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AURIFEUILLIAN FACTORIZATION

ANDREW GRANVILLE AND PETER PLEASANTS

Abstract. The Cunningham project seeks to factor numbers of the form
bn±1 with b = 2, 3, . . . small. One of the most useful techniques is Aurifeuillian
Factorization whereby such a number is partially factored by replacing bn by
a polynomial in such a way that polynomial factorization is possible. For
example, by substituting y = 2k into the polynomial factorization (2y2)2+1 =
(2y2−2y+1)(2y2 +2y+1) we can partially factor 24k+2 +1. In 1962 Schinzel
gave a list of such identities that have proved useful in the Cunningham project;
we believe that Schinzel identified all numbers that can be factored by such
identities and we prove this if one accepts our definition of what “such an
identity” is. We then develop our theme to similarly factor f(bn) for any

given polynomial f , using deep results of Faltings from algebraic geometry
and Fried from the classification of finite simple groups.

1. Introduction

In 1925 Cunningham and Woodall published a book of factorizations of num-
bers of the form 2n ± 1, 3n ± 1, etc. Evidently such information provides use-
ful examples for several topics in elementary number theory. As the theory of
factoring has developed, such numbers have proved to be fertile ground for the
initial development of factoring techniques, which may subsequently be general-
izable to factoring arbitrary integers. The book [BL] contains a good histori-
cal account up to the time it was written; for up-to-date data see the website
http://www.cerias.purdue.edu/homes/ssw/cun/index.html. Indeed even the
number field sieve, the latest general factoring technique, was first suggested by
Pollard to attack numbers in the “Cunningham Project”. The end of these devel-
opments is not yet in sight:

The invention of new [factorization] methods may push off the
limits of the unknown a little further, just as the invention of a
new astronomical instrument may push off a little the boundaries
of the physical universe; but the unknown regions are infinite, and
if we could come back a thousand years from now we should no
doubt find workers in the theory of numbers announcing in the
journals new schemes and new processes for the resolution of a
given number into its factors. D.N. Lehmer, Scientific Monthly,
Sept. 1918.
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The number bn − 1 can be partially factored by substituting x = b into the
“algebraic factorization” xn − 1 =

∏
d|n ϕd(x), where ϕd(x) is the dth cyclotomic

polynomial, the monic, irreducible polynomial whose roots are the primitive dth
roots of unity. The factors ϕd(b) may factor further, of course, and they can be
considerably smaller than bn−1 so may come within the range of other factorization
techniques. Similarly bn+1 can be partially factored as

∏
d ϕd(b) where the product

is over integers d dividing 2n but not n. This is a proper factorization when n is
not a power of 2. We call these “cyclotomic factorizations”.

One can generalize this technique by seeking polynomials g(x) ∈ Q[x] such that
g(x) ± 1 factors over Q, then substituting values for x to get partial factorizations
of numbers in the Cunningham project. This is a cyclotomic factorization when
g(x) = ±xn, but a non-cyclotomic example is given by g(y) = (2y2)2:

(2y2)2 + 1 = (2y2 + 1)2 − (2y)2 = (2y2 − 2y + 1)(2y2 + 2y + 1),

allowing us to factor numbers 22(2k+1) + 1. This is an Aurifeuillian factorization,
which we define to be a factorization given by taking g(y) = ±(ay2)n, with a �= ±1,
that refines the cyclotomic factorization given by g(x) = ±xn. Here are some other
examples:

(3y2)3 + 1
3y2 + 1

= (3y2 + 1)2 − (3y)2 (with g(y) = (3y2)3),

(5y2)5 − 1
5y2 − 1

= (25y4 + 15y2 + 1)2 − (5y)2(5y2 + 1)2 (with g(y) = (5y2)5),

(7y2)7 + 1
7y2 + 1

= (7y2 + 1)6 − (7y)2(49y4 + 7y2 + 1)2 (with g(y) = (7y2)7),

where we have written the factorizations as differences of squares. Notice that
in each case we can take y = pk to get a partial factorization of pp(2k+1) ± 1.
Aurifeuillian factorizations split certain cyclotomic factors into two factors of about
the same size, which is a most useful step in finding a complete factorization.

In an 1878 paper [Lu], Lucas explained how Aurifeuille proved that there are
identities like those above for every prime exponent n, and in 1962 Schinzel [Sc]
found similar identities for every composite exponent n not divisible by 8. He
showed that if n = N, 2N or 4N , with N odd, and if d is any squarefree divisor of
N (where d is allowed to be negative when n = 4N), then there exist polynomials
Un,d(x), Vn,d(x) ∈ Z[x] such that

ϕN (x) = UN,d(x)2 − εddxVN,d(x)2,

ϕ2N (x) = U2N,d(x)2 + εddxV2N,d(x)2,(1)

ϕ4N (x) = U4N,d(x)2 − 2dxV4N,d(x)2,

where

εd =
(
−1
d

)
= (−1)(d−1)/2.

On substituting in ay2 for x, where a = εdd,−εdd or 2d, respectively, the above
expressions become differences of two squares, and we obtain a polynomial factor-
ization of ϕn(ay2). (Later, Stevenhagen [St] and Brent [Br] gave new proofs of these
identities, as well as algorithms for computing the polynomials U and V .) We shall
give a motivated description of these factorizations at the end of Section 4.
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Since they have proved so useful to the Cunningham project, it has long been
desired to find more such “Aurifeuillian factorizations”, or some analogous con-
struction. However, what is desired does not seem to have been precisely defined in
the literature. Here we put forward a definition but prove that it does not encom-
pass any more factorizations than the cyclotomic and Aurifeuillian ones already
known.

We can restrict our attention to classifying factorizations of bn − 1 given by
factoring g(x)− 1, since the factorizations of bn + 1 given by factoring g(x) + 1 are
accounted for within the factorizations of b2n − 1 given by factoring g(x)2 − 1.

Definition. A Cunningham factoring polynomial is a polynomial g(x) ∈ Q[x] such
that g(x) − 1 is reducible in Q[x], and there exist infinitely many pairs of integers
m, n for which g(m) = bn, for some integer b �= −1, 0 or 1.

One note of caution: If in a Cunningham factoring polynomial g(x) we replace
x by a polynomial h(y) ∈ Q[y] such that none of the irreducible factors of g(x)− 1
factors further in Q[y] yet g(h(y)) still represents infinitely many powers of b, then
g(h(y)) is also a Cunningham factoring polynomial. We say g(h(y)) derives from
g(x). Evidently such derivations provide no additional factorizations and so are of
no interest for us.

Our main result (proved in Section 6) is to identify all Cunningham factoring
polynomials and show that they give precisely the cyclotomic factorizations and
Schinzel’s Aurifeuillian factorizations and no others. Before stating it we define a∗,
for a non-zero rational a, as the squarefree integer with the sign of a whose absolute
value is the product of the primes that occur to an odd power in the prime-power
decomposition of a. So a∗ is a canonical representative of a in the multiplicative
group of Q× modulo squares.

Theorem. Every Cunningham factoring polynomial g(y) ∈ Q[y] has the form
g(y) = (a(y + c)q)n with a, c ∈ Q and a1/p irrational for every prime divisor p
of q.

When q is even and a∗ | n and either
(i) n is odd and a∗ ≡ 1 (mod 4), or
(ii) n is even and a∗ �= −1 is odd, or
(iii) 4 | n and a∗ is even,

then g(y) derives from (a∗x2)n (by substituting x =
√

a/a∗(y + c)q/2) and leads to
one of Schinzel’s Aurifeuillian factorizations of some of the cyclotomic factors of

(2) (a∗x2)n − 1 =
∏
d|n

ϕd(a∗x2).

Those terms of the product that factor in this way have two irreducible factors of
equal degree.

When q is even and a∗ = −1, then g(y) derives from (−x2)n (by substituting
x =

√
|a|(y + c)q/2) and gives only cyclotomic factorizations.

In all other cases, n > 1 and g(y) derives from xn (by substituting x = a(y+c)q)
and also gives only cyclotomic factorizations.

A drawback of discarding the plus sign in the definition of Cunningham factoring
polynomials is that the theorem does not tell us, when we want to factor bn + 1,
whether the Aurifeuillian factorization is relevant or is just a factorization of some
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of the cyclotomic factors of bn−1. More specifically, we might like to know precisely
which of the cyclotomic factors on the right of (2) factorizes further in Q[x]. To
remedy this we add a

Supplement. If a is an integer with |a| > 1, then ϕd(ax2) is reducible in Q[x]
precisely in the following cases:

(i) a∗ ≡ 1 (mod 4) and d is an odd multiple of a∗, or
(ii) a∗ ≡ −1 (mod 4) and d is 2 times an odd multiple of a∗, or
(iii) a∗ is even and d is 4 times an odd multiple of a∗.

This reiterates the information given by the identities (1) and shows that there
are no similar identities for other values of N and d.

Among the data in [BL] there are examples which suggest that there may be
some other way, not captured by our definition, to extend Aurifeuillian factoriza-
tions. For instance, Wagstaff points out the following interesting example from the
Cunningham project:

6106 + 1
62 + 1

= 26713 × 175436926004647658810244613736479118917

× 175787157418305877173455355755546870641,

where the last two factors differ by about one-fifth of a percent. Is this just a
coincidence?

2. Generalizations

The ideas used above can be developed for a far more general problem: for a
given irreducible polynomial f(x) ∈ Q[x] we wish to factor f(m) for all integers m,
or perhaps for m in some special subset (such as the powers of some fixed integer).
First we will want to determine g(y) ∈ Q[y] for which f(g(y)) is reducible.

Lemma 1. Let f(x) ∈ Q[x] be monic and irreducible with splitting field K, and α
any root of f . Then, for any g(y) ∈ Q[y], if the irreducible factorization of g(y)−α
in K[y] is

(3) g(y) − α = ar1
1 (y)ar2

2 (y) · · · ark

k (y),

then the irreducible factorization of f(g(y)) in Q[y] is

(4) f(g(y)) = Ar1
1 (y)Ar2

2 (y) · · ·Ark

k (y),

with Aj(y) = NormK/Q aj(y) for j = 1, . . . , k.

Proof. Since the factorization (4) results from taking norms of both sides of (3), it
is enough to show that each Ai(y) is irreducible in Q[y]. Let A(y) be any factor
of f(g(y)) in Q[y] and put a(y) = gcd(A(y), g(y) − α) ∈ K[y]. Since f(g(y)) is the
product of the conjugates over Q of g(y) − α and these conjugates are coprime,
A(y) = Norm a(y). So every factor of f(g(y)) in Q[y] is the norm of some factor of
(g(y) − α) over K, and hence the Ai(y)’s are irreducible over Q. �
Corollary 1. With f , K, α and g as in Lemma 1, f(g(y)) is reducible in Q[y] if
and only if g(y) − α is reducible in K[y].

Note that f(y) | f(y + f(y)), so that there is no difficulty in finding g(y) with
deg g ≥ deg f for which f(g(y)) is reducible. (More generally, if k(y), l(y) ∈ Q[y]
and h(y) is any factor of f(k(y)), then h(y) | f(g(y)) for g(y) = k(y) + l(y)h(y).)
This leads us to the
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Question. Suppose that f(x) ∈ Q[x] is irreducible. Can one find infinitely many
g(y) ∈ Q[y] with deg g < deg f for which f(g(y)) is reducible in Q[y], where the
g(y) are distinct under transformations replacing y by a polynomial in y?

It seems difficult to apply the criterion of Corollary 1 in general, though it may
work in special cases. On the other hand, researchers have studied the problem of
determining, for a given g(y), the set of rational integers a for which g(y) − a is
reducible: trivially y − m divides g(y) − g(m), so g(y) − a is reducible if a = g(m)
for some integer m. Also if g(y) is a composition, such as p(q(y)), then q(y) − m
divides g(y) − p(m). In 1986, Fried [Fr] showed that if g is not a composition of
polynomials and is not a member of a certain family of degree five polynomials, then
there are at most finitely many a, not equal to g(m) for some m, for which g(y)−a
is reducible. The deep proof involves Faltings’ Theorem as well as an application
of the classification of finite simple groups. Similar results can be proved with a
restricted to any given field. (The exceptional monic quintics are parametrized by
x5 + tb2x3 − (t + 5)b3x2 + (t2 − 2t− 15)b4x/4 + c, where t = (u2 − 5v2 − 10)/2 and
b, c, u, v ∈ Q. Fascinating but beside the point.)

Returning now to Aurifeuillian factorization, we proceed a little differently (as
in the examples at the beginning of the article), investigating whether we can find
infinitely many non-constant g(x) ∈ Z[x] without repeated roots such that g(m)
is a square for infinitely many integers m and there exist u(x), v(x), w(x) ∈ Z[x]
satisfying

(5) w(x)f(x) = u(x)2 − g(x)v(x)2.

Note that if g(m) = l2, then w(m)f(m) = (u(m) − lv(m))(u(m) + lv(m)) and it
is likely that gcd(f(m), u(m) ± lv(m)) will be non-trivial factors of f(m). Note
also that there is no loss of generality in our assumption that the polynomials in
(5) are in Z[x] rather than Q[x], since we may multiply through by an appropriate
constant (though leaving f fixed).

Equation (5) is equivalent to the assertion that g(x) corresponds to a square in
the quotient field Q[x]/(f(x)). If there are infinitely many integers m for which
g(m) is a square, then, by Siegel’s Theorem on integer solutions of y2 = g(x) [Si],
g must be of degree ≤ 2. Thus we will know that there are only finitely many such
g if the following conjecture holds true for d = 1 and d = 2:

Conjecture 1. Fix an integer d ≥ 1. There exists an integer D ≥ 1 (depending
on d) such that if f is an irreducible polynomial of degree ≥ D, then there are
only finitely many squarefree polynomials g(x) ∈ Z[x] of degree d that correspond
to squares in the field Q[x]/(f(x)).

Equation (5) is also equivalent to the assertion that g(α) ∈ Q(α)2 for any, or all,
of the roots α of f(x). Therefore

∏
α g(α) ∈ Q2, and this is |Resultant(f, g)| when

f is monic. Thus Conjecture 1 is implied by the following:

Conjecture 2. Fix an integer d ≥ 1. There exists an integer D ≥ 1 (depending
on d) such that if f is an irreducible polynomial of degree ≥ D in Q[x], then there
are only finitely many squarefree polynomials g(x) ∈ Z[x] of degree d for which
|Resultant(f, g)| ∈ |f0|dQ2, where f0 is the leading coefficient of f .

Let f(x, y) = ydeg ff(x/y) be the homogenization of f . We now consider the case
d = 1 above. Writing g(x) = ax − b, we have Resultant(f, g) = ±f(b, a). However
f(b, a) ∈ ±Q2 for only finitely many pairs of coprime integers a, b if deg f ≥ 5, by
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Theorem 2 of [DG] (which is a consequence of Faltings’ Theorem [F1]). Thus both
conjectures are true with D1 = 5 when d = 1.

When d = 2 we have been unable to prove these conjectures, though it is possible
to deduce such a result from Faltings [F2] if we assume that w(x) = 1 in (5), since
then f(β) ∈ Q(β)2 for every root β of g(β) = 0.

Finally, we mention special values of binary homogeneous forms f(x, y) ∈ Z[x, y];
that is, we wish to factor f(l, m), where (l, m) = 1. As before, we investigate
whether we can find infinitely many homogeneous g1(x, y), g2(x, y) ∈ Z[x, y], non-
constant and without repeated factors, with

w(x, y)f(x, y) = g1(x, y)u(x, y)2 − g2(x, y)v(x, y)2

and with g1(l, m)/g2(l, m) ∈ Q2 for infinitely many pairs of coprime integers l, m;
in other words g(l, m) ∈ Q2, where g = g1g2. By Theorem 2 of [DG] this implies
that deg g ≤ 4. Dehomogenizing our equation, we find that we are again requiring
g(x) to correspond to a square in Q[x]/(f(x)), so our problem will be resolved if
Conjectures 1 or 2 are true for each d ≤ 4.

3. Bounds for degrees

We shall need the following technical result:

Lemma 2. If K = k(α) is a simple field extension of degree D and r, s are non-
negative integers with r + s = D − 1, then every β ∈ K can be written as β =
u(α)/v(α) with deg u ≤ r and deg v ≤ s.

Proof. If β = 0 we can take u(α) = 0 and v(α) = 1. Otherwise, regarding K as
a vector space over k, the sets {1, α, . . . , αr} and {β, βα, . . . , βαs} are individually
linearly independent, but their union is linearly dependent, and hence there is a
vector that is a non-zero linear combination of both sets. This vector simultaneously
has the forms u(α), with deg u ≤ r, and βv(α), with deg v ≤ s, where u(α), v(α)
are both non-zero. �

Corollary 2. Suppose that f(x), g(x) ∈ Z[x]\{0} are of degrees D > d, respectively,
where f(x) is irreducible and g(x) is a square in Q[x]/(f(x)). Then there is a non-
trivial solution u(x), v(x), w(x) ∈ Q[x] \ {0} to (5) with deg(w) ≤ d/2.

Proof. Let β(x)2 = g(x) ∈ Q[x]/(f(x)) and apply the lemma with r = �D/2+d/4�.
We obtain u(x) and v(x) satisfying (5) with deg u ≤ D/2 + d/4 and deg v ≤
D/2 − d/4. Then deg w ≤ D + d/2 − deg f = d/2. �

4. Gauss and Aurifeuille: History and motivation

In Article 356 of [Ga], Gauss had shown that τ2
p = (−1)(p−1)/2p = εpp, where

the Gauss sum τp is defined by

τp :=
p−1∑
a=0

(
a

p

)
ξa
p with ξp = e2iπ/p.

He used this in Article 357 to establish that for all odd primes p one has

4
(

xp − 1
x − 1

)
= Y (x)2 − εppZ(x)2
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for some Y (x), Z(x) ∈ Z[x]. For example,

4
(

x3 − 1
x − 1

)
= (2x + 1)2 + 3 · 12 and 4

(
x5 − 1
x − 1

)
= (2x2 + x + 2)2 − 5x2.

For the proof he expands

z : =
∏

( r
p )=1

(
x − ξr

p

)
= R + S

∑
( r

p )=1

ξr
p + T

∑
(n

p )=−1

ξn
p

= R − (S + T )
2

+
(S − T )

2
τp

for some R = R(x), S = S(x), T = T (x) in Z[x]. Multiplying this by a conjugate
over Q that takes τp to −τp, and taking Y = 2R − S − T , Z = T − S, he obtains
the result.

Gauss wrote:1

It is easy to see that the two terms of highest degree in the function
Y will always be 2xm + xm−1 and the highest in the function Z,
xm−1. The remaining coefficients, all of which will be integers, will
vary according to the nature of the number n and cannot be given
a general analytic formula.

However in 1993 Brent [Br] gave the delightful formulae

Y (x) = 2

√
xp − 1
x − 1

cos
(√

p

2
fp(x)

)
and Z(x) =

2
√

p

√
xp − 1
x − 1

sin
(√

p

2
fp(x)

)

whenever p ≡ 3 (mod 4), where fp(x) =
∑

m≥1(
m
p )xm

m . He also gave an analogous
expression, involving cosh and sinh, for 4ϕn(x) when n is any odd squarefree number
> 3.

Aurifeuille [Lu] gave a result similar to, but a little different from, Gauss’s: For
all odd primes p one has

xp − 1
x − 1

= U(x)2 − εppxV (x)2

for some U(x), V (x) ∈ Z[x]. This extra “x” is rather useful to the Cunningham
project, for by taking x = εppy2 we get

(6)
(py2)p ∓ 1
py2 ∓ 1

= U(±py2)2 − (py)2V (±py2)2,

a difference of two squares and so factorable. The examples of Aurifeuillian factor-
ization in the introduction are so deduced from the identities

x2 + 1 = (x + 1)2 − 2x · 12,
x3 + 1
x + 1

= (x + 1)2 − 3x · 12,

x5 − 1
x − 1

= (x2 + 3x + 1)2 − 5x(x + 1)2 and
x7 + 1
x + 1

= (x + 1)6 − 7x(x2 + x + 1)2.

1Here Gauss’s n is our prime p and his m is (p − 1)/2.
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Brent [Br] also gave direct expressions for U(x) and V (x), similar to those for Y (x)
and Z(x) in Gauss’s identity, as follows:

U(x) =

√
xp + 1
x + 1

cosh(
√

pgp(
√

x)) and V (x) =
1

√
px

√
xp + 1
x + 1

sinh(
√

pgp(
√

x))

whenever p ≡ 3 (mod 4), where gp(x) =
∑

m odd ≥1

(
p
m

)
xm

m (and similar expres-
sions when p is replaced by any squarefree number).

In 1992 Hendrik Lenstra showed the first-named author a delightful direct proof
of (6): Write α = ξ

(p+1)/2
p , so that α2 = ξp and thus

εppy2 − ξp = (τpy)2 − α2 = (τpy + α)(τpy − α),

where τpy ± α ∈ Z[ξp][y]. Taking NormQ(ξp)/Q of both sides we obtain

(7)
(py2)p − εp

py2 − εp
= A(y)B(y)

where A(y) = Norm(τpy +α) and B(y) = Norm(τpy−α). Now, by definition, both
A(y)+B(y) and (A(y)−B(y))/y are fixed by the map y 
→ −y, so both are functions
in Z[y2]. Moreover A and B are products of terms of the form (±τpy ±ασ), and so
A(y) + B(y) and (A(y) − B(y))/(py) are in Z[(τpy)2] = Z[py2]. Also A(y) ≡ B(y)
(mod 2). These observations give (6) with

U(±py2) =
A(y) + B(y)

2
and V (±py2) =

A(y) − B(y)
2py

.

Lenstra’s proof depends on noting that ξp and εpp are both squares in Q(ξp)
though, modifying it slightly, it suffices to note that their product is a square. This
then generalizes easily: Suppose that a is an integer, ξn = e2iπ/n and a/ξn is a
square in Q(ξn), say a/ξn = τ2. Then (ay2−ξn)/ξn = (τy)2−1 = (τy+1)(τy−1),
and so ϕn(ay2), which is the norm from Q(ξn) to Q of (ay2 − ξn)/ξn, factors as
Norm(τy + 1) Norm(τy − 1). This leads to equations of the type (1) with

U(ay2) =
1
2
(
Norm(1 + τy) + Norm(1 − τy)

)
and

V (ay2) =
1

2ay

(
Norm(1 + τy) − Norm(1 − τy)

)
,

where an argument similar to before shows that U(x) and V (x) are in Z[x]. To see
that this includes all instances of Schinzel’s equations we need to know when aξn

is a square in Q(ξn). This is determined by Lemma 3 in Section 6.
In the light of the above, Lemma 1 can be seen as a further generalization of

Lenstra’s idea.

5. Developing Lenstra’s perspective

We re-interpret Lenstra’s proof by noting that

τ2
p = γp(ξp)2 ≡ γp(x)2 mod (x − ξp)

where we define the Fekete polynomial

γp(x) :=
p−1∑
a=0

(
a

p

)
xa.
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This congruence holds for any primitive pth root of unity in place of ξp, so

γp(x)2 ≡ τ2
p mod ϕp(x) =

p−1∏
a=1

(x − ξa
p );

in other words, γp(x)2 = τ2
p in Q[x]/(ϕp(x)). Applying Corollary 2 with g(x) =

τ2
p = εpp we recover Gauss’s identity, up to a constant. The same proof but with

g(x) = εppx gives Aurifeuille’s identity up to a constant since

x ≡ (x(p+1)/2)2 (mod ϕp(x));

so x is a square in Q[x]/(ϕp(x)).
In 1994 Hahn [Ha] showed how similar ideas could be used to simplify the process

of determining a factor of P := (pp − εp)/(p− εp), a sequence of numbers that have
long been of interest. (For example, (pp −1)/(p−1) is conjectured to be the period
mod p of the sequence of Bell numbers; see [LD] and [Wa].) Taking x = τ2

p = εpp

above, we obtain γp(τ2
p )2 ≡ τ2

p ≡ ((τ2
p )(p+1)/2)2 (mod P ). Note also that because

τ2
p = εpp is divisible by p so are γp(τ2

p ) ± (τ2
p )(p+1)/2 (= pρ+, pρ−, say). When

p > 3, ρ± are integers less than P , so (ρ±, P ) are non-trivial factors of P . In fact
they are the Aurifeuillian factors of P : taking norms of the congruences

γp(τ2
p ) ± (τ2

p )(p+1)/2 ≡ γp(ξp) ± ξ(p+1)/2
p (mod τ2

p − ξp)

gives (pρ+)p−1 ≡ A(1) and (pρ−)p−1 ≡ B(1) (mod P ) (with A and B as in (7))
which together with ρ+ρ− ≡ 0 (mod P ) imply that (ρ+, P ) = A(1) and (ρ−, P ) =
B(1). Sun et al. [SH, SR] extended Hahn’s method to find the Aurifeuillian factors
in the top line of (1) (Case (i) of our Supplement).

Dirichlet found a fast way to calculate Y and Z in Gauss’s identity (generalized
to U and V in Aurifeuille’s identity by Brent [Br]): From Gauss we have

Y (x) −√
εppZ(x) =

∏
( a

p )=1

(x − ξa
p) =

p−1
2∑

j=0

(−1)jajx
p−1
2 −j .

Dirichlet (1863) used Newton’s recurrence (1707), kak = −
∑

0≤j<k sk−jaj , where

si =
∑

( a
p )=1

ξai
p =

{
1
2

((
i
p

)√
εpp − 1

)
, if p � | i,

1
2 (p − 1), if p | i,

to determine the elementary symmetric functions ak by induction.

6. Finding all Aurifeuillian factorizations:

Proof of the theorem

Before embarking on the proof of the Theorem and Supplement we need two
lemmas.

Lemma 3. Let a be rational and ξd = e2iπ/d. Then aξd is a square in Q(ξd) if and
only if a∗ | d and one of the following holds:

(i) d is odd and a∗ ≡ 1 (mod 4),
(ii) 2 ‖ d and a∗ ≡ −1 (mod 4) or
(iii) 4 ‖ d and a∗ is even.
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Proof. During this proof a “square” will mean the square of a number in Q(ξd).
If aξd is a square, then all of the prime divisors of a∗ ramify in Q(ξd)/Q, so

divide d, and hence a∗ | d.
As we have seen, for any odd prime p the Gauss sum τp is in Q(ξp), and its

square is (−1/p)p. Therefore, for an odd positive squarefree divisor l of d, (−1/l)l
is the square of

∏
p|l τp, so is a square in Q(ξd), since this field contains each Q(ξp).

We can write a∗ as a∗ = rs, where r = ±1 or ±2 and s = (−1/|s|)|s| ≡ 1
(mod 4). Then s is a square, so aξd is a square if and only if rξd is. Note that −1
is a square if and only if 4 | d and ±2 is a square if and only if 8 | d, in which case
±2 are both squares.

If d is odd, then ξd = (ξ(d+1)/2
d )2 is a square but −ξd and ±2ξd are not. So aξd

is a square if and only if a∗ = s, corresponding to (i).
If 2 ‖ d, then −ξd = (ξ(d+2)/4

d )2 is a square but ξd and ±2ξd are not. So aξd is a
square if and only if a∗ = −s, corresponding to (ii).

If 4 ‖ d, then ±2ξd = ((1 ∓ i)ξ(d+4)/8
d )2 are squares but ±ξd are not. So aξd is a

square if and only if a∗ = ±2s, corresponding to (iii).
If 8|d, then ξd is not a square, so neither are −ξd or ±2ξd. Hence aξd is not a

square. �

Proof of the Supplement. This follows from Lemma 3 and Corollary 1 with f = ϕd

and g(y) = ay2. �

Lemma 4. If b ∈ Q with b �= −1, 0 or 1, and m is a positive integer for which b1/m

lies in a cyclotomic field, then b2/m is rational.

Proof. If the smallest positive integer d with bd/m rational were > 2, then the Galois
group of the Galois closure of Q(b1/m) would contain the non-abelian dihedral group
Dd of order 2d (generated by b1/m 
→ ξdb

1/m and complex conjugation), which is
incompatible with b1/m belonging to a cyclotomic field, whose Galois group would
be abelian. �

Proof of the Theorem. Schinzel and Tijdeman [ST], applying results of Siegel and
Baker, showed that if h(y) ∈ Q[y] has more than one complex root, then there are
no solutions to h(m) = bN in integers b, m > 1 once N is sufficiently large. Hence
if g(y) is a Cunningham factoring polynomial, then it is of the form

A(y + c)Q = (a(y + c)q)n,

where A, c ∈ Q with A �= 0, n is the largest divisor of Q with A1/n rational, q = Q/n
and a = A1/n. Note that if A = −1 or 1, then we may take a = A and the theorem
is easily established directly. So we may assume that a �= −1, 0 or 1. Putting
t = y + c, we have

(8) (atq)n − 1 =
∏
d|n

ϕd(atq).

If none of the terms on the right factors further in Q[t], then this is a cyclotomic
factorization and derives from g(x) = xn (with x = a(y + c)q).
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A typical term on the right of (8) is ϕd(atq), and by Lemma 1 its factorization
mirrors the factorization of atq − ξd over Q(ξd). Any monic factor f(t) of atq − ξd

has the form

f(t) =
∏
j∈J

(t − ξdqξ
j
qa

−1/q) =
|J|∑
i=0

cia
−i/qt|J|−i,

where J ⊆ {0, 1, . . . , q − 1} and each ci ∈ Q(ξdq). If cia
−i/q is in Q(ξd) \ {0}, then,

by Lemma 4 (since a �= −1, 0 or 1), a2i/q is rational; so, by the definition of q, q | 2i
and either i = 0, i = q or q is even and i = q/2, as |J | ≤ q. Hence atq − ξd is
either irreducible over Q(ξd) or q is even and atq −ξd is the product of two binomial
factors of degree q/2, irreducible over Q(ξd). The latter occurs if and only if aξd is
a square in Q(ξd), in which case ϕd(atq) splits into precisely two irreducible factors
over Q of equal degrees. In this case too a∗x2 − ξd factors over Q(ξd) and so, by
Lemma 1 again, ϕd(a∗x2) factors over Q and the substitution h(y) = (a(y + c)q)n

derives from g(x) = (a∗x2)n, with x =
√

a/a∗(y + c)q/2.
Finally, Lemma 3 enables us to identify when aξd is a square in Q(ξd) for some

d | n. Case (i) of Lemma 3 holds for some divisor d of n if and only if a∗ ≡ 1 (mod 4)
and a∗ | n. This corresponds to Case (i) of the first alternative of the theorem
and Case (ii) with a∗ ≡ 1 (mod 4). Similarly, Case (ii) of Lemma 3 corresponds
to Case (ii) of the first alternative of the theorem with a∗ ≡ −1 (mod 4) (when
a∗ �= −1) and to the second alternative (when a∗ = −1). Finally, Case (iii) of
Lemma 3 corresponds to Case (iii) of the theorem. �

7. Linear g(x)

We consider the following question, which arises from Section 2 when we restrict
attention to solutions of (5) with deg g = 1: For what irreducible f(x) ∈ Q[x] are
there infinitely many monic linear g(x) with non-trivial solutions to (5)? Since
Q[x]/(f(x)) is a field when f is irreducible, v(x) has an inverse mod f , so this is
equivalent to asking whether there are infinitely many monic polynomials u(x) ∈
Q[x] of degree ≤ deg f − 1, such that u(x)2 is linear mod f . We saw in Section
2 that deg f ≤ 4. After a linear substitution we can write any f of degree D as
xD − axD−2 − bxD−3 − · · · − c.

If deg f = 2, then every polynomial is congruent to a linear polynomial mod f ,
so there are infinitely many such u and hence infinitely many g.

If deg f = 3, then write f(x) = x3−ax−b and u(x) = x2+rx+s. The coefficient
of x2 in u(x)2 (mod f) is r2 + 2s + a, which can be made 0, for any r, by taking
s = −(r2 + a)/2. So again there are infinitely many g.

If deg f = 4, write f(x) = x4 − ax2 − bx − c. It is easily checked that u(x) =
x2−a/2 is the only monic polynomial of degree ≤ 2 to give a linear g, so we can take
u(x)=x3+rx2+sx+t. Then the coefficients of u(x)2 (mod f) are polynomials in r, s
and t. We find that the coefficient of x2 is 0 if t=−(c+a2+2sa+2rb+r2a+s2)/(2r)
when r �= 0. The coefficient of x3 is then 1/r times a polynomial in r and s which is
quadratic in s. This has a rational root if and only if its discriminant as a quadratic
polynomial in s is a square, and computationally we found that this discriminant
is exactly 4f(r). Thus there are infinitely many such g if and only if there are
infinitely many rational points on the genus one curve y2 = f(x).
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