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Issues in Nonlinear Hyperperf ect Numbers

By Daniel Minoli

Abstract.   Hyperperfect numbers (HP) are a generalization of perfect numbers and as

such share remarkably similar properties.   In this note we show, among other things,
a,  a7 a, +1

that if m = pj  p2   is 2-HP then a2 = 1, with pj = 3, p2 = 3 - 2; this is in agree-

ment with the structure of the perfect case (1-HP) stating that such a number is of the
a. a,+l

form m = p^  p2 with pj = 2 and p2 = 2 - 1.

1.   Introduction.   Integers having "some type of perfection" have received con-

siderable attention in the past few years.   The most well-known cases are: perfect num-

bers, [1], [12] -[15] ; multiperfect numbers, [1] ; quasiperfect numbers, [2] ; almost

perfect numbers, [3]-[5] ; semiperfect numbers, [16], [17] ; and unitary perfect num-

bers, [11].   The related issue of amicable, unitary amicable, quasiamicable and sociable

numbers [8], [10], [11], [9], [6], [7] has also been investigated extensively.

The intent of these variations of the classical definition appears to have been the

desire to obtain a set of numbers, of nontrivial cardinality, whose elements have prop-

erties resembling those of the perfect case.   However, none of the existing definitions

generates a rich theory and a solution set having structural character emulating the

perfect numbers; either such sets are empty, or their euclidean distance from zero is

greater than some very large number, or no particularly unique prime decomposition

form for the set elements can be shown to exist.

This is in contrast with the abundance (cardinally speaking) and the crystalized

form of the «-hyperperfect numbers («-HP), [18], [19].  These numbers are a natural

extension of the perfect case, and as such share remarkably similar properties, as de-

scribed below.

We begin with a few definitions.

Definition 1.   A natural number m is said to be «-hyperperfect if for a positive

integer n,

m = 1 + n [oim) - m - 1 ].

For « = 1, this reduces to the classical case.   Table 1 lists all the n-HP (« > 1) up to

1,500,000.

Definition 2. m = px ip22 ■ ■ • p' is said to be in canonical form if

p, < p2 < ■ ■ • < pr
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In the sequel we assume that numbers are always represented in canonical form; also,

Pi refers invariably to a prime number.

Definition 3.  If m is «-HP and m = p, p2, we say that m is a linear «-Hp;

otherwise, if m = px lp22, a2 > 1, we say that m is a nonlinear «-HP.

From observation of Table 1 it appears that the only hyperperfect numbers are the

linear «-HP.   In this paper we show that, indeed, some nonlinear forms are impossible;

a more general theorem which would state that a necessary and sufficient form for a

number to be «-HP is that it be a linear «-HP, remains to be established.

We confine our discussion to the product of two distinct primes, since this is the

simplest case to analyze; naturally, the multiprime case must eventually be resolved if

the conjecture alluded to above is to be established.

The following basic theorem of linear «-HP gives a sufficient form for a hyper-

perfect number, [19] :

Theorem 1.  m is a linear n-HP if and only if

a, + 1
nPi        -(«-l)p,-l

Pi
-(«+l)p^ +«

2.  Theory.   We wish to show, among other things, that if m = px lp22 is 2-HP,

then a2 = 1.

Theorem 2. If m = P^p"2 is 2-HP, then Pj = 3.

Proof.   We must have

3m = 2a(m) - 1.

Substituting m = p,1 p2  , we obtain

p1l(2Q, - 30) + p" 1_12Í2 + • • • + p,2í2 + (2Í2 - 1) = 0,

where
û!/> „ Oír, Û!<)— 1

e = p22,    n = p22+p22    + ■•■ + p2 + i.

Notice that

2Í2-30 -P2   + 2
<-p22 + -P2   =Pi

if p2 > 3; the case p2 = 2 is impossible.   [20] shows that if

- IV <o

a0x" +alxn^1 + + «„ = o.

then any root z satisfies

z + - < 1,   or    \z\ < 1 +     max
2</<n-l

or    \z\ <
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Table 1

«-HP up to 1,500,000,« >2

Prime decomp

n m of m

2 21 3x7

6 301 7x1*3

3 325 52xl3

12 697 17x1*1

18 1,333 31x1*3

18 1,909 23x83

12 2,01*1 13x157

2 2,133 33xT9

30 3,901 1*7x83

11 10,693 172x37

6 16,513 72x337

2 19,521 3^x21*1

60 21*,601 73x337

1*8 26,977 53x509

19 51,301 292x6l

132 96,361 173x557

132 130,153 157x829

10 159,61*1 ll2xi321

192 163,201 293x557

2 176,661 35x727

31 211*.273 l*72x97

168 250,321 193x1297

108 275,833 133x21*1*1

66 296,31*1 67x1*1*23

35 306,181 532xl09

252 389,593 317x1229

18 1*86,877                            79x6l63

132 1*95,529 137x3617

31*2 51*2,1*13 1*99x1087

366 808,861 1*63x171*7

390 1,005,1*21 1*79x2099

166 1,005,61*9 173x5813

31*8 1,055,833 1*01x2633

282 1,063,11*1 307x31*63

1*96 1,232,053 691x1783

51*0 1,281* ,121 829x151*9

51*6 1,1*03,221 787x1783

59 1,1*33,701 892xl8l
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This translates into

2Í2
P, +1      2Í2 - 30 < 1,   or    Ip.Kl +

2n
2Í2-30

, or   |p,|<
2Í2- 1

2Í2-30
<

20.

2Í2-30

Because 2Í2 - 30 < 0, these three bounds may be shown to be equivalent to the

bound

p. < 1 +
2Í2

30 - 2S2 '
or   Pj < 1 +

2p22+2p22     +--- + 2

P2   ~2Pi
a,-l

which, by long division, yields

p. <3 +

Oii — 1 a-, —3
6p2     + 6p22     +--- + 6

2p2

or, using the sum formula,

P, <3 +
6p

12 -6

= Q(p2,a2).

(p2-3)p2¿ +2

Now, Q(p2, ol2) decreases monotonically to 3 as p2 —► °°, a2 fixed; for p2 = 3,

p, = 2 is the only choice; for p2 = 5, px = 2 or 3; thus, the maximum value for

Q(p2, a2) must be obtained for p2 = 7; but here p, < 4.5, on the other hand,

Q(p2, a2) increases monotonically to 3 + 6/(p2 - 3) from below as a2 —► °°, p2

fixed.   Thusp,<3.   Since p, > 3, [19], we obtain the desired result.    Q.E.D.

OL .       2

Theorem 3.   There are no «-HP of the form m = p, p2 with px = « + 1 ; i.e.,

if an «-HP of the form Pxxp\ exists, then px > « + 1.

a.    ~

Proof   If m = Px P2 is «-HP, then p2 must satisfy the polynomial

aj-i-i

(n+ l)p"'p2 ="Plp   _ !    (P2 +P2 + 1)-« + 1

or, solving in p2,

Cï tt       ~f"   1 (-y       _L   I

p\\pxx(n + 1 -p,) - «] + p2[«Pi]      -«]+[«Pj]       + pj - np2 - 1]  = 0.

The discriminant of this quadratic can be shown to be

A = px
20,-rl)

«(« + 4)
4«(« + 1)

+ P:i + 1[6«^8 + ^±^-4pl(«-l)]

+ f«(«-4)-p1(4«)(«-l)].

Now if we assume that px = « + 1, we get

A = p2x(ai + 1)[n2] +pj1 + 1[2«2] + [«2(l-4«)]

= «2{(p"1 + 1 + l)2 -4«} =«2{[(« + 1)"1 + 1 + l]2 -4«}.
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However, [(« + 1) '      + l]2 - 4« cannot be a perfect square.   [(« + 1) '      + l]2

is a perfect square; the next (smaller) perfect square is [(« + 1) '     ]   ; the distance be-
a « + 1

tween these two squares is 2(« +1) +1; but this is greater than 4« for all a and

«.   Therefore, p, >« + 1.    Q.E.D.

Theorem 4.  There are no 2-HP of the form m = px p2-

a.    2
Proof   From Theorem 3, if m = px p2 is «-HP, p, > « + 1; however, from

Theorem 2 a 2-HP number must have p, = « + 1 = 3.  This is a contradiction.  Thus,
a.    2

no 2-HP of the form px p2 exists.    Q.E.D.

More importantly,

a.   a2
Theorem 5.   There are no 2-HP of the form m = px p2 , a2 > 1.

Proof.   From Theorem 2, px = 3; let / = a, + 1.  (« + 1)«2 = na(m) - « + 1

leads to

3'p22 = (3> - 1XP22 + vT' + ■ • • + 1) - « + 1

for this case.

We thus obtain

P(p2) = p22 - (3> - l)p22_1 - (3' - l)p22"2-3¡ + 2 = 0.

Using the same bound used earlier, we obtain p2 < 3'; because of the primality condi-

tion, p2 < 3' - 1.   For a2 > 1 the following facts hold:

Fact 1. P(3') = 2 since we get a finite telescoping sequence.

Fact 2. P(3' - 1) < 0 since

P(3> - 1) = -(3' - l)"1-1 - (3> - if1"2-(3'' - 1) + 1 < 0.

Fact 3. P(x) < 0 for 1 < x < 3' — 1 since we have

Therefore.

negative since a2 > 1

P(x) = x"2 - (3> - l)/2  l - K < x*2 - (3' - \)xa

= x2    (x- (3> - 1)).

But x < (3' - 1), therefore, x - (3' - 1) < 0.  This implies P(x) < 0.  This shows

that any positive root r of this polynomial satisfies 3' - 1 < r < 3', thus no integral

values of p2 exist.

Corollary 1. // a2 = 1, p2 = 3'' - 2 is the only allowable second prime.

Proof.   From Theorem 5, if a2 = \,P(p2) = p2 - 3'' + 2 = 0 or p2 = 3' - 2.

Q.E.D.
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For the general «-HP case we can obtain a few (weaker) results as follows.

Theorem 6. If m = pxlp22 is «-HP, then

a2<

Log[«(p"' +pax1   l +■■■+ 1) + (p2 - 1)(« - 1)]

Logp2

Proof,   (n + l)m = mo(m) - n + 1 leads to

22   n(paS+--- + l)^-(n + \)paA=n(p*xiP

so that

+ •••+1)
P2-1

+ «- 1,

a2 = Log
«(p,1 +--- + l) + (p2 -!)(«-!)

n(paxl +•••+ l)p2-(«+ l)(p2-l)p°

'Logp2

from which the result follows.  This bound is actually attained in many circumstances.

Q.E.D.

Theorem 7. If m = p\xp\ is «-HP, then « + 2 < px <(n + l)2.

Proof.   As in Theorem 3,

a, +1

(« + \)pxlp\ = «■

- 1

1 -(p\ +p2 + 1)-«+ 1;

or, solving in p,,

Paxl[-p\ +np2 +n] +p"1_1[«(p2 +p2 + 1)] +p"'"2[«(p2 +p2 + 1)]

+ ■•■+p1[«(p2 +p2 + 1)] + [np2 +np2 + lj =0.

Note that -p2 + «p2 + « = ~P2(p2 - n) + n < 0 since p2 > «.   Using the bounds

of Theorem 2, from [20], we obtain

p,<l +
«p2 + «p2 + «

= « + 1 +
(« + «2)(p2 + 1)

= « + 1 +

Pi -np2-n p\- np2 - «

(« + «2)(p2 - 1)

[p2-(«+l)]p2+«

This bound decreases monotonically to « + 1 as p2 —► °°; thus the maximum is ob-

tained at p2 = « + 2 (p2 > Pj > n + 1), so that

P1<(« + i)+      (" + "> + 3)      =(« + i) + ^ + 1X" + 3)
(« + 2)2 - «(« + 2) - «

« + 4
<(« + l)2

Note p, > « + 2 by Theorem 3 above.    Q.E.D.
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3. Conclusion. It appears empirically that the only «-HP are the linear «-HP.

In this paper we have shown that there are no nonlinear 2-HP. A bound on a2 for

nonlinear «-HP, « ¥= 2, has also been derived. A more general theorem stating that

there are not nonlinear «-HP (for any «) is currently being sought.

Computer time (PDP 11/70) for Table 1 was over 10 hours.

Bell Telephone Laboratories

Holmdel, New Jersey 07733

1. L. E. DICKSON, History of the Theory of Numbers, Vol. 1, Chelsea, New York, 1952.

2. H. L. ABBOT ET AL., "Quasiperfect numbers," Acta. Arith., v. 22, 1973, pp. 439-447.

MR 47 #4915.

3. M. KISHORE, "Odd almost perfect numbers," Notices Amer. Math. Soc, v. 22, 1975,

p. A-380, Abstract #75FA92.

4. R. P. JERRARD & N. TEMPERLEY, "Almost perfect numbers," Math. Mag., v. 46,

1973, pp. 84-87.

5. J. T. CROSS, "A note on almost perfect numbers," Math. Mag., v. 47, 1974, pp. 230-

231.

6. P. HAGIS & G. LORD, "Quasi-amicable numbers," Math. Comp., v. 31, 1977, pp. 608-

611.

7. HENRI COHEN, "On amicable and sociable numbers," Math. Comp., v. 24, 1970,

pp. 423-429.
8. P. BRATLEY ET AL., "Amicable numbers and their distribution," Math. Comp., v. 24,

1970, pp. 431-432.

9. W. E. BECK & R. M. NAJAR, "More reduced amicable pairs," Fibonacci Quart., v. 15,

1977, pp. 331-332.

10. P. HAGIS, "Lower bounds for relatively prime amicable numbers of opposite parity,"

Math. Comp., v. 24, 1970, pp. 963-968.

11. P. HAGIS, "Unitary amicable numbers," Mart. Comp., v. 25, 1971, pp. 915-918.

12. M. KISHORE, "Odd integers N with five distinct prime factors for which 2-10 <

o(N)/N < 2 + 10"~12," Math. Comp., v. 32, 1978, pp. 303-309.

13. L. E. DICKSON, "Finiteness of the odd perfect and primitive abundant numbering with

a distinct prime factor," Amer. J. Math., v. 35, 1913, pp. 413-422.

14. P. HAGIS, "A lower bound for the set of odd perfect numbers," Math. Comp., v. 27,

1973, pp. 951-953.

15. B. TUKERMAN, "A search procedure and lower bound for odd perfect numbers,"

Math. Comp., v. 27, 1973, pp. 943-949.

16. J. BENKOSKI & P. ERDÖS, "On weird and pseudo perfect numbers," Math. Comp.,

v. 28, 1974, pp. 617-623.

17. A. E. ZACHARIOV, "Perfect, semi-perfect and Ore numbers," Bull. Soc Math. Grèce,

v. 13, 1972, pp. 12-22.

18. D. MINOLI & R. BEAR, "Hyperperfect numbers," Pi Mu Epsilon J., Fall, 1975,

pp. 153-157.
19. D. MINOLI, "Structural issues for hyperperfect numbers," Fibonacci Quart. (To ap-

pear.)

20. D. M. YOUNG & R. T. GREGORY, A Survey of Numerical Analysis, Addison-Wesley,

Reading, Mass., 1973.


