Skip to content
main
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
minimal-elements-of-the-prime-numbers/unproven-probable-primes/
minimal-elements-of-the-prime-numbers/unproven-probable-primes/

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
March 2, 2023 23:36
November 23, 2022 01:23
November 23, 2022 01:23
November 23, 2022 01:23
November 23, 2022 01:23
November 23, 2022 01:23
November 23, 2022 01:23
November 23, 2022 01:23
December 23, 2022 19:53
December 23, 2022 19:53
December 23, 2022 19:53
December 23, 2022 19:53
December 23, 2022 19:53
December 23, 2022 19:53
November 23, 2022 01:23
November 23, 2022 01:23
November 23, 2022 01:23
November 23, 2022 01:23
December 23, 2022 19:53
December 23, 2022 19:53
December 23, 2022 19:53
November 6, 2022 03:30
December 23, 2022 09:05
December 22, 2022 04:47

Primality of these probable primes (https://en.wikipedia.org/wiki/Probable_prime, https://primes.utm.edu/glossary/xpage/PRP.html, https://www.rieselprime.de/ziki/Probable_prime, https://mathworld.wolfram.com/ProbablePrime.html, https://stdkmd.net/nrr/records.htm#probableprimenumbers, https://stdkmd.net/nrr/repunit/prpfactors.htm, http://factordb.com/listtype.php?t=1) in the minimal sets for bases 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22, 24, 26, 28, 30, 36 (the solved or near-solved bases, i.e. the bases b with ≤ 6 unsolved families) are not certificated yet (technically, probable primality tests (https://en.wikipedia.org/wiki/Probabilistic_algorithm) such as Miller–Rabin primality test (https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test, https://primes.utm.edu/glossary/xpage/MillersTest.html, https://www.rieselprime.de/ziki/Miller-Rabin_pseudoprimality_test, https://mathworld.wolfram.com/Rabin-MillerStrongPseudoprimeTest.html, http://www.numericana.com/answer/pseudo.htm#rabin, http://www.javascripter.net/math/primes/millerrabinprimalitytest.htm) and Baillie–PSW primality test (https://en.wikipedia.org/wiki/Baillie%E2%80%93PSW_primality_test, https://mathworld.wolfram.com/Baillie-PSWPrimalityTest.html) are used for these numbers (and thus these numbers are only probable primes and not definitely primes (https://en.wikipedia.org/wiki/Provable_prime, https://stdkmd.net/nrr/records.htm#primenumbers, http://factordb.com/listtype.php?t=4), i.e. they might be pseudoprimes (https://en.wikipedia.org/wiki/Pseudoprime, https://primes.utm.edu/glossary/xpage/Pseudoprime.html, https://www.rieselprime.de/ziki/Pseudoprime, https://mathworld.wolfram.com/Pseudoprime.html, http://www.numericana.com/answer/pseudo.htm)), because of their sizes and neither N−1 (https://primes.utm.edu/prove/prove3_1.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, https://en.wikipedia.org/wiki/Pocklington_primality_test, https://www.rieselprime.de/ziki/Pocklington%27s_theorem, https://mathworld.wolfram.com/PocklingtonsTheorem.html, https://stdkmd.net/nrr/pock/, http://factordb.com/nmoverview.php?method=1) nor N+1 (https://primes.utm.edu/prove/prove3_2.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://factordb.com/nmoverview.php?method=2) can be ≥ 1/4 factored (https://en.wikipedia.org/wiki/Integer_factorization, https://www.rieselprime.de/ziki/Factorization, https://mathworld.wolfram.com/PrimeFactorization.html, https://mathworld.wolfram.com/PrimeFactorizationAlgorithms.html, http://www.numericana.com/answer/factoring.htm) (i.e. they are ordinary primes (https://primes.utm.edu/glossary/xpage/OrdinaryPrime.html)), all known primality tests (https://en.wikipedia.org/wiki/Primality_test, https://www.rieselprime.de/ziki/Primality_test, https://mathworld.wolfram.com/PrimalityTest.html) run far too slowly (the CPU time (https://en.wikipedia.org/wiki/CPU_time) is longer than the life expectancy of human (https://en.wikipedia.org/wiki/Life_expectancy) for numbers > 10100000, and longer than the age of the universe (https://en.wikipedia.org/wiki/Age_of_the_universe) for numbers > 10500000, and longer than one quettasecond (https://en.wikipedia.org/wiki/Quetta-) for numbers > 103000000, even if we can do 109 bitwise operations (https://en.wikipedia.org/wiki/Bitwise_operation) per second (https://en.wikipedia.org/wiki/Second)) to run on these numbers, the only known primality test with polynomial time (https://en.wikipedia.org/wiki/Time_complexity#Polynomial_time, https://mathworld.wolfram.com/PolynomialTime.html) of the number of digits is Agrawal–Kayal–Saxena primality test (https://en.wikipedia.org/wiki/AKS_primality_test, https://mathworld.wolfram.com/AKSPrimalityTest.html, https://primes.utm.edu/prove/prove4_3.html, http://www.numericana.com/answer/primes.htm#aks, http://cr.yp.to/papers/aks-20030125-retypeset20220327.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_70.pdf)), but it has time complexity (https://en.wikipedia.org/wiki/Time_complexity) O(log(n)12) (where O is the big O notation (https://en.wikipedia.org/wiki/Big_O_notation, https://primes.utm.edu/glossary/xpage/BigOh.html, https://mathworld.wolfram.com/Big-ONotation.html), log is the natural logarithm (https://en.wikipedia.org/wiki/Natural_logarithm, https://primes.utm.edu/glossary/xpage/Log.html, https://mathworld.wolfram.com/NaturalLogarithm.html)) and if we can do 109 bitwise operations (https://en.wikipedia.org/wiki/Bitwise_operation) per second (https://en.wikipedia.org/wiki/Second), use this test to prove the primality of a 5000-digit (in decimal) prime needs 5.422859049×1039 seconds (https://en.wikipedia.org/wiki/Second), or 1.719577324×1032 years (https://en.wikipedia.org/wiki/Year), much longer than the age of the universe (https://en.wikipedia.org/wiki/Age_of_the_universe), thus to do this test is still impractically, also a near-polynomial time (although not completely polynomial time) primality test, Adleman–Pomerance–Rumely primality test (https://en.wikipedia.org/wiki/Adleman%E2%80%93Pomerance%E2%80%93Rumely_primality_test, https://www.rieselprime.de/ziki/Adleman%E2%80%93Pomerance%E2%80%93Rumely_primality_test, https://mathworld.wolfram.com/Adleman-Pomerance-RumelyPrimalityTest.html, https://primes.utm.edu/prove/prove4_1.html), which has time complexity O(log(n)log(log(log(n)))) and also too large), all of these probable primes are > 1025000, if they are in fact primes, then they are minimal primes to the corresponding bases.

If we want to use the classical tests (https://primes.utm.edu/prove/prove3.html) to prove the primality of a large probable prime N, then we must factor N−1 or N+1 to the factored part ≥ 1/4, and except trial division (https://en.wikipedia.org/wiki/Trial_division, https://primes.utm.edu/glossary/xpage/TrialDivision.html, https://www.rieselprime.de/ziki/Trial_factoring, https://mathworld.wolfram.com/TrialDivision.html, http://www.numericana.com/answer/factoring.htm#trial) with the primes up to certain limit (say 1016) and the algebra factors (https://en.wikipedia.org/w/index.php?title=Factorization&oldid=1044289340#Factoring_other_polynomials, https://mathworld.wolfram.com/PolynomialFactorization.html, http://www.numericana.com/answer/factoring.htm#special, https://stdkmd.net/nrr/repunit/repunitnote.htm, https://stdkmd.net/nrr/1/10004.htm#about_algebraic, https://stdkmd.net/nrr/1/10008.htm#about_algebraic, https://stdkmd.net/nrr/1/13333.htm#about_algebraic, https://stdkmd.net/nrr/4/40001.htm#about_algebraic, https://stdkmd.net/nrr/5/53333.htm#about_algebraic, https://stdkmd.net/nrr/5/54444.htm#about_algebraic, https://stdkmd.net/nrr/5/55552.htm#about_algebraic, https://stdkmd.net/nrr/7/79999.htm#about_algebraic, https://stdkmd.net/nrr/8/83333.htm#about_algebraic, https://stdkmd.net/nrr/8/88889.htm#about_algebraic, https://stdkmd.net/nrr/8/89999.htm#about_algebraic, https://stdkmd.net/nrr/9/99991.htm#about_algebraic, https://stdkmd.net/nrr/9/99992.htm#about_algebraic, https://brnikat.com/nums/cullen_woodall/algebraic.txt, https://www.numberempire.com/factoringcalculator.php, https://www.emathhelp.net/calculators/algebra-2/factoring-calculator/) (e.g. difference-of-two-squares factorization (https://en.wikipedia.org/wiki/Difference_of_two_squares), sum/difference-of-two-nth-powers factorization with odd n > 1 (https://en.wikipedia.org/wiki/Binomial_number, https://mathworld.wolfram.com/BinomialNumber.html), Aurifeuillian factorization (https://en.wikipedia.org/wiki/Aurifeuillean_factorization, https://www.rieselprime.de/ziki/Aurifeuillian_factor, https://mathworld.wolfram.com/AurifeuilleanFactorization.html, http://www.numericana.com/answer/numbers.htm#aurifeuille, http://pagesperso-orange.fr/colin.barker/lpa/cycl_fac.htm, http://list.seqfan.eu/oldermail/seqfan/2017-March/017363.html, http://myfactorcollection.mooo.com:8090/source/cyclo.cpp, http://myfactorcollection.mooo.com:8090/LCD_2_199, http://myfactorcollection.mooo.com:8090/LCD_2_998, https://stdkmd.net/nrr/repunit/repunitnote.htm#aurifeuillean, https://www.unshlump.com/hcn/aurif.html) of x4+4×y4 or x6+27×y6, and the algebra factors of the Cunningham number (https://en.wikipedia.org/wiki/Cunningham_number, https://mathworld.wolfram.com/CunninghamNumber.html, https://www.numbersaplenty.com/set/Cunningham_number/, https://en.wikipedia.org/wiki/Cunningham_Project, https://primes.utm.edu/glossary/xpage/CunninghamProject.html, https://www.rieselprime.de/ziki/Cunningham_project, https://homes.cerias.purdue.edu/~ssw/cun/index.html, https://maths-people.anu.edu.au/~brent/factors.html, https://web.archive.org/web/20190315214330/http://cage.ugent.be/~jdemeyer/cunningham/, http://myfactors.mooo.com/, https://doi.org/10.1090/conm/022, https://www.mersenneforum.org/attachment.php?attachmentid=7727&d=1330555980 (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_7.pdf), https://homes.cerias.purdue.edu/~ssw/cun/mine.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_6.pdf), http://homes.cerias.purdue.edu/~ssw/cun1.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_71.pdf)) bn±1 (see https://stdkmd.net/nrr/repunit/repunitnote.htm and https://brnikat.com/nums/cullen_woodall/algebraic.txt)), we can use the elliptic-curve factorization method (https://en.wikipedia.org/wiki/Lenstra_elliptic-curve_factorization, https://www.rieselprime.de/ziki/Elliptic_curve_method, https://mathworld.wolfram.com/EllipticCurveFactorizationMethod.html, http://www.numericana.com/answer/factoring.htm#ecm, http://factordb.com/listecm.php?c=1, http://www.loria.fr/~zimmerma/ecmnet/, http://www.loria.fr/~zimmerma/records/ecmnet.html, http://www.loria.fr/~zimmerma/records/factor.html, http://www.loria.fr/~zimmerma/records/top50.html, https://stdkmd.net/nrr/records.htm#largefactorecm, http://maths-people.anu.edu.au/~brent/factors.html, http://maths-people.anu.edu.au/~brent/ftp/champs.txt, https://www.alpertron.com.ar/ECM.HTM, https://www.alpertron.com.ar/ECMREC.HTM, https://homes.cerias.purdue.edu/~ssw/cun/press/tech.html, https://homes.cerias.purdue.edu/~ssw/cun/press/nontech.html, https://kurtbeschorner.de/ecm-efforts.htm, http://www.rechenkraft.net/yoyo//y_factors_ecm.php, http://www.rechenkraft.net/yoyo/y_status_ecm.php) (elliptic-curve factorization method need to calculate the group order, for the tools to calculate the group order, see http://myfactorcollection.mooo.com:8090/calculators.html (section "Group Order") and http://factordb.com/groupcalc.php and https://www.mersenneforum.org/showthread.php?t=14184 (a Magma script, you can use online Magma calculator (http://magma.maths.usyd.edu.au/calc/) to run)) or the Pollard P−1 method (https://en.wikipedia.org/wiki/Pollard%27s_p_%E2%88%92_1_algorithm, https://www.rieselprime.de/ziki/P-1_factorization_method, https://mathworld.wolfram.com/Pollardp-1FactorizationMethod.html, http://www.numericana.com/answer/factoring.htm#p-1, http://factordb.com/listecm.php?c=2) or the Williams P+1 method (https://en.wikipedia.org/wiki/Williams%27s_p_%2B_1_algorithm, https://www.rieselprime.de/ziki/P%2B1_factorization_method, https://mathworld.wolfram.com/WilliamspPlus1FactorizationMethod.html, http://www.numericana.com/answer/factoring.htm#p+1, http://factordb.com/listecm.php?c=3) or the special number field sieve (https://en.wikipedia.org/wiki/Special_number_field_sieve, https://www.rieselprime.de/ziki/Special_number_field_sieve, https://mathworld.wolfram.com/NumberFieldSieve.html, https://stdkmd.net/nrr/records.htm#BIGSNFS, https://stdkmd.net/nrr/wanted.htm#smallpolynomial) or the general number field sieve (https://en.wikipedia.org/wiki/General_number_field_sieve, https://www.rieselprime.de/ziki/General_number_field_sieve, https://mathworld.wolfram.com/NumberFieldSieve.html, https://stdkmd.net/nrr/records.htm#BIGGNFS, https://stdkmd.net/nrr/wanted.htm#suitableforgnfs), to factor these numbers (see http://www.numericana.com/answer/factoring.htm), elliptic-curve factorization method and Pollard P−1 method and Williams P+1 method are methods which find a non-large (say between 1020 and 1090) prime factor, an elliptic-curve factorization program is GMP-ECM (https://web.archive.org/web/20210803045418/https://gforge.inria.fr/projects/ecm, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/ecm704dev-svn2990-win64, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/ecm704dev-svn2990-linux64, https://www.rieselprime.de/ziki/GMP-ECM), special number field sieve and general number field sieve are methods which factor a large number (say between 10100 and 10400), special number field sieve can only be used on a number of special form, e.g. numbers of the form a×bn±c with small a, b, c and large n, and cannot be used for general numbers such as a×nc and a×pc (where ! is the factorial (https://en.wikipedia.org/wiki/Factorial, https://primes.utm.edu/glossary/xpage/Factorial.html, https://www.rieselprime.de/ziki/Factorial_number, https://mathworld.wolfram.com/Factorial.html), # is the primorial (https://en.wikipedia.org/wiki/Primorial, https://primes.utm.edu/glossary/xpage/Primorial.html, https://mathworld.wolfram.com/Primorial.html)) with small a, c and (large n or large prime p), the difficulty (https://www.rieselprime.de/ziki/SNFS_polynomial_selection) of such a number is equivalent to general number field sieve for a general number around bn/2, thus, for the Cunningham number bn±1, if the primitive part (i.e. Φn(b) for bn−1 or Φn(b) for bn+1, where Φ is the cyclotomic polynomial (https://en.wikipedia.org/wiki/Cyclotomic_polynomial, https://mathworld.wolfram.com/CyclotomicPolynomial.html, http://www.numericana.com/answer/polynomial.htm#cyclotomic, https://stdkmd.net/nrr/repunit/repunitnote.htm#cyclotomic)) is > 1/3 factored (by the elliptic-curve factorization method or the Pollard P−1 method or the Williams P+1 method), then general number field sieve is usually used for the unfactored part, if the primitive part (i.e. Φn(b) for bn−1 or Φn(b) for bn+1, where Φ is the cyclotomic polynomial (https://en.wikipedia.org/wiki/Cyclotomic_polynomial, https://mathworld.wolfram.com/CyclotomicPolynomial.html, http://www.numericana.com/answer/polynomial.htm#cyclotomic, https://stdkmd.net/nrr/repunit/repunitnote.htm#cyclotomic)) is < 1/3 factored (by the elliptic-curve factorization method or the Pollard P−1 method or the Williams P+1 method), then special number field sieve is usually used for the unfactored part, for more information see https://escatter11.fullerton.edu/nfs/numbers.php (the status of numbers in NFS@HOME (http://escatter11.fullerton.edu/nfs/, https://en.wikipedia.org/wiki/NFS@Home)), for the calculator for special number field sieve and general number field sieve, see http://myfactorcollection.mooo.com:8090/calculators.html (section ".poly Maker"), a general number field sieve program is GGNFS (http://sourceforge.net/projects/ggnfs, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/GGNFS), also a (special or general) number field program is CADO-NFS (https://web.archive.org/web/20210506173015/http://cado-nfs.gforge.inria.fr/index.html, https://www.rieselprime.de/ziki/CADO-NFS, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/cado-nfs-2.3.0), however, all these factorization algorithms (https://en.wikipedia.org/wiki/Algorithm, https://www.rieselprime.de/ziki/Algorithm) take long time, i.e. they cannot be done in polynomial time (https://en.wikipedia.org/wiki/Time_complexity#Polynomial_time, https://mathworld.wolfram.com/PolynomialTime.html), and there are many OEIS sequences which need factors (see https://oeis.org/wiki/OEIS_sequences_needing_factors) (unlike primality proving, when the numbers are sufficiently large, no efficient, non-quantum (https://en.wikipedia.org/wiki/Quantum_computer) integer factorization algorithm is known), i.e. integer factorization may be P-complete (https://en.wikipedia.org/wiki/P-complete) and NP-complete (https://en.wikipedia.org/wiki/NP-complete, https://mathworld.wolfram.com/NP-CompleteProblem.html) and NP-hard (https://en.wikipedia.org/wiki/NP-hard, https://mathworld.wolfram.com/NP-HardProblem.html) (thus, factor a large integer is much harder than determining whether an integer of the same size is prime (determining whether an integer is prime and factor an integer are two completely different problems, we can quickly use Fermat primality test (https://en.wikipedia.org/wiki/Fermat_primality_test, https://mathworld.wolfram.com/FermatCompositenessTest.html, https://www.rieselprime.de/ziki/Fermat_pseudoprimality_test, https://en.wikipedia.org/wiki/Fermat%27s_little_theorem, https://primes.utm.edu/glossary/xpage/FermatsLittleTheorem.html, https://mathworld.wolfram.com/FermatsLittleTheorem.html, https://primes.utm.edu/notes/proofs/FermatsLittleTheorem.html, http://www.numericana.com/answer/modular.htm#fermat, https://primes.utm.edu/prove/prove2_2.html) to prove that an integer is composite, although the most ancient trial division (https://en.wikipedia.org/wiki/Trial_division, https://primes.utm.edu/glossary/xpage/TrialDivision.html, https://www.rieselprime.de/ziki/Trial_factoring, https://mathworld.wolfram.com/TrialDivision.html, http://www.numericana.com/answer/factoring.htm#trial) and sieve of Eratosthenes (https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes, https://primes.utm.edu/glossary/xpage/SieveOfEratosthenes.html, https://www.rieselprime.de/ziki/Sieve_of_Eratosthenes, https://mathworld.wolfram.com/SieveofEratosthenes.html) can solving these two problems simultaneously), there are many numbers with 500 digits to 10000 digits which are known to be composite but do not have any known factors other than 1 and themselves). However, it has not been proven that no efficient algorithm exists (this is indeed an unsolved problem in computer science (https://en.wikipedia.org/wiki/List_of_unsolved_problems_in_computer_science)). The presumed difficulty (https://en.wikipedia.org/wiki/Computational_hardness_assumption) of this problem is at the heart of widely used algorithms in cryptography (https://en.wikipedia.org/wiki/Cryptography, https://mathworld.wolfram.com/Cryptography.html) such as RSA (https://en.wikipedia.org/wiki/RSA_(cryptosystem), https://primes.utm.edu/glossary/xpage/RSA.html, https://mathworld.wolfram.com/RSAEncryption.html, https://web.archive.org/web/20061209135708/http://www.rsasecurity.com/rsalabs/node.asp?id=2093), there are many large semiprimes (https://en.wikipedia.org/wiki/Semiprime, https://primes.utm.edu/glossary/xpage/Semiprime.html, https://mathworld.wolfram.com/Semiprime.html, https://www.numbersaplenty.com/set/semiprime/), called RSA numbers (https://en.wikipedia.org/wiki/RSA_numbers, https://primes.utm.edu/glossary/xpage/RSAExample.html, https://mathworld.wolfram.com/RSANumber.html), which are very hard to factor and are part of the RSA Factoring Challenge (https://en.wikipedia.org/wiki/RSA_Factoring_Challenge). Besides, integer factorization can be used for public-key cryptography (https://en.wikipedia.org/wiki/Public-key_cryptography, https://primes.utm.edu/glossary/xpage/PublicKey.html, https://mathworld.wolfram.com/Public-KeyCryptography.html) is because it has no known polynomial time algorithm. Many areas of mathematics and computer science have been brought to bear on the problem, including elliptic curves (https://en.wikipedia.org/wiki/Elliptic_curve, https://mathworld.wolfram.com/EllipticCurve.html, http://www.numericana.com/answer/modularity.htm#elliptic), algebraic number theory (https://en.wikipedia.org/wiki/Algebraic_number_theory, https://mathworld.wolfram.com/AlgebraicNumberTheory.html), and quantum computing (https://en.wikipedia.org/wiki/Quantum_computing)), and hence to do this is impractically.

Our data assumes that a number > 1025000 which has passed the Miller–Rabin primality tests (https://primes.utm.edu/prove/prove2_3.html, https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test, https://en.wikipedia.org/wiki/Strong_pseudoprime, https://primes.utm.edu/glossary/xpage/StrongPRP.html, https://www.rieselprime.de/ziki/Miller-Rabin_pseudoprimality_test, https://mathworld.wolfram.com/Rabin-MillerStrongPseudoprimeTest.html, https://mathworld.wolfram.com/StrongPseudoprime.html, http://www.numericana.com/answer/pseudo.htm#rabin, http://www.numericana.com/answer/pseudo.htm#strong, http://www.javascripter.net/math/primes/millerrabinprimalitytest.htm, http://ntheory.org/data/spsps.txt, https://sites.google.com/view/strong-pseudoprime, https://sites.google.com/view/bases-strong-pseudoprime, https://oeis.org/A001262, https://oeis.org/A020229, https://oeis.org/A072276, https://oeis.org/A014233, https://oeis.org/A181782, https://oeis.org/A071294, https://oeis.org/A141768, https://oeis.org/A195328, https://oeis.org/A329759, https://oeis.org/A298756) to all prime bases p < 64 and has passed the Baillie–PSW primality test (https://en.wikipedia.org/wiki/Baillie%E2%80%93PSW_primality_test, https://mathworld.wolfram.com/Baillie-PSWPrimalityTest.html) and has trial factored (https://en.wikipedia.org/wiki/Trial_division, https://primes.utm.edu/glossary/xpage/TrialDivision.html, https://www.rieselprime.de/ziki/Trial_factoring, https://mathworld.wolfram.com/TrialDivision.html, http://www.numericana.com/answer/factoring.htm#trial) to 1016 is in fact prime, since in some cases (e.g. b = 11) a candidate for minimal prime base b is too large to be proven prime rigorously, this candidate for minimal prime base 11 has 65263 decimal digits, while the top record ordinary prime (https://primes.utm.edu/glossary/xpage/OrdinaryPrime.html) (i.e. neither N−1 (https://primes.utm.edu/prove/prove3_1.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, https://en.wikipedia.org/wiki/Pocklington_primality_test, https://www.rieselprime.de/ziki/Pocklington%27s_theorem, https://mathworld.wolfram.com/PocklingtonsTheorem.html, https://stdkmd.net/nrr/pock/, http://factordb.com/nmoverview.php?method=1) nor N+1 (https://primes.utm.edu/prove/prove3_2.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://factordb.com/nmoverview.php?method=2) can be ≥ 1/4 factored (https://en.wikipedia.org/wiki/Integer_factorization, https://www.rieselprime.de/ziki/Factorization, https://mathworld.wolfram.com/PrimeFactorization.html, https://mathworld.wolfram.com/PrimeFactorizationAlgorithms.html, http://www.numericana.com/answer/factoring.htm)) has 57125 decimal digits (the entry of this prime in top definitely primes is https://primes.utm.edu/primes/page.php?id=134371), see https://primes.utm.edu/top20/page.php?id=27, and 65263 > 57125), however, if we assume a number which has passed the Fermat primality tests (https://primes.utm.edu/prove/prove2_2.html, https://en.wikipedia.org/wiki/Fermat_primality_test, https://en.wikipedia.org/wiki/Fermat_pseudoprime, https://primes.utm.edu/glossary/xpage/PRP.html, https://www.rieselprime.de/ziki/Fermat_pseudoprimality_test, https://mathworld.wolfram.com/FermatPseudoprime.html, http://www.numericana.com/answer/pseudo.htm#pseudoprime, http://ntheory.org/data/psps.txt, https://sites.google.com/view/fermat-pseudoprime, https://sites.google.com/view/bases-fermat-pseudoprime, https://oeis.org/A001567, https://oeis.org/A005935, https://oeis.org/A052155, https://oeis.org/A083876, https://oeis.org/A181780, https://oeis.org/A063994, https://oeis.org/A194946, https://oeis.org/A195327, https://oeis.org/A002997, https://oeis.org/A191311, https://oeis.org/A090086, https://oeis.org/A007535) to many bases is in fact prime, our list for base 16 minimal primes would wrongly include the composites 1563 (its value is (4×1663−1)/3) and 8536 (its value is (25×1636−1)/3), and our list for base 9 minimal primes would wrongly include the composite 113 (its value is (913−1)/8) (and hence would wrongly exclude the prime 56136, since this prime has 113 as subsequence (https://en.wikipedia.org/wiki/Subsequence, https://mathworld.wolfram.com/Subsequence.html)), although their corresponding families (1{5} in base 16, 8{5} in base 16, {1} in base 9, respectively) can be ruled out as only contain composite numbers (only count the numbers > b), and our data will be wrong for these bases, see https://en.wikipedia.org/wiki/Baillie%E2%80%93PSW_primality_test#The_danger_of_relying_only_on_Fermat_tests (only run Fermat tests are dangerous).

Unfortunately, for every base b, there are infinitely many strong pseudoprimes, see https://www.ams.org/journals/mcom/1980-35-151/S0025-5718-1980-0572872-7/S0025-5718-1980-0572872-7.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_45.pdf), even more worse, for any given finite set of bases, there are infinitely strong pseudoprimes to these bases simultaneously, i.e. no finite set of bases is sufficient for all composite numbers, Alford, Granville, and Pomerance have shown that there exist infinitely many composite numbers n whose smallest compositeness witness is at least (ln(n))1/(3×ln(ln(ln(n)))), see https://math.dartmouth.edu/~carlp/PDF/reliable.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_121.pdf), however, there are no "strong Carmichael numbers" (i.e. numbers that are strong pseudoprimes to all bases coprime to them), and given a random base, the probability that a number is a strong pseudoprime to that base is less than 1/4, and if the generalized Riemann hypothesis (https://en.wikipedia.org/wiki/Generalized_Riemann_hypothesis, https://mathworld.wolfram.com/GeneralizedRiemannHypothesis.html, https://primes.utm.edu/notes/rh.html) is true, then every composite number n has smallest compositeness witness less than 2×(ln(n))2, also, when the number n to be tested is small, trying all bases b < 2×(ln(n))2 is not necessary, as much smaller sets of potential witnesses are known to suffice. For example: (also see https://oeis.org/A014233 for the smallest composite number which is strong pseudoprime to all of the first n prime bases)

test bases b the smallest composite number which is strong pseudoprime to all these bases b prime factorization
2 2047 23 × 89
3 121 112
5 781 11 × 71
6 217 7 × 31
7 25 52
10 9 32
11 133 7 × 19
12 91 7 × 13
15 1687 7 × 241
95 1891 31 × 61
240 1991 11 × 181
385 1891 31 × 61
777 1541 23 × 67
933 1387 19 × 73
1320 4097 17 × 241
2, 3 1373653 829 × 1657
31, 73 9080191 2131 × 4261
2, 3, 5 25326001 2251 × 11251
350, 3958281543 170584961 7541 × 22621
2, 3, 5, 7 3215031751 151 × 751 × 28351
2, 7, 61 4759123141 48781 × 97561
2, 379215, 457083754 75792980677 137653 × 550609
2, 13, 23, 1662803 1122004669633 611557 × 1834669
2, 3, 5, 7, 11 2152302898747 6763 × 10627 × 29947
2, 3, 5, 7, 11, 13 3474749660383 1303 × 16927 × 157543
2, 1215, 34862, 574237825 21652684502221 3290341 × 6580681
2, 3, 5, 7, 11, 13, 17 341550071728321 10670053 × 32010157
2, 3, 5, 7, 11, 13, 17, 19, 23 3825123056546413051 149491 × 747451 × 34233211
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 318665857834031151167461 399165290221 × 798330580441
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41 3317044064679887385961981 1287836182261 × 2575672364521
all primes pn > e(n/2)1/2 (under the generalized Riemann hypothesis)

Thus, for this minimal prime problem in base b, especially for square (https://en.wikipedia.org/wiki/Square_number, https://www.rieselprime.de/ziki/Square_number, https://mathworld.wolfram.com/SquareNumber.html, https://oeis.org/A000290) base b, we should not assume a number which has passed the Fermat primality tests to many bases is in fact prime, also, there are Carmichael numbers (https://en.wikipedia.org/wiki/Carmichael_number, https://primes.utm.edu/glossary/xpage/CarmichaelNumber.html, https://mathworld.wolfram.com/CarmichaelNumber.html, https://www.numbersaplenty.com/set/Carmichael_number/, http://www.numericana.com/answer/modular.htm#carmichael, https://oeis.org/A002997) (i.e. composites which are Fermat pseudoprimes to all bases b coprime to them) which are strong pseudoprimes to several bases simultaneously, see https://www.sciencedirect.com/science/article/pii/S0747717185710425?via%3Dihub (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_44.pdf), this article gives a 397-digit such number (factordb entry: http://factordb.com/index.php?id=1100000000708885054) which is strong pseudoprime to all bases b ≤ 306 (see https://mersenneforum.org/showpost.php?p=613381&postcount=6), another example is a 23707-digit number (https://primes.utm.edu/curios/page.php?number_id=4265, http://factordb.com/index.php?id=1100000002517553325) which is strong pseudoprime to all bases b ≤ 101100, also see http://factordb.com/prooffailed.php (the factordb test failed page) (numbers passed Miller–Rabin primality tests (10 prime bases at least), but turned out to be composite) and https://faculty.lynchburg.edu/~nicely/misc/mpzspsp.html (the GNU GMP test failed page) (this page mentions a 337-digit number (http://factordb.com/index.php?id=1100000000047694476) which is strong pseudoprime to all bases b ≤ 210) (now GMP runs the Baillie–PSW primality test (https://en.wikipedia.org/wiki/Baillie%E2%80%93PSW_primality_test, https://mathworld.wolfram.com/Baillie-PSWPrimalityTest.html) combine with some Miller–Rabin primality tests (https://primes.utm.edu/prove/prove2_3.html, https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test, https://en.wikipedia.org/wiki/Strong_pseudoprime, https://primes.utm.edu/glossary/xpage/StrongPRP.html, https://www.rieselprime.de/ziki/Miller-Rabin_pseudoprimality_test, https://mathworld.wolfram.com/Rabin-MillerStrongPseudoprimeTest.html, https://mathworld.wolfram.com/StrongPseudoprime.html, http://www.numericana.com/answer/pseudo.htm#rabin, http://www.numericana.com/answer/pseudo.htm#strong, http://www.javascripter.net/math/primes/millerrabinprimalitytest.htm, http://ntheory.org/data/spsps.txt, https://sites.google.com/view/strong-pseudoprime, https://sites.google.com/view/bases-strong-pseudoprime, https://oeis.org/A001262, https://oeis.org/A020229, https://oeis.org/A072276, https://oeis.org/A014233, https://oeis.org/A181782, https://oeis.org/A071294, https://oeis.org/A141768, https://oeis.org/A195328, https://oeis.org/A329759, https://oeis.org/A298756) combine with some trial divisions (https://en.wikipedia.org/wiki/Trial_division, https://primes.utm.edu/glossary/xpage/TrialDivision.html, https://www.rieselprime.de/ziki/Trial_factoring, https://mathworld.wolfram.com/TrialDivision.html, http://www.numericana.com/answer/factoring.htm#trial), see https://gmplib.org/manual/Number-Theoretic-Functions), thus we need to combine with strong Lucas primality tests (https://en.wikipedia.org/wiki/Lucas_pseudoprime#Strong_Lucas_pseudoprimes, https://mathworld.wolfram.com/StrongLucasPseudoprime.html, http://ntheory.org/data/slpsps-baillie.txt, https://oeis.org/A217255), to do the Baillie–PSW primality test, only run strong tests is also a little dangerous (especially when the number has the form (m+1)×(2×m+1) or (m+1)×(3×m+1), with both factors primes), however, there is no known overlap between these lists of strong pseudoprimes and strong Lucas pseudoprimes, and there is even evidence that the numbers in these lists tend to be different kinds of numbers. For example, Fermat pseudoprimes tend to fall into the residue class 1 (mod n) for many small n, whereas Lucas pseudoprimes tend to fall into the residue class −1 (mod n) for many small n. As a result, a number that passes both a strong Fermat and a strong Lucas test is very likely to be prime, indeed, no known composites which pass the Baillie–PSW probable prime test, and no composites < 264 pass the Baillie–PSW probable prime test (see http://ntheory.org/pseudoprimes.html and https://faculty.lynchburg.edu/~nicely/misc/bpsw.html).

1563 (base 16) is Fermat pseudoprime to base b (assuming b is coprime to the number) if and only if b is cubic residue (https://en.wikipedia.org/wiki/Cubic_residue, https://mathworld.wolfram.com/CubicResidue.html) mod the prime 2127−1, thus 1/3 of the bases coprime to the number; 8536 (base 16) is Fermat pseudoprime to base b (assuming b is coprime to the number) if and only if b is cubic residue (https://en.wikipedia.org/wiki/Cubic_residue, https://mathworld.wolfram.com/CubicResidue.html) mod the prime 5×272−1, thus 1/3 of the bases coprime to the number; 113 (base 9) is Fermat pseudoprime to base b (assuming b is coprime to the number) if and only if b is quadratic residue (https://en.wikipedia.org/wiki/Quadratic_residue, https://primes.utm.edu/glossary/xpage/QuadraticResidue.html, https://www.rieselprime.de/ziki/Quadratic_residue, https://mathworld.wolfram.com/QuadraticResidue.html) mod the prime (313−1)/2, thus 1/2 of the bases coprime to the number.

number factordb entry bases 2 ≤ b ≤ 64 such that this number is Fermat pseudoprime (called "Fermat liars") count
1563 in base b = 16 http://factordb.com/index.php?id=1000000000043569151 2, 3, 4, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 22, 24, 26, 27, 29, 31, 32, 33, 34, 36, 37, 38, 39, 41, 44, 47, 48, 51, 52, 54, 57, 58, 59, 61, 62, 64 39 (61.90%)
8536 in base b = 16 http://factordb.com/index.php?id=1100000000348829387 3, 5, 8, 9, 13, 15, 17, 22, 24, 25, 27, 28, 29, 39, 40, 41, 45, 46, 47, 51, 53, 62, 64 23 (36.51%)
113 in base b = 9 http://factordb.com/index.php?id=317733228541 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 35, 36, 37, 38, 39, 40, 41, 42, 45, 46, 48, 49, 50, 52, 54, 56, 57, 58, 59, 60, 61, 63, 64 50 (79.37%)
I0901 in base b = 26 (see https://github.com/curtisbright/mepn-data/commit/7565d197d7b438b437871bf71614a6f8914397f7) http://factordb.com/index.php?id=8231653 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 18, 21, 22, 23, 24, 25, 26, 27, 28, 32, 33, 36, 39, 41, 42, 43, 44, 46, 48, 49, 50, 52, 53, 54, 56, 59, 63, 64 40 (63.49%)
28462346×37+1 (see https://mersenneforum.org/showpost.php?p=137730&postcount=1) http://factordb.com/index.php?id=62247150703 3, 4, 7, 9, 10, 11, 12, 13, 16, 17, 19, 21, 25, 27, 28, 29, 30, 33, 36, 39, 40, 41, 44, 46, 47, 48, 49, 51, 52, 53, 57, 59, 61, 62, 63, 64 36 (57.14%)

This list is the time complexity (https://en.wikipedia.org/wiki/Time_complexity) for the primality testing (https://en.wikipedia.org/wiki/Primality_test, https://www.rieselprime.de/ziki/Primality_test, https://mathworld.wolfram.com/PrimalityTest.html, https://primes.utm.edu/prove/prove3.html, https://primes.utm.edu/prove/prove4.html) methods and the integer factoring (https://en.wikipedia.org/wiki/Integer_factorization, https://www.rieselprime.de/ziki/Factorization, https://mathworld.wolfram.com/PrimeFactorization.html, https://mathworld.wolfram.com/PrimeFactorizationAlgorithms.html, http://www.numericana.com/answer/factoring.htm) methods:

method (primality testing (https://en.wikipedia.org/wiki/Primality_test, https://www.rieselprime.de/ziki/Primality_test, https://mathworld.wolfram.com/PrimalityTest.html, https://primes.utm.edu/prove/prove3.html, https://primes.utm.edu/prove/prove4.html) or integer factoring (https://en.wikipedia.org/wiki/Integer_factorization, https://www.rieselprime.de/ziki/Factorization, https://mathworld.wolfram.com/PrimeFactorization.html, https://mathworld.wolfram.com/PrimeFactorizationAlgorithms.html, http://www.numericana.com/answer/factoring.htm)) time complexity (https://en.wikipedia.org/wiki/Time_complexity) (where n is the number to be primality tested (https://en.wikipedia.org/wiki/Primality_test, https://www.rieselprime.de/ziki/Primality_test, https://mathworld.wolfram.com/PrimalityTest.html, https://primes.utm.edu/prove/prove3.html, https://primes.utm.edu/prove/prove4.html) or integer factored (https://en.wikipedia.org/wiki/Integer_factorization, https://www.rieselprime.de/ziki/Factorization, https://mathworld.wolfram.com/PrimeFactorization.html, https://mathworld.wolfram.com/PrimeFactorizationAlgorithms.html, http://www.numericana.com/answer/factoring.htm), p is the prime factor to be found, O is the big O notation (https://en.wikipedia.org/wiki/Big_O_notation, https://primes.utm.edu/glossary/xpage/BigOh.html, https://mathworld.wolfram.com/Big-ONotation.html), o is the little o notation (https://en.wikipedia.org/wiki/Big_O_notation#Little-o_notation, https://primes.utm.edu/glossary/xpage/LittleOh.html, https://mathworld.wolfram.com/Little-ONotation.html), L is the L-notation (https://en.wikipedia.org/wiki/L-notation), e = 2.718281828459... is the base of the natural logarithm (https://en.wikipedia.org/wiki/E_(mathematical_constant), https://mathworld.wolfram.com/e.html, https://oeis.org/A001113), log is the natural logarithm (https://en.wikipedia.org/wiki/Natural_logarithm, https://primes.utm.edu/glossary/xpage/Log.html, https://mathworld.wolfram.com/NaturalLogarithm.html)) usage for numbers record number factordb entry of the record number number of decimal digits of the record number reference of the record number
Fermat probable primality testing (https://primes.utm.edu/prove/prove2_2.html, https://en.wikipedia.org/wiki/Fermat_primality_test, https://en.wikipedia.org/wiki/Fermat_pseudoprime, https://primes.utm.edu/glossary/xpage/PRP.html, https://www.rieselprime.de/ziki/Fermat_pseudoprimality_test, https://mathworld.wolfram.com/FermatPseudoprime.html, http://www.numericana.com/answer/pseudo.htm#pseudoprime, http://ntheory.org/data/psps.txt, https://sites.google.com/view/fermat-pseudoprime, https://sites.google.com/view/bases-fermat-pseudoprime, https://oeis.org/A001567, https://oeis.org/A005935, https://oeis.org/A052155, https://oeis.org/A083876, https://oeis.org/A181780, https://oeis.org/A063994, https://oeis.org/A194946, https://oeis.org/A195327, https://oeis.org/A002997, https://oeis.org/A191311, https://oeis.org/A090086, https://oeis.org/A007535) O(log(n)) any number, but only probabilistic (https://en.wikipedia.org/wiki/Probabilistic_algorithm) primality testing (108177207−1)/9 (largest known unproved probable prime) http://factordb.com/index.php?id=1100000002579528773 8177207 http://www.primenumbers.net/prptop/prptop.php
Miller–Rabin probable primality testing (https://primes.utm.edu/prove/prove2_3.html, https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test, https://en.wikipedia.org/wiki/Strong_pseudoprime, https://primes.utm.edu/glossary/xpage/StrongPRP.html, https://www.rieselprime.de/ziki/Miller-Rabin_pseudoprimality_test, https://mathworld.wolfram.com/Rabin-MillerStrongPseudoprimeTest.html, https://mathworld.wolfram.com/StrongPseudoprime.html, http://www.numericana.com/answer/pseudo.htm#rabin, http://www.numericana.com/answer/pseudo.htm#strong, http://www.javascripter.net/math/primes/millerrabinprimalitytest.htm, http://ntheory.org/data/spsps.txt, https://sites.google.com/view/strong-pseudoprime, https://sites.google.com/view/bases-strong-pseudoprime, https://oeis.org/A001262, https://oeis.org/A020229, https://oeis.org/A072276, https://oeis.org/A014233, https://oeis.org/A181782, https://oeis.org/A071294, https://oeis.org/A141768, https://oeis.org/A195328, https://oeis.org/A329759, https://oeis.org/A298756) O(log(n)) any number, but only probabilistic (https://en.wikipedia.org/wiki/Probabilistic_algorithm) primality testing (108177207−1)/9 (largest known unproved probable prime) http://factordb.com/index.php?id=1100000002579528773 8177207 http://www.primenumbers.net/prptop/prptop.php
Baillie–PSW primality testing (https://en.wikipedia.org/wiki/Baillie%E2%80%93PSW_primality_test, https://mathworld.wolfram.com/Baillie-PSWPrimalityTest.html) O(log(n)) any number, but only probabilistic (https://en.wikipedia.org/wiki/Probabilistic_algorithm) primality testing (108177207−1)/9 (largest known unproved probable prime) http://factordb.com/index.php?id=1100000002579528773 8177207 http://www.primenumbers.net/prptop/prptop.php
Pépin primality testing (https://en.wikipedia.org/wiki/P%C3%A9pin%27s_test, https://primes.utm.edu/glossary/xpage/PepinsTest.html, https://www.rieselprime.de/ziki/P%C3%A9pin%27s_test, https://mathworld.wolfram.com/PepinsTest.html) O(log(n)) Fermat numbers (https://en.wikipedia.org/wiki/Fermat_number, https://primes.utm.edu/glossary/xpage/FermatNumber.html, https://www.rieselprime.de/ziki/Fermat_number, https://mathworld.wolfram.com/FermatNumber.html, https://mathworld.wolfram.com/FermatPrime.html) 65537 (largest known Fermat prime) http://factordb.com/index.php?id=65537 5 http://www.fermatsearch.org/
Lucas–Lehmer primality testing (https://en.wikipedia.org/wiki/Lucas%E2%80%93Lehmer_primality_test, https://www.rieselprime.de/ziki/Lucas-Lehmer_test, https://mathworld.wolfram.com/Lucas-LehmerTest.html, https://primes.utm.edu/notes/proofs/LucasLehmer.html, http://www.numericana.com/answer/primes.htm#lucas-lehmer) O(log(n)) Mersenne numbers (https://en.wikipedia.org/wiki/Mersenne_prime, https://primes.utm.edu/glossary/xpage/MersenneNumber.html, https://primes.utm.edu/glossary/xpage/Mersennes.html, https://www.rieselprime.de/ziki/Mersenne_number, https://www.rieselprime.de/ziki/Mersenne_prime, https://mathworld.wolfram.com/MersenneNumber.html, https://mathworld.wolfram.com/MersennePrime.html) 282589933−1 (largest known Mersenne prime) http://www.factordb.com/index.php?id=1100000001257221107 24862048 http://www.mersenne.org/primes/
Proth primality testing (https://en.wikipedia.org/wiki/Proth%27s_theorem, https://www.rieselprime.de/ziki/Proth%27s_theorem, https://mathworld.wolfram.com/ProthsTheorem.html, http://www.numericana.com/answer/primes.htm#proth) O(log(n)) numbers of the form k×2n+1 with k odd and k < 2n 10223×231172165+1 http://factordb.com/index.php?id=1100000000881266827 9383761 https://primes.utm.edu/primes/lists/all.txt
Lucas–Lehmer–Riesel primality testing (https://en.wikipedia.org/wiki/Lucas%E2%80%93Lehmer%E2%80%93Riesel_test) O(log(n)) numbers of the form k×2n−1 with k odd and k < 2n 69×219374980−1 http://factordb.com/index.php?id=1100000003714265355 5832452 https://primes.utm.edu/primes/lists/all.txt
Pocklington (N−1) primality testing (https://primes.utm.edu/prove/prove3_1.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, https://en.wikipedia.org/wiki/Pocklington_primality_test, https://www.rieselprime.de/ziki/Pocklington%27s_theorem, https://mathworld.wolfram.com/PocklingtonsTheorem.html, https://stdkmd.net/nrr/pock/, http://factordb.com/nmoverview.php?method=1) O(log(n)) numbers n such that n−1 can be ≥ 1/2 factored 19637361048576+1 http://factordb.com/index.php?id=1100000003905175851 6598776 https://primes.utm.edu/primes/lists/all.txt
Morrison (N+1) primality testing (https://primes.utm.edu/prove/prove3_2.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://factordb.com/nmoverview.php?method=2) O(log(n)) numbers n such that n+1 can be ≥ 1/2 factored 3622×57558139−1 http://factordb.com/index.php?id=1100000002920355417 5282917 https://primes.utm.edu/primes/lists/all.txt
elliptic curve (ECPP) primality testing (https://primes.utm.edu/prove/prove4_2.html, https://en.wikipedia.org/wiki/Elliptic_curve_primality, https://primes.utm.edu/glossary/xpage/ECPP.html, https://mathworld.wolfram.com/EllipticCurvePrimalityProving.html, https://primes.utm.edu/top20/page.php?id=27) O(log(n)4+ε) for some ε > 0 any number 5104824+1048245 http://factordb.com/index.php?id=1100000000213077170&open=prime 73269 https://primes.utm.edu/top20/page.php?id=27
Adleman–Pomerance–Rumely (APR) primality testing (https://en.wikipedia.org/wiki/Adleman%E2%80%93Pomerance%E2%80%93Rumely_primality_test, https://www.rieselprime.de/ziki/Adleman%E2%80%93Pomerance%E2%80%93Rumely_primality_test, https://mathworld.wolfram.com/Adleman-Pomerance-RumelyPrimalityTest.html, https://primes.utm.edu/prove/prove4_1.html) O(log(n)log(log(log(n)))) any number (none) (none) (none) (none)
Agrawal–Kayal–Saxena (AKS) primality testing (https://en.wikipedia.org/wiki/AKS_primality_test, https://mathworld.wolfram.com/AKSPrimalityTest.html, https://primes.utm.edu/prove/prove4_3.html, http://www.numericana.com/answer/primes.htm#aks, http://cr.yp.to/papers/aks-20030125-retypeset20220327.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_70.pdf)) O(log(n)12) any number (none) (none) (none) (none)
special number field sieve (SNFS) integer factoring (https://en.wikipedia.org/wiki/Special_number_field_sieve, https://www.rieselprime.de/ziki/Special_number_field_sieve, https://mathworld.wolfram.com/NumberFieldSieve.html, https://stdkmd.net/nrr/records.htm#BIGSNFS, https://stdkmd.net/nrr/wanted.htm#smallpolynomial) e(1+o(1))×(32/9×log(n))1/3×log(log(n))2/3 = Ln(1/3, (32/9)1/3) numbers of special forms, e.g. numbers of the form a×bn±c with small a, b, c and large n 21193−1 http://factordb.com/index.php?id=1000000000000001193 360 (SNFS difficulty) https://homes.cerias.purdue.edu/~ssw/cun/champ.txt
general number field sieve (GNFS) integer factoring (https://en.wikipedia.org/wiki/General_number_field_sieve, https://www.rieselprime.de/ziki/General_number_field_sieve, https://mathworld.wolfram.com/NumberFieldSieve.html, https://stdkmd.net/nrr/records.htm#BIGGNFS, https://stdkmd.net/nrr/wanted.htm#suitableforgnfs) e((64/9)1/3+o(1))×log(n)1/3×log(log(n))2/3 = Ln(1/3, (64/9)1/3) any number cofactor of the Aurifeuillean M-part of 22246+1 http://factordb.com/index.php?id=1100000000921160018 221 (GNFS difficulty) https://homes.cerias.purdue.edu/~ssw/cun/champ.txt
trial division (https://en.wikipedia.org/wiki/Trial_division, https://primes.utm.edu/glossary/xpage/TrialDivision.html, https://www.rieselprime.de/ziki/Trial_factoring, https://mathworld.wolfram.com/TrialDivision.html, http://www.numericana.com/answer/factoring.htm#trial) O(p) any prime factor (none) (none) (none) (none)
Pollard (P−1) integer factoring (https://en.wikipedia.org/wiki/Pollard%27s_p_%E2%88%92_1_algorithm, https://www.rieselprime.de/ziki/P-1_factorization_method, https://mathworld.wolfram.com/Pollardp-1FactorizationMethod.html, http://www.numericana.com/answer/factoring.htm#p-1, http://factordb.com/listecm.php?c=2) O(log(p)) prime factors p such that p−1 is smooth 1991275566641625900337327554338283035474653985743748625294504542099901705952228830784581356237891 http://factordb.com/index.php?id=1100000000466456796&open=ecm 97 http://factordb.com/listecm.php?c=2
Williams (P+1) integer factoring (https://en.wikipedia.org/wiki/Williams%27s_p_%2B_1_algorithm, https://www.rieselprime.de/ziki/P%2B1_factorization_method, https://mathworld.wolfram.com/WilliamspPlus1FactorizationMethod.html, http://www.numericana.com/answer/factoring.htm#p+1, http://factordb.com/listecm.php?c=3) O(log(p)) prime factors p such that p+1 is smooth 65457336109138688442516604905896707447825650836160916999487316231912826123193833 http://factordb.com/index.php?id=1100000004126612391&open=ecm 80 http://factordb.com/listecm.php?c=3
Lenstra elliptic-curve (ECM) integer factoring (https://en.wikipedia.org/wiki/Lenstra_elliptic-curve_factorization, https://www.rieselprime.de/ziki/Elliptic_curve_method, https://mathworld.wolfram.com/EllipticCurveFactorizationMethod.html, http://www.numericana.com/answer/factoring.htm#ecm, http://factordb.com/listecm.php?c=1, http://www.loria.fr/~zimmerma/ecmnet/, http://www.loria.fr/~zimmerma/records/ecmnet.html, http://www.loria.fr/~zimmerma/records/factor.html, http://www.loria.fr/~zimmerma/records/top50.html, https://stdkmd.net/nrr/records.htm#largefactorecm, http://maths-people.anu.edu.au/~brent/factors.html, http://maths-people.anu.edu.au/~brent/ftp/champs.txt, https://www.alpertron.com.ar/ECM.HTM, https://www.alpertron.com.ar/ECMREC.HTM, https://homes.cerias.purdue.edu/~ssw/cun/press/tech.html, https://homes.cerias.purdue.edu/~ssw/cun/press/nontech.html, https://kurtbeschorner.de/ecm-efforts.htm, http://www.rechenkraft.net/yoyo//y_factors_ecm.php, http://www.rechenkraft.net/yoyo/y_status_ecm.php, https://www.alpertron.com.ar/ECM.HTM) e(21/2+o(1))×log(n)1/2×log(log(n))1/2 = Lp(1/2, 21/2) any prime factor prime factor of 7337+1 http://factordb.com/index.php?id=1100000000632146801&open=ecm 83 https://members.loria.fr/PZimmermann/records/top50.html

Thus, for these numbers, we usually use the general purpose tests (https://primes.utm.edu/prove/prove4.html), which do not require factorization of N±1 and can be used for ordinary primes (https://primes.utm.edu/glossary/xpage/OrdinaryPrime.html).

Primes p such that p−1 has many factors Primes p such that p+1 has many factors
Fermat probable primality test (https://primes.utm.edu/prove/prove2_2.html, https://en.wikipedia.org/wiki/Fermat_primality_test, https://en.wikipedia.org/wiki/Fermat_pseudoprime, https://primes.utm.edu/glossary/xpage/PRP.html, https://www.rieselprime.de/ziki/Fermat_pseudoprimality_test, https://mathworld.wolfram.com/FermatPseudoprime.html, http://www.numericana.com/answer/pseudo.htm#pseudoprime, http://ntheory.org/data/psps.txt, https://sites.google.com/view/fermat-pseudoprime, https://sites.google.com/view/bases-fermat-pseudoprime, https://oeis.org/A001567, https://oeis.org/A005935, https://oeis.org/A052155, https://oeis.org/A083876, https://oeis.org/A181780, https://oeis.org/A063994, https://oeis.org/A194946, https://oeis.org/A195327, https://oeis.org/A002997, https://oeis.org/A191311, https://oeis.org/A090086, https://oeis.org/A007535) Lucas probable primality test (https://en.wikipedia.org/wiki/Lucas_pseudoprime, https://mathworld.wolfram.com/LucasPseudoprime.html, http://ntheory.org/data/lpsps-baillie.txt, https://oeis.org/A217120)
Miller–Rabin probable primality test (https://primes.utm.edu/prove/prove2_3.html, https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test, https://en.wikipedia.org/wiki/Strong_pseudoprime, https://primes.utm.edu/glossary/xpage/StrongPRP.html, https://www.rieselprime.de/ziki/Miller-Rabin_pseudoprimality_test, https://mathworld.wolfram.com/Rabin-MillerStrongPseudoprimeTest.html, https://mathworld.wolfram.com/StrongPseudoprime.html, http://www.numericana.com/answer/pseudo.htm#rabin, http://www.numericana.com/answer/pseudo.htm#strong, http://www.javascripter.net/math/primes/millerrabinprimalitytest.htm, http://ntheory.org/data/spsps.txt, https://sites.google.com/view/strong-pseudoprime, https://sites.google.com/view/bases-strong-pseudoprime, https://oeis.org/A001262, https://oeis.org/A020229, https://oeis.org/A072276, https://oeis.org/A014233, https://oeis.org/A181782, https://oeis.org/A071294, https://oeis.org/A141768, https://oeis.org/A195328, https://oeis.org/A329759, https://oeis.org/A298756) Strong Lucas probable primality test (https://en.wikipedia.org/wiki/Lucas_pseudoprime#Strong_Lucas_pseudoprimes, https://mathworld.wolfram.com/StrongLucasPseudoprime.html, http://ntheory.org/data/slpsps-baillie.txt, https://oeis.org/A217255)
Carmichael number (https://oeis.org/A002997, https://en.wikipedia.org/wiki/Carmichael_number, https://primes.utm.edu/glossary/xpage/CarmichaelNumber.html, https://mathworld.wolfram.com/CarmichaelNumber.html, https://www.numbersaplenty.com/set/Carmichael_number/, http://www.numericana.com/answer/modular.htm#carmichael) Lucas–Carmichael number (https://oeis.org/A006972, https://en.wikipedia.org/wiki/Lucas%E2%80%93Carmichael_number)
Euler's totient function (https://oeis.org/A000010, https://en.wikipedia.org/wiki/Euler%27s_totient_function, https://primes.utm.edu/glossary/xpage/EulersPhi.html, https://mathworld.wolfram.com/TotientFunction.html, http://www.numericana.com/answer/modular.htm#phi), its range is https://oeis.org/A002202, and the even numbers not in its range are https://oeis.org/A005277 Dedekind psi function (https://oeis.org/A001615, https://en.wikipedia.org/wiki/Dedekind_psi_function, https://mathworld.wolfram.com/DedekindFunction.html), its range is https://oeis.org/A203444, and the even numbers not in its range are https://oeis.org/A307055
Pépin primality test (https://en.wikipedia.org/wiki/P%C3%A9pin%27s_test, https://primes.utm.edu/glossary/xpage/PepinsTest.html, https://www.rieselprime.de/ziki/P%C3%A9pin%27s_test, https://mathworld.wolfram.com/PepinsTest.html) for Fermat numbers (https://en.wikipedia.org/wiki/Fermat_number, https://primes.utm.edu/glossary/xpage/FermatNumber.html, https://www.rieselprime.de/ziki/Fermat_number, https://mathworld.wolfram.com/FermatNumber.html, https://mathworld.wolfram.com/FermatPrime.html), i.e. numbers of the form 2n+1 (https://oeis.org/A000051), if 2n+1 is prime, then n must be power of 2, such numbers are https://oeis.org/A000215, and such primes are https://oeis.org/A019434 Lucas–Lehmer primality test (https://en.wikipedia.org/wiki/Lucas%E2%80%93Lehmer_primality_test, https://www.rieselprime.de/ziki/Lucas-Lehmer_test, https://mathworld.wolfram.com/Lucas-LehmerTest.html, https://primes.utm.edu/notes/proofs/LucasLehmer.html, http://www.numericana.com/answer/primes.htm#lucas-lehmer) for Mersenne numbers (https://en.wikipedia.org/wiki/Mersenne_prime, https://primes.utm.edu/glossary/xpage/MersenneNumber.html, https://primes.utm.edu/glossary/xpage/Mersennes.html, https://www.rieselprime.de/ziki/Mersenne_number, https://www.rieselprime.de/ziki/Mersenne_prime, https://mathworld.wolfram.com/MersenneNumber.html, https://mathworld.wolfram.com/MersennePrime.html), i.e. numbers of the form 2n−1 (https://oeis.org/A000225), if 2n−1 is prime, then n must be prime, such numbers are https://oeis.org/A001348, and such primes are https://oeis.org/A000668
Pépin primality test numbers: https://oeis.org/A060377 Lucas–Lehmer primality test numbers: https://oeis.org/A003010
Residues of Pépin primality test for Fermat numbers: https://oeis.org/A152153 Residues of Lucas–Lehmer primality test for Mersenne numbers: https://oeis.org/A095847
Possible bases for Pépin primality test for Fermat numbers (the original base for Pépin primality test is 3): https://oeis.org/A129802 Possible starting values for Lucas–Lehmer primality test for Mersenne numbers (the original starting value for Lucas–Lehmer primality test is 4): https://oeis.org/A018844
Proth primality test (https://en.wikipedia.org/wiki/Proth%27s_theorem, https://www.rieselprime.de/ziki/Proth%27s_theorem, https://mathworld.wolfram.com/ProthsTheorem.html, http://www.numericana.com/answer/primes.htm#proth) for numbers of the form k×2n+1 with k odd and k < 2n, such numbers are called "Proth numbers" (https://en.wikipedia.org/wiki/Proth_prime, https://primes.utm.edu/glossary/xpage/ProthPrime.html, https://www.rieselprime.de/ziki/Proth_prime, https://mathworld.wolfram.com/ProthNumber.html, https://www.numbersaplenty.com/set/Proth_number/, https://primes.utm.edu/top20/page.php?id=66, https://www.primegrid.com/forum_thread.php?id=2665, https://www.primegrid.com/stats_pps_llr.php, https://www.primegrid.com/stats_ppse_llr.php, https://www.primegrid.com/stats_mega_llr.php), and such primes are called "Proth primes", such numbers are https://oeis.org/A080075, and such primes are https://oeis.org/A080076 Lucas–Lehmer–Riesel primality test (https://en.wikipedia.org/wiki/Lucas%E2%80%93Lehmer%E2%80%93Riesel_test) for numbers of the form k×2n−1 with k odd and k < 2n, such numbers are called "Proth numbers of the second kind" (https://www.rieselprime.de/ziki/Riesel_prime), and such primes are called "Proth primes of the second kind", such numbers are https://oeis.org/A112714, and such primes are https://oeis.org/A112715
Pocklington N−1 primality test (https://primes.utm.edu/prove/prove3_1.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, https://en.wikipedia.org/wiki/Pocklington_primality_test, https://www.rieselprime.de/ziki/Pocklington%27s_theorem, https://mathworld.wolfram.com/PocklingtonsTheorem.html, https://stdkmd.net/nrr/pock/, http://factordb.com/nmoverview.php?method=1) for numbers N such that N−1 can be ≥ 1/2 factored Morrison N+1 primality test (https://primes.utm.edu/prove/prove3_2.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://factordb.com/nmoverview.php?method=2) for numbers N such that N+1 can be ≥ 1/2 factored
List of primes of the form k×2n+1 with odd k (http://www.prothsearch.com/riesel1.html, http://www.prothsearch.com/riesel1a.html, http://www.prothsearch.com/riesel1b.html, http://www.prothsearch.com/riesel1c.html, https://www.rieselprime.de/default.htm, https://www.rieselprime.de/ziki/Proth_prime) List of primes of the form k×2n−1 with odd k (http://www.prothsearch.com/riesel2.html, https://web.archive.org/web/20210715115849/http://www.15k.org/riesellist.html, https://web.archive.org/web/20210715164816/http://www.15k.org/Summary00300.htm, https://web.archive.org/web/20210715164824/http://www.15k.org/Summary02000.htm, https://web.archive.org/web/20210715164823/http://www.15k.org/Summary04000.htm, https://web.archive.org/web/20210715164815/http://www.15k.org/Summary06000.htm, https://web.archive.org/web/20210715164832/http://www.15k.org/Summary08000.htm, https://www.rieselprime.de/default.htm, https://www.rieselprime.de/ziki/Riesel_prime)
Sierpiński problem (http://www.prothsearch.com/sierp.html, http://www.primegrid.com/forum_thread.php?id=1647, http://www.primegrid.com/forum_thread.php?id=972, http://www.primegrid.com/forum_thread.php?id=1750, http://www.primegrid.com/forum_thread.php?id=5758, http://www.primegrid.com/stats_sob_llr.php, http://www.primegrid.com/stats_psp_llr.php, http://www.primegrid.com/stats_esp_llr.php, https://web.archive.org/web/20160405211049/http://www.seventeenorbust.com/, https://en.wikipedia.org/wiki/Sierpi%C5%84ski_number, https://primes.utm.edu/glossary/xpage/SierpinskiNumber.html, https://www.rieselprime.de/ziki/Sierpi%C5%84ski_problem, https://www.rieselprime.de/ziki/Proth_2_Sierpinski, https://mathworld.wolfram.com/SierpinskiNumberoftheSecondKind.html, https://en.wikipedia.org/wiki/Seventeen_or_Bust, https://www.rieselprime.de/ziki/Seventeen_or_Bust, https://web.archive.org/web/20190929190947/https://primes.utm.edu/glossary/xpage/ColbertNumber.html, https://mathworld.wolfram.com/ColbertNumber.html, http://www.numericana.com/answer/primes.htm#sierpinski, http://www.bitman.name/math/article/204 (in Italian), https://oeis.org/A076336), finding and proving the smallest odd k such that k×2n+1 is composite for all n ≥ 1, the smallest such k is conjectured to be 78557, such k are called Sierpiński numbers Riesel problem (http://www.prothsearch.com/rieselprob.html, http://www.primegrid.com/forum_thread.php?id=1731, http://www.primegrid.com/stats_trp_llr.php, https://web.archive.org/web/20061021153313/http://stats.rieselsieve.com//queue.php, https://en.wikipedia.org/wiki/Riesel_number, https://primes.utm.edu/glossary/xpage/RieselNumber.html, https://www.rieselprime.de/ziki/Riesel_problem, https://www.rieselprime.de/ziki/Riesel_2_Riesel, https://mathworld.wolfram.com/RieselNumber.html, http://www.bitman.name/math/article/203 (in Italian), https://oeis.org/A076337, https://oeis.org/A101036), finding and proving the smallest odd k such that k×2n−1 is composite for all n ≥ 1, the smallest such k is conjectured to be 509203, such k are called Riesel numbers
Smallest n such that k×2n+1 is prime (https://oeis.org/A078680, https://oeis.org/A078683 (corresponding primes), https://oeis.org/A033809 (odd k), https://oeis.org/A040076 (n = 0 allowed), https://oeis.org/A225721 (n = 0 allowed), https://oeis.org/A050921 (n = 0 allowed, corresponding primes), https://oeis.org/A046067 (odd k, n = 0 allowed), https://oeis.org/A057025 (odd k, n = 0 allowed, corresponding primes), https://oeis.org/A057192 (prime k, n = 0 allowed), https://oeis.org/A057247 (prime k, corresponding primes)) Smallest n such that k×2n−1 is prime (https://oeis.org/A050412, https://oeis.org/A052333 (corresponding primes), https://oeis.org/A108129 (odd k), https://oeis.org/A040081 (n = 0 allowed), https://oeis.org/A038699 (n = 0 allowed, corresponding primes), https://oeis.org/A046069 (odd k, n = 0 allowed), https://oeis.org/A057026 (odd k, n = 0 allowed, corresponding primes), https://oeis.org/A128979 (prime k), https://oeis.org/A101050 (prime k, n = 0 allowed))
dual Sierpiński problem (http://www.kurims.kyoto-u.ac.jp/EMIS/journals/INTEGERS/papers/i61/i61.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_1.pdf), https://www.rechenkraft.net/wiki/Five_or_Bust, https://oeis.org/A076336/a076336c.html, http://www.mit.edu/~kenta/three/prime/dual-sierpinski/ezgxggdm/dualsierp-excerpt.txt, http://mit.edu/kenta/www/three/prime/dual-sierpinski/ezgxggdm/dualsierp.txt.gz, https://mersenneforum.org/showthread.php?t=10761) dual Riesel problem (https://mersenneforum.org/showthread.php?t=6545)
Smallest n such that 2n+k is prime for odd k (https://oeis.org/A067760, https://oeis.org/A123252 (corresponding primes), https://oeis.org/A094076 (prime k, n = 0 allowed), https://oeis.org/A139758 (prime k, n = 0 allowed, corresponding primes)) Smallest n such that 2nk is prime for odd k (https://oeis.org/A096502, https://oeis.org/A096822 (corresponding primes), https://oeis.org/A101462 (prime k))
Generalized Sierpiński problems to bases b > 2 (http://www.noprimeleftbehind.net/crus/Sierp-conjectures.htm, http://www.noprimeleftbehind.net/crus/Sierp-conjectures-powers2.htm, http://www.noprimeleftbehind.net/crus/Sierp-conjecture-reserves.htm, http://www.noprimeleftbehind.net/crus/vstats/all_ck_sierpinski.txt, https://www.utm.edu/staff/caldwell/preprints/2to100.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_3.pdf), http://www.bitman.name/math/article/1259 (in Italian), https://oeis.org/A123159), finding and proving the smallest k such that k×bn+1 is composite for all n ≥ 1 Generalized Riesel problems to bases b > 2 (http://www.noprimeleftbehind.net/crus/Riesel-conjectures.htm, http://www.noprimeleftbehind.net/crus/Riesel-conjectures-powers2.htm, http://www.noprimeleftbehind.net/crus/Riesel-conjecture-reserves.htm, http://www.noprimeleftbehind.net/crus/vstats/all_ck_riesel.txt, https://oeis.org/A273987), finding and proving the smallest k such that k×bn−1 is composite for all n ≥ 1
Pierpont prime (class 1− prime) (https://en.wikipedia.org/wiki/Pierpont_prime, https://primes.utm.edu/glossary/xpage/PierpontPrime.html, https://mathworld.wolfram.com/PierpontPrime.html, https://oeis.org/A005109) Pierpont prime of the second kind (class 1+ prime) (https://oeis.org/A005105)
Pollard P−1 integer factorization method (https://en.wikipedia.org/wiki/Pollard%27s_p_%E2%88%92_1_algorithm, https://www.rieselprime.de/ziki/P-1_factorization_method, https://mathworld.wolfram.com/Pollardp-1FactorizationMethod.html, http://www.numericana.com/answer/factoring.htm#p-1, http://factordb.com/listecm.php?c=2) Williams P+1 integer factorization method (https://en.wikipedia.org/wiki/Williams%27s_p_%2B_1_algorithm, https://www.rieselprime.de/ziki/P%2B1_factorization_method, https://mathworld.wolfram.com/WilliamspPlus1FactorizationMethod.html, http://www.numericana.com/answer/factoring.htm#p+1, http://factordb.com/listecm.php?c=3)

All these numbers are strong probable primes (https://en.wikipedia.org/wiki/Strong_pseudoprime, https://primes.utm.edu/glossary/xpage/StrongPRP.html, https://mathworld.wolfram.com/StrongPseudoprime.html) to bases 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61 (see https://oeis.org/A014233 and https://oeis.org/A141768 and https://oeis.org/A001262 and https://oeis.org/A074773 and http://ntheory.org/data/psps.txt), and strong Lucas probable primes (https://en.wikipedia.org/wiki/Lucas_pseudoprime#Strong_Lucas_pseudoprimes, https://mathworld.wolfram.com/StrongLucasPseudoprime.html) with parameters (P, Q) defined by Selfridge's Method A (see https://oeis.org/A217255 and http://ntheory.org/data/slpsps-baillie.txt), and trial factored (https://en.wikipedia.org/wiki/Trial_division, https://primes.utm.edu/glossary/xpage/TrialDivision.html, https://www.rieselprime.de/ziki/Trial_factoring, https://mathworld.wolfram.com/TrialDivision.html, http://www.numericana.com/answer/factoring.htm#trial) to 1016 (thus, all these numbers are Baillie–PSW probable primes (https://en.wikipedia.org/wiki/Baillie%E2%80%93PSW_primality_test, https://mathworld.wolfram.com/Baillie-PSWPrimalityTest.html)), and since all of them are > 1025000, thus the property that they are in fact composite is less than 10−2000 (but still not zero!), see https://primes.utm.edu/notes/prp_prob.html and https://www.ams.org/journals/mcom/1989-53-188/S0025-5718-1989-0982368-4/S0025-5718-1989-0982368-4.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_22.pdf) (bases 11, 16, 22, 30 have no unsolved families but have unproven probable primes, thus, we can 99.999999...999999% (with >2000 9's) say that the minimal sets for bases 11, 16, 22, 30 are these four sets, but we still cannot 100% say this)

A reference of many types of pseudoprimes: http://ntheory.org/pseudoprimes.html; also a reference of data for all base 2 Fermat pseudoprimes < 264: http://www.cecm.sfu.ca/Pseudoprimes/index-2-to-64.html; also examples of strong pseudoprimes to many bases: https://www.ams.org/journals/mcom/1993-61-204/S0025-5718-1993-1192971-8/S0025-5718-1993-1192971-8.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_41.pdf), https://arxiv.org/pdf/1207.0063.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_42.pdf), https://arxiv.org/pdf/1509.00864.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_43.pdf), https://www.sciencedirect.com/science/article/pii/S0747717185710425?via%3Dihub (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_44.pdf), https://primes.utm.edu/curios/page.php?number_id=4265, https://primes.utm.edu/prove/prove2_3.html, https://faculty.lynchburg.edu/~nicely/misc/mpzspsp.html, http://factordb.com/prooffailed.php, https://oeis.org/A072276, https://oeis.org/A056915, https://oeis.org/A074773

  • If 5762668 (base 11) is in fact composite, then 5{7} will be an additional unsolved family for base 11.
  • If C523755C (base 13) is in fact composite, then C{5}C will be an additional unsolved family for base 13.
  • If 8032017111 (base 13) is in fact composite, then 8{0}111 will be an additional unsolved family for base 13.
  • If 95197420 (base 13) is in fact composite, then 9{5} will be an additional unsolved family for base 13.
  • If DB32234 (base 16) is in fact composite, then D{B} will be an additional unsolved family for base 16.
  • If 472785DD (base 16) is in fact composite, then {4}DD will be an additional unsolved family for base 16.
  • If 3116137AF (base 16) is in fact composite, then {3}AF will be an additional unsolved family for base 16.
  • If BK220015 (base 22) is in fact composite, then B{K}5 will be an additional unsolved family for base 22.
  • If 5193916F (base 26) is in fact composite, then {5}6F will be an additional unsolved family for base 26.
  • If 720279OL (base 26) is in fact composite, then {7}OL will be an additional unsolved family for base 26.
  • If LD0209757 (base 26) is in fact composite, then LD{0}7 will be an additional unsolved family for base 26.
  • If 6K233005 (base 26) is in fact composite, then 6{K}5 will be an additional unsolved family for base 26.
  • If J044303KCB (base 26) is in fact composite, then J{0}KCB will be an additional unsolved family for base 26.
  • If M0611862BB (base 26) is in fact composite, then M{0}2BB will be an additional unsolved family for base 26.
  • If N624051LR (base 28) is in fact composite, then N{6}LR will be an additional unsolved family for base 28.
  • If 5OA31238F (base 28) is in fact composite, then 5O{A}F will be an additional unsolved family for base 28 (unless a prime in the family O{A}F is known, since the family 5O{A}F is covered by the unsolved family O{A}F (if the prime in the family 5O{A}F has longer length than the prime in the family O{A}F) (i.e. the family O{A}F is a subfamily of the family 5O{A}F), and there is still a possibility that the smallest prime in the family 5O{A}F has longer length than the smallest prime in the family O{A}F, thus we still cannot definitely say that there are 25529 minimal primes in base 28 even if we assume the heuristic argument (https://en.wikipedia.org/wiki/Heuristic_argument, https://primes.utm.edu/glossary/xpage/Heuristic.html, https://mathworld.wolfram.com/Heuristic.html, http://www.utm.edu/~caldwell/preprints/Heuristics.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_112.pdf)) that all unsolved families have a prime, this is reasonable, references: https://primes.utm.edu/mersenne/heuristic.html, https://primes.utm.edu/notes/faq/NextMersenne.html, https://web.archive.org/web/20100628035147/http://www.math.niu.edu/~rusin/known-math/98/exp_primes).
  • If O4O945359 (base 28) is in fact composite, then O4{O}9 will be an additional unsolved family for base 28.
  • If I024608D (base 30) is in fact composite, then I{0}D will be an additional unsolved family for base 30.
  • If 7K26567Z (base 36) is in fact composite, then 7{K}Z will be an additional unsolved family for base 36.
  • If S0750078H (base 36) is in fact composite, then S{0}8H will be an additional unsolved family for base 36.
  • If P81993SZ (base 36) is in fact composite, then {P}SZ will be an additional unsolved family for base 36.

For the files in this page: