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GROUPS OF PRIME DEGREE AND THE BATEMAN–HORN CONJECTURE

GARETH A. JONES AND ALEXANDER K. ZVONKIN

Abstract. As a consequence of the classification of finite simple groups, the classification of per-

mutation groups of prime degree is complete, apart from the question of when the natural degree

(qn − 1)/(q − 1) of PSLn(q) is prime. We present heuristic arguments and computational evidence

based on the Bateman–Horn Conjecture to support a conjecture that for each prime n ≥ 3 there are

infinitely many primes of this form, even if one restricts to prime values of q. Similar arguments and

results apply to the parameters of the simple groups PSLn(q), PSUn(q) and PSp2n(q) which arise in

the work of Dixon and Zalesskii on linear groups of prime degree.

1. Permutation groups of prime degree

One of the oldest problems in Group Theory is to classify the permutation groups of prime

degree, originally studied in terms of the solution of polynomial equations of prime degree. Let G

be a transitive permutation group of prime degree p. In 1831 Galois [20] proved that G is solvable

if and only if G is (isomorphic to) a subgroup of the 1-dimensional affine group

AGL1(p) = {t 7→ at + b | a, b ∈ Fp, a , 0} � Cp ⋊ Cp−1

containing the translation subgroup {t 7→ t+b} � Cp. There is one such group G for each d dividing

p − 1, namely

{t 7→ at + b | a, b ∈ Fp, a
d
= 1} � Cp ⋊ Cd.

In 1906 Burnside ([8], [9, §251]) proved that if G is nonsolvable then G is 2-transitive. In

this case G has a unique minimal normal subgroup S , 1 which is simple and also 2-transitive,

with centraliser CG(S ) = 1, so that G ≤ Aut S . This reduces the problem to studying nonabelian

simple groups S of degree p and their automorphism groups. The classification of finite simple

groups (announced around 1980) implies a classification of those with 2-transitive actions (see [10]

or [16], for example). Most of these have composite degree; those of prime degree are as follows:

a) S = Ap, G = Sp, for primes p ≥ 5;

b) S = PSLn(q) ≤ G ≤ PΓLn(q) = PGLn(q) ⋊ GalFq in cases where the natural degree

m := (qn − 1)/(q − 1) of these groups is prime;

c) S = PSL2(11), M11 and M23 for p = 11, 11 and 23.

In (b) the groups act on the m points (or m points and hyperplanes if n ≥ 3) of the projective

geometry Pn−1(Fq) for a prime power q. In (c), PSL2(11) acts on the 11 cosets of a subgroup H � A5

(two conjugacy classes, giving two actions, equivalent to those on the vertices and cells of the

hendecachoron or 11-cell, a nonorientable 4-polytope discovered independently by Grünbaum [22]
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and Coxeter [11]; see also [26]); M11 and M23 are Mathieu groups, acting on block designs with

11 and 23 points.

Unfortunately, this result does not tell us when the degree m in (b) is prime. Indeed, it is unknown

whether there are finitely or infinitely many such ‘projective primes’, as we will call them.

Open Problem: In (b), is the degree

m =
qn − 1

q − 1
= 1 + q + q2

+ · · · + qn−1 (q a prime power)

prime in finitely or infinitely many cases?

If n = 2 the projective primes m are the Fermat primes 1 + 2e, e = 2 f ; the only known examples

are 3, 5, 17, 257, 65537 for f ≤ 4. If q = 2 the primes m are the Mersenne primes 2n−1, n prime; at

the time of writing, 51 examples 3, 7, 31, . . . , 282 589 933 − 1 are known. It is widely conjectured that

there are no further Fermat primes, but infinitely many Mersenne primes. These are very old and

difficult problems; with nothing new to say about them, we will assume from now on that n, q ≥ 3.

Our main conjecture is that there are infinitely many projective primes. The goal of this note

is to present heuristic arguments and computational evidence to support this conjecture. See [29]

for further details, [28] for applications to dessins d’enfants (maps on surfaces representing curves

defined over algebraic number fields), and [30] for a similar problem involving block designs.

2. Conjectures

If a polynomial f (t) ∈ Z[t] takes infinitely many prime values for t ∈ N then clearly

• its leading coefficient is positive,

• it is irreducible in Z[t], and

• it is not identically zero modulo any prime.

In 1857 Bunyakovsky, the discoverer of the infinite-dimensional form of the Cauchy–Schwarz

inequality, conjectured in [6] that these conditions are also sufficient. (The last condition is needed

to exclude cases like t2
+ t+2, which is irreducible but takes only even values.) The case deg f = 1

is true: this is Dirichlet’s Theorem on primes in an arithmetic progression (see [5, §5.3]). No other

case is proved, not even t2
+ 1, studied by Euler [15] and Landau. Writing q = pe we require the

result for f (t) = 1 + te
+ t2e

+ · · · + t(n−1)e, but with the extra condition that t should also be prime.

Schinzel’s Hypothesis H [40] deals with this restriction by extending Bunyakovsky’s conjecture

to finite sets of polynomials f1, . . . , fk simultaneously taking prime values infinitely often. An

obvious necessary condition is that each fi should satisfy the first two Bunyakovsky conditions,

while the third is that f (t) :=
∏k

i=1 fi(t) should not be identically zero modulo any prime. For

example, t(t + 1) is identically zero mod (2), while t(t + 2) is not. It is conjectured that these

conditions are also sufficient, but as in the case of the Bunyakovsky Conjecture this has been

proved only in the case k = 1, deg f1 = 1. (However, see [41] for recent evidence in support of

Hypothesis H.)

In addition to cases with k = 1, such as the Euler–Landau problem, conjectures which would

follow from a proof of Hypothesis H include

• f1 = t, f2 = t + 2, the twin primes conjecture;
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• f1 = t, f2 = 2t + 1, the Sophie Germain primes conjecture;

• f1 = t, f2 = 1 + te
+ t2e

+ · · · + t(n−1)e for fixed e and n, particular cases of our projective

primes conjecture, provided f2 is irreducible (see Section 3).

Remark 2.1 (Hypothesis H0). In the same paper [40], the authors formulate an apparently weaker

conjecture H0: under the same conditions as above, the values f1(t), . . . , fk(t) are all prime for at

least one positive integer t. It turns out, however, that H0 implies H, and this fact is trivial! It

suffices to consider the sets of polynomials f1(t + c), . . . , fk(t + c) for constants c ∈ N, and to note

that, according to H0, the values of the polynomials in each of the sets are all prime for at least one

integer t > 0.

In 1962 Bateman and Horn [3] proposed a quantified version of Schinzel’s Hypothesis H which,

if proved, would imply all the above conjectures (see [1] for an excellent survey).

Conjecture 2.2 (The Bateman–Horn Conjecture (BHC)). If distinct polynomials f1, . . . , fk satisfy

the above conditions, and Q(x) is the number of positive integers t ≤ x such that f1(t), . . . , fk(t) are

all prime, then

(1) Q(x) ∼ E(x) :=
C

∏k
i=1 deg fi

∫ x

2

dt

(ln t)k
as x→ ∞,

where

(2) C = C( f1, . . . , fk) :=
∏

prime r

(

1 −
1

r

)−k (

1 −
ω f (r)

r

)

with the product over all primes r, and ω f (r) is the number of solutions in Fr of f (t) = 0.

The infinite product converges to a limit C > 0 (see [1] for a proof), and
∫ ∞

2
dt/(ln t)k diverges for

each k ≥ 1, so E(x) → ∞ with x; thus f1(t), . . . , fk(t) are simultaneously prime for infinitely many t

provided the conjecture is true. However, it is proved only in the case of Dirichlet’s Theorem.

Since
∫ x

2

dt

(ln t)k
=

x

(ln x)k
+ O

(

x

(ln x)k+1

)

,

there is an alternative form

(3) Q(x) ∼ H(x) :=
C

∏k
i=1 deg fi

·
x

(ln x)k
as x→ ∞

for the estimate, which can be more convenient but significantly less accurate.

Example 2.3. Taking k = 1 and f1 = f = t we get ω f (r) = 1 for all prime r, so that C = 1.

Therefore, we obtain the two familiar versions of the Prime Number Theorem:

π(x) ∼ Li(x) :=

∫ x

2

dt

ln t
∼

x

ln x
.

The function Li(x) is also called the offset logarithmic integral function. The estimate x/ln x is that

of Hadamard and de la Vallée Poussin, while the estimate Li(x) is a particular case of the BHC. To
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compare these two estimates, let us take π(1025) = 176 846 309 399 143 769 411 680 (see the entry

A006880 of [36]). Then the relative error of the estimate 1025/ln(1025) is −1.77 %, while that of

the estimate Li(1025) is 3.12 · 10−11 %.

For a heuristic proof of the BHC see the original paper [3] by Bateman and Horn and also a

recent overview [1].

Remark 2.4 (An improved estimate). Li [33] has recently proposed a modification of the BHC, in

which 1/ln fi(t) is used instead of 1/di ln t. This gives significantly better estimates E(x) in cases

such as the Sophie Germain primes conjecture involving a non-monic polynomial fi, but when

each fi is monic, as in our case, the effect is negligible.

3. Irreducibility of the polynomial (tne − 1)/(te − 1)

In order to apply the BHC to the projective groups of prime degree we consider two polynomials,

f1 = t and f2 = (tne − 1)/(te − 1), and we need to ensure that the polynomial f2 is irreducible.

Lemma 3.1. Given integers n ≥ 2 and e ≥ 1, the polynomial

f2(t) =
tne − 1

te − 1
= 1 + te

+ t2e
+ · · · + t(n−1)e

is irreducible in Z[t] if and only if n is prime and e is a power ni (i ≥ 0) of n.

Proof. If k ∈ N the cyclotomic polynomial Φk(x) is, by definition, the polynomial with integer

coefficients whose roots are the primitive kth roots of unity. It is irreducible and has degree ϕ(k),

where ϕ is the Euler totient function. For any n ∈ N we have xn − 1 =
∏

d|nΦd(x) (see [5, §5.2.1]

or [35, §4.3, Problem 26]). Putting x = te gives

(4) f2(t) =
tne − 1

te − 1
=

∏

d

Φd(t),

with the product over all d which divide ne but not e. Thus f2 is irreducible if and only if there is just

one such divisor d (which is ne itself, of course). By considering the prime power decompositions

of e and ne one can see that this happens if and only if n is prime and e is a power of n. �

4. Primality testing

To find Q(x) for various large x, we used the Rabin–Miller (RM) primality test [38]. It deter-

mines whether a given number is prime or composite without trying to factor it but by checking

independent instances of a necessary primality condition. There is a real abyss between the com-

plexities of the most efficient factoring algorithms and the RM-test. To give but one example,

it took 4400 GHz-years to factor a 232-digit number into two 116-digit primes, see [39]. The

RM-test gives a correct answer (“the number is composite”) in less than 0.0005 seconds on a very

modest laptop.

The RM-test is probabilistic. If it affirms that a given number is composite, then it is indeed

composite. If, however, the test affirms that a number is prime, the number may turn out to be com-

posite. The probability of such an event is infinitesimally small: during 40 years of widespread use
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of the RM-test not a single such error has ever been reported1. Note also that long computations are

prone to hardware errors. If, however, by incredibly bad luck a few of our ‘primes’ are composite,

this would not invalidate our evidence of literally millions of projective primes.

5. Applying the Bateman–Horn Conjecture to projective groups

5.1. Relative abundance of types of projective primes. We tested the BHC estimates for projec-

tive primes against the results of computer searches. Define a projective prime m = 1+q+ · · ·+qn−1

with q = pe, p prime, to have type (e, n). For each type satisfying Lemma 3.1 define P(x) = P(e,n)(x)

to be the number of primes p ≤ x such that p and m are prime, and let E(x) = E(e,n)(x) be the cor-

responding Bateman–Horn estimate (1) for P(e,n)(x), formed using the polynomials

f1(t) = t and f2(t) = 1 + te
+ t2e

+ · · · + t(n−1)e.

The smallest projective primes m, as a function of p, are those of type (1, 3), of the form m =

1 + p + p2 with p prime (recall that we have excluded the case n = 2), so this type appears most

frequently in searches up to a given bound. For example, all but 301 of the 1 974 311 projective

primes m ≤ 1018 have type (1, 3). The second most frequent type is (1, 5), with 252 examples

m ≤ 1018.

Segment #(prime p) #(prime m) ratio max p

2, . . . , 1010 455 052 511 15 801 827 3.473% 9 999 999 491

1010, . . . , 2 · 1010 427 154 205 13 882 936 3.250% 19 999 999 757

2 · 1010, . . . , 3 · 1010 417 799 210 13 279 095 3.178% 29 999 999 921

3 · 1010, . . . , 4 · 1010 411 949 507 12 913 713 3.135% 39 999 999 719

4 · 1010, . . . , 5 · 1010 407 699 145 12 645 233 3.102% 49 999 999 619

5 · 1010, . . . , 6 · 1010 404 383 577 12 439 618 3.076% 59 999 999 429

6 · 1010, . . . , 7 · 1010 401 661 384 12 274 191 3.056% 69 999 999 287

7 · 1010, . . . , 8 · 1010 399 359 707 12 136 112 3.039% 79 999 999 679

8 · 1010, . . . , 9 · 1010 397 369 745 12 010 780 3.023% 89 999 999 981

9 · 1010, . . . , 1011 395 625 822 11 910 803 3.011% 99 999 999 977

Total 4 118 054 813 129 294 308 3.140% 99 999 999 977

Table 1. The second column gives the number of primes in the corresponding seg-

ment, while the third column gives the number of those primes p which yield a

projective prime m = 1 + p + p2. The proportion of such primes among all the

primes of the second column is given in the fourth column.

As further evidence for the abundance of projective primes of type (1, 3), our colleague Jean

Bétréma examined all primes p ≤ 1011 using the package Primes.jl of the language Julia. This

1A dialogue from Gilbert and Sullivan’s I am the Captain of the Pinafore comes to mind: “What, never? No, never.

What, never? Well, hardly ever”.
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is much more efficient than Maple for problems of this sort. We partially reproduce Bétréma’s

results in Table 1.

Thus 129 294 308 primes p ≤ 1011 give a prime m of type (1, 3); the largest is 99 999 999 977,

with m = 9 999 999 995 500 000 000 507. The ratio decreases as the upper limit grows, but it seems

reasonable to conjecture that even in this restricted case there are infinitely many projective primes.

In making our estimates, we concentrated on the apparently most abundant case of type (1, 3),

though we did not neglect other apparently less frequent types, such as (1, 5) and (3, 3). For types

(1, n) with n prime the polynomials f1 = t and f2 = 1 + t + t2
+ · · · + tn−1 satisfy the conditions of

the BHC. The roots of f = f1 f2 in Fr are 0 for all primes r, together with 1 if r = n, and the n − 1

primitive n-th roots of 1 if r ≡ 1 mod (n), so ω f (r) = 2, n or 1 as r = n, r ≡ 1 mod (n) or otherwise.

5.2. Type (1, 3). Using these values for n = 3, we computed C = C( f1, f2) = 1.521730 by taking

partial products in (2) over the primes r ≤ 109. To count primes m = 1 + p + p2 ≤ 1018 we took

p ≤ x = 109 (solving 1 + x + x2
= 1018 would be more precise, but the difference is negligible).

Using numerical integration, Maple gives
∫ x

2

dt

(ln t)2
= 2 594 294.364,

leading to an estimate

E(x) = E(1,3)(x) =
C

2

∫ x

2

dt

(ln t)2
= 1 973 907.86.

Comparing this with the true value P(x) = P(1,3)(x) = 1 974 010, found by computer search, shows

that the error in E(x) is about −0.0052 %.

As a second experiment with type (1, 3) we took x = i · 1010 for i = 1, 2, . . . , 10. Table 2 gives

the resulting values of P(x), E(x) and E(x)/P(x). The maximum relative error, attained in the first

line, is 0.034 %.

5.3. Type (1, 5). For projective primes of type (1, 5), using f1 = t and f2 = 1+ t+ · · ·+ t4 we found

that C = 2.571048. To count such primes m ≤ 1018 we took x = 109/2. Maple gives
∫ x

2

dt

(ln t)2
= 383.84,

so that

E(1,5)(x) =
C

4

∫ x

2

dt

(ln t)2
= 246.72,

compared with the true value P(1,5)(x) = 252.

5.4. Type (3, 3). With f1 = t and f2 = 1 + t3
+ t6, we found that C = 2.086089. Taking x = 103,

Maple gives

E3,3(x) =
C

6

∫ x

2

dt

(ln t)2
= 12.06,

compared with the true value P(3,3)(x) = 10.
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x P(x) E(x) E(x)/P(x)

1 · 1010 15 801 827 1.579642126 × 107 0.9996579044

2 · 1010 29 684 763 2.968054227 × 107 0.9998578150

3 · 1010 42 963 858 4.296235691 × 107 0.9999650617

4 · 1010 55 877 571 5.587447496 × 107 0.9999445924

5 · 1010 68 522 804 6.852175590 × 107 0.9999847043

6 · 1010 80 962 422 8.096382889 × 107 1.0000173771

7 · 1010 93 236 613 9.323905289 × 107 1.0000261688

8 · 1010 105 372 725 1.053741048 × 108 1.0000130940

9 · 1010 117 383 505 1.173885689 × 108 1.0000431394

1011 129 294 308 1.292974079 × 108 1.0000239757

Table 2. The second column gives the numbers P(x) = P1,3(x) of projective primes

m = 1+ p+ p2 for primes p ≤ x = i ·1010, where i = 1, . . . , 10 (the cumulative totals

from Table 1), the third column gives the corresponding Bateman–Horn estimates

E(x) = E1,3(x) for P(x), and the fourth column gives the ratios E(x)/P(x).

5.5. Other types (e, n). For other fixed types (e, n) there are too few projective primes within

our range of feasible computation for comparisons to be meaningful. Nevertheless, in all cases

E(e,n)(x) → ∞ as x → ∞, so the accuracy of the above estimates encourages us to conjecture that

there are infinitely many projective primes of each possible type (e, n).

5.6. Fixed q, n → ∞. Computer searches for fixed q and n → ∞ are even more difficult, and the

BHC no longer applies (though similar heuristic estimates are possible), so rather than making a

conjecture we simply ask whether any fixed q (necessarily prime, by Lemma 3.1) yields infinitely

many projective primes. This generalises the Mersenne primes problem for q = 2.

6. Groups of prime power degree

Although Section 5 of this paper concentrates on those cases where the natural degree m of

PSLn(q) is prime, there is also interest in cases such as PSL2(8) and PSL5(3) where m is a prime

power (32 and 112 respectively). For instance, Guralnick [24] has shown that if a nonabelian simple

group S has a transitive representation of prime power degree, then S is an alternating group or

PSLn(q) acting naturally, or PSL2(11), M11 or M23 acting as in (c) in Section 1, or the unitary

group U4(2) � Sp4(3) � O5(3) permuting the 27 lines on a cubic surface. In particular, S is doubly

transitive in all cases except the last, where it has rank 3. See also [14], where Estes, Guralnick,

Schacher and Straus have shown that for each prime p there are only finitely many e, q, n ≥ 3 such

that pe
= (qn − 1)/(q − 1).

If n is composite then PSLn(q) cannot have prime degree, but could it have prime power degree?

More generally, while a reducible polynomial f (t) ∈ Z[t] can take only finitely many prime values,

can it take infinitely many prime power values? This issue is addressed in [30].
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7. Linear groups of prime degree

One can also apply this technique to other situations within Group Theory, such as the clas-

sification of linear groups of prime degree, where ‘degree’ in this context means the degree, or

dimension m, of a faithful irreducible matrix representation over C. For example, in [12] Dixon

and Zalesskii have classified the finite primitive subgroups G ≤ SLm(C), for prime m, that is, those

which preserve no non-trivial direct sum decomposition of the natural module Cm. The centre

Z of G, consisting of scalar matrices, has order 1 or m; if the socle (subgroup generated by the

minimal normal subgroups) M of G/Z is abelian then G/Z is an extension of a normal subgroup

M � Cm ×Cm by an irreducible subgroup of SL2(m), all of which are known; the authors therefore

concentrate on the case where M is non-abelian, dealing in the main paper with the case where M

acts primitively, and in a corrigendum with the imprimitive case (see Subsection 7.6 for the latter).

If M is primitive then it is a non-abelian simple group S with G/Z ≤ Aut S . Theorem 1.2 of [12]

gives a finite list of families of simple groups S which can arise, with necessary and sufficient

conditions on m and their parameters for such groups G to exist. This result is analogous to our

description in Section 1 of the permutation groups of prime degree, in the sense that for some

families it is unknown whether these conditions are satisfied by finitely or infinitely many sets of

parameters. For several of these families one can provide evidence for the latter by using the BHC

in the same way as we have applied it to permutation groups PSLn(q) of prime degree. The relevant

cases are as follows.

7.1. Unitary groups. As a simple example, Case (4) of Theorem 1.2 includes groups G for which

S is isomorphic to the unitary group PSUn(q), where the degree

m =
qn
+ 1

q + 1
= 1 − q + q2 − · · · + qn−1

of the representation is prime, so that n is an odd prime. (Here, as usual, q denotes a prime power.)

It is unknown whether there are finitely or infinitely many such pairs (n, q) for which m is prime.

The BHC estimates E(x) for the pair of irreducible polynomials

(5) f1(t) = t and f2(t) = 1 − te
+ t2e − · · · + t(n−1)e

are identical to those for f1(t) = t and f2(t) = 1+ te
+ t2e
+ · · ·+ t(n−1)e which we found in Section 5:

the values of ω f (r) are the same for all primes r, since there is a bijection t 7→ −t between the

roots of the two polynomials f = f1 f2 mod (r) for each r, while all other ingredients of (1) and

(2) are unchanged. It follows that our earlier estimates E(e,n)(x) for permutation groups PSLn(q) of

degree (qn − 1)/(q − 1) all apply in this new situation. The only difference is in the verification of

these estimates, where we determine the actual number Q(x) = Q(e,n)(x) of primes t ≤ x such that

1 − te
+ t2e − · · · + t(n−1)e is prime.

Some results of this kind are shown in Table 3, where the first column shows the type (e, n), and

the second and third columns show the numbers of primes m ≤ 1018 of the forms (qn − 1)/(q − 1)

and (qn
+1)/(q+1), where q = pe. (The prime m = 31 is counted twice in the second column, once

each for types (1, 3) and (1, 5).) The exceptional cases are defined to be those not of type (1, 3).
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Since the BHC estimates E(e,n)(x) for these two families of primes are identical, and are almost

identical with Li’s amendment, and since they agree very closely and fairly closely with the com-

puter searches in the two main cases of types (1, 3) and (1, 5), we extend our conjecture of infinitely

many primes (qn − 1)/(q − 1) for any given prime n ≥ 3 to those of the form (qn
+ 1)/(q + 1), and

hence to the associated linear groups G of these degrees.

(e, n) (qn − 1)/(q − 1) (qn
+ 1)/(q + 1)

(1, 3) 1 974 010 1 973 762

(1, 2) 1 –

(2, 2) 1 –

(4, 2) 1 –

(8, 2) 1 –

(16, 2) 1 –

(1, 5) 252 232

(1, 7) 21 24

(1, 11) 3 3

(1, 13) 4 3

(1, 17) 2 3

(1, 19) 1 2

(1, 23) – 2

(1, 31) 1 1

(1, 43) – 1

(1, 61) – 1

(3, 3) 10 9

(5, 5) – 1

(7, 7) 1 1

(9, 3) 1 1

Total 1 974 311 1 974 046

exceptional 301 284

Table 3. The second and third columns show the numbers of primes m ≤ 1018 of

the forms (qn − 1)/(q − 1) and (qn
+ 1)/(q + 1), where q = pe. The type (e, n) is

indicated in the first column.

7.2. Projective special linear groups. Several other cases in [12, Theorem 1.2] can be treated in

a similar way by using the BHC. For example, Case (2)(ii) includes groups G with S � PSL2(q)

where q and the degree m = (q − 1)/2 are both prime, that is, m is a Sophie Germain prime, one
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for which 2m + 1 is also prime. In this case we can take

(6) f1(t) = t (= m) and f2(t) = 2t + 1 (= q),

giving

C = C( f1, f2) = 2
∏

prime r>2

(

1 − 1

r

)−2 (

1 − 2

r

)

(the same as for twin primes, where fi(t) = t and t + 2, since in both cases ω f (r) = 1 or 2 as

r = 2 or r > 2, see [1]). This time, the constant is known with great accuracy: it is equal to

2C2 where the constant C2 = 0.66016181584686957393 (see [36], entry A001692) is called the

Hardy–Littlewood twin primes constant. With a non-monic polynomial f2, it is now more accurate

to use Li’s improvement of the BHC

E(x) = C

∫ x

2

dt

ln(t) · ln(2t + 1)
(7)

(see Remark 2.4), as he has shown in [33], where his Table 2 compares his estimates for x = 10n

(n = 2, . . . , 10) with those using the original BHC formula and with the actual number Q(x). We

reproduce here his results, removing those of the original BHC, computing the integrals a little

more accurately, and adding the relative errors of the estimates, see Table 4.

x Q(x) E(x) relative error

102 10 10.20 2.00 %

103 37 39.10 5.67 %

104 190 194.58 2.41 %

105 1 171 1 165.95 −0.43 %

106 7 746 7 810.64 0.83 %

107 56 032 56 127.94 0.17 %

108 423 140 423 294.39 0.036 %

109 3 308 859 3 307 887.89 −0.029 %

1010 26 569 515 26 568 824.04 −0.0026 %

Table 4. Q(x) is the number of t ≤ x such that both t and 2t + 1 are prime; E(x) is

the estimate of Q(x) given by formula (7).

To compare two estimates, we may take the original BHC estimate for x = 1010, namely,

C

∫ 1010

2

dt

(ln t)2
= 27 411 416.53

with the relative error 3.17 %. This accuracy is also not bad, but −0.0026 % is significantly better.

The above estimates provide strong support for the conjecture that there are infinitely many

Sophie Germain primes, and hence that there are infinitely many linear groups G in the family

under consideration.
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Case (2)(iii) of [12, Theorem 1.2] concerns groups G for which S � PSL2(q) where the degree

m = (q + 1)/2 is prime and q = p2k ≥ 5 for some odd prime p and integer k ≥ 0. Here we can

choose some fixed k ≥ 0, and take

(8) f1(t) = 2t + 1 (= p) and f2(t) =
(2t + 1)2k

+ 1

2
=

2k
∑

i=1

(

2k

i

)

2i−1ti
+ 1 (= m).

For example, if k = 0 then f2(t) = t + 1, so writing s := t + 1 we can apply the BHC (+Li) to the

polynomials g1(s) = s (= m) and g2(s) = 2s − 1 (= p); then C(g1, g2) = 1.3203236316 . . . again.

Lemma 7.1. Let f1 and f2 be as in (8), and denote d = 2k, k ≥ 1. Then

(9) ω f (r) =



















0 r = 2,

d + 1 if r ≡ 1 mod (2d),

1 otherwise.

Proof. The equation f1 = 2t + 1 = 0 has a single root for any r , 2. What remains is to show that

the equation f2(t) = 0 has d roots if r ≡ 1 mod (2d), and no roots otherwise.

For each prime r, the multiplicative group Ur of units mod (r) is cyclic, of order r−1. Hence, for

any n, the number of solutions of xn
= 1 in Ur is gcd(n, r−1), and the number of elements of order

exactly n is ϕ(n) if n divides r − 1 and 0 otherwise. For r > 2 the solutions of x2k

= −1 mod (r)

are the elements of order exactly 2 · 2k
= 2k+1, so the number of them is ϕ(2k+1) = 2k or 0 as 2k+1

divides r − 1 or not, that is, as r ≡ 1 mod (2k+1) or not. �

Lemma 7.1 allows us to compute the constants C( f1, f2), which we will denote here by C(k)

according to the exponent k in f2, so that deg f2 = d = 2k. All the constants in Tables 5 and 6 are

computed over r up to 109.

d = 2k C(k) Q(109) E(109) relative error

2 4.426783 5 448 994 5 448 648.05 −0.006 %

4 10.433814 6 373 197 6 365 668.39 −0.118 %

8 7.885346 2 394 012 2 395 075.38 0.044 %

16 14.642571 2 219 445 2 218 975.66 −0.021 %

Table 5. Q(109) is the number of t ≤ 109 such that both f1(t) and f2(t) are prime;

E(109) is the BHC-estimate of Q(109).

It is too time-consuming to compute further the values of Q(x) since the numbers f2(t) become

too large, but the computation of the constants C(k) does not present any additional difficulties.

Therefore, we give, in Table 6, a few additional values of this constant.
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d = 2k 32 64 128 256 512 1024

C(k) 14.424708 15.766564 12.357306 29.736770 29.939460 32.071863

d = 2k 2 048 4 096 8 192 16 384 32 768 65 536

C(k) 28.880619 33.684327 33.856467 32.037016 23.187603 44.755201

Table 6. Constants C(k) for k = 5, . . . , 16.

7.3. Irregular behaviour of the constants C(k). It is interesting that in this example, as k in-

creases, the Hardy–Littlewood constant C = C(k) also increases, but does not do so monotonically.

The following is a heuristic explanation of this curious phenomenon.

For each k ≥ 1 we have ω f (2) = 0, so (2) gives C(k) = 4
∏

r>2 cr where

cr =

(

1 −
1

r

)−2 (

1 −
ω f (r)

r

)

for each prime r > 2. Hence

(10) ln C(k) = ln 4 +
∑

r>2

ln cr,

where

ln cr = −2 ln

(

1 −
1

r

)

+ ln

(

1 −
ω f (r)

r

)

≈
2 − ω f (r)

r

for each prime r > 2. Now ω f (r) is the number of roots of the polynomial x(x2k

+ 1) mod (r), that

is, 1 + 2k or 1 as r ≡ 1 mod (2k+1) or not, so that

ln cr ≈
1 − 2k

r
or

1

r

respectively.

Let us define rk to be the least prime r ≡ 1 mod (2k+1), and let us partition the set of primes

r > 2 into three sets: the set Uk of those r < rk, the set Vk of those r ≡ 1 mod (2k+1), and the set

Wk of those satisfying rk ≤ r . 1 mod (2k+1). Now odd primes r are evenly distributed between

the 2k congruence classes of units mod (2k+1), so as r increases, those in Wk appear 2k − 1 times as

frequently as those in Vk. It follows that the positive and negative contributions to (10) of primes

in these two sets approximately cancel, leaving just the contributions from primes in Uk. Thus

ln C(k) ≈ ln 4 +
∑

r∈Uk

ln cr ≈ ln 4 +
∑

2<r<rk

1

r
≈ ln 4 + ln(ln rk) −

1

2
+ b,

(see [25, Theorem 427] or [35, Theorem 8.8(d)]) where

b := lim
x→∞















∑

r<x

1

r
− ln(ln x)















= 0.2614972128 . . .

is the Meissel–Mertens constant, and hence

(11) C(k) ≈ 4eb−1/2 ln rk = 4eb−1/2 ln(2k+1qk + 1) ≈ 4eb−1/2((k + 1) ln 2 + ln qk)
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where qk := (rk − 1)/2k+1 for each k ≥ 1.
Now the sequence of primes

rk = 5, 17, 17, 97, 193, 257, 257, 7681, 12289, 12289, 12289, 40961, 65537, 65537, 65537, 786433, . . .

gives the sequence of integers qk shown, for k = 1, . . . , 16 in Table 7, with the values of C(k),

rounded to the nearest integer, shown for comparison. The irregular behaviour of the terms ln qk

disturbs the steady increase of the terms (k + 1) ln 2 in (11). In particular, if qk is even then qk+1 =

qk/2 and hence ln qk+1 = ln qk − ln 2, explaining the occasional ‘plateaux’ in the sequence of

constants C(k).

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C(k) ≈ 4 10 8 15 14 16 12 30 30 32 29 34 34 32 23 45

qk 1 2 1 3 3 2 1 15 12 6 3 5 4 2 1 6

Table 7. C(k) (to the nearest integer) and qk for k = 1, . . . , 16.

Both sequences rk and bk may be found in the entries A035089 and A035050 of [36], respec-

tively; to get our sequences, the first two terms of these entries should be removed.

The above argument clearly lacks rigour: for example, we have not quantified the errors intro-

duced by the linear approximation of logarithms, or the extent to which the contributions from

primes in Vk and Wk ‘approximately cancel’. Moreover, instead of defining Uk by the inequal-

ity r < rk we could have reduced this upper bound, and argued as before, resulting in a smaller

multiplicative constant in (11). However, our aim here is explanation rather than precise proof,

revealing a cause for the irregular behaviour of the constants C(k) as k increases, rather than trying

to estimate them accurately. We leave that to the experts in this area of number theory.

7.4. Symplectic groups. Case (3)(i) of [12, Theorem 1.2] concerns groups G for which S �

PSp2n(q) where the degree m = (qn
+ 1)/2 is prime, n (> 1) is a power of 2, and q = p2k

for some

odd prime p and integer k ≥ 0. Here we can choose some fixed pair j, k ≥ 0, put n = 2 j, and take

(12) f1(t) = 2t + 1 (= p) and f2(t) =
(2t + 1)2 j+k

+ 1

2
(= m).

These are the same as the pair f1, f2 in (8), but with j + k replacing k, so the same estimates E(x)

and search results Q(x) apply in this case.

7.5. The remaining families. The other families of groups in [12, Theorem 1.2] are either

(a) obviously infinite, namely

(a1) Case 1, with S � Am+1 for primes m ≥ 7, or

(a2) Case 2(i), with S � PSL2(m) for primes m ≥ 11, or

(b) obviously finite, namely Case 5, with

(b1) m = 3 and S � PSL2(9) � A6,

(b2) m = 7 with S � PSp6(2),

(b3) m = 11 with S � M12, or
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(b4) m = 23 with S � Co2, Co3 or M23, or

(c) beyond the scope of the BHC, involving exponential functions rather than polynomials,

namely

(c1) Case 2(iv), with primes m = 2n − 1 and S � PSL2(2n),

(c1) Case 2(ii), with primes m = (3n − 1)/2 and S � PSL2(3n), or

(c2) Case 3(ii), with primes m = (3n − 1)/2 and S � PSp2n(3),

where n is an odd prime in all three cases.

The primes m appearing in (c1) are the Mersenne primes, while those appearing in (c2) and (c3)

appear to be equally difficult to deal with. There is heuristic evidence to support conjectures that

both sets are infinite, but proofs seem to be very far away.

7.6. Imprimitive groups. An irreducible linear group G of prime degree m is imprimitive if and

only if it acts transitively on the m 1-dimensional subspaces in a direct sum decomposition of its

natural module. This action gives an epimorphism from G to a transitive permutation group H of

degree m; its kernel D, conjugate to a group of diagonal matrices, is abelian. We have listed the

possibilities for H in Section 1. Now G is solvable if and only if H is, in which case the latter

acts as a subgroup of AGL1(m). This case having been dealt with by other authors, Dixon and

Zalesskii considered the nonsolvable imprimitive linear groups of degree m in [13], this time over

an arbitrary algebraically closed field; of course, our results concerning the groups H = PSLn(q)

have some relevance here. The technical problems to be overcome in classifying the groups G are

considerable: given H, one has to consider which diagonal groups D it can act on, whether or not

the corresponding extensions split, and whether or not the resulting groups G are conjugate in the

general linear group. The results obtained in [13] are too complicated to state here.

In the corrigendum of [12] it is shown that if G is primitive and the socle M of G/Z is imprimi-

tive and non-abelian, then the commutator subgroup G′ is imprimitive and isomorphic to PSLn(q)

where m = (qn − 1)/(q − 1), with q odd or G′ � PSL3(2) if n ≥ 3. Conversely, such groups G exist

provided m ≥ 5. Again, our results on PSLn(q) are relevant in this case.

8. Related problems

8.1. Waring’s Problem. Projective primes have occasionally been examined by number theorists,

but in a completely different context, that of Waring’s Problem (see [25, Ch. XX], for example).

This asks whether, for each integer m ≥ 1, there is an integer g(m) such that each positive integer

is a sum of at most g(m) m-th powers. For instance g(1) = 1, and g(2) = 4 by Lagrange’s Four

Squares Theorem. After Hilbert [27] proved the existence of g(m) in 1909, Tornheim [42] and

Bateman and Stemmler [4] considered similar problems in other number systems. In each case,

they took m to be prime for simplicity, and encountered extra difficulties when m was what we

have called a projective prime. The reason is that if m = (qn − 1)/(q − 1) then every m-th power in

the field Fqn lies in the subfield Fq, so elements outside Fq cannot be sums of m-th powers.

This problem was also important in another way: an investigation in [4] of the frequency of the

occurrence of the above phenomenon led Bateman and Horn [3] to their conjecture.
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8.2. Error-correcting codes. The results on projective primes in Section 5 are also relevant to

the classification of non-elementary cyclic linear codes of prime length by Guenda and Gulliver

in [23], where class (v) in their Theorem 3 consists of codes with associated permutation group

PΓLn(q) acting with prime degree (qn − 1)/(q − 1).

8.3. Block designs. A construction by Amarra, Devillers and Praeger [2] of block-transitive point-

imprimitive 2-designs with specific parameters depends on certain polynomials, such as f (t) =

32t2
+20t+1, taking prime power values. Using all primes r < 108 gives C( f ) = 4.721240, and Li’s

modified BHC then gives an estimate E(108) = 12 362 961.06. In fact, there are 12 357 532 values

of t ≤ 108 such that f (t) is prime. The relative error is 0.044%. See [30] for other polynomials and

further details.

8.4. Difference sets. A construction of divisible difference sets by Fernández-Alcober, Kwashira

and Martı́nez in [19, Proposition 4.1] depends on the existence of prime powers q such that 3q − 2

is also a prime power. In such generality, this situation is beyond the scope of the BHC, but one

can deal with the case where q and 3q − 2 are both prime by applying it to the polynomials f1 = t

and f2 = 3t − 2. We find that C = 2.640647, leading to an estimate E(109) = 6 485 752.27 for the

number of such primes q ≤ 109, compared with the actual number Q(109) = 6 484 218 found by

computer search. The relative error is 0.024%.

More generally, one can deal with the case where q is a prime power and 3q − 2 is prime by

taking f1 = t and f2 = 3te − 2 for some fixed e. For example, if we take e = 2 then C = 2.540480,

giving an estimate E(109) = 3 205 208.84 for the number of such primes t =
√

q ≤ 109, compared

with the actual number Q(109) = 3 203 900. In this case the relative error is 0.041%.

One can also deal with the case where q is prime and 3q− 2 is a proper prime power pe by using

the polynomials t (= p) and (te
+ 2)/3 (= q) for fixed e ≥ 2; we need te ≡ 1 mod (3) in order

to have integer coefficients, so write t = 3s + 1, giving polynomials 3s + 1 and ((3s + 1)e
+ 2)/3

in Z[s], or t = 3s − 1 with e even, giving polynomials 3s − 1 and ((3s − 1)e
+ 2)/3 in Z[s]. For

instance if e = 2 we can apply the BHC to two pairs of polynomials, namely 3s + 1, 3s2
+ 2s + 1,

and 3s − 1, 3s2 − 2s + 1; in the first case we get an estimate of 4 892 910.99 and an actual number

4 893 804 (error −0.018%), with corresponding values 4 892 911.60 and 4 894 315 (error −0.029%)

in the second case.

These results strongly suggest that there are infinitely many pairs of prime powers q and 3q − 2

with at least one of them prime. This might suggest a similar conjecture in the remaining case,

where both q and 3q − 2 are proper prime powers, but here we have Mihailescu’s proof of the

Catalan Conjecture as a warning. Similarly, there is Pillai’s conjecture that for fixed integers

A, B,C > 0 there are only finitely many integer solutions of the equation Axm − Byn
= C with

m, n > 2. Thus the status of this part of the construction seems to be an interesting open problem.

We close with two conjectures which, while much less important than those considered in Sec-

tion 2, nevertheless have their own interest.

8.5. The Goormaghtigh Conjecture (1917). Since

1 + 2 + 22
+ 23
+ 24

= 31 = 1 + 5 + 52,
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both PSL5(2) and PSL3(5) have natural degree 31. Goormaghtigh, a Belgian engineer and amateur

mathematician, conjectured in [21] that this example and

1 + 2 + 22
+ · · · + 212

= 8191 = 1 + 90 + 902

are the only positive integer solutions of (xn − 1)/(x− 1) = (yk − 1)/(y− 1) with n , k and n, k ≥ 3.

This conjecture is still open. Although 8191 is prime, 90 is not a prime power, so only the first

example is relevant to permutation groups PSLn(q).

8.6. The Feit–Thompson Conjecture (1962). Feit and Thompson [17] conjectured that if p and

q are distinct primes then (pq − 1)/(p − 1) does not divide (qp − 1)/(q − 1). They stated that if true

this would significantly shorten their 255-page proof [18] that groups of odd order are solvable.

However, an alternative simplification was found by Peterfalvi [37] in 1984. The conjecture has

been proved by Le [31] for q = 3, but it is otherwise still open.
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nal de mathématiques pures et appliquées, vol. XI, 1846, 417–433. Available at

http://www.bibnum.education.fr/sites/default/files/galois_memoire_sur_la_resolubiblite.pdf.

See also: Ecrits et Mémoires Mathématiques d’Évariste Galois, R. Bourgne and J.-P. Azra, editors, Gauthier-

Villars, Paris, 1962. English translation: Memoir on the conditions for solvability of equations by radicals, In:

H. M. Edwards, Galois Theory, Springer-Verlag, 1984 (Graduate Texts in Mathematics, vol. 101), pp. 101–113.

See also: P. M. Neumann, The Mathematical Writings of Évariste Galois, European Math. Soc., Zurich, 2011,
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