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A SEARCH FOR FIBONACCI-WIEFERICH
AND WOLSTENHOLME PRIMES

RICHARD J. MCINTOSH AND ERIC L. ROETTGER

ABSTRACT. A prime p is called a Fibonacci- Wieferich prime if F,_ey=0
(mod p2), where Fi, is the nth Fibonacci number. We report that there exist
no such primes p < 2 x 10. A prime p is called a Wolstenholme prime

if (2p_—11) = 1 (mod p*). To date the only known Wolstenholme primes are

16843 and 2124679. We report that there exist no new Wolstenholme primes

p < 10°. Wolstenholme, in 1862, proved that (21)”:11) = 1 (mod p?) for all

primes p > 5. It is estimated by a heuristic argument that the “probability”
that p is Fibonacci-Wieferich (independently: that p is Wolstenholme) is about
1/p. We provide some statistical data relevant to occurrences of small values
of the Fibonacci-Wieferich quotient Fp_(g)/p modulo p.

1. INTRODUCTION

Let P and @ be nonzero integers. The Lucas sequences {U,, } = {U,(P,Q)} and
{Vo.} = {Va(P,Q)} associated to the pair (P, Q) are defined by

Uy=0,U1=1, U1 =PU, - QU,,_1 for n>1,

and

Vo=2,Vi=P, Vo1 =PV, —QV,,—1 for n>1.
The discriminant of the characteristic polynomial of these sequences is given by
D = P? — 4Q. We will assume that D # 0. The special case P = —@Q = 1 defines
the well-known Fibonacci sequence, which we will denote by {F,} = {U,(1,—1)},
and the Lucas numbers usually denoted by {L,} = {V,,(1,—1)}.

It is well-known (see [5, pp. 393-395]) that F}, (z) is divisible by p, where p is
prime and (§) denotes the Legendre symbol. If F}, () is divisible by p?, then we
call p a Fibonacci-Wieferich prime (these primes are sometimes called Wall-Sun-
Sun primes [3, pp. 110-112]). A Wieferich prime is a prime p satisfying 2P~ = 1
(mod p?).

According to the most recent search [9] the only Wieferich primes p < 1.25x 101°
are 1093 and 3511. Williams [19] found no Fibonacci-Wieferich primes below 10°
and Montgomery [I1] extended this to 232, Our computer search found no such
primes below 2 x 10'*. Of historical interest is the connection between Fibonacci-
Wieferich primes and Fermat’s Last Theorem. Sun and Sun [I7] proved that if
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the first case of Fermat’s Last Theorem fails for the exponent p, then p must be a
Fibonacci-Wieferich prime.

2. LucAs-WIEFERICH PRIMES

Returning to the general Lucas Sequences {U, (P, @)} and {V,,(P, @)}, we have

Upf( D) divisible by p whenever p is a prime not dividing 2Q). Let ¢ denote the
P

Legendre symbol (%), where D = P? — 4Q). The modulo p residues of U,_, Vj—,
U, and V,, are given by the following congruences, valid for primes p not dividing
2QD:

(1) Up-e =0 (mod p),

(2) Vp—e =2QU9/2  (mod p),
(3) Up=¢ (mod p),

4) Vp =P (mod p).

For a detailed discussion of these and many other congruences for Lucas sequences
we refer the reader to Ribenboim [I4] and Riesel [15].
Congruence (2) enjoys the following (mod p?) extension.

Lemma. If the prime p does not divide 2Q D, then

(5) Vpoe = QU92(QP1 41)  (mod p?).

Proof. We begin with equations (IV.4) with n =m and (IV.5) in [14] p. 57]:
(6) 2Va,, = V2 + DU?,

and

(7) Vam = Vo = 2Q™.

Subtracting (7) from (6) yields

(8) Vom = DUZ, +2Q™ .

Let 2m =p—eand pu = (%) denote the Legendre symbol. By [14] p. 63], statement

(IV.23), we have p|U,, if p =1 and p|V,, if u = —1. Therefore, it follows from (8)
if 4 =1 and from (7) if p = —1 that

(9)  Vpoe = Vam = 2puQ™ = 2uQW /2 = 2 Q= 172QU =92 (mod p?).

Since QP~1/2 = 4 (mod p) by Euler’s criterion, we have QP~1/2 = 4(1 + ap)
(mod p?) for some integer a. Hence QP~' = 1 + 2ap (mod p?), and therefore
2uQP~1/2 = 2 + 2ap = QP! 4+ 1 (mod p?). Finally, by (9) we obtain V,_. =
(QP~' +1)QU'=9/2 (mod p?), which completes the proof of (5).

Sometimes U,_ is divisible by p?>. We call these primes Lucas- Wieferich primes
associated to the pair (P, Q). Every Wieferich prime is a Lucas-Wieferich prime
associated to the pair (3,2). Equivalent congruences for Lucas-Wieferich primes
are given in Theorem 1.

Theorem 1. If the prime p does not divide 2PQD, then the following are equiva-
lent:

(i) Up—c =0 (mod p?),

(i) Vy_c = 20Q®=9/ (mod p'),
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(iif) Vp—e = 2uQP=9/2 (mod p?),
(iv) Up = e(Q"7' +1)/2 (mod p?),
(v) V, = P(QP~1 +1)/2 (mod p?).

Proof. We will first show that (i) = (ii) = (iii) = (i).

(i) = (ii). Suppose that U,_. = 0 (mod p?). By [I4} p. 56], equation (IV.1),
we have V2 —4QP~¢ = DUZ__. Hence (Vp—c —2uQP=/2) (V,_ +2uQP~)/2) =
V2., —4QP ¢ = DU? . = 0 (mod p*), where p = (%) denotes the Legendre
symbol. By (9) we have V,_. — 2uQ®~9/2 = 0 (mod p), which implies that
Ve +2uQP=9/2 £ 0 (mod p) since p does not divide 2Q. Therefore V,_, —
2uQP=9/2 =0 (mod p?), and so V,,_. = 2uQP~9/2 (mod p*).

(ii) = (iii) is trivial.

(iii) = (i). Suppose that V,_ = 2uQ®~9/2 (mod p®). Then V7?2  —4Qr—° =
(Vo e —2uQP=9)/2) (V,,_4+2uQP~9/2) = 0 (mod p?) and so by [T4, p. 56], equation
(IV.1), it follows that DU?_ = V> . —4QP“ = 0 (mod p?). Since p does not divide
D we obtain (i).

Next, we will prove that (i) and (iv) are equivalent. By [I4, p. 56], equation
(IV.2), we have V,, = U, +1 — QU,—1. Using the recurrence U, 11 = PU,, — QU,_1
we obtain

(10) Vi =2Up41 — PU,
and

(11) Vo = PU,, —2QU,,_1 .
Setting n =p —11in (10) and n =p+ 1 in (11) we get
(12) V, 1 =20, — PU,_,
and

(13) Voir = PU,yy — 2QU, .

Using (12) when ¢ = 1 and (13) when € = —1 we obtain
Vp—e = —€PU,_ +2eQ1~9/2U,.
By (5) we have V,,_. = QU'=9/2(QP~1 + 1) (mod p?). Therefore
2Q" 92U, — PU, = Q" 92(Q" +1)  (mod p?).

Since p does not divide 2PQ the equivalence of (i) and (iv) follows from the above
congruence.

Finally, we will prove that (i) and (v) are equivalent. By [I4, p. 56|, equation
(IV.2), we have DU,, = V,, 11 — QV,,—1. Using the recurrence V,, 11 = PV,, —QV,,_1
we obtain

(14) DU, =2V,.1 — PV,
and
(15) DU, = PV,, — 2QV,,_ .

Setting n =p —1in (14) and n = p+ 1 in (15) we get
(16) DU, , =2V, — PV,
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and
(17) DU, 1 = PVys1 — 2QV, .
Using (16) when € = 1 and (17) when € = —1 we obtain
DU, = —ePV,_ +2:Q1~9/2V, .
By (5) we have V,_. = Q~9/2(QP~! 4+ 1) (mod p?). Therefore
ZQ(l_E)/QVL —eDUy_ = PQ(l_E)/Q(QP_1 +1) (mod p?).

Since p does not divide 2QD the equivalence of (i) and (v) follows from the above
congruence. The proof of Theorem 1 is now complete. ([

Sun [I6] showed that p is a Fibonacci-Wieferich prime if and only if L, . = 2¢
(mod p*), which proves that (i) and (ii) are equivalent when P = —Q = 1.

3. ALGORITHM FOR THE FIBONACCI-WIEFERICH PRIME SEARCH

In general there is no known way to resolve Fp_(g) (mod p?), other than through
explicit computations. From the recurrence Fj,+1 = F), + F},—1 we obtain

)= D06 )6 0)

Powers of the above matrix are computed (mod p?) by a standard binary power
ladder. Since our 64-bit processors cannot handle products of magnitude p*, we
invoked base p representations and thereby “split” the multiplication of two num-
bers (mod p?). Every z = a + bp (mod p?) is represented by {a, b}, with both a, b
always reduced (mod p). To avoid repeated use of long division by p we computed
and stored the value of 1/p in double precision floating-point. The quotient k/p is
given by [0.5 + k(1/p)] and the remainder is given by k — |0.5 + k(1/p)|. If the
remainder is negative, then p is added to the remainder and 1 is subtracted from
the quotient. Crandall [3, pp. 9-10] calls this “steady-state division”. Overflow
errors do not occur when p < 4 x 10'* and k < p?. The final value of Fp(z) =
B+ Ap (mod p?) is represented by {B, A}, where 0 < B < p and —p/2 < A < p/2.
If B # 0, our program exits with fatal error. Instances of | A| < 100 are recorded (see
Table 1 below) for testing purposes and statistical analysis. The value A = 0 would
signify a Fibonacci-Wieferich prime. Extremely close calls (A = +1) occur when
p=2,3,5,17, 251, 733, 1063, 123863 and 1677209.

We were interested in applying the above test only to actual primes p. Due to the
nature of binary power ladder we found it wasteful to employ the Fermat test, that
is, whether 2°~! = 1 (mod p), for selecting primes. Instead we used an incremental
sieve designed by Crandall [3], p. 100] which sieves the integers in blocks of a million
at a time.

Most of the computation was performed on an SGI Onyx/2 server with 24 R12000
processors and 12 GB of RAM, running IRIX 6.5. Near the end of the search range
each processor was capable of processing an interval of 45 x 10? integers per day or
about 16000 primes per second. About 10% of the total running time was used for
sieving the primes. Taking advantage of 64-bit processors our program was about 7
times faster than the program used in [9] which was designed for 32-bit processors.
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TABLE 1. Instances of F},_(zy = Ap (mod p?) with |A[ < 100 and
9232 < p < 2 x 10

D A D A » 1
6627557731 | —43 89845144679 | 51
6741860329 | 80 94903475011 | —15 ggégig;ggg?g? _Zi
6859114489 | 55 101876918491 | 87 5457214172491 | 76
8352762221 | 94 110717352637 | —77 8030311150847 | —12
9760159421 | —30 111646394549 | —86 10591568377751 | 33
10115341939 | 70 115301883659 | 60 11406840440243 | 26
10536116749 | 66 115364673283 | 62 1456600879363 | —41
10612008943 | —69 129316722167 | —22 12801531958729 | 17
11002117921 | 95 134431860461 | —30 13860200708287 | —5
11025166637 | 23 166466703223 | 64 18801391545961 | 33
12216759923 | —33 170273590301 78 91060966892313 | 54
12387724249 | 39 233642484991 | 89 99548139284371 | —16
13585864301 57 277764184829 | 64 95186595067349 | —59
13699540891 73 283750593739 | 37 96861987497291 | —28
13941800291 15 300258464153 | 70 98963796014043 | —88
16368086681 50 334015396151 79 30568597208207 | 53
16548311011 | 92 442650398821 74 46006966741789 | —59
17370126353 | —70 458432241569 | —61 64241561031937 | —dd
18526398173 | —29 621291852133 | 96 67721845179979 | —52
20488487861 | —92 762383958397 | —86
75320741942123 | 71
24178397183 3 766193665711 | —8 82789107950701 | —42
25049632411 51 800537116979 | —20 85136199318719 | —92
31811337589 | —89 1082150673011 | —57 6040142362653 | 19
37883499127 | —10 1171853196853 | —30 38536418898561 | 99
50261755937 | —73 1551559563569 4 0299689540433 | 56
65543096747 | —36 1786416720937 | —82 1486955300761 | —71
74176637257 | —70 1996100161327 | 98 106692167197171 | —85
82202291813 | —11 2669682790919 | —10 155979357644989 | 27
87918267869 | 78 3311519272973 | —47

4. STATISTICAL CONSIDERATIONS

Are there any Fibonacci-Wieferich primes? Since A = A(p) is an integer in the
interval (—p/2,p/2), one might assume that the “probability” of A taking on any
particular value, say the value 0, is equal to 1/p. One might view the Fibonacci-
Wieferich test for different primes as “independent” events. Therefore, by this
heuristic argument the number of Fibonacci-Wieferich primes in an interval [z, y]
is expected to be

IR | Yo dt
s & = In(1 —In(Inz
Z D ;nlnn /m tint n(lny) —In(inz),

z<p<y

since it follows from the Prime Number Theorem that the “probability” that an
integer p is prime is about 1/Ilnp. If this is the case, then the expected number
of Fibonacci-Wieferich primes in the interval [232,2 x 10'4] is approximately 0.395,
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and so there was indeed a fairly good chance to find a Fibonacci-Wieferich prime,
which justifies the effort in undertaking this search.

If we take into account “near” Fibonacci-Wieferich primes, that is, primes p
with |A] < 100, then the expected number of “close calls” in the above interval is
approximately 201 x 0.395 = 79.4. From Table 1 we see that the actual count is 86.

5. WOLSTENHOLME PRIMES

In 1862 Wolstenholme [20] (also see [5, p. 271] and [I4, p. 29]) proved that
(2;_—11) = 1 (mod n?3) for all primes n > 5. Mclntosh [I0] found no composite
solutions n < 10%, and it is conjectured that there are none [7, problem B31].
Unlike that of Wilson’s Theorem the converse of Wolstenholme’s Theorem is a very
difficult problem.

The term Wolstenholme prime has been introduced in [10] for primes p satisfying
the congruence (213”__11) = 1 (mod p*). In [0, p. 386] the following theorem was
proved, where B,, denotes the nth Bernoulli number.

Theorem 2. For all primes p > 11 the following are equivalent:
(i) p is a Wolstenholme prime,
(ii) p divides the numerator of By_s,

(i) >,/ 6<k<pya & =0 (mod p).

Statement (ii) appears in a criterion concerning Fermat’s Last Theorem. A
prime p is regular if and only if p does not divide the numerators of the Bernoulli
numbers Bs, By, ..., Bp_3. For all such primes the algebraic proof of Fermat’s Last
Theorem is valid (see [6, p. 244] and [I3] p. 10]). This was one of the main reasons
for the search of irregular primes. Buhler, Crandall, Ernvall, and Metsénkyla [1]
calculated all irregular primes up to 4 x 10% by evaluating sums of like powers of
numbers in arithmetic progression, and these calculations were extended in [2] by
use of different methods to 12 x 10°.

The Wolstenholme primes are those irregular primes where p divides the numer-
ator of By_3. The only known Wolstenholme primes are 16843 and 2124679. The
first was found (though not explicitly reported) by Selfridge and Pollak (Notices
AMS 11 (1964), 97), and later confirmed by W. Johnson [8] and S.S. Wagstaff
(Notices AMS 23 (1976), A-53). The second was found by J. Buhler, R. Crandall,
R. Ernvall, and T. Metsénkyla [I], and later, independently, by McIntosh [10, p.
387] in his search up to 2 x 10%. Using (iii) we extended the search to 10° and found
no new Wolstenholme primes, and thus no new primes p divide the numerator of
By_s.

Our program, written by Montgomery [I2], evaluates the least two significant
coefficients ¢g and ¢; (mod p) in the polynomial

foy= II @+#)

p/6<k<p/4

by the use of a polynomial scheme similar to the one developed in [4, p. 441].
The sum (mod p) of the reciprocals of the roots of f(x) is given by —ci/cy. The
value ¢; = 0 would signify a Wolstenholme prime. The fast Fourier transform
(FFT) and the Nussbaumer convolution were not used. Most of the computation
was performed on an SGI Onyx/2 server with 24 R12000 processors and 12 GB
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of RAM, running IRIX 6.5. Near the end of the search range each processor was
capable of processing an interval of 412000 integers per day or about 4.3 seconds per
prime. The Fermat test, that is, whether 2°~! =1 (mod p), was used for selecting
primes. Due to the relatively long time required to process each prime the use of
a sieve for selecting primes would not offer a significant reduction in total running
time.
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