A line shaft supporting two pulleys A and B is shown in Fig. 9.5(a). Power is supplied to the shaft by means of a vertical belt on the pulley A, which is then transmitted to the pulley B carrying a horizontal belt. The ratio of belt tension on tight and loose sides is 3:1. The limiting value of tension in the belts is 2.7 kN. The shaft is made of plain carbon steel 40C8 (Sut=650N/mm2 and Syt=380N/mm2) \left(S_{u t}\right. \left.=650 N / mm ^{2} \text { and } S_{y t}=380 N / mm ^{2}\right) . The pulleys are keyed to the shaft. Determine the diameter of the shaft according to the ASME code if,
kb=1.5 and kt=1.0 k_{b}=1.5 \quad \text { and } \quad k_{t}=1.0 .

Step-by-Step

Verified Answer

 Given Sut=650N/mm2Syt=380N/mm2 \text { Given } S_{u t}=650 N / mm ^{2} \quad S_{y t}=380 N / mm ^{2} .

kb=1.5kt=1.0  k_{b}=1.5 \quad k_{t}=1.0  .

 For belt drive, P1/P2=3 \text { For belt drive, } P_{1} / P_{2}=3 .

Maximum belt tension = 2.7 kN
Step I Permissible shear stress

0.30Syt=0.30(380)=114N/mm2 0.30 S_{y t}=0.30(380)=114 N / mm ^{2} .

0.18Sut=0.18(650)=117N/mm2 0.18 S_{u t}=0.18(650)=117 N / mm ^{2} .

The lower of the two values is 114 N/mm² and there are keyways on the shaft.

Step II Torsional moment
The maximum belt tension is limited to 2.7 kN. At this stage, it is not known whether P1 P_{1} is maximum or P3 P_{3} is maximum. The torque transmitted by the pulley A is equal to torque received by the pulley B. Therefore,

(P1P2)(2502)=(P3P4)(4502) \left(P_{1}-P_{2}\right)\left(\frac{250}{2}\right)=\left(P_{3}-P_{4}\right)\left(\frac{450}{2}\right) .

(P1P2)=1.8(P3P4) \left(P_{1}-P_{2}\right)=1.8\left(P_{3}-P_{4}\right)             (a).

 Also, P2=13P1 and P4=13P3 \text { Also, } \quad P_{2}=\frac{1}{3} P_{1} \quad \text { and } \quad P_{4}=\frac{1}{3} P_{3} .

Substituting the above values in Eq. (a),

(23P1)=1.8(23P3) or P1=1.8P3 \left(\frac{2}{3} P_{1}\right)=1.8\left(\frac{2}{3} P_{3}\right) \quad \text { or } \quad P_{1}=1.8 P_{3} .

Therefore, the tension P1 P_{1} in the belt on the pulley A is maximum.

P1=2700N and P2=2700/3=900N P_{1}=2700 N \text { and } P_{2}=2700 / 3=900 N .

P3=P11.8=27001.8=1500NP4=1500/3=500N P_{3}=\frac{P_{1}}{1.8}=\frac{2700}{1.8}=1500 N \quad P_{4}=1500 / 3=500 N .

A simple way to decide the maximum tension in the belt is the smaller diameter pulley. Smaller the diameter of the pulley, higher will be the belt tension for a given torque.
The torque transmitted by the shaft is given by,

Mt=(2700900)(2502)=225000Nmm M_{t}=(2700-900)\left(\frac{250}{2}\right)=225000 N – mm .

Step III Bending moment
The forces and bending moments in vertical and horizontal planes are shown in Fig. 9.5(b). The maximum bending moment is at A. The resultant bending moment at A is given by,

Mb=(810000)2+(250000)2=847703Nmm M_{b}=\sqrt{(810000)^{2}+(250000)^{2}}=847703 N – mm .

Step IV Shaft diameter
From Eq. (9.15),

τmax.=16πd3(kbMb)2+(ktMt)2 \tau_{\max .}=\frac{16}{\pi d^{3}} \sqrt{\left(k_{b} M_{b}\right)^{2}+\left(k_{t} M_{t}\right)^{2}}                  (9.15).

d3=16πτmax(kbMb)2+(ktMt)2 d^{3}=\frac{16}{\pi \tau_{\max }} \sqrt{\left(k_{b} M_{b}\right)^{2}+\left(k_{t} M_{t}\right)^{2}} .

=16π(85.5)(1.5×847703)2+(1.0×225000)2 =\frac{16}{\pi(85.5)} \sqrt{(1.5 \times 847703)^{2}+(1.0 \times 225000)^{2}} .

or d = 42.53 mm.