非标准分析课程讲义

金人麟

College of Charleston, SC, USA

复旦大学哲学院暑期学校 2020 年 8 月 10 - 14 日

演习

证明 König 引理

记号和定义

我们小试牛刀,用非标准模型作为工具来证明 König 引理。当然 König 引理的标准证明并不复杂,我们在此的用意只是提供一种不一样的思路。

记号和定义

我们小试牛刀,用非标准模型作为工具来证明 König 引理。当然 König 引理的标准证明并不复杂,我们在此的用意只是提供一种不一样的思路。

称一个偏序集 $(T; \prec)$ 为树如果对每一 $t \in T$,集合

$$\hat{t} := \{ s \in T : s \prec t \}$$

是 T 的良序子集。

记号和定义

我们小试牛刀,用非标准模型作为工具来证明 König 引理。当然 König 引理的标准证明并不复杂,我们在此的用意只是提供一种不一样的思路。

称一个偏序集 $(T; \prec)$ 为树如果对每一 $t \in T$,集合

$$\hat{t} := \{ s \in T : s \prec t \}$$

是 T 的良序子集。

设 T 为一树。对每个 $t \in T$,记 ht(t) 为 \hat{t} 的序型。对每个 $m \in \mathbb{N}$ 记 $Lv_m(T) := \{t \in T : ht(t) = m\}$ 为 T 的 m 层元素集合。如果对每个 $m \in \mathbb{N}$,集合 $Lv_m \neq \emptyset$,我们称 T 的高度无限。注意如果 k < ht(t),则 $\hat{t} \cap Lv_k(T) \neq \emptyset$ 。

设 $\mathbb{N}:=\{0,1,2,\ldots\}$ 是自然数集, $\mathcal{P}(\mathbb{N})$ 是 \mathbb{N} 的幂集。称 $\mathcal{N}:=(\mathbb{N};\mathcal{P}(\mathbb{N}))$ 为标准完整二阶算术模型。

设 $\mathbb{N}:=\{0,1,2,\ldots\}$ 是自然数集, $\mathbb{P}(\mathbb{N})$ 是 \mathbb{N} 的幂集。称 $\mathcal{N}:=(\mathbb{N};\mathbb{P}(\mathbb{N}))$ 为标准完整二阶算术模型。

一个非标准完整二阶算术模型 * \mathcal{N} 包含了一个集合 * $\mathbb{N} \supseteq \mathbb{N}$, 和对每一个 $A \in \mathcal{P}(\mathbb{N})$ 都有一个集合 * $A \subseteq *\mathbb{N}$ 使得结构

 $^*\mathcal{N} := (^*\mathbb{N}; \{^*A : A \in \mathcal{P}(\mathbb{N})\})$

满足完整二阶算术公理。

设 $\mathbb{N}:=\{0,1,2,\ldots\}$ 是自然数集, $\mathbb{P}(\mathbb{N})$ 是 \mathbb{N} 的幂集。称 $\mathcal{N}:=(\mathbb{N};\mathbb{P}(\mathbb{N}))$ 为标准完整二阶算术模型。

一个非标准完整二阶算术模型 * \mathcal{N} 包含了一个集合 * $\mathbb{N} \supseteq \mathbb{N}$, 和对每一个 $A \in \mathcal{P}(\mathbb{N})$ 都有一个集合 * $A \subseteq *\mathbb{N}$ 使得结构

$$^*\mathcal{N} := (^*\mathbb{N}; \{^*A : A \in \mathcal{P}(\mathbb{N})\})$$

满足完整二阶算术公理。

称 * \mathcal{N} 为 \mathcal{N} 的非标准扩张如果 * $\mathbb{N} \setminus \mathbb{N} \neq \emptyset$ 并且 \mathcal{N} 是 * \mathcal{N} 的基本子模型 (elementary submodel)。

设 $\mathbb{N}:=\{0,1,2,\ldots\}$ 是自然数集, $\mathbb{P}(\mathbb{N})$ 是 \mathbb{N} 的幂集。称 $\mathcal{N}:=(\mathbb{N};\mathbb{P}(\mathbb{N}))$ 为标准完整二阶算术模型。

一个非标准完整二阶算术模型 * \mathcal{N} 包含了一个集合 * $\mathbb{N} \supseteq \mathbb{N}$, 和对每一个 $A \in \mathcal{P}(\mathbb{N})$ 都有一个集合 * $A \subseteq *\mathbb{N}$ 使得结构

$$^*\mathcal{N} := (^*\mathbb{N}; \{^*A : A \in \mathcal{P}(\mathbb{N})\})$$

满足完整二阶算术公理。

称 * \mathcal{N} 为 \mathcal{N} 的非标准扩张如果 * $\mathbb{N} \setminus \mathbb{N} \neq \emptyset$ 并且 \mathcal{N} 是 * \mathcal{N} 的基本子模型 (elementary submodel)。

命题

标准完整二阶算术模型的非标准扩张存在。

引理 (König)

设 T 是一无限高的树且对每一 $m \in \mathbb{N}$,集合 $Lv_m(T)$ 都是有限的。则 T 一定包含一个无限全序子集。

引理 (König)

设 T 是一无限高的树且对每一 $m \in \mathbb{N}$,集合 $Lv_m(T)$ 都是有限的。则 T 一定包含一个无限全序子集。

证明: 不失一般性我们可假设 $T \subseteq \mathbb{N}$ 。由转换原理存在无穷大自然数 K 使得 $Lv_K(^*T) \neq \emptyset$ 。取定一个 $t_K \in Lv_K(^*T)$,令 $B := T \cap \hat{t}_K$ 。因为 \hat{t}_K 是全序集,所以 B 是全序集。

引理 (König)

设 T 是一无限高的树且对每一 $m \in \mathbb{N}$,集合 $Lv_m(T)$ 都是有限的。则 T 一定包含一个无限全序子集。

证明: 不失一般性我们可假设 $T \subseteq \mathbb{N}$ 。由转换原理存在无穷大自然数 K 使得 $Lv_K(^*T) \neq \emptyset$ 。取定一个 $t_K \in Lv_K(^*T)$,令 $B := T \cap \hat{t}_K$ 。因为 \hat{t}_K 是全序集,所以 B 是全序集。

对每个 $k \in \mathbb{N}$,由转换原理 $\hat{t}_K \cap Lv_k(^*T) \neq \emptyset$ 。由习题 1.20 对 每个 $k \in \mathbb{N}$,有 $Lv_k(^*T) = Lv_k(^T)$ 。所以 $B \subseteq T$ 并且 $B \cap Lv_k(^T) \neq \emptyset$ 。由 k 的任意性推出 B 是无限集。

引理 (König)

设 T 是一无限高的树且对每一 $m \in \mathbb{N}$,集合 $Lv_m(T)$ 都是有限的。则 T 一定包含一个无限全序子集。

证明:不失一般性我们可假设 $T \subseteq \mathbb{N}$ 。由转换原理存在无穷大自然数 K 使得 $Lv_K(^*T) \neq \emptyset$ 。取定一个 $t_K \in Lv_K(^*T)$,令 $B := T \cap \hat{t}_K$ 。因为 \hat{t}_K 是全序集,所以 B 是全序集。

对每个 $k \in \mathbb{N}$,由转换原理 $\hat{t}_K \cap Lv_k(^*T) \neq \emptyset$ 。由习题 1.20 对每个 $k \in \mathbb{N}$,有 $Lv_k(^*T) = Lv_k(T)$ 。所以 $B \subseteq T$ 并且 $B \cap Lv_k(T) \neq \emptyset$ 。由 k 的任意性推出 B 是无限集。

如果一棵树T的高度为 ω_1 (最小不可数序数),且T的每一层都是最多可数集。我们能推出T一定有一不可数全序子集吗?

引理 (König)

设 T 是一无限高的树且对每一 $m \in \mathbb{N}$,集合 $Lv_m(T)$ 都是有限的。则 T 一定包含一个无限全序子集。

证明: 不失一般性我们可假设 $T \subseteq \mathbb{N}$ 。由转换原理存在无穷大自然数 K 使得 $Lv_K(^*T) \neq \emptyset$ 。取定一个 $t_K \in Lv_K(^*T)$,令 $B := T \cap \hat{t}_K$ 。因为 \hat{t}_K 是全序集,所以 B 是全序集。

对每个 $k \in \mathbb{N}$,由转换原理 $\hat{t}_K \cap Lv_k(^*T) \neq \emptyset$ 。由习题 1.20 对 每个 $k \in \mathbb{N}$,有 $Lv_k(^*T) = Lv_k(^T)$ 。所以 $B \subseteq T$ 并且 $B \cap Lv_k(^T) \neq \emptyset$ 。由 k 的任意性推出 B 是无限集。

如果一棵树 T 的高度为 ω_1 (最小不可数序数), 且 T 的每一层 都是最多可数集。我们能推出 T 一定有一不可数全序子集吗? **不能**。

引理 (König)

设 T 是一无限高的树且对每一 $m \in \mathbb{N}$,集合 $Lv_m(T)$ 都是有限的。则 T 一定包含一个无限全序子集。

证明: 不失一般性我们可假设 $T \subseteq \mathbb{N}$ 。由转换原理存在无穷大自然数 K 使得 $Lv_K(^*T) \neq \emptyset$ 。取定一个 $t_K \in Lv_K(^*T)$,令 $B := T \cap \hat{t}_K$ 。因为 \hat{t}_K 是全序集,所以 B 是全序集。

对每个 $k \in \mathbb{N}$,由转换原理 $\hat{t}_K \cap Lv_k(^*T) \neq \emptyset$ 。由习题 1.20 对 每个 $k \in \mathbb{N}$,有 $Lv_k(^*T) = Lv_k(^T)$ 。所以 $B \subseteq T$ 并且 $B \cap Lv_k(^T) \neq \emptyset$ 。由 k 的任意性推出 B 是无限集。

如果一棵树T的高度为 ω_1 (最小不可数序数),且T的每一层都是最多可数集。我们能推出T一定有一不可数全序子集吗?

不能。反例被称为 Aronszajn 树。