On the Aging of Microglia

Microglia are innate immune cells of the brain. They are analogous to macrophages elsewhere in the body, responsible for clearing up debris, destroying pathogens and problem cells, and participating in regeneration. They also undertake an arguably larger portfolio of tissue maintenance tasks that are related to neural function and synaptic connections.

With advancing age, the microglial population of the brain becomes more activated and inflammatory in response to a tissue environment that contains more signs of damage and cell stress. As is true of senescent cells, this microglial contribution to the chronic inflammation of aging appears to be a significant aspect of age-related neurodegeneration. There is thus an increasing interest in the research community in targeting microglia as a basis for therapies to treat neurodegenerative conditions.

Aging microglia

Microglia are the resident immune cells of the central nervous system (CNS), a tissue-resident macrophage population with specific characteristics to support the CNS environment and health. Microglia have a mesodermal origin and originate from yolk-sac progenitors during embryogenesis; after their early migration and proliferation, they colonize the CNS and self-renew throughout the lifespan.

Microglia perform a variety of critical functions; (a) they support neurogenesis and ensure correct neuronal circuitry by pruning synapses; (b) phagocytose apoptotic neurons; (c) defend against infectious and non-infectious insults; (d) produce extracellular matrix (ECM) components and control its remodeling by secreting ECM-degrading enzymes; (e) maintain myelin health; (f) and remove extracellular protein aggregates, which accumulate in neurodegenerative diseases. Homeostatic adult microglia have a highly ramified morphology, with extended and arborized processes and a small body. However, when responding to stimulation or during aging and CNS pathology, their morphology changes.

With age, microglia alter their function, morphology and phenotype; however, there are still many gaps in our knowledge of how microglia age. Both rodent and human aging microglia are characterized by alterations in morphology, phagocytosis, metabolism, and inflammatory phenotype, which appear to play protective and detrimental roles in maintaining brain homeostasis and preserving their ability to respond to non-sterile and sterile insults.

Furthermore, more recent evidence indicates that environmental factors, such as meningeal lymphatics health and production of metabolites from the gut microbiome, can affect brain homeostasis by affecting microglia reactivity and phenotype. Recent single cell RNA-seq studies suggest that different subsets of microglia already exist in young adults; however, they expand in aging and even more so in neurodegeneration. Nonetheless, we still do not know the full extent of microglia plasticity and how firm these phenotypes are.

Extending the GrimAge Epigenetic Clock with Physical Fitness Measures

An aging clock can be built from near any collection of data that changes with age. The first epigenetic clocks used DNA methylation status for many different locations on the genome, but just about any biochemical or physiological measure can be incorporated into a clock algorithm. Since early epigenetic clocks were insensitive to physical fitness, it is interesting to see an attempt to extend a later epigenetic clock by adding assessments of physical fitness. Can there be a hypothetical best clock, one that accurately reflects the result of any intervention in aging, or will it always be the case that clocks will only approximate the complex reality, and there will always be issues in which a clock is too sensitive or not sensitive enough to one or more mechanisms of aging? That is the question.

Physical fitness is a well-known correlate of health and the aging process and DNA methylation (DNAm) data can capture aging via epigenetic clocks. However, current epigenetic clocks did not yet use measures of mobility, strength, lung, or endurance fitness in their construction. We develop blood-based DNAm biomarkers for fitness parameters gait speed (walking speed), maximum handgrip strength, forced expiratory volume in one second (FEV1), and maximal oxygen uptake (VO2max) which have modest correlation with fitness parameters in five large-scale validation datasets.

We then use these DNAm fitness parameter biomarkers with DNAmGrimAge, a DNAm mortality risk estimate, to construct DNAmFitAge, a new biological age indicator that incorporates physical fitness. DNAmFitAge is associated with low-intermediate physical activity levels across validation datasets, and younger/fitter DNAmFitAge corresponds to stronger DNAm fitness parameters in both males and females. DNAmFitAge is lower and DNAmVO2max is higher in male body builders compared to controls.

Physically fit people have a younger DNAmFitAge and experience better age-related outcomes: lower mortality risk, coronary heart disease risk, and increased disease-free status. These new DNAm biomarkers provide researchers a new method to incorporate physical fitness into epigenetic clocks.

Link: https://doi.org/10.18632/aging.204538

Accelerated Biological Aging Correlates with Incidence of Depression and Anxiety

Researchers here report on a correlation between accelerated biological age, as measured by two very different clocks, and risk of depression and anxiety disorders. To the extent that one believes that the presentation of these disorders is made worse by negative events taking place in life, it makes sense that a worse state of physical health, as tends to accompany accelerated biological age, would tend to increase reported incidence of depression and anxiety. Otherwise, there is a growing body of evidence for mechanisms of brain aging to contribute to mood disorders, and range of data on correlations between specific aspects of brain aging and mood disorders.

In this study, we tested associations of blood-chemistry measures of biological aging with prevalent and incident depression and anxiety among a half-million midlife and older adults in the UK Biobank. The main findings were that adults with more advanced biological age were more likely to experience depression and anxiety at baseline and were at higher risk of depression/anxiety over eight years of follow-up, as compared with peers who were the same chronological age, but who were tested to be biologically younger.

The risk associated with biological age was independent of and additive to genetic risk. The risk was also independent of self-reported history of childhood adversity. This study contributes evidence from a large biobank cohort to support the hypothesis that biological aging might represent a risk factor for depression/anxiety in midlife and older adults.

There is accumulating evidence for a link between mental health problems and biological aging. However, most studies have focused on poor mental health as a risk factor for accelerated aging. The reverse process may also occur. For example, white matter hyperintensities, neuroimaging signatures of small cerebral infarcts, are associated with aging and with the risk of depression, and recently have been linked to measurements of biological aging. The same is true of low-grade systemic inflammation and mitochondrial dysfunction.

Link: https://doi.org/10.1038/s41467-023-38013-7

Do APOE Variants Affect Alzheimer's Disease Risk via the Gut Microbiome?

Variations in the APOE gene correlate with risk of Alzheimer's disease. This has long been thought to relate to mechanisms promoting amyloid-β aggregation, given the centrality of the amyloid cascade hypothesis to Alzheimer's research. Scientists have recently provided evidence to suggest that increased inflammatory behavior of the innate immune cells called microglia in the brain is an important mechanism linking APOE variant and Alzheimer's risk, however. So this is not a completely settled area of research.

Separately, evidence exists for Alzheimer's disease patients to tend to exhibit a distinct and more harmful gut microbiome. The microbial populations of the intestinal tract are demonstrated to shift in relative abundance with advancing age. Microbes that provoke inflammation and tissue dysfunction grow in number, while beneficial microbes that produce needed metabolites are lost. Immune dysfunction is thought to be an important cause of this change, as the immune system is responsible for gardening the gut microbiome, but equally it is also the case that chronic inflammatory stimuli are to some degree a cause of immune aging.

The immune systems of the body and brain are somewhat distinct: different cell populations, different environments separated by the blood-brain barrier. They are connected by inflammatory signaling and a very limited degree of passage of cells back and forth, however. If one is roused to chronic inflammation, the other will be as well. Thus one might consider that microglial inflammation and an inflammatory gut microbiome are both manifestations of the same issue. It is interesting that this issue, however it might arise, whatever the ordering of cause and effect, appears to be affected by subtle changes in the behavior of APOE. What is clear, both here and in a great deal of other research relating to age-related neurodegenerative conditions, is that chronic inflammation is something to be avoided.

Genetic correlations between Alzheimer's disease and gut microbiome genera

A growing body of evidence suggests that dysbiosis of the human gut microbiota is associated with neurodegenerative diseases like Alzheimer's disease (AD) via neuroinflammatory processes across the microbiota-gut-brain axis. The gut microbiota affects brain health through the secretion of toxins and short-chain fatty acids, which modulates gut permeability and numerous immune functions. Observational studies indicate that AD patients have reduced microbiome diversity, which could contribute to the pathogenesis of the disease. Uncovering the genetic basis of microbial abundance and its effect on AD could suggest lifestyle changes that may reduce an individual's risk for the disease.

Using the largest genome-wide association study of gut microbiota genera from the MiBioGen consortium, we used polygenic risk score (PRS) analyses and determined the genetic correlation between 119 genera and AD in a discovery sample (ADc12 case/control: 1278/1293). To confirm the results from the discovery sample, we next repeated the PRS analysis in a replication sample (GenADA case/control: 799/778) and then performed a meta-analysis with the PRS results from both samples. Finally, we conducted a linear regression analysis to assess the correlation between the PRSs for the significant genera and the APOE genotypes.

In the discovery sample, 20 gut microbiota genera were initially identified as genetically associated with AD case/control status. Of these 20, three genera (Eubacterium fissicatena as a protective factor, Collinsella, and Veillonella as a risk factor) were independently significant in the replication sample. Meta-analysis with discovery and replication samples confirmed that ten genera had a significant correlation with AD, four of which were significantly associated with the APOE rs429358 risk allele in a direction consistent with their protective/risk designation in AD association. Notably, the proinflammatory genus Collinsella, identified as a risk factor for AD, was positively correlated with the APOE rs429358 risk allele in both samples.

Overall, the host genetic factors influencing the abundance of ten genera are significantly associated with AD, suggesting that these genera may serve as biomarkers and targets for AD treatment and intervention. Our results highlight that proinflammatory gut microbiota might promote AD development through interaction with APOE. Larger datasets and functional studies are required to understand their causal relationships.

Subjective Age is Becoming Younger

Given a continued slow upward trend in life expectancy, accompanied by improved health at a given age, it makes some sense for impressions of subjective age to also exhibit change over time. Older people compare their present experience with that shown in literature and film of past generations, and memories of their parents and grandparents. Ask someone how old they feel in an era in which aging is steadily, modestly slowed over time, and they will feel younger than their age, as their points of comparison aged more rapidly than is now the case.

Subjective age describes how old people feel, in comparison with how old they actually are chronologically. It is usually assessed with a single-item question (such as "How old do you feel?"). Evidence from nearly 300 studies using this item has shown that most middle-age and older people feel younger than they are, including very old individuals. This phenomenon has been labeled subjective age bias and might reflect an age-group dissociation process ("They are old, but I feel younger") that helps individuals cope with ageism.

Little is known about historical shifts in subjective age. Moving beyond the very few time-lagged cross-sectional cohort comparisons, we examined historical shifts in within-person trajectories of subjective age from midlife to advanced old age. We used cohort-comparative longitudinal data from middle-age and older adults in the German Ageing Survey (N = 14,928; ~50% female) who lived in Germany and were between 40 and 85 years old when entering the study. They provided up to seven observations over 24 years.

Results revealed that being born later in historical time is associated with feeling younger by 2% every birth-year decade and with less intraindividual change toward an older subjective age. Women reported feeling younger than men; this gender gap widened across cohorts. The association of higher education with younger subjective age became weaker across cohorts. This historical trend of feeling younger was observable across all ages in the second half of life, also - contrary to our expectations - in very old age.

Link: https://doi.org/10.1177/09567976231164553

Cellular Senescence in the Aging of Bone

Senescent cells accumulate with age, and disrupt tissue function via the signaling that they generate, the senescence-associated secretory phenotype (SASP). In bone tissue, the SASP contributes to breaking the balance between the activities of osteoblast cells, constantly building bone, and osteoclast cells, constantly deconstructing bone. Osteoclast activity in older people outweighs osteoblast activity, leading to a progressive loss of bone mineral density and eventual osteoporosis.

Maintaining lifelong mobility is one aim of healthy aging that allows independence and autonomy. However, falls and fragility fractures, which tend to occur in clusters toward the end of life, represent common hazards for the mobility of the aging population. This period comes with a substantial loss of quality of life and causes an enormous socioeconomic burden for patients and their families. While there has been tremendous progress in our understanding of osteoporosis due to sex hormone deficiency or medications, insights into how cell-intrinsic mechanisms contribute to the aging process of the skeletal system are still limited.

Over the past decade, emerging bone research has focused on the biology of osteocytes, the least accessible yet most common bone-resident cell type. Osteocytes are specialized bone cells that orchestrate skeletal remodeling. Senescent osteocytes are characterized by an activation of cyclin-dependent kinase inhibitor p16Ink4a and have been implicated in the pathogenesis of several bone loss disorders.

Researchers have now shown that systemic removal of senescent cells (termed senolysis) prevented age-related bone loss at the spine and femur and mitigated bone marrow adiposity through a robust effect on osteoblasts and osteoclasts, whereas cell-specific senolysis in osteocytes alone was only partially effective. Surprisingly, transplantation of senescent fibroblasts into the peritoneum of young mice caused host osteocyte senescence associated with bone loss. This refined concept of osteocyte senescence and the effects of remote senolysis may help to develop improved senolytic strategies against multisystem aging in bone and beyond.

Link: https://doi.org/10.1172/JCI169069

Reviewing Present Biomarkers of Aging

Today's open access paper, with more than 120 contributing authors, is a tour of the broad topic of biomarkers of aging, an attempt to say at least something about every aspect of cellular biochemistry and functional capacity that is either used or proposed to be used to measure biological age, from grip strength to epigenetic clocks. Biological age is in one sense an aspirational concept, a way to measure the progression of aging that will accurately reflect mortality and disease risk. In another sense, biological age is self-evidently real. Different people age at different rates, and exhibit very different risk levels for age-related disease at a given chronological age. In this sense, biological age is a very complicated state of a very complicated system, a state that we cannot measure comprehensively, even setting aside the presently incomplete understanding of cellular biology and the systems of the body.

Thus scientists search for shortcuts, measurements that are practical and attainable, but nonetheless do a fair job of reflecting the highly complex state of aging. These options are what is usually meant by biomarkers of aging. The challenge with all such approaches is that we'd like to use them to assess the performance of potential rejuvenation therapies. A given rejuvenation therapy will only influence a subset of the important mechanisms that drive degenerative aging, usually a narrow subset. That in turn means that any given biomarker of aging will likely place too little weight or too much weight on specific mechanisms of aging, and it is rarely clear in advance as to which of these is likely to be the case. This makes it hard to use biomarkers of aging as we would like to use them, and suggests that a great deal of work will be needed to make any given set of biomarkers useful in this way.

Biomarkers of aging

Do we truly know how old we are biologically, that is, more accurately describing the status of our body than our chronological ages? Are some people at higher risk of certain types of age-related diseases, i.e., cardiovascular disorders or neurodegenerative diseases, and how can they be identified? Or how do we know if any of the claimed geroprotective treatments are effective? To answer these questions, we need to establish biomarkers for aging. In a broad aspect, these biomarkers are defined as scientifically measured parameters of the physiological aging process, to measure age-related changes and to predict the transition into a pathological status.

As a biological measurement to qualify aging, a biomarker must be specific, systemic, and serviceable. (i) Specific: aging is such a heterogeneous process that it proceeds at different rates in different individuals and varies in different organs, even in the same individual. Therefore, it is impossible to have one biomarker for the entire organism but different ones or even different sets of biomarkers for different organs for evaluation; vice versa, each biomarker should be able to capture a unique aging signal of the relevant organ. Moreover, aging biomarkers should be predictive of the risk of disease development, which requires a specific threshold for the transition from physiological aging to pathological disorder. (ii) Systemic: aging involves almost very organ system, comprising numerous interconnected biological processes. Moreover, changes in one organ may elicit compensatory mechanisms or systemic feedback across the body. Therefore, biomarkers should be able to reflect such systemic changes with age, and a collection of biomarkers from multiple dimensions is required for this aspect. (iii) Serviceable: biomarkers collected through non-invasive or minimally invasive methods are particularly suited for translation into clinical practice. As aging is a gradually deteriorating process over time, longitudinal studies are needed, and again, non-invasive measurements are preferred. In larger cohort studies, cost and convenience should be considered when choosing biomarkers. In all, being specific, systemic, and serviceable are as critical to the broad spectrum of aging biomarkers as the three primary colors.

Over the years, various data types and modeling techniques have been used to develop a broad spectrum of aging biomarkers. Based on the nature of these parameters used for aging biomarkers, the collection of alterations with age can be categorized into 6 classes, or 6 pillars, although biomarkers in different categories are often interconnected with each other. There are higher-order types of changes that reflect physiological and functional changes, such as physiological characteristics, imaging traits, and histological features. Additionally, there are more causal or mechanistic driver types of biomarkers, such as cellular alterations and molecular changes. Finally, there are biomarkers serving in between, such as hormones and secretory factors that are detectable in body fluids, such as blood, urine, saliva, and cerebrospinal fluid (CSF), among which those act in a paracrine manner are of particular interest. The latter three types, as they may also serve as hallmarks or drivers of aging, may be targeted to intervene in the aging process.

Aging biomarkers are critical to answer the three major questions in the field of aging: how old are we? Why do we get old? And how can we age slower? In this comprehensive review, we provided an encyclopedia summary of aging biomarkers covering a hierarchy of dimensions at cellular, organ, organismal, and populational aging levels, along with associated ethical and social implications. We hope this re- view serves as a resource for readers in academia, industry and medical practice, broadening our understanding of not only what biomarkers can be used to monitor aging, but also how to use them to assess novel therapies to slow, modify or even reverse aging. As such, we can accelerate the journey of basic science discoveries in the aging field from bench to bedside.

Retinal Cell Reprogramming Restores Vision in Non-Human Primate Study

Early applications of in vivo cellular reprogramming to medicine are cautiously focused on retinal regeneration. The eye is as close to an isolated system as one is going to find in the body, and only small amounts of a gene therapy vector are required for effective delivery. This very localized, comparatively isolated therapy bypasses or minimizes many of the technical concerns and areas of uncertainty regarding reprogramming, allowing those who are focused on pushing applications to the clinical to forge ahead. The more interesting applications remain those in which reprogramming factors are delivered systemically to much of the body, but a good deal of work remains to answer questions about safety, dosing, and effective delivery systems. Fortunately this part of the industry is very well funded, so answers seem likely to emerge in the years ahead.

Life Biosciences (Life Bio), a biotechnology company advancing innovative cellular rejuvenation technologies to reverse diseases of aging and injury and ultimately restore health for patients, today announced preclinical data in nonhuman primates (NHP) for its novel gene therapy candidate which uses a partial epigenetic reprogramming approach to restore visual function. Life Bio's therapy significantly restored visual function in an NHP model of non-arteritic anterior ischemic optic neuropathy (NAION), a disorder similar to a stroke of the eye that is characterized by painless yet sudden loss of vision.

Life Bio's lead platform reprograms the epigenome of older animals to resemble that of younger animals via expression of three Yamanaka factors, Oct4, Sox2, and Klf4, collectively known as OSK. The approach partially reprograms cells to resemble a more youthful state while retaining their original cellular identity. Previous data have shown that treatment with OSK reverses retinal aging and restores vision in old mice in a mouse model of glaucoma. Now, the company has demonstrated restoration of visual function and increased nerve axon survival in an NHP model that mimics human NAION deficits in retinal ganglion cells.

Link: https://www.globenewswire.com/news-release/2023/04/23/2652317/0/en/Life-Biosciences-Presents-Groundbreaking-Data-at-ARVO-Demonstrating-Restoration-of-Visual-Function-in-Nonhuman-Primates.html

Neoagarotetraose Supplementation Improves Gut Microbiome to Extend Life in Mice

With advancing age, the balance of microbial populations in the intestinal tract changes to favor harmful, pro-inflammatory species at the expense of those that produce beneficial metabolites. This contributes to the onset and progression of age-related conditions. Here find an interesting example of adjustment of the aging gut microbiome in mice, promoting beneficial microbial populations to result in extended life span. We'd expect mouse life span to be more plastic to this class of intervention than human life span, but nonetheless, work on preventing detrimental age-related changes to the gut microbiome is demonstrating its worth in animal models. Researchers should now focus on obtaining more human data on the effects of fecal microbiota transplant from young to old individuals, as this is the most clearly effective approach to date, with the greatest amount of existing human safety data.

Dietary oligosaccharides can impact the gut microbiota and confer tremendous health benefits. The aim of this study was to determine the impact of a novel functional oligosaccharide, neoagarotetraose (NAT), on aging in mice. 8-month-old C57BL/6J mice as the natural aging mice model were orally administered with NAT for 12 months. The preventive effect of NAT in Alzheimer's disease (AD) mice was further evaluated. Aging related indicators, neuropathology, gut microbiota and short-chain fatty acids (SCFAs) in cecal contents were analyzed.

NAT treatment extended the lifespan of these mice by up to 33.3%. Furthermore, these mice showed the improved aging characteristics and decreased injuries in cerebral neurons. Dietary NAT significantly delayed DNA damage in the brain, and inhibited reduction of tight junction protein in the colon. A significant increase at gut bacterial genus level (such as Lactobacillus, Butyricimonas, and Akkermansia) accompanied by increasing concentrations of SCFAs in cecal contents was observed after NAT treatment. Functional profiling of gut microbiota composition indicated that NAT treatment regulated the glucolipid and bile acid-related metabolic pathways. Interestingly, NAT treatment ameliorated cognitive impairment, attenuated amyloid-β (Aβ) and Tau pathology, and regulated the gut microbiota composition and SCFAs receptor-related pathway of Alzheimer's disease (AD) mice.

In conclusion, NAT mitigated age-associated cerebral injury in mice through gut-brain axis. The findings provide novel evidence for the effect of NAT on anti-aging, and highlight the potential application of NAT as an effective intervention against age-related diseases.

Link: https://doi.org/10.1016/j.jare.2023.04.014

Nobody is Counting on the Near Term Emergence of a Regulatory Path to Approval for Therapies to Treat Aging

The article I'll point out today touches on an important point regarding present efforts to develop therapies capable of slowing or reversing the progression of aging. Some of those therapies manipulate metabolism in ways that are known to modestly slow aging, such as upregulation of autophagy via mTOR inhibition, but the full holistic understanding of how they work is as yet lacking. Others target specific causative mechanisms of aging, such as the accumulation of senescent cells and their disruptive senescence-associated secretory phenotype. There, we lack the full picture of how the well-understood cause contributes in detail to the very complex changes of later stage aging, but we can at least be fairly certain that when we see benefits in older animals and people, we know that the specific targeted mechanism is important in aging.

The development of medicine is heavily regulated. Overly regulated. Laboring under such a vast burden of regulation that it is at times surprising that anything is ever achieved. The costs are vast. In some cases the cost is effectively infinite, such as in the matter of aging. At present there is no regulatory path by which the FDA or equivalent regulatory bodies will approve a therapy for the treatment of aging. There is a great deal of discussion as to what it might take to generate such a path, and some pioneering design and persuasion on the part of those heading up the TAME trial initiative, but no signs that all of this will produce the desired outcome at any point in the near future. That won't stop people continuing to invest time and funding into producing this path, of course.

The principals of every biotech company presently developing therapies that may slow or reverse aspects of aging are ignoring the question of regulatory approval for therapies to treat aging. It is irrelevant to them, because it won't happen soon enough. They instead identify the specific age-related diseases that are most likely to respond favorably to the specific mechanisms of aging targeted by their therapies, and seek approval for the treatment of those diseases. This is the standard approach taken by any biotech, is well understood by conservative biotech investors, and is the way that one succeeds in getting a therapy to market as the principal of a biotech company.

This much is said in the article below. What tends to go unsaid by those who are presently engaged with the FDA is that, following approval, one might expect widespread off-label use to emerge for any therapy with sizable effects on a mechanism of aging. There is where the real battle will be fought over the regulatory path to treat aging. The initial approval via the present regulatory system is the wedge applied to the wood, the shoe in the door. This goes unsaid because the FDA has in the past demonstrated considerable opposition to widespread off-label use, and talking about that may prejudice one's chances of success in regulatory approval. Nonetheless, off-label use is legal and in principle in the hands of physicians, not the FDA. If a medicine is demonstrated safe, and physicians have a reasonable expectation that it will produce patient benefits, they can go ahead. At least until the FDA makes earnest efforts to shut things down and force clinical trials; this is something of a political anarchy, well illustrated in practice by the changing regulatory stance on stem cell treatments over the past few decades. The analogous fight over the treatment of aging will be much larger and much louder.

Another point is that the high costs imposed by the FDA are giving rise to a medical tourism industry outside the US that will grow in size and sophistication as the number of customers grows. Medical tourism to treat disease is a small market in comparison to medical tourism to treat aging. The size of that market will inspire, eventually, an entirely distinct medical ecosystem, in which the option will exist to responsibly run trials and treat people at a fraction of the costs presently required. Small elements of that ecosystem exist today, but only the vastly greater number of potential customers created by viable treatments for aging will create the growth and coordination needed to build a viable alternative. That alternative is needed, as present regulatory regimes are holding back progress to chase an ideal of zero patient risk at any cost.

Getting geroprotective drugs to market for specific disease applications is the first step in eventually making them available for healthier aging

James Peyer, the CEO of the New York-based biotech company Cambrian Bio - which seeks to develop therapeutics to lengthen healthspan - says the first geroprotective drug to gain FDA approval may be something that is already known today - perhaps a drug already approved for another indication - and has only to be validated through clinical trials for longevity. "We have actually 80 interventions, of which about 20 are drugs that extend healthy lifespan in mice," he says, referring to all the known drugs on the market that could potentially be repurposed as well as all the experimental compounds in the pipeline not yet approved to treat any disease that look promising as future geroprotective drugs. Probably a handful of the 80 have sufficient evidence to support running a large clinical trial. But therein lies the problem.

Doing clinical trials for longevity is hard. It's expensive. Historically, many have even said it's impossible. "If you took an experimental drug, and I took a placebo, how long would we have to wait to see a real outcome?" Peyer asks me. "Six years. They take six years and they cost $150 million. If you're going to take a drug that has never demonstrated human safety and efficacy before and try to go straight into that six year, $150 million shot on goal, and then maybe afterwards you'll have revenues. It's risky." Six costly years, six risky years - and there's no way around it. That's why people always warned him it couldn't be done.

Instead a preventive medicine is typically tested first for its ability to treat a specific illness. Once it proves safe in humans and effective for that smaller indication, then it moves into the more costly, larger prevention trials. And that's how many companies in the field are moving forward-using what Peyer calls the stepping-stone approach. The idea of targeting treatments for specific age-related diseases is to create value. It avoids the six-year risk of a broader longevity trial and instead tests the drug in well-defined populations, perhaps even people who have a genetic disease and will be highly likely to benefit from the therapy. They may respond more quickly, show results sooner, and allow for shorter, less expensive clinical trials.

The basic idea is simple, says Joe Betts-LaCroix, CEO of the San Francisco-based biotech company Retro Biosciences. "You can start with a disease that has the most acute manifestation in the shortest amount of time with response to some step change in an aging mechanism, produce that as a therapy that gets approved by a health authority, and then slowly expand from there. The idea is that if you can intervene really well in one aging pathway, you can then treat and or prevent multiple downstream diseases at the same time with one therapy."

Targeting an Imbalance of Inflammatory Factors Induces Regeneration in Osteoarthritic Joints

Researchers here demonstrate that various cell populations found in osteoarthritic joint tissue remain competent and capable of regeneration, but these activities are suppressed by factors found in the local environment. Suspecting an excess of inflammatory signaling as the culprit, the researchers designed an anti-inflammatory cell therapy, employing cell types that act to counter inflammatory signaling. The results were promising in a mouse model of osteoarthritis, and continued to be promising in a small human clinical trial.

It can be hypothesized that functional regeneration of osteochondral defects may occur through the activation of appropriate progenitor cells recruited from the surrounding tissues, such as the synovial membrane, upon the onset of the pro-regenerative phase from the local immune cells. Once these progenitors are activated by trauma, they migrate to the defect site where they attach, proliferate, and undergo chondrogenic differentiation to contribute to tissue regeneration. Subsequently, it can be hypothesized that elements in the synovial environment of osteoarthritis (OA) may interfere with any of these crucial steps, impairing the regenerative potential. These elements would then be a cause, and as a result, a target to treat and potentially cure OA in a clinically effective way.

The synovial fluid (SF) from OA patients was herein identified to be a major inhibitor of the regenerative process in an OA environment. Specifically, the heterogeneous cell population isolated from the SF showed a clear ability to migrate, attach, proliferate, and undergo chondrogenic differentiation, all steps crucial for functional regeneration to occur, under standard assay conditions. However, the presence of autologous SF (aSF) during any of these events drastically impaired these processes. Characterization of the SF cytokine composition linked these results to a specific pro-inflammatory profile, suggesting an imbalance between pro- and anti-inflammatory immune cells in the SF.

On the basis of these findings, an immunomodulatory cell treatment was developed with the goal of restoring joint homeostasis by mimicking crucial events seen during tissue regeneration. The treatment was based on anti-inflammatory cartilage-activated T cells (CATs), which upon coculture with adipose-derived mesenchymal stromal cells (aMSCs), induced chondrogenic priming of the progenitor cells. Intra-articular injection of the final coculture steered articular cartilage regeneration and restored joint homeostasis in a rat OA model. A later clinical evaluation in human patients showed improved quality of life, reduced pain, and articular cartilage regeneration in a compassionate use study.

Link: https://doi.org/10.1126/sciadv.ade4645

Current Aging Clocks are Arguably Too Sensitive to Transient Stresses

Numerous clocks to assess biological age have been constructed based on comparisons of epigenetic, transcriptomic, proteomic, and other data that changes with age. When measured using white blood cells from a blood sample, one might argue that these clocks are overly influenced by the state of the immune system, changing in response to circumstances. With that in mind, researchers here report on the tendency of measured biological age to transiently increase during stressful circumstances. Aging clocks exhibit a range of other quirks, such as the noted insensitivity to physical fitness in early epigenetic clocks, and there is clearly a great deal more work to be accomplished if clocks are to become trusted enough to be used to assess the potential of new approaches to rejuvenation, and thereby guide the direction of research and development.

Aging is classically conceptualized as an ever-increasing trajectory of damage accumulation and loss of function, leading to increases in morbidity and mortality. However, recent in vitro studies have raised the possibility of age reversal. Here, we report that biological age is fluid and exhibits rapid changes in both directions.

At epigenetic, transcriptomic, and metabolomic levels, we find that the biological age of young mice is increased by heterochronic parabiosis and restored following surgical detachment. We also identify transient changes in biological age during major surgery, pregnancy, and severe COVID-19 in humans and/or mice.

Together, these data show that biological age undergoes a rapid increase in response to diverse forms of stress, which is reversed following recovery from stress. Our study uncovers a new layer of aging dynamics that should be considered in future studies. The elevation of biological age by stress may be a quantifiable and actionable target for future interventions.

Link: https://doi.org/10.1016/j.cmet.2023.03.015

Plasma Transfer Lowers Epigenetic Age and Mortality in Rats

Plasma transfer from young to old individuals has produced mixed results in animals and little to no benefit in humans where assessed rigorously. These studies were driven by the hypothesis that young plasma contains meaningfully beneficial factors missing in old plasma, and mixed to poor results suggest that either this hypothesis is untrue, or that plasma transfer is not delivering enough of those beneficial factors. That said, today's open access preprint paper is an example of a plasma transfer study that did manage to produce benefits in old rats. One might well ask what exactly about the experimental procedure is the important difference when compared with earlier exercises. That the treatment was carried out biweekly for the entire remaining life span of the old rats might be one item of interest.

While the paper plays up the idea that factors present in young plasma may be aiding old animals, compelling evidence generated in parabiosis studies and related efforts conducted over the past decade suggests that this is the less plausible mechanism. Dilution of blood via saline and albumin in old animals has produced more robust evidence for health benefits. That one can produce health benefits via simple dilution of blood demonstrates that there are harmful factors present in the aged bloodstream, and sufficient dilution of these factors improves cell and tissue function.

One might consider that failures to achieve results via plasma transfer are examples of failing to produce enough dilution at any given time to significantly change the signaling environment. That doesn't explain the study noted here, of course! The rats were not given enough plasma in any one treatment to produce the level of dilution achieved with saline and albumin in other studies. So what exactly is the difference between successful and unsuccessful plasma transfer animal studies? Contradictory evidence is everywhere in the literature if one looks hard enough, but there is quite a lot of it related to the topic of plasma transfer.

Young Plasma Rejuvenates Blood DNA Methylation Profile, Prolongs Mean Lifespan and Improves Health in Old Rats

There is converging evidence that young blood conveys cells, vesicles, and molecules able to revitalize function and restore organ integrity in old individuals. Here, we assessed the effects of young rat plasma on the lifespan, epigenetic age, and healthspan of old female rats. Beginning at 25.3 months of age, a group of 9 rats (group T) was intraperitoneally injected with plasma from young rats (2 months) until their natural death. A group of control rats of the same age, received no treatment. Blood samples were collected every other week.

Survival curves showed that from age 26 to 30 months, none of the T animals died, whereas the survival curve of C rats began to decline at age 26 months. The external appearance of the T rats was healthier than that of the C counterparts. Blood DNA methylation (DNAm) age versus chronological age showed that DNAm age in young animals increased faster than chronological age then slowed down progressively, entering a plateau after 27 months. Immediately after the start of the treatment, the DNAm age (i.e., epigenetic age) of the treated rats fell below the DNAm age of controls and remained consistently lower until the end of their lives.

Assessment of each experimental group showed that the blood DNA methylation levels of 1638 CpGs were different between treated and control blood samples. Of these, 1007 CpGs exhibited increased methylation, with age while 631 CpGs showed decreased methylation levels. When rats were grouped according to the similarities in their differential blood DNA methylation profile, samples from the treated and control rats clustered in separate groups. Analysis of promoter differential methylation in genes involved in systemic regulatory activities revealed specific gene ontology (GO) term enrichment related to the insulin-like factors (IGFs) pathways as well as to cytokines and chemokines associated with immune and homeostatic functions. We conclude that young plasma therapy may constitute a natural noninvasive intervention for epigenetic rejuvenation and health enhancement, readily translatable to the clinic.

Exercise and Alternative Mechanisms of Telomerase

Evolution tends towards reuse of component parts, and as a result no gene has just one function. Telomerase in particular is involved in far more than just extending telomeres, the caps that the ends of chromosomes that are reduced with each cell division. In humans, stem cells express telomerase to maintain long telomeres, while all other cells can replicate only a limited number of times. What are the other functions of telomerase? As first noted some years ago, telomerase may be protective of mitochondrial function, and the paper here lists a few other interesting line items as well: angiogenesis, metabolism, regulation of gene expression, and so forth.

When we see evidence for a large upregulation of telomerase expression achieved via gene therapy to extend life in mice, is this taking place only because increased telomerase expression is extending telomeres, or are other mechanisms also participating to a significant degree? Separately, it is noted that exercise increases telomerase expression, though evidently nowhere near enough to produce the same extension of mouse life span as has been achieved via the use of telomerase gene therapies. Nonetheless, to what degree are the benefits of exercise mediated by telomerase? These are presently questions without firm answers.

Telomerase preserves genomic integrity by maintaining and protecting the telomeres. Seminal findings from 1985 revealed the canonical role of telomerase and motivated investigations into potential therapeutic strategies to combat one of the hallmarks of ageing - telomere attrition. Since then, the field of telomere biology has rapidly expanded, with telomerase serving essential roles in cancer and cell development through its canonical function.

However, telomerase also exerts critical extra-telomeric functions through its protein (telomerase reverse transcriptase, TERT) and RNA components (telomerase RNA component, TERC). Telomerase re-activation or ectopic expression promotes survival and permits unlimited proliferation in tumours and healthy non-malignant cells. TERT gene therapies improve health and lifespan in ageing mice and mouse models of age-related diseases. The extra-telomeric functions of telomerase are critical to ageing. These include protection against oxidative stress, orchestration of chromatin modifications and transcription, and regulation of angiogenesis and metabolism (e.g. mitochondrial function and glucose control).

Given that these biological functions are key adaptations to endurance training and the recent meta-analytical findings that indicate exercise up-regulates TERT and telomerase, a comprehensive discussion on the implications of the canonical and extra-telomeric roles of telomerase is warranted. This review highlights the therapeutic benefits of telomerase-based treatments for idiopathic and chronic diseases that are linked to ageing. Discussion on the canonical and extra-telomeric roles of telomerase are presented, followed by a detailed summary of the evidence on how exercise influences telomerase. Finally, the potential cell signalling underpinning the exercise-induced modulation of telomerase are discussed with directions for future research.

Link: https://doi.org/10.1111/acel.13836

Quantifying the Effects of Exercise on a Transcriptomic Aging Clock

The first epigenetic clocks used to assess biological age were, oddly, insensitive to the state of physical fitness. This is not an intuitive outcome, given that we know lifestyle choices relating to fitness appear have measurable effects on human life expectancy in epidemiological studies. This is one of a number of hints that suggest that most clocks are incomplete, that they only reflect some fraction of the many factors affecting health and mortality. Researchers here instead use a transcriptomic clock to assess the effects of a high intensity exercise program, and do see an effect that looks more reasonable when compared to the results of epidemiological studies of exercise and fitness. This is one small step of many that will need to be taken to calibrate and compare the many different aging clocks in an attempt to find those that can be used in an unbiased way to assess future potential rejuvenation therapies.

While the relationship between exercise and life span is well-documented, little is known about the effects of specific exercise protocols on modern measures of biological age. Transcriptomic age (TA) predictors provide an opportunity to test the effects of high-intensity interval training (HIIT) on biological age utilizing whole-genome expression data.

A single-site, single-blinded, randomized controlled clinical trial design was utilized. Thirty sedentary participants (aged 40-65) were assigned to either a HIIT group or a no-exercise control group. After collecting baseline measures, HIIT participants performed three 10 × 1 HIIT sessions per week for 4 weeks. Each session lasted 23 min, and total exercise duration was 276 min over the course of the 1-month exercise protocol. TA, 10-item perceived stress scale (PSS-10) score, Pittsburgh sleep quality index (PSQI) score, patient health questionnaire 9-item depression module (PHQ-9) score, and various measures of body composition were all measured at baseline and again following the conclusion of exercise/control protocols.

Transcriptomic age reduction of 3.59 years was observed in the exercise group while a 3.29-years increase was observed in the control group. Also, PHQ-9, PSQI, BMI, body fat mass, and visceral fat measures were all improved in the exercise group. A hypothesis-generation gene expression analysis suggested exercise may modify autophagy, mTOR, AMPK, PI3K, neurotrophin signaling, insulin signaling, and other age-related pathways. A low dose of HIIT can reduce an mRNA-based measure of biological age in sedentary adults between the ages of 40 and 65 years old. Other changes in gene expression were relatively modest, which may indicate a focal effect of exercise on age-related biological processes.

Link: https://doi.org/10.1111/acel.13841