabilistic answer to the question: “Is this
integer prime?” Although an affirmative answer is not 100% certain, it is
answered fast and reliable enough for “industrial” use [16]. For speed, these
PRP tests are usually preceded by factoring methods such as sieving and
trial division.

The speed of the PRP tests depends on how quickly multiplication and
modular reduction can be computed during exponentiation. Techniques
such as Karatsuba’s algorithm [17, section 9.5.1], Toom-Cook multiplication,
Fourier Transform algorithms [17, section 9.5.2] and Montgomery exponen-
tiation [17, section 9.2.1] play their roles for different integer sizes. The sizes
of the bases used are also critical.

Oliver Atkin introduced the concept of a “selfridge” [18], approximately
equal to the running time of a Fermat PRP test. Hence a Lucas PRP test
is 2 selfridges. The Baillie-PSW test costs 142 selfridges, the use of which
is very efficient when processing a candidate prime list; There is no known
Baillie-PSW pseudoprime but Greene and Chen give a way to construct
some examples [19]. However, if the 2 selfridges test presented in this paper

is preceded with a Fermat 2-PRP test it also becomes 142 selfridges, but
with the strength of a 1+1-+2 selfridges one.

2 Calculation (mod n,z* —az + 1)

At first sight, taking a modularly reduced power of = would appear to be
more efficient than taking a modularly reduced power of something more
complicated, but this turns out to be false for the case presented here.

For integer a, the equation 22 — az 4+ 1 = 0 has discriminant A = a? — 4

and solution
a+t \/K
2

There is a method to reduce any power of x to one of at most degree 1
polynomial in z since, for integer n > 1, we can recursively use

2" = (ax — 1)z 2

For an odd prime p, the Jacobi symbol (%) equals the Legendre symbol
(%). So if Jacobi symbol (%) = —1 then A will not be square modulo p,

and by the Frobenius automorphism, 2”7 = a —z (mod p,2? — az + 1) so
that
P +r=a (modp,z®—axr+1)

In general, for a prime number, p, and for integers S and 71"
(Sx+T)P = SPzxP + (Z (p) (Sx)P~'T") + TP

=1 ¢

and since the indicated binomial coefficients are divisible by p and since
SP =S (mod p) and TP =T (mod p) we have

(Sx+T)P=S2P+T (mod p)
Multiplying by Sz + T gives

(Sx+T)(SaP +1T) (mod p)
2Pl 4 STaP + STx + T2 (mod p)
S2xPtL 4 ST (2P + x) + T2 (mod p)
S% +aST + T? (mod p, 2% —azx + 1) (x)

(Sz + TPt

In practice, left to right binary exponentiating of Sz +T to the (n+ 1)t
power can be accomplished with intermediate values s and ¢ as follows.

Firstly, obtain the binary representation of n + 1. Secondly, assign s = S
and ¢t = T. Thirdly, loop over bits of n + 1, left to right, starting at the
274 hit, squaring the intermediate sum, sz + ¢, at each stage and if the
corresponding bit is 1 multiply the resulting squared intermediate sum by
the base Sx + T.

Squaring the intermediate sum is achieved with appropriate modular
reductions:

(sx+1)? = 5222+ 2stx + 12
= s%(ax — 1) + 2stw + 2 (mod n, 2% — ax + 1)
= (as®+2st)x — s+ 12 (mod n,2? — ax + 1)

s(as +2t)x + (t — s)(t + s) (mod n,2? — ax + 1)
If the bit is 1 in the loop then the following must be calculated:
(sx +t)(Sz+1T)

5822 + (sT + tS)x + T
sS(ar — 1)+ (sT +tS)z +tT (mod n,2? — ax + 1)
(asS + sT +tS)x +tT — sS (mod n, 2% — ax + 1)

If @, S and T are small then the squaring part is dominated by 2 major
multiplications and 2 modular reductions: s by as + 2¢ modulo n, and
t — s by t + s modulo n; the “if” part is relatively faster. This makes an
algorithm that is a little over 2 selfridges. In pseudocode the process can be
summarized as

function general(n,a,S,T) {

BIN=binary(n+1);

LEN=length (BIN) ;

aSpT=a*S+T;

s=S;

t=T;

for (index=2;index<=LEN;index++) {
temp=(s* (a*s+2*xt))%n;
t=((t-s) *(t+s))%n;
s=temp;
if (BIN[index]==1) {

temp=s*aSpT+t*S;

t=t*T-s*5;
s=temp;
}
}
return((s==0) && (t==(S*S+a*S*T+T*T)%n));

}

If S =1and T = 0 the following program for computing the binary
Lucas chain [17, algorithm 3.6.7] is quicker, being 2 selfridges

function lucas(n,a) {
BIN=binary(n);
LEN=1length (BIN) ;
va=2;
vb=a;
for (index=1;index<=LEN;index++) {
if (BIN[index]==1) {
va=(va*vb-a)%n;
vb=(vb*vb-2) %n;
} else {
vb=(va*vb-a)¥%n;
va=(va*xva-2)%n;
}
}
return((va==a) && (vb==2));

3 Equivalence of Tests
The main test (x) for odd n, with Jacobi symbol (%) =-1,is

(Sz+T)"™ =82 +aST +T? (mod n,z? — azx + 1)
This is equivalent to
e =82 4 ST +T?% (mod n,2? — (aS 4 2T)x + S* + aST + T?)

Let
P=aS+2T

Q= S%+4aST +T?
If ged(PQ,n) = 1, so that the inverse of Q modulo n exists, the main test
implies the Fermat PRP test:

Q" '=1 (modn)

and, following [17, Section 3.6.3], implies the Lucas PRP test:

P2
2" =1 (mod n,z* — (5 —2)z+1).

The number 21 with a = 6, S =1and T = 8, and so P = 22 = 1
(mod 21) and @ = 113 =8 (mod 21), is an example composite that passes
the Fermat PRP test but not the Lucas PRP test. For a vice versa example:
composite 27 witha =6, S =1and T = 7,sothat P =20 and =92 =11
(mod 27), passes the Lucas PRP test but not the Fermat PRP test.

4 The Main Algorithm for S =1 and T =2

A test is now presented that is a little over 2 selfridges. In comparison to the
binary Lucas chain algorithm for a binary representation with an average
number of ones and zeroes, the presented test requires an extra 7 operations
per loop iteration of multiple precision word additions or multiplications of
multiple precision words by small numbers. Branching the code to handle
the cases where ¢ = 0 and a = 1 will reduce the operation count to 5 and
6 respectively. Perhaps the biggest difference in running times for the vari-
ous PRP tests is that a Fermat PRP is dominated by a modularly reduced
squaring per loop iteration; the Lucas PRP test requires a modularly re-
duced squaring and a modularly reduced multiplication in its loop iteration;
and the test presented in this section requires 2 modularly reduced multi-
plications per loop iteration. For an example of this difference, if Fourier
Transform arithmetic is used, only 1 forward transform is required for a
squaring operation, whereas 2 are required for multiplication.

For a candidate odd prime n, a minimal integer a > 0 such that the
Jacobi symbol (#) = —1 is sought. Then there is no ambiguity about
how the algorithm works, there is no randomness. If, while searching for

a minimum a, a value is found such that the Jacobi symbol (a2n_4 =0

then clearly n is not prime, but this is unlikely to occur if sieving or trial
division is performed firstly. Another reason for choosing a minimal a is that
there is more likelihood that the Jacobi symbol will be 0 for the numerous
candidates with small factors. The time taken to test a Jacobi symbol is
negligible, but some time can be saved by testing a chosen in order from

0,1,3,5,6,9,11,12,13,15,17, 19,20, 21, 24, 25, 27, 29, 30, 31, 32. ..

Clearly, 2 is to be omitted from this list. a = 4 is omitted because it is
covered by a = 0 and @ = 1. a = 7 is omitted since (%) = (72;4), and
so on. Also, if a candidate prime is a square number then a Jacobi symbol
equal to —1 will not be found. So it is recommended that a squareness test,

which is rapid, is computed initially. To ensure the implications of section

3, the following is screened for:
ged((a+4)(2a+5),n) =1
On finding a Jacobi symbol equal to —1 the following test can be done:
(x+2)""' =24 +5 (mod n,2® —azx +1)
The pseudocode for this test is

function selfridge2(n,a) {
BIN=binary(n+1);
LEN=length (BIN) ;
ap2=at+2;
s=1;
t=2;
for (index=2;index<=LEN;index++) {
temp=(s* (a*s+2*t))¥%n;
t=((t-8)*(t+s))%n;
s=temp;
if (BIN[index]==1) {
temp=ap2*s+t;
t=2%t-s;
s=temp;
}
}
return((s==0) && (t==(2*a+5)%n));
}

Using primesieve [20] and the GMP library [21], verification of the algo-
rithm was pre-screened with the implied Fermat PRP test (2a + 5)" ! = 1
(mod n). For odd n < 20 there were 1,518,678 such pseudoprimes. The
maximum a required was 81, for n = 170557004069761. However, none that
passed pre-screening were a pseudoprime for the full algorithm when run
under Pari/GP [22].

5 Conclusion

Figure 1 is a plot of pseudoprimes of the algorithm given in section 4 but
for freely ranging a and odd n < 2-107. This leaves us with the question:
Does a minimum a for a pseudoprime ever come close to the minimum a
required by the algorithm?

.
6 [.
In of max a used in the algorithm over this range
2 | | |
0 5 10 15 20

million n

Figure 1: Pseudoprimes for S=1 and T=2

Another question: The Baillie-PSW test uses two independent tests, a
strong Fermat 2-PRP test and a specific Lucas PRP test, whereas the test
given in section 4 depends on one parameter, a. Can this difference influence

reliability?

6 Acknowledgements

I thank Vincent Diepeveen for helping me code C/C++ and for allowing
me to use his prime sieving function. Thanks to members of mersennefo-
rum.org and Yahoo! primenumbers groups for their encouraging remarks,
in particular Carlos Pinho, Maximilian Hasler and Dana Jacobsen.

References

1]

C. Pomerance, J. L. Selfridge, and S. S. Wagstaff, Jr., “The pseudo-
primes to 25 - 10°,” Mathematics of Computation, vol. 35, no. 151,
pp. 1003-1026, 1980.

M. O. Rabin, “Probabilistic algorithm for testing primality,” Journal
of Number Theory, vol. 12, no. 1, pp. 128-138, 1980.

S. H. Kim and C. Pomerance, “The probability that a random probable
prime is composite,” Mathematics of Computation, vol. 53, no. 188,
pp- 721-741, 1989.

F. Arnault, “The rabin-monier theorem for lucas pseudoprimes,” Math-
ematics of Computation, vol. 66, no. 218, pp. 869-881, 1997.

H. C. Williams, Edouard Lucas and Primality Testing. Wiley-
Interscience, 1998.

J. Grantham, “A frobenius probable prime test with high confidence,”
Journal of Number Theory, vol. 72, pp. 32—47, 1998.

J. Grantham, “Frobenius pseudoprimes,” Mathematics of Computation,
vol. 70, pp. 873-891, 2001.

S. Miiller, “A probable prime test with very high confidence for n equiv 1
mod 4,” Proceedings of the 7th International Conference on the Theory
and Application of Cryptology and Information Security: Advances in
Cryptology, pp. 87-106, 2001.

I. B. Damgard and G. S. Frandsen, “An extended quadratic frobe-
nius primality test with average and worst case error estimates,” Lec-
ture Notes in Computer Science. Fundamentals of Computation Theory
(Springer Berlin Heidelberg), vol. 2751, pp. 118-131, 2003.

M. Seysen, “A simplified quadratic frobenius primality
test.” http://www.dm.unito.it/~cerruti/zyx/Articoli/
simplified-quadratic-frobenious.pdf, 2005.

D. Loebenberger, “A simple derivation for the frobenius pseudoprime
test.” Cryptology ePrint Archive, Report 2008/124, 2008. http://
eprint.iacr.org/.

[12]

[13]

[14]

[15]

[19]

[20]
21]

[22]

S. Khashin, “Counterexamples for frobenius primality test,” eprint
arXw:1307.7920, 2013.

R. Baillie and S. S. Wagstaff, Jr., “Lucas pseudoprimes,” Mathematics
of Computation, vol. 35, pp. 1391-1417, October 1980.

C. Pomerance, “Are there counterexamples to the baillie-psw primality
test?.” http://www.pseudoprime.com/dopo.pdf, 1984.

7. Zhang, “A one-parameter quadratic-base version of the baillie-psw
probable prime test,” Mathematics of Computation, vol. 71, no. 240,
pp. 1699-1734, 2002.

b

C. Caldwell, “probable prime.
xpage/PRP.html, 1999-2014.

http://primes.utm.edu/glossary/

R. Crandall and C. Pomerance, Prime Numbers, A Computational Per-
spective, 2nd Ed. Springer, 2005.

A. O. L. Atkin., “Intelligent primaility test offer,” Computational Per-
spectives on Number Theory (D. A. Buell and J. T. Teitelbaum, eds.),
Proceedings of a Conference in Honor of A. O. L. Atkin, International
Press, pp. 1-11, 1998.

J. R. Greene and Z. Chen, “Want to earn some cash the hard way?.”
http://www.d.umn.edu/~jgreene/baillie/Baillie-PSW.html.

“primesieve.” http://primesieve.org, 2014.

“The gnu multiple precision arithmetic library.” https://gmplib.
org/, 2014.

“Pari/gp.” http://pari.math.u-bordeaux.fr/, 2014.

E-mail address: paulunderwood@mindless.com

