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Introduction

Theorem (van der Waerden, 1927)

Given any k , n 2 N, there exists a W (k , n) 2 N such that if
{V1,V2, . . . ,Vn} is a partition of {1, 2, . . . ,W (k , n)}, then there is
an i  n such that Vi contains a k–term arithmetic progression.

Conjecture (P. Erdős and P. Turán, 1936)

If X ✓ N has a positive upper density, then X contains a k–term
arithmetic progression for every k 2 N.

In 1953 K. F. Roth gave a proof of the conjecture for k = 3
using harmonic analysis. In 1975, E. Szemerédi gave a
combinatorial proof of the full conjecture. Hence the conjecture is
now called Szemerédi’s Theorem. In 1977 H. Furstenberg gave an
ergodic proof of Szemerédi’s Theorem. In 2001 T. Gowers gave a
harmonic proof of Szemerédi’s Theorem with numerical
information. All of these proofs are long and complicated.
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Introduction

Theorem (van der Waerden, 1927)

Given any k , n 2 N, there exists a W (k , n) 2 N such that if
{V1,V2, . . . ,Vn} is a partition of {1, 2, . . . ,W (k , n)}, then there is
an i  n such that Vi contains a k–term arithmetic progression.
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Tao’s E↵orts

In a workshop Nonstandard methods in combinatorial number
theory sponsored by American Institute of Mathematics in San
Jose, CA, August 2017, T. Tao gave a series of talks to explain the
Szemerédi’s original combinatorial proof and hope to simplify it so
that it can be better understood. He believed that Szemerédi’s
combinatorial method should have a greater impact in
combinatorics.

In the talks T. Tao mentioned that he had tried to present
Szemerédi’s original combinatorial proof using nonstandard analysis
but failed to make the proof simpler than the standard proof. He
challenged the audience to produce a nonstandard proof of
Szemerédi’s Theorem which is noticeably simpler and more
transparent than Szemerédi’s original proof.
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Roth’s Theorem

Let X ✓ N. The upper Banach density of X is defined by

BD(X ) = lim
n!1

sup
k2N

|(X \ [k , k + n � 1])|
n

.

A k–a.p. (k-term arithmetic progression), denoted by p, is a set of
the form

p := {a+ id | i = 0, 1, . . . , k � 1}

for some integers a and d . We also use the term
p(i) := a+ (i � 1)d , i.e., the i-th term of the k–a.p. for each
i  k . We often use P to denote an infinitely long a.p.

Theorem (K. F. Roth, 1953)

If X ✓ N and BD(X ) > 0, then X contains a 3–a.p.
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Nonstandard Analysis Crash Course I

Definition (Standard Universe (V ;2))
Fix a su�ciently large finite positive integer m. Let

V0 = R, Vn+1 = Vn [ P(Vn), and V =
m[

n=0

Vn.

Definition (Nonstandard Universe (⇤V ; ⇤2))
Consider (V ;2) as a structure with one binary relation 2. A

nonstandard universe (⇤V ; ⇤2) is a countably saturated
elementary extension of (V ;2). Let ⇤ : A 7! ⇤A be the elementary
embedding from V to ⇤V .

We can view ⇤R as a set of urelements and ⇤2 as a real
membership relation 2. For convenience we write a 2 R for ⇤a and
 for ⇤ as the natural order of ⇤R. Note that in general ⇤A 6= A.
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Nonstandard Analysis Crash Course II

Definition (Internal and External Sets)

Note that the power set operator P from Vm�4 to Vm�3 is an
element in V . A set X is internal if X 2 ⇤P(Vn) for some
n  m� 3, and external if X is not internal.

All sets considered in the rest of the talk are either standard
subset of N or internal subsets of ⇤N. Note that an infinite subset
of N is an external subset of ⇤N. An integer in ⇤N \ N is called
hyperfinite. An internal set with a hyperfinite cardinality is called a
hyperfinite set.
For internal set A and positive integer n let �n(A) := |A|/n and

µn(A) := st (�n(A)), where st is the standard part map which
maps a real number r 2 (�n, n) for some n 2 N in the
nonstandard universe to a standard real ↵ such that r ⇡ ↵, i.e., r
is infinitesimally close to ↵.
Note that if A ✓ ⌦ and |⌦| = H, then µH(A) is the Loeb

measure of A in ⌦.
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Propositions I

The letter A,B ,C ,R , S ,T ,U,V , . . . represent sets and
H,K , L,M,N represent hyperfinite integers. Let
[n] := {0, 1, . . . , n � 1} for any positive integer n.

Proposition (1)

Let X ✓ N. Then BD(X ) � ↵ if and only if there exists a
hyperfinite interval a+[N] in ⇤N such that µN(⇤X \ (a+[N])) � ↵.

Proposition (2)

Let X ✓ N. Then X contains a k–a.p. if and only if ⇤X contains
a k–a.p.
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Propositions II

Proposition (3)

Let ↵ > 0 be standard positive real number. Then the following
are equivalent:

1 For any X ✓ N, BD(X ) > ↵ implies that X contains a k–a.p.

2 For any hyperfinite N and any A ✓ [N], µN(A) > ↵ implies
that A contains a k–a.p.

3 For any K–a.p. P for a hyperfinite K and any A ✓ P,
µK (A) > ↵ implies that A contains a k–a.p.

Blank Assumption

We assume from now on that Roth’s Theorem is not true.

To prove Roth’s Theorem, it su�ces to derive a contradiction.
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Propositions III

Definition

The standard real number ↵ is defined by

↵ := sup {µN(A) | 9N,A (A ✓ [N], A contains no 3–a.p.)} .

Proposition (4)

0 < ↵ < 1.

Proposition (5)

There exists A ✓ [N] such that µN(A) = ↵, A contains no
3–a.p., and µK (A \ P)  ↵ for every K–a.p. P ✓ [N].

Fix N and A ✓ [N] such that µN(A) = ↵ and A contains no
3–a.p. We will derive a contradiction by locating a 3–a.p. in A.
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Proof of Roth’s Theorem

Lemma (1)

Let H = bN/6c. Then µH(A \ (x + [H])) = ↵ for each
x 2 [N � H].

Note that {0} [ (H + [H]) [ (2H + 2[H]) ✓ [N � H] where
2[H] := {2x | x 2 [H]}.

For each w 2 [H] let

Pw = {p | p(1) 2 A \ [H] and p(3) = w}

and Ew := {p(2) 2 [H] | p 2 Pw}.

Lemma (2)

µH(Ew ) = ↵/2 for every w 2 [H].
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Szemerédi’s Regularity Lemma

Let V ,W be finite sets and Ew ✓ V for each w 2 W . Given
any ✏ > 0, there exist a partition V = V1 [ V2 [ · · · [ Vn with
n = O(b1/✏), and real numbers 0  ci ,w  1 for i  n such that for
any set F ✓ V , one can find a T ✓ W with |W \ T |  ✏|W | and

�����|F \ Ew |�
nX

i=1

ci ,w |F \ Vi |

�����  ✏|V |

for all w 2 T .
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Mixing Lemma

1 For a set E ✓ [H] with µH(E ) > 0 and a K–a.p.
P ✓ H + [H], there is an x 2 P such that

µH(A \ (x + E )) � ↵µH(E );

2 Given a K–a.p. P ✓ H + [H], let m be hyperfinite such that
W (3m,m)  K . For any internal partition {Vi | i 2 [m]} of
[H] there exists a m–a.p. P 0 ✓ P , a set I ✓ [m] with
µH(U) = 1 where U =

S
{Vi | i 2 I}, and an infinitesimal

✏ > 0 such that for all i 2 I and all x 2 P 0

|�H(A \ (x + Vi ))� ↵�H(Vi )|  ✏�H(Vi );

3 Given a K–a.p. P ✓ H + [H] and an internal collection of sets
{Ew ✓ [H] | w 2 [H]} with µH(Ew ) > 0 for every w 2 [H],
there exists an x 2 P and a set T ✓ [H] such that µH(T ) = 1
and for every w 2 T ,

µH(A \ (x + Ew )) = ↵µH(Ew ).
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Mixing Lemma

1 For a set E ✓ [H] with µH(E ) > 0 and a K–a.p.
P ✓ H + [H], there is an x 2 P such that

µH(A \ (x + E )) � ↵µH(E );

2 Given a K–a.p. P ✓ H + [H], let m be hyperfinite such that
W (3m,m)  K . For any internal partition {Vi | i 2 [m]} of
[H] there exists a m–a.p. P 0 ✓ P , a set I ✓ [m] with
µH(U) = 1 where U =

S
{Vi | i 2 I}, and an infinitesimal

✏ > 0 such that for all i 2 I and all x 2 P 0

|�H(A \ (x + Vi ))� ↵�H(Vi )|  ✏�H(Vi );

3 Given a K–a.p. P ✓ H + [H] and an internal collection of sets
{Ew ✓ [H] | w 2 [H]} with µH(Ew ) > 0 for every w 2 [H],
there exists an x 2 P and a set T ✓ [H] such that µH(T ) = 1
and for every w 2 T ,

µH(A \ (x + Ew )) = ↵µH(Ew ).

Renling Jin College of Charleston, SC, USA Szemerédi’s Proof Nonstandardized and Simplified



Last step of the proof

By (iii) of the mixing lemma we have a set T ✓ [H] with
µH(T ) = 1 and an l 2 H + [H] such that

µH(A \ (H + l + Ew )) = ↵µH(Ew ) = ↵2/2 > 0.

Since µH(A \ (2H + 2l + [H])) = ↵, there is a w0 2 T such that

2H + 2l + w0 2 A \ (2H + 2l + T ).

Let v0 2 Ew0 be such that H + l + v0 2 A \ (H + l + Ew0). By the
definition of Ew0 there is a 3–a.p. p such that p(3) = w0,
p(2) = v0, and p(1) 2 A. Now

{p(1), H + l + p(2), 2H + 2l + p(3)}

is a 3–a.p. in A because p(1) 2 A, H+ l +p(2) 2 A\ (H+ l +Ev0),
and 2H + 2l + p(3) 2 A \ (2H + 2l + T ).
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Szemerédi’s Theorem for k = 4

Theorem (E. Szemerédi, 1969)

Let k 2 N. If U ✓ N has a positive upper Banach density, then
U contains 4–a.p.’s.

Sketch of Proof: Let U ✓ N. Define the strong upper Banach
density of U by

SD(U) = lim
n!1

sup{µn(U \ P) | P is an n–a.p.}.

Let ↵ = SD(U). There is a K–a.p. P such that µ|P|(
⇤U \ P) = ↵.

Let A = ⇤U \ P . We look for a 4–a.p. in A. By an a�ne transform
we can assume that P = [N].

For su�ciently large n 2 N and j 2 N let
S�n := {x 2 [N] | µn(A \ (x + [n]) � ↵� 1/j and µN(S�n) = �n.
Note that if n ! 1, then �n ! 1. Choose a ⌧n ✓ [n] such that
B⌧n = {x 2 S�n | (x + [n]) \ A = x + ⌧n} with µN(B⌧n) > 0.

Renling Jin College of Charleston, SC, USA Szemerédi’s Proof Nonstandardized and Simplified
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Let k 2 N. If U ✓ N has a positive upper Banach density, then
U contains 4–a.p.’s.

Sketch of Proof: Let U ✓ N. Define the strong upper Banach
density of U by

SD(U) = lim
n!1

sup{µn(U \ P) | P is an n–a.p.}.

Let ↵ = SD(U). There is a K–a.p. P such that µ|P|(
⇤U \ P) = ↵.

Let A = ⇤U \ P . We look for a 4–a.p. in A. By an a�ne transform
we can assume that P = [N].

For su�ciently large n 2 N and j 2 N let
S�n := {x 2 [N] | µn(A \ (x + [n]) � ↵� 1/j and µN(S�n) = �n.
Note that if n ! 1, then �n ! 1. Choose a ⌧n ✓ [n] such that
B⌧n = {x 2 S�n | (x + [n]) \ A = x + ⌧n} with µN(B⌧n) > 0.

Renling Jin College of Charleston, SC, USA Szemerédi’s Proof Nonstandardized and Simplified
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Proof continued

By an argument similar to the proof of Roth’s Theorem we can
find a hyperfinite interval xn + [Hn] ✓ [N], a set
Tn ✓ (xn + [Hn]) \ S�n with µH(Tn) � 3�n � 2, and a collection
Pn := {px | x 2 Tn} of 4–a.p.’s such that px(1), px(2) 2 B⌧n ,
px(3) = x , and px(4) 2 S�n for every x 2 Tn.

By countable saturation we can assume that n is hyperfinite.
with � := �n ⇡ 1, x 0 + [H] := xn + [Hn], µN(S�) = 1,
µH(T ) := µH(Tn) = 1, and µn((x +[n])\A) = ↵ for every x 2 S� .
Since µH(T ) = 1, T contains a K–a.p. P of consecutive integers.

By an argument similar to the proof of Roth’s Theorem again,
we can find an interval y0 + [h] ✓ [n] with h = bn/8c, a set
T 0 ✓ y0 + [h] with µh(T 0) = 1, a collection Qw of 4–a.p.’s in [n]
for each w 2 T 0 such that q(1), q(2) 2 ⌧ , q(4) = w , and
Ew = {q(3) | q 2 Qw} satisfying µn(Ew ) > 0.
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Proof continued

From the last page, we have a collection P = {px | x 2 P} in
[N] and a collection Q :=

S
w2T 0 Qw in [n].

By (iii) of the mixing lemma, one can find an x0 2 P and a
T 00 ✓ T 0 such that µh(T 00) = 1 and
µn((x0 + Ew ) \ A) = ↵µn(Ew ) > 0 for each w 2 T 00. Fix a
px0 2 P with px0(3) = x0. Since px0(4) 2 S� we have
µn(A \ (px0(4) + T 00)) = ↵ > 0. Fix w 2 T 00 and qw 2 Qw such
that qw (4) = w and qw (3) 2 Ew with x0 + qw (3) 2 A.

Recall px0(1), px0(2) 2 B . Hence px0(i) + qw (i) 2 px0(i) + ⌧ ✓ A
for i = 1, 2. By the argument above we have px0(i) + qw (i) 2 A
for i = 3, 4. Hence

{px0(i) + qw (i) | i = 1, 2, 3, 4}

is a 4–a.p. in A. 2
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The End

Thank you for your attention
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