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A SEARCH FOR FIBONACCI-WIEFERICH
AND WOLSTENHOLME PRIMES

RICHARD J. MCINTOSH AND ERIC L. ROETTGER

Abstract. A prime p is called a Fibonacci-Wieferich prime if Fp−( p
5 ) ≡ 0

(mod p2), where Fn is the nth Fibonacci number. We report that there exist
no such primes p < 2 × 1014. A prime p is called a Wolstenholme prime

if
(2p−1

p−1

)
≡ 1 (mod p4). To date the only known Wolstenholme primes are

16843 and 2124679. We report that there exist no new Wolstenholme primes

p < 109. Wolstenholme, in 1862, proved that
(2p−1

p−1

)
≡ 1 (mod p3) for all

primes p ≥ 5. It is estimated by a heuristic argument that the “probability”

that p is Fibonacci-Wieferich (independently: that p is Wolstenholme) is about
1/p. We provide some statistical data relevant to occurrences of small values
of the Fibonacci-Wieferich quotient Fp−( p

5 )/p modulo p.

1. Introduction

Let P and Q be nonzero integers. The Lucas sequences {Un} = {Un(P, Q)} and
{Vn} = {Vn(P, Q)} associated to the pair (P, Q) are defined by

U0 = 0 , U1 = 1 , Un+1 = PUn − QUn−1 for n ≥ 1 ,

and
V0 = 2 , V1 = P , Vn+1 = PVn − QVn−1 for n ≥ 1 .

The discriminant of the characteristic polynomial of these sequences is given by
D = P 2 − 4Q. We will assume that D �= 0. The special case P = −Q = 1 defines
the well-known Fibonacci sequence, which we will denote by {Fn} = {Un(1,−1)},
and the Lucas numbers usually denoted by {Ln} = {Vn(1,−1)}.

It is well-known (see [5, pp. 393–395]) that Fp−( p
5 ) is divisible by p, where p is

prime and (p
5 ) denotes the Legendre symbol. If Fp−( p

5 ) is divisible by p2, then we
call p a Fibonacci-Wieferich prime (these primes are sometimes called Wall-Sun-
Sun primes [3, pp. 110–112]). A Wieferich prime is a prime p satisfying 2p−1 ≡ 1
(mod p2).

According to the most recent search [9] the only Wieferich primes p < 1.25×1015

are 1093 and 3511. Williams [19] found no Fibonacci-Wieferich primes below 109

and Montgomery [11] extended this to 232. Our computer search found no such
primes below 2 × 1014. Of historical interest is the connection between Fibonacci-
Wieferich primes and Fermat’s Last Theorem. Sun and Sun [17] proved that if
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the first case of Fermat’s Last Theorem fails for the exponent p, then p must be a
Fibonacci-Wieferich prime.

2. Lucas-Wieferich primes

Returning to the general Lucas Sequences {Un(P, Q)} and {Vn(P, Q)}, we have
Up−( D

p ) divisible by p whenever p is a prime not dividing 2Q. Let ε denote the

Legendre symbol (D
p ), where D = P 2 − 4Q. The modulo p residues of Up−ε, Vp−ε,

Up and Vp are given by the following congruences, valid for primes p not dividing
2QD:

Up−ε ≡ 0 (mod p),(1)

Vp−ε ≡ 2Q(1−ε)/2 (mod p),(2)

Up ≡ ε (mod p),(3)

Vp ≡ P (mod p).(4)

For a detailed discussion of these and many other congruences for Lucas sequences
we refer the reader to Ribenboim [14] and Riesel [15].

Congruence (2) enjoys the following (mod p2) extension.

Lemma. If the prime p does not divide 2QD, then

(5) Vp−ε ≡ Q(1−ε)/2(Qp−1 + 1) (mod p2) .

Proof. We begin with equations (IV.4) with n = m and (IV.5) in [14, p. 57]:

(6) 2V2m = V 2
m + DU2

m

and

(7) V2m = V 2
m − 2Qm .

Subtracting (7) from (6) yields

(8) V2m = DU2
m + 2Qm .

Let 2m = p− ε and µ = (Q
p ) denote the Legendre symbol. By [14, p. 63], statement

(IV.23), we have p|Um if µ = 1 and p|Vm if µ = −1. Therefore, it follows from (8)
if µ = 1 and from (7) if µ = −1 that

(9) Vp−ε = V2m ≡ 2µQm = 2µQ(p−ε)/2 = 2µQ(p−1)/2Q(1−ε)/2 (mod p2) .

Since Q(p−1)/2 ≡ µ (mod p) by Euler’s criterion, we have Q(p−1)/2 ≡ µ(1 + ap)
(mod p2) for some integer a. Hence Qp−1 ≡ 1 + 2ap (mod p2), and therefore
2µQ(p−1)/2 ≡ 2 + 2ap ≡ Qp−1 + 1 (mod p2). Finally, by (9) we obtain Vp−ε ≡
(Qp−1 + 1)Q(1−ε)/2 (mod p2), which completes the proof of (5).

Sometimes Up−ε is divisible by p2. We call these primes Lucas-Wieferich primes
associated to the pair (P, Q). Every Wieferich prime is a Lucas-Wieferich prime
associated to the pair (3, 2). Equivalent congruences for Lucas-Wieferich primes
are given in Theorem 1.

Theorem 1. If the prime p does not divide 2PQD, then the following are equiva-
lent :

(i) Up−ε ≡ 0 (mod p2) ,

(ii) Vp−ε ≡ 2µQ(p−ε)/2 (mod p4) ,
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(iii) Vp−ε ≡ 2µQ(p−ε)/2 (mod p3) ,
(iv) Up ≡ ε(Qp−1 + 1)/2 (mod p2) ,
(v) Vp ≡ P (Qp−1 + 1)/2 (mod p2) .

Proof. We will first show that (i) ⇒ (ii) ⇒ (iii) ⇒ (i).
(i) ⇒ (ii). Suppose that Up−ε ≡ 0 (mod p2). By [14, p. 56], equation (IV.1),

we have V 2
p−ε − 4Qp−ε = DU2

p−ε. Hence (Vp−ε − 2µQ(p−ε)/2) (Vp−ε + 2µQ(p−ε)/2) =
V 2

p−ε − 4Qp−ε = DU2
p−ε ≡ 0 (mod p4), where µ = (Q

p ) denotes the Legendre
symbol. By (9) we have Vp−ε − 2µQ(p−ε)/2 ≡ 0 (mod p), which implies that
Vp−ε + 2µQ(p−ε)/2 �≡ 0 (mod p) since p does not divide 2Q. Therefore Vp−ε −
2µQ(p−ε)/2 ≡ 0 (mod p4), and so Vp−ε ≡ 2µQ(p−ε)/2 (mod p4).

(ii) ⇒ (iii) is trivial.
(iii) ⇒ (i). Suppose that Vp−ε ≡ 2µQ(p−ε)/2 (mod p3). Then V 2

p−ε − 4Qp−ε =
(Vp−ε−2µQ(p−ε)/2) (Vp−ε+2µQ(p−ε)/2) ≡ 0 (mod p3) and so by [14, p. 56], equation
(IV.1), it follows that DU2

p−ε = V 2
p−ε−4Qp−ε ≡ 0 (mod p3). Since p does not divide

D we obtain (i).
Next, we will prove that (i) and (iv) are equivalent. By [14, p. 56], equation

(IV.2), we have Vn = Un+1 − QUn−1. Using the recurrence Un+1 = PUn − QUn−1

we obtain

(10) Vn = 2Un+1 − PUn

and

(11) Vn = PUn − 2QUn−1 .

Setting n = p − 1 in (10) and n = p + 1 in (11) we get

(12) Vp−1 = 2Up − PUp−1

and

(13) Vp+1 = PUp+1 − 2QUp .

Using (12) when ε = 1 and (13) when ε = −1 we obtain

Vp−ε = −εPUp−ε + 2εQ(1−ε)/2Up .

By (5) we have Vp−ε ≡ Q(1−ε)/2(Qp−1 + 1) (mod p2). Therefore

2Q(1−ε)/2Up − PUp−ε ≡ εQ(1−ε)/2(Qp−1 + 1) (mod p2) .

Since p does not divide 2PQ the equivalence of (i) and (iv) follows from the above
congruence.

Finally, we will prove that (i) and (v) are equivalent. By [14, p. 56], equation
(IV.2), we have DUn = Vn+1 −QVn−1. Using the recurrence Vn+1 = PVn −QVn−1

we obtain

(14) DUn = 2Vn+1 − PVn

and

(15) DUn = PVn − 2QVn−1 .

Setting n = p − 1 in (14) and n = p + 1 in (15) we get

(16) DUp−1 = 2Vp − PVp−1



2090 RICHARD J. MCINTOSH AND ERIC L. ROETTGER

and

(17) DUp+1 = PVp+1 − 2QVp .

Using (16) when ε = 1 and (17) when ε = −1 we obtain

DUp−ε = −εPVp−ε + 2εQ(1−ε)/2Vp .

By (5) we have Vp−ε ≡ Q(1−ε)/2(Qp−1 + 1) (mod p2). Therefore

2Q(1−ε)/2Vp − εDUp−ε ≡ PQ(1−ε)/2(Qp−1 + 1) (mod p2) .

Since p does not divide 2QD the equivalence of (i) and (v) follows from the above
congruence. The proof of Theorem 1 is now complete. �

Sun [16] showed that p is a Fibonacci-Wieferich prime if and only if Lp−ε ≡ 2ε
(mod p4), which proves that (i) and (ii) are equivalent when P = −Q = 1.

3. Algorithm for the Fibonacci-Wieferich prime search

In general there is no known way to resolve Fp−( p
5 ) (mod p2), other than through

explicit computations. From the recurrence Fn+1 = Fn + Fn−1 we obtain(
Fn+1

Fn

)
=

(
1 1
1 0

) (
Fn

Fn−1

)
=

(
1 1
1 0

)n (
F1

F0

)
=

(
1 1
1 0

)n (
1
0

)
.

Powers of the above matrix are computed (mod p2) by a standard binary power
ladder. Since our 64-bit processors cannot handle products of magnitude p4, we
invoked base p representations and thereby “split” the multiplication of two num-
bers (mod p2). Every x = a + bp (mod p2) is represented by {a, b}, with both a, b
always reduced (mod p). To avoid repeated use of long division by p we computed
and stored the value of 1/p in double precision floating-point. The quotient k/p is
given by �0.5 + k(1/p)� and the remainder is given by k − �0.5 + k(1/p)�. If the
remainder is negative, then p is added to the remainder and 1 is subtracted from
the quotient. Crandall [3, pp. 9–10] calls this “steady-state division”. Overflow
errors do not occur when p < 4 × 1014 and k < p2. The final value of Fp−( p

5 ) ≡
B +Ap (mod p2) is represented by {B, A}, where 0 ≤ B < p and −p/2 < A < p/2.
If B �= 0, our program exits with fatal error. Instances of |A| ≤ 100 are recorded (see
Table 1 below) for testing purposes and statistical analysis. The value A = 0 would
signify a Fibonacci-Wieferich prime. Extremely close calls (A = ±1) occur when
p = 2, 3, 5, 17, 251, 733, 1063, 123863 and 1677209.

We were interested in applying the above test only to actual primes p. Due to the
nature of binary power ladder we found it wasteful to employ the Fermat test, that
is, whether 2p−1 ≡ 1 (mod p), for selecting primes. Instead we used an incremental
sieve designed by Crandall [3, p. 100] which sieves the integers in blocks of a million
at a time.

Most of the computation was performed on an SGI Onyx/2 server with 24 R12000
processors and 12 GB of RAM, running IRIX 6.5. Near the end of the search range
each processor was capable of processing an interval of 45× 109 integers per day or
about 16000 primes per second. About 10% of the total running time was used for
sieving the primes. Taking advantage of 64-bit processors our program was about 7
times faster than the program used in [9] which was designed for 32-bit processors.
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Table 1. Instances of Fp−( p
5 ) ≡ Ap (mod p2) with |A| ≤ 100 and

232 < p < 2 × 1014

p A
6627557731 −43
6741860329 80
6859114489 55
8352762221 94
9760159421 −30

10115341939 70
10536116749 66
10612008943 −69
11002117921 95
11025166637 23
12216759923 −33
12387724249 39
13585864301 57
13699540891 73
13941800291 15
16368086681 50
16548311011 92
17370126353 −70
18526398173 −29
20488487861 −92
24178397183 3
25049632411 51
31811337589 −89
37883499127 −10
50261755937 −73
65543096747 −36
74176637257 −70
82202291813 −11
87918267869 78

p A
89845144679 51
94903475011 −15

101876918491 87
110717352637 −77
111646394549 −86
115301883659 60
115364673283 62
129316722167 −22
134431860461 −30
166466703223 64
170273590301 78
233642484991 89
277764184829 64
283750593739 37
300258464153 70
334015396151 79
442650398821 74
458432241569 −61
621291852133 96
762383958397 −86
766193665711 −8
800537116979 −20

1082150673011 −57
1171853196853 −30
1551559563569 4
1786416720937 −82
1996100161327 98
2669682790919 −10
3311519272973 −47

p A
3814438808399 −56
3858738583171 44
5457214172491 76
8030311150847 −12

10591568377751 33
11406840440243 26
11456600879363 −41
12801531958729 17
13860200708287 −5
18801391545961 33
21960966892313 54
22548139284371 −16
25186595067349 −59
26861987497291 −28
28263796914043 −88
39568597208207 53
46006966741789 −59
64241561031937 −44
67721845179979 −52
75320741942123 71
82789107950701 −42
85136199318719 −92
86040142362653 19
88536418898561 99
90299689540433 56
91486955300761 −71

106692167197171 −85
155979357644989 27

4. Statistical considerations

Are there any Fibonacci-Wieferich primes? Since A = A(p) is an integer in the
interval (−p/2, p/2), one might assume that the “probability” of A taking on any
particular value, say the value 0, is equal to 1/p. One might view the Fibonacci-
Wieferich test for different primes as “independent” events. Therefore, by this
heuristic argument the number of Fibonacci-Wieferich primes in an interval [x, y]
is expected to be

∑
x≤p≤y

1
p
≈

y∑
n=x

1
n ln n

≈
∫ y

x

dt

t ln t
= ln(ln y) − ln(lnx),

since it follows from the Prime Number Theorem that the “probability” that an
integer p is prime is about 1/ ln p. If this is the case, then the expected number
of Fibonacci-Wieferich primes in the interval [232, 2× 1014] is approximately 0.395,
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and so there was indeed a fairly good chance to find a Fibonacci-Wieferich prime,
which justifies the effort in undertaking this search.

If we take into account “near” Fibonacci-Wieferich primes, that is, primes p
with |A| ≤ 100, then the expected number of “close calls” in the above interval is
approximately 201×0.395 ≈ 79.4. From Table 1 we see that the actual count is 86.

5. Wolstenholme primes

In 1862 Wolstenholme [20] (also see [5, p. 271] and [14, p. 29]) proved that(
2n−1
n−1

)
≡ 1 (mod n3) for all primes n ≥ 5. McIntosh [10] found no composite

solutions n < 109, and it is conjectured that there are none [7, problem B31].
Unlike that of Wilson’s Theorem the converse of Wolstenholme’s Theorem is a very
difficult problem.

The term Wolstenholme prime has been introduced in [10] for primes p satisfying
the congruence

(
2p−1
p−1

)
≡ 1 (mod p4). In [10, p. 386] the following theorem was

proved, where Bn denotes the nth Bernoulli number.

Theorem 2. For all primes p ≥ 11 the following are equivalent :
(i) p is a Wolstenholme prime,
(ii) p divides the numerator of Bp−3,
(iii)

∑
p/6<k<p/4

1
k3 ≡ 0 (mod p) .

Statement (ii) appears in a criterion concerning Fermat’s Last Theorem. A
prime p is regular if and only if p does not divide the numerators of the Bernoulli
numbers B2, B4, . . . , Bp−3. For all such primes the algebraic proof of Fermat’s Last
Theorem is valid (see [6, p. 244] and [13, p. 10]). This was one of the main reasons
for the search of irregular primes. Buhler, Crandall, Ernvall, and Metsänkylä [1]
calculated all irregular primes up to 4 × 106 by evaluating sums of like powers of
numbers in arithmetic progression, and these calculations were extended in [2] by
use of different methods to 12 × 106.

The Wolstenholme primes are those irregular primes where p divides the numer-
ator of Bp−3. The only known Wolstenholme primes are 16843 and 2124679. The
first was found (though not explicitly reported) by Selfridge and Pollak (Notices
AMS 11 (1964), 97), and later confirmed by W. Johnson [8] and S.S. Wagstaff
(Notices AMS 23 (1976), A-53). The second was found by J. Buhler, R. Crandall,
R. Ernvall, and T. Metsänkylä [1], and later, independently, by McIntosh [10, p.
387] in his search up to 2×108. Using (iii) we extended the search to 109 and found
no new Wolstenholme primes, and thus no new primes p divide the numerator of
Bp−3.

Our program, written by Montgomery [12], evaluates the least two significant
coefficients c0 and c1 (mod p) in the polynomial

f(x) =
∏

p/6<k<p/4

(x + k3)

by the use of a polynomial scheme similar to the one developed in [4, p. 441].
The sum (mod p) of the reciprocals of the roots of f(x) is given by −c1/c0. The
value c1 = 0 would signify a Wolstenholme prime. The fast Fourier transform
(FFT) and the Nussbaumer convolution were not used. Most of the computation
was performed on an SGI Onyx/2 server with 24 R12000 processors and 12 GB
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of RAM, running IRIX 6.5. Near the end of the search range each processor was
capable of processing an interval of 412000 integers per day or about 4.3 seconds per
prime. The Fermat test, that is, whether 2p−1 ≡ 1 (mod p), was used for selecting
primes. Due to the relatively long time required to process each prime the use of
a sieve for selecting primes would not offer a significant reduction in total running
time.
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