Skip to content

xayahrainie4793/minimal-elements-of-the-prime-numbers

main
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
Code

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
February 24, 2023 15:19
March 6, 2023 03:36
September 14, 2022 16:37
September 14, 2022 16:38
September 14, 2022 16:37
November 6, 2022 03:29
September 14, 2022 16:39
June 8, 2022 01:48
November 2, 2022 21:58
December 8, 2022 04:33
June 8, 2022 23:32
January 13, 2023 03:22
September 14, 2022 16:37
June 8, 2022 23:32
December 2, 2022 00:44
July 3, 2022 03:15
January 10, 2023 02:38
June 8, 2022 23:33
January 5, 2023 11:03
November 19, 2022 18:55
February 19, 2023 16:55
September 5, 2022 20:10
September 14, 2022 16:37
June 8, 2022 23:35
January 20, 2023 17:19
February 28, 2023 18:50
December 26, 2022 23:05
December 7, 2022 06:17
September 14, 2022 16:37
September 14, 2022 16:37
September 14, 2022 16:37
September 14, 2022 16:37
September 14, 2022 16:37
September 14, 2022 16:37
November 6, 2022 03:29
January 13, 2023 17:22
December 2, 2022 00:46
January 5, 2023 11:05
November 19, 2022 18:55
February 19, 2023 16:57
September 5, 2022 20:11
January 20, 2023 17:22
February 28, 2023 18:52
December 26, 2022 23:07
December 7, 2022 06:18
August 11, 2022 16:51
x19
August 17, 2022 23:53

A Prime Game:

Write down a multidigit prime number (i.e. a prime number > 10), and I can always strike out 0 or more digits to get a prime in this list:

{11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 227, 251, 257, 277, 281, 349, 409, 449, 499, 521, 557, 577, 587, 727, 757, 787, 821, 827, 857, 877, 881, 887, 991, 2087, 2221, 5051, 5081, 5501, 5581, 5801, 5851, 6469, 6949, 8501, 9001, 9049, 9221, 9551, 9649, 9851, 9949, 20021, 20201, 50207, 60649, 80051, 666649, 946669, 5200007, 22000001, 60000049, 66000049, 66600049, 80555551, 555555555551, 5000000000000000000000000000027}

e.g.

  • Write down the prime 149 → I can delete the digit 4, to get the prime 19
  • Write down the prime 439 → I can delete the digit 9, to get the prime 43
  • Write down the prime 857 → I can delete zero digits, to get the prime 857
  • Write down the prime 2081 → I can delete the digit 0, to get the prime 281
  • Write down the largest known double Mersenne prime 170141183460469231731687303715884105727 (2127−1) → I can delete all digits except the third-leftmost 1 and the second-rightmost 3, to get the prime 13
  • Write down the largest known Fermat prime 65537 → I can delete the 6 and the 3, to get the prime 557 (also I can choose to delete the 6 and two 5's, to get the prime 37) (also I can choose to delete two 5's and the 3, to get the prime 67) (also I can choose to delete the 6, one 5, and the 7, to get the prime 53)
  • Write down the famous repunit prime 1111111111111111111 (with 19 1's) → I can delete 17 1's, to get the prime 11
  • Write down the prime 1000000000000000000000000000000000000000000000000000000000007 (which is the next prime after 1060) → I can delete all 0's, to get the prime 17
  • Write down the prime 95801 → I can delete the 9, to get the prime 5801
  • Write down the prime 946969 → I can delete the first 9 and two 6's, to get the prime 499
  • Write down the prime 90000000581 → I can delete five 0's, the 5, and the 8, to get the prime 9001
  • Write down the prime 8555555555555555555551 → I can delete the 8 and nine 5's, to get the prime 555555555551

Now we extend this prime game to bases other than 10.

The minimal elements (https://en.wikipedia.org/wiki/Minimal_element) (https://mathworld.wolfram.com/MaximalElement.html for maximal element, the dual of minimal element, unfortunely there is no article "minimal element" in mathworld, a minimal element of a set (https://en.wikipedia.org/wiki/Set_(mathematics), https://mathworld.wolfram.com/Set.html) under a partial ordering binary relation (https://en.wikipedia.org/wiki/Binary_relation, https://mathworld.wolfram.com/BinaryRelation.html) is a maximal element of the same set under its converse relation (https://en.wikipedia.org/wiki/Converse_relation), a converse relation of a partial ordering relation must also be a partial ordering relation) of the prime numbers (https://en.wikipedia.org/wiki/Prime_number, https://primes.utm.edu/glossary/xpage/Prime.html, https://www.rieselprime.de/ziki/Prime, https://mathworld.wolfram.com/PrimeNumber.html, http://www.numericana.com/answer/primes.htm#definition, https://oeis.org/A000040) which are > b written in the positional numeral system (https://en.wikipedia.org/wiki/Positional_numeral_system) with radix (https://en.wikipedia.org/wiki/Radix, https://primes.utm.edu/glossary/xpage/Radix.html, https://www.rieselprime.de/ziki/Base, https://mathworld.wolfram.com/Radix.html) b, as digit (https://en.wikipedia.org/wiki/Numerical_digit, https://www.rieselprime.de/ziki/Digit, https://mathworld.wolfram.com/Digit.html) strings (https://en.wikipedia.org/wiki/String_(computer_science), https://mathworld.wolfram.com/String.html) under the subsequence (https://en.wikipedia.org/wiki/Subsequence, https://mathworld.wolfram.com/Subsequence.html) ordering (https://en.wikipedia.org/wiki/Partially_ordered_set, https://mathworld.wolfram.com/PartialOrder.html, https://mathworld.wolfram.com/PartiallyOrderedSet.html), for 2 ≤ b ≤ 36 (I stop at base 36 since this base is a maximum base for which it is possible to write the numbers with the symbols 0, 1, 2, ..., 9 and A, B, C, ..., Z, references: http://www.tonymarston.net/php-mysql/converter.html, https://www.dcode.fr/base-36-cipher, http://www.urticator.net/essay/5/567.html, http://www.urticator.net/essay/6/624.html, https://docs.python.org/3/library/functions.html#int, https://reference.wolfram.com/language/ref/BaseForm.html, https://en.wikipedia.org/wiki/Base36, https://web.archive.org/web/20150320103231/https://en.wikipedia.org/wiki/Base_36, https://baseconvert.com/, https://www.calculand.com/unit-converter/zahlen.php?og=Base+2-36&ug=1, also see https://primes.utm.edu/notes/words.html for the English words which are prime numbers when viewed as a number base 36), using A−Z to represent digit values 10 to 35.

"The set of strings ordered by subsequence" is a partially ordered set (https://en.wikipedia.org/wiki/Partially_ordered_set, https://mathworld.wolfram.com/PartialOrder.html, https://mathworld.wolfram.com/PartiallyOrderedSet.html), since this binary relation (https://en.wikipedia.org/wiki/Binary_relation, https://mathworld.wolfram.com/BinaryRelation.html) is reflexive (https://en.wikipedia.org/wiki/Reflexive_relation, https://mathworld.wolfram.com/Reflexive.html), antisymmetric (https://en.wikipedia.org/wiki/Antisymmetric_relation), and transitive (https://en.wikipedia.org/wiki/Transitive_relation), and thus we can draw its Hasse diagram (https://en.wikipedia.org/wiki/Hasse_diagram, https://mathworld.wolfram.com/HasseDiagram.html) and find its greatest element (https://en.wikipedia.org/wiki/Greatest_element), least element (https://en.wikipedia.org/wiki/Least_element), maximal elements (https://en.wikipedia.org/wiki/Maximal_element, https://mathworld.wolfram.com/MaximalElement.html), and minimal elements (https://en.wikipedia.org/wiki/Minimal_element), however, the greatest element and least element may not exist, and for an infinite set (such as the set of the "prime numbers > b" strings in base b (for a given base b ≥ 2), for the proofs for that there are infinitely many primes, see https://en.wikipedia.org/wiki/Euclid%27s_theorem, https://mathworld.wolfram.com/EuclidsTheorems.html, http://www.numericana.com/answer/primes.htm#euclid, https://primes.utm.edu/notes/proofs/infinite/, https://primes.utm.edu/notes/proofs/infinite/euclids.html, https://primes.utm.edu/notes/proofs/infinite/topproof.html, https://primes.utm.edu/notes/proofs/infinite/goldbach.html, https://primes.utm.edu/notes/proofs/infinite/kummers.html, https://primes.utm.edu/notes/proofs/infinite/Saidak.html)), the maximal elements also may not exist, thus we are only interested on finding the minimal elements of these sets, and we define "minimal set" of a set as the set of the minimal elements of this set, under a given partially ordered binary relation (this binary relation is "is a subsequence of" in this article))

By the theorem that there are no infinite (https://en.wikipedia.org/wiki/Infinite_set, https://primes.utm.edu/glossary/xpage/Infinite.html, https://mathworld.wolfram.com/InfiniteSet.html) antichains (https://en.wikipedia.org/wiki/Antichain, https://mathworld.wolfram.com/Antichain.html) (i.e. a subset of a partially ordered set such that any two distinct elements in the subset are incomparable (https://en.wikipedia.org/wiki/Comparability, https://mathworld.wolfram.com/ComparableElements.html)) for the subsequence ordering (i.e. the set of the minimal elements of any set under the subsequence ordering must be finite, even if this set is infinite, such as the set of the "prime numbers > b" strings in base b (for a given base b ≥ 2), for the proofs for that there are infinitely many primes, see https://en.wikipedia.org/wiki/Euclid%27s_theorem, https://mathworld.wolfram.com/EuclidsTheorems.html, http://www.numericana.com/answer/primes.htm#euclid, https://primes.utm.edu/notes/proofs/infinite/, https://primes.utm.edu/notes/proofs/infinite/euclids.html, https://primes.utm.edu/notes/proofs/infinite/topproof.html, https://primes.utm.edu/notes/proofs/infinite/goldbach.html, https://primes.utm.edu/notes/proofs/infinite/kummers.html, https://primes.utm.edu/notes/proofs/infinite/Saidak.html), there must be only finitely such minimal elements in every base b.

Addition (https://en.wikipedia.org/wiki/Addition, https://www.rieselprime.de/ziki/Addition, https://mathworld.wolfram.com/Addition.html) and multiplication (https://en.wikipedia.org/wiki/Multiplication, https://www.rieselprime.de/ziki/Multiplication, https://mathworld.wolfram.com/Multiplication.html) are the basic operations of arithmetic (https://en.wikipedia.org/wiki/Arithmetic, https://www.rieselprime.de/ziki/Arithmetic, https://mathworld.wolfram.com/Arithmetic.html) (which is also the basics of mathematics (https://en.wikipedia.org/wiki/Mathematics, https://www.rieselprime.de/ziki/Mathematics, https://mathworld.wolfram.com/Mathematics.html)). In the addition operation, the identity element (https://en.wikipedia.org/wiki/Identity_element, https://mathworld.wolfram.com/IdentityElement.html) is 0, and all natural numbers > 0 can be written as the sum of many 1’s, and the number 1 cannot be broken up; in the multiplication operation, the identity element is 1, and all natural numbers > 1 can be written as the product of many prime numbers, and the prime numbers cannot be broken up. Also, prime numbers are central in number theory (https://en.wikipedia.org/wiki/Number_theory, https://www.rieselprime.de/ziki/Number_theory, https://mathworld.wolfram.com/NumberTheory.html) because of the fundamental theorem of arithmetic (https://en.wikipedia.org/wiki/Fundamental_theorem_of_arithmetic, https://primes.utm.edu/glossary/xpage/FundamentalTheorem.html, https://mathworld.wolfram.com/FundamentalTheoremofArithmetic.html, http://www.numericana.com/answer/primes.htm#fta): every natural number greater than 1 is either a prime itself or can be factorized (https://en.wikipedia.org/wiki/Integer_factorization, https://www.rieselprime.de/ziki/Factorization, https://mathworld.wolfram.com/PrimeFactorization.html, https://mathworld.wolfram.com/PrimeFactorizationAlgorithms.html, http://www.numericana.com/answer/factoring.htm) as a product of primes that is unique up to (https://en.wikipedia.org/wiki/Up_to) their order. Also, primes are the natural numbers n > 1 such that if n divides (https://en.wikipedia.org/wiki/Divides, https://primes.utm.edu/glossary/xpage/Divides.html, https://primes.utm.edu/glossary/xpage/Divisor.html, https://www.rieselprime.de/ziki/Factor, https://mathworld.wolfram.com/Divides.html, https://mathworld.wolfram.com/Divisor.html, https://mathworld.wolfram.com/Divisible.html, http://www.numericana.com/answer/primes.htm#divisor) x×y (x and y are natural numbers), then n divides either x or y (or both). Also, prime numbers are the numbers n such that the ring (https://en.wikipedia.org/wiki/Ring_(mathematics), https://mathworld.wolfram.com/Ring.html) of integers modulo n (https://en.wikipedia.org/wiki/Integers_modulo_n, https://mathworld.wolfram.com/Mod.html) (i.e. the ring Zn) is a field (https://en.wikipedia.org/wiki/Field_(mathematics), https://mathworld.wolfram.com/Field.html) (also is an integral domain (https://en.wikipedia.org/wiki/Integral_domain, https://mathworld.wolfram.com/IntegralDomain.html), also is a division ring (https://en.wikipedia.org/wiki/Division_ring), also has no zero divisors (https://en.wikipedia.org/wiki/Zero_divisor, https://mathworld.wolfram.com/ZeroDivisor.html) other than 0 (for the special case that n = 1, it is the zero ring (https://en.wikipedia.org/wiki/Zero_ring, https://mathworld.wolfram.com/TrivialRing.html))). Also, see https://primes.utm.edu/ (The Prime Pages, https://en.wikipedia.org/wiki/PrimePages, https://www.rieselprime.de/ziki/The_Prime_Pages) and https://www.primegrid.com/ (Primegrid, https://en.wikipedia.org/wiki/PrimeGrid, https://www.rieselprime.de/ziki/PrimeGrid) and http://www.numericana.com/answer/primes.htm (the set of the primes) and http://www.numericana.com/answer/factoring.htm (factoring into primes). Besides, "the set of the minimal elements of the base b representations of the prime numbers > b under the subsequence ordering" to "the set of the prime numbers (except b itself) digit strings with length > 1 in base b" to "the partially ordered binary relation by subsequence" is "the set of the prime numbers" to "the set of the integers > 1" to "the partially ordered binary relation by divisibility" (and indeed, the "> 1" in "the prime numbers (except b itself) digit strings with length > 1 in base b" can be corresponded to the "> 1" in "the integers > 1") (for the reason why b itself is excluded (when b is prime, if b is composite, then there is no difference to include the b itself or not), see the sections below and https://mersenneforum.org/showpost.php?p=531632&postcount=7, the main reason is that b is the only prime ending with 0), thus the problem in this article is very important and beautiful.

subsequence ordering divisibility ordering
the "prime numbers > b" digit strings" in base b the integers > 1
the set of the minimal elements of the "prime numbers > b" digit strings" in base b under the subsequence ordering (which is exactly the target of this project) the set of the minimal elements of the integers > 1 under the divisibility ordering (which is exactly the set of the prime numbers)
no common subsequence with length > 1 coprime (no common divisor > 1) (https://en.wikipedia.org/wiki/Coprime_integers, https://primes.utm.edu/glossary/xpage/RelativelyPrime.html, https://www.rieselprime.de/ziki/Coprime, https://mathworld.wolfram.com/RelativelyPrime.html, http://www.numericana.com/answer/primes.htm#coprime)
proper subsequence with length > 1 proper factor (https://en.wikipedia.org/wiki/Proper_factor, https://mathworld.wolfram.com/ProperFactor.html, https://mathworld.wolfram.com/ProperDivisor.html) > 1
longest common subsequence (https://en.wikipedia.org/wiki/Longest_common_subsequence_problem) greatest common divisor (https://en.wikipedia.org/wiki/Greatest_common_divisor, https://mathworld.wolfram.com/GreatestCommonDivisor.html, http://www.numericana.com/answer/numbers.htm#gcd)
shortest common supersequence (https://en.wikipedia.org/wiki/Shortest_common_supersequence_problem) least common multiple (https://en.wikipedia.org/wiki/Least_common_multiple, https://mathworld.wolfram.com/LeastCommonMultiple.html, http://www.numericana.com/answer/numbers.htm#lcm)
pairwise incomparable strings (no string is a subsequence of another string) pairwise incomparable numbers (no number divides another number)

This problem is an extension of the original minimal prime problem (https://cs.uwaterloo.ca/~cbright/reports/mepn.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_17.pdf), https://cs.uwaterloo.ca/~shallit/Papers/br10.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_18.pdf), https://cs.uwaterloo.ca/~cbright/talks/minimal-slides.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_19.pdf), https://doi.org/10.1080/10586458.2015.1064048 (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_20.pdf), https://scholar.colorado.edu/downloads/hh63sw661 (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_16.pdf), https://github.com/curtisbright/mepn-data, https://github.com/curtisbright/mepn, https://github.com/RaymondDevillers/primes) to cover Conjectures ‘R Us Sierpinski/Riesel conjectures base b (http://www.noprimeleftbehind.net/crus/, http://www.noprimeleftbehind.net/crus/Sierp-conjectures.htm, http://www.noprimeleftbehind.net/crus/Sierp-conjectures-powers2.htm, http://www.noprimeleftbehind.net/crus/Riesel-conjectures.htm, http://www.noprimeleftbehind.net/crus/Riesel-conjectures-powers2.htm, http://www.noprimeleftbehind.net/crus/Sierp-conjecture-reserves.htm, http://www.noprimeleftbehind.net/crus/Riesel-conjecture-reserves.htm, http://www.noprimeleftbehind.net/crus/tab/CRUS_tab.htm, https://www.rieselprime.de/Others/CRUS_tab.htm, http://www.noprimeleftbehind.net/crus/vstats_new/crus-stats.htm, http://www.noprimeleftbehind.net/crus/vstats_new/crus-top20.htm, http://www.noprimeleftbehind.net/crus/vstats_new/crus-unproven.htm, http://www.noprimeleftbehind.net/crus/vstats_new/crus-proven.htm, http://www.noprimeleftbehind.net/crus/vstats_new/all_ck_sierpinski.txt, http://www.noprimeleftbehind.net/crus/vstats_new/all_ck_riesel.txt, https://primes.utm.edu/bios/page.php?id=1372, https://srbase.my-firewall.org/sr5/, http://www.rechenkraft.net/yoyo/y_status_sieve.php, https://www.utm.edu/staff/caldwell/preprints/2to100.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_3.pdf), http://www.bitman.name/math/article/1259 (in Italian)) with k-values < b, i.e. finding the smallest prime of the form k×bn+1 and k×bn−1 (or proving that such prime does not exist) for all k < b (also to cover dual (http://www.kurims.kyoto-u.ac.jp/EMIS/journals/INTEGERS/papers/i61/i61.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_1.pdf), https://www.rechenkraft.net/wiki/Five_or_Bust, https://oeis.org/A076336/a076336c.html, http://www.mit.edu/~kenta/three/prime/dual-sierpinski/ezgxggdm/dualsierp-excerpt.txt, http://mit.edu/kenta/www/three/prime/dual-sierpinski/ezgxggdm/dualsierp.txt.gz, https://mersenneforum.org/showpost.php?p=144991&postcount=1, https://mersenneforum.org/showthread.php?t=10761, https://mersenneforum.org/showthread.php?t=6545) Sierpinski/Riesel conjectures base b with k-values < b, i.e. finding the smallest prime of the form bn+k and bnk (which are the dual forms of k×bn+1 and k×bn−1, respectively) (or proving that such prime does not exist) for all k < b) (also to cover finding the smallest prime of some classic forms (or proving that such prime does not exist), such as bn+2, bn−2, bn+(b−1), bn−(b−1), 2×bn+1, 2×bn−1, (b−1)×bn+1, (b−1)×bn−1, with n ≥ 1, for the same base b (of course, for some bases b the original minimal prime base b problem already covers finding the smallest prime of these forms, e.g. the original minimal prime base b problem covers finding the smallest prime of the form (b−1)×bn+1 if and only if b−1 is not prime, and the original minimal prime base b problem covers finding the smallest prime of the form (b−1)×bn−1 if and only if neither b−1 nor b−2 is prime, but I want the problem covers finding the smallest prime of these forms for all bases b)). The original minimal prime base b problem does not cover Conjectures ‘R Us Sierpinski/Riesel conjectures base b with conjectured k (http://www.noprimeleftbehind.net/crus/tab/CRUS_tab.htm, https://www.rieselprime.de/Others/CRUS_tab.htm, http://www.noprimeleftbehind.net/crus/vstats_new/all_ck_sierpinski.txt, http://www.noprimeleftbehind.net/crus/vstats_new/all_ck_riesel.txt) < b, since in Riesel side, the prime is not minimal prime in original definition if either k−1 or b−1 (or both) is prime, and in Sierpinski side, the prime is not minimal prime in original definition if k is prime (e.g. 25×3034205−1 is not minimal prime in base 30 in original definition, since it is OT34205 in base 30, and T (= 29 in decimal) is prime, but it is minimal prime in base 30 if only primes > base are counted), but this extended version of minimal prime base b problem does. (There is someone else who also exclude the single-digit primes, but his research is about substring (https://en.wikipedia.org/wiki/Substring) instead of subsequence, see https://www.mersenneforum.org/showpost.php?p=235383&postcount=42, subsequences can contain consecutive elements which were not consecutive in the original sequence, a subsequence which consists of a consecutive run of elements from the original sequence, such as 234 from 123456, is a substring, substring is a refinement of the subsequence, subsequence is a generalization of substring, substring must be subsequence, but subsequence may not be substring, 514 is a subsequence of 352148, but not a substring of 352148, see the list below of the comparation of "subsequence" and "substring")

subsequence substring
https://oeis.org/A071062 https://oeis.org/A033274
https://oeis.org/A130448 https://oeis.org/A238334
https://oeis.org/A039995 https://oeis.org/A039997
https://oeis.org/A039994 https://oeis.org/A039996
https://oeis.org/A094535 https://oeis.org/A093301
https://oeis.org/A350508 https://oeis.org/A038103
https://oeis.org/A354113 https://oeis.org/A354114
longest common subsequence problem (https://en.wikipedia.org/wiki/Longest_common_subsequence_problem) longest common substring problem (https://en.wikipedia.org/wiki/Longest_common_substring_problem)

(we do not research substring in this article, because for substring ordering, "the set of the minimal elements of the base 10 representations of the prime numbers > 10" are very likely to be infinite (and thus almost unsolvable), since all primes of the form 1{0}3 (i.e. https://oeis.org/A159352, for the exponents see https://oeis.org/A049054, also see https://stdkmd.net/nrr/1/10003.htm) or 3{0}1 (i.e. https://oeis.org/A259866, for the exponents see https://oeis.org/A056807, also see https://stdkmd.net/nrr/3/30001.htm) are minimal elements of the base 10 representations of the prime numbers > 10 under the substring ordering, and there is likely infinitely many primes of the form 1{0}3 and infinitely many primes of the form 3{0}1, see https://web.archive.org/web/20100628035147/http://www.math.niu.edu/~rusin/known-math/98/exp_primes and https://mersenneforum.org/showpost.php?p=564786&postcount=3 and https://mersenneforum.org/showpost.php?p=461665&postcount=7)

However, including the base (b) itself results in automatic elimination of all possible extension numbers with "0 after 1" from the set (when the base is prime, if the base is composite, then there is no difference to include the base (b) itself or not), which is quite restrictive (since when the base is prime, then the base (b) itself is the only prime ending with 0, i.e. having trailing zero (https://en.wikipedia.org/wiki/Trailing_zero), since in any base, all numbers ending with 0 (i.e. having trailing zero) are divisible by the base (b), thus cannot be prime unless it is equal the base (b), i.e. "10" in base b, note that the numbers cannot have leading zero (https://en.wikipedia.org/wiki/Leading_zero), since typically this is not the way we write numbers (in any base), thus for all primes in our sets (i.e. all primes > base (b)), all zero digits must be "between" other digits). (for the reference of this, see https://mersenneforum.org/showpost.php?p=531632&postcount=7)

Besides, this problem is better than the original minimal prime problem since this problem is regardless whether 1 is considered as prime or not, i.e. no matter 1 is considered as prime or not prime (https://primes.utm.edu/notes/faq/one.html, https://primefan.tripod.com/Prime1ProCon.html, https://cs.uwaterloo.ca/journals/JIS/VOL15/Caldwell2/cald6.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_24.pdf), http://www.numericana.com/answer/numbers.htm#one), the sets in this problem are the same, while the sets in the original minimal prime problem are different, e.g. in base 10, if 1 is considered as prime, then the set in the original minimal prime problem is {1, 2, 3, 5, 7, 89, 409, 449, 499, 6469, 6949, 9049, 9649, 9949, 60649, 666649, 946669, 60000049, 66000049, 66600049}, while if 1 is not considered as prime, then the set in the original minimal prime problem is {2, 3, 5, 7, 11, 19, 41, 61, 89, 409, 449, 499, 881, 991, 6469, 6949, 9001, 9049, 9649, 9949, 60649, 666649, 946669, 60000049, 66000049, 66600049}, however, in base 10, the set in this problem is always {11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 227, 251, 257, 277, 281, 349, 409, 449, 499, 521, 557, 577, 587, 727, 757, 787, 821, 827, 857, 877, 881, 887, 991, 2087, 2221, 5051, 5081, 5501, 5581, 5801, 5851, 6469, 6949, 8501, 9001, 9049, 9221, 9551, 9649, 9851, 9949, 20021, 20201, 50207, 60649, 80051, 666649, 946669, 5200007, 22000001, 60000049, 66000049, 66600049, 80555551, 555555555551, 5000000000000000000000000000027}, no matter 1 is considered as prime or not prime.

The third reason for excluding the single-digit primes is that they are trivial like that Conjectures ‘R Us Sierpinski/Riesel conjectures base b requires exponent n ≥ 1 for these primes (see https://mersenneforum.org/showpost.php?p=447679&postcount=27), n = 0 is not acceptable to avoid the trivial primes (e.g. 2×bn+1, 4×bn+1, 6×bn+1, 10×bn+1, 12×bn+1, 16×bn+1, 3×bn−1, 4×bn−1, 6×bn−1, 8×bn−1, 12×bn−1, 14×bn−1, ... cannot be quickly eliminated with n = 0, or the conjectures become much more easy and uninteresting), for the same reason, this minimal prime puzzle requires ≥ b (i.e. ≥ 2 digits) for these primes, single-digit primes are not acceptable to avoid the trivial primes (e.g. families containing digit 2, 3, 5, 7, B, D, H, J, N, T, V, ... cannot be quickly eliminated with the single-digit prime, or the conjectures become much more easy and uninteresting).

The fourth reason for excluding the primes ≤ b is that starting with b+1 makes the formula of the number of possible (first digit,last digit) combo of a minimal prime in base b more simple and smooth number (https://en.wikipedia.org/wiki/Smooth_number, https://mathworld.wolfram.com/SmoothNumber.html), it is (b−1)×eulerphi(b) (https://oeis.org/A062955), where eulerphi is Euler's totient function (https://en.wikipedia.org/wiki/Euler%27s_totient_function, https://primes.utm.edu/glossary/xpage/EulersPhi.html, https://mathworld.wolfram.com/TotientFunction.html, http://www.numericana.com/answer/modular.htm#phi, https://oeis.org/A000010), since b−1 is the number of possible first digit (except 0, all digits can be first digit), and eulerphi(b) is the number of possible last digit (only digits coprime to b can be last digit), by rule of product, there are (b−1)×eulerphi(b) possible (first digit,last digit) combo, and if start with b, then when b is prime, there is an additional possible (first digit,last digit) combo: (1,0), and hence the formula will be (b−1)×eulerphi(b)+1 if b is prime, or (b−1)×eulerphi(b) if b is composite (the fully formula will be (b−1)×eulerphi(b)+isprime(b) or (b−1)×eulerphi(b)+floor((beulerphi(b)) / (b−1))), which is more complex, and if start with 1 (i.e. the original minimal prime problem), the formula is much more complex.

It is found that both "number of minimal primes base b" and "length of the largest minimal prime base b" are roughly (https://en.wikipedia.org/wiki/Asymptotic_analysis, https://primes.utm.edu/glossary/xpage/AsymptoticallyEqual.html, https://mathworld.wolfram.com/Asymptotic.html) eγ×(b−1)×eulerphi(b), where e = 2.718281828459... is the base of the natural logarithm (https://en.wikipedia.org/wiki/E_(mathematical_constant), https://mathworld.wolfram.com/e.html, https://oeis.org/A001113), γ = 0.577215664901 is the Euler–Mascheroni constant (https://en.wikipedia.org/wiki/Euler%27s_constant, https://primes.utm.edu/glossary/xpage/Gamma.html, https://mathworld.wolfram.com/Euler-MascheroniConstant.html, https://oeis.org/A001620), eulerphi is Euler's totient function (https://en.wikipedia.org/wiki/Euler%27s_totient_function, https://primes.utm.edu/glossary/xpage/EulersPhi.html, https://mathworld.wolfram.com/TotientFunction.html, http://www.numericana.com/answer/modular.htm#phi, https://oeis.org/A000010), you can see the condensed table for bases 2 ≤ b ≤ 36 in the bottom of this article, eγ×(b−1)×eulerphi(b) is an exponential sequence (https://en.wikipedia.org/wiki/Exponential_growth, https://mathworld.wolfram.com/ExponentialGrowth.html) for (b−1)×eulerphi(b) (https://oeis.org/A062955), and since (b−1)×eulerphi(b) has polynomial growth (https://en.wikipedia.org/wiki/Polynomial, https://mathworld.wolfram.com/Polynomial.html) for b (since it is always between b−1 and b2), thus eγ×(b−1)×eulerphi(b) has exponential growth for b, and "largest minimal prime base b" is roughly beγ×(b−1)×eulerphi(b), which has double exponential growth (https://en.wikipedia.org/wiki/Double_exponential_function) for b. (there are also asymptotic analysis for other sets of primes in various bases b, such as the left-truncatable primes and the right-truncatable primes (https://en.wikipedia.org/wiki/Truncatable_prime, https://primes.utm.edu/glossary/xpage/LeftTruncatablePrime.html, https://primes.utm.edu/glossary/xpage/RightTruncatablePrime.html, https://mathworld.wolfram.com/TruncatablePrime.html, https://www.numbersaplenty.com/set/truncatable_prime/) in various bases b, see http://chesswanks.com/num/LTPs/ for the left-truncatable primes in bases b ≤ 120 and http://fatphil.org/maths/rtp/rtp.html for the right-truncatable primes in bases b ≤ 90)

This problem covers finding the smallest prime of these forms in the same base b (or proving that such prime does not exist): (while the original minimal prime problem does not cover some of these forms for some bases (or all bases) b)

family smallest allowed n OEIS sequences for the smallest n such that this form is prime references
(bn−1)/(b−1) 2 https://oeis.org/A084740
https://oeis.org/A084738 (corresponding primes)
https://oeis.org/A246005 (odd b)
https://oeis.org/A065854 (prime b)
https://oeis.org/A279068 (prime b, corresponding primes)
https://oeis.org/A065813 (prime b, n replaced by (n−1)/2)
https://oeis.org/A128164 (n = 2 not allowed)
https://oeis.org/A285642 (n = 2 not allowed, corresponding primes)
http://www.fermatquotient.com/PrimSerien/GenRepu.txt (in German)
https://web.archive.org/web/20021111141203/http://www.users.globalnet.co.uk/~aads/primes.html
http://www.primenumbers.net/Henri/us/MersFermus.htm
http://www.bitman.name/math/table/379 (in Italian)
https://www.ams.org/journals/mcom/1993-61-204/S0025-5718-1993-1185243-9/S0025-5718-1993-1185243-9.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_4.pdf)
https://www.ams.org/journals/mcom/1979-33-148/S0025-5718-1979-0537980-7/S0025-5718-1979-0537980-7.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_119.pdf)
bn+1 1 https://oeis.org/A079706
https://oeis.org/A084712 (corresponding primes)
https://oeis.org/A228101 (log2 of n)
https://oeis.org/A123669 (n = 1 not allowed, corresponding primes)
http://jeppesn.dk/generalized-fermat.html
http://www.noprimeleftbehind.net/crus/GFN-primes.htm
http://yves.gallot.pagesperso-orange.fr/primes/index.html
http://yves.gallot.pagesperso-orange.fr/primes/results.html
http://yves.gallot.pagesperso-orange.fr/primes/stat.html
(bn+1)/2 (for odd b) 2 http://www.fermatquotient.com/PrimSerien/GenFermOdd.txt (in German)
bn+1 1 https://oeis.org/A119624
https://oeis.org/A253178 (only bases b which have possible primes)
https://oeis.org/A098872 (b divisible by 6)
https://mersenneforum.org/showthread.php?t=6918
https://mersenneforum.org/showthread.php?t=19725 (b == 11 mod 12)
bn−1 1 https://oeis.org/A119591
https://oeis.org/A098873 (b divisible by 6)
https://mersenneforum.org/showthread.php?t=24576, https://www.mersenneforum.org/attachment.php?attachmentid=20976&d=1567314217
bn+2 1 https://oeis.org/A138066
https://oeis.org/A084713 (corresponding primes)
https://oeis.org/A138067 (n = 1 not allowed)
bn−2 2 https://oeis.org/A250200
https://oeis.org/A255707 (n = 1 allowed)
https://oeis.org/A084714 (n = 1 allowed, corresponding primes)
https://oeis.org/A292201 (prime b, n = 1 allowed)
https://www.primepuzzles.net/puzzles/puzz_887.htm (n = 1 allowed)
bn+1 1 https://oeis.org/A098877 (b divisible by 6)
bn−1 1 https://oeis.org/A098876 (b divisible by 6)
10×bn+1 1 https://oeis.org/A088782
https://oeis.org/A088622 (corresponding primes)
bn+3 1 https://www.primegrid.com/forum_thread.php?id=9538
bn/2+1 (for even b) 2 https://www.primegrid.com/forum_thread.php?id=9538
(b−1)×bn+1 1 https://oeis.org/A305531
https://oeis.org/A087139 (prime b, n replaced by n+1)
https://www.rieselprime.de/ziki/Williams_prime_MP_least
https://www.rieselprime.de/ziki/Williams_prime_MP_table
https://sites.google.com/view/williams-primes
http://www.bitman.name/math/table/477 (in Italian)
(b−1)×bn−1 1 https://oeis.org/A122396 (prime b, n replaced by n+1) https://harvey563.tripod.com/wills.txt
https://www.rieselprime.de/ziki/Williams_prime_MM_least
https://www.rieselprime.de/ziki/Williams_prime_MM_table
https://sites.google.com/view/williams-primes
http://matwbn.icm.edu.pl/ksiazki/aa/aa39/aa3912.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_9.pdf)
https://www.ams.org/journals/mcom/2000-69-232/S0025-5718-00-01212-6/S0025-5718-00-01212-6.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_10.pdf)
http://www.bitman.name/math/table/484 (in Italian)
bn+(b−1) 1 https://oeis.org/A076845
https://oeis.org/A076846 (corresponding primes)
https://oeis.org/A078178 (n = 1 not allowed)
https://oeis.org/A078179 (n = 1 not allowed, corresponding primes)
https://sites.google.com/view/williams-primes
bn−(b−1) 2 https://oeis.org/A113516
https://oeis.org/A343589 (corresponding primes)
https://sites.google.com/view/williams-primes
https://cs.uwaterloo.ca/journals/JIS/VOL3/mccranie.html (prime b)
http://www.bitman.name/math/table/435 (in Italian) (prime b)
k×bn+1 for all 2 ≤ k ≤ 12 1 https://www.rieselprime.de/ziki/Proth_prime_small_bases_least_n
https://mersenneforum.org/showthread.php?t=10354
k×bn−1 for all 2 ≤ k ≤ 12 1 https://www.rieselprime.de/ziki/Riesel_prime_small_bases_least_n
https://mersenneforum.org/showthread.php?t=10354

(below (as well as the "left b" files), family "12{3}45" means sequence {1245, 12345, 123345, 1233345, 12333345, 123333345, ...}, where the members are expressed as base b strings, like the numbers in https://stdkmd.net/nrr/aaaab.htm, https://stdkmd.net/nrr/abbbb.htm, https://stdkmd.net/nrr/aaaba.htm, https://stdkmd.net/nrr/abaaa.htm, https://stdkmd.net/nrr/abbba.htm, https://stdkmd.net/nrr/abbbc.htm, https://stdkmd.net/nrr/prime/primesize.txt, https://stdkmd.net/nrr/prime/primesize.zip, https://stdkmd.net/nrr/prime/primecount.htm, https://stdkmd.net/nrr/prime/primecount.txt, https://stdkmd.net/nrr/prime/primedifficulty.htm, https://stdkmd.net/nrr/prime/primedifficulty.txt, e.g. 1{3} (in decimal) is the numbers in https://stdkmd.net/nrr/1/13333.htm, and {1}3 (in decimal) is the numbers in https://stdkmd.net/nrr/1/11113.htm, and 1{2}3 (in decimal) is the numbers in https://stdkmd.net/nrr/1/12223.htm, also, superscripts always means exponents (https://en.wikipedia.org/wiki/Exponentiation, https://www.rieselprime.de/ziki/Exponent, https://mathworld.wolfram.com/Exponent.html, https://mathworld.wolfram.com/Power.html, https://mathworld.wolfram.com/Exponentiation.html), subscripts are always used to indicate repetitions of digits, e.g. 1234567 = 123333567, all subscripts are written in decimal)

In fact, this problem covers finding the smallest prime of these form in the same base b: (where x, y, z are any digits in base b)

The primes in forms x{y}, {x}y, xy{x}, {x}yx in base b are near-repdigit primes (https://primes.utm.edu/glossary/xpage/NearRepdigitPrime.html, https://primes.utm.edu/top20/page.php?id=15, https://oeis.org/A164937, https://stdkmd.net/nrr/#factortables_nr, https://stdkmd.net/nrr/records.htm#nrprime, https://stdkmd.net/nrr/records.htm#nrprp) in base b.

Proving that "the set of the minimal elements of the base b representations of the prime numbers > b under the subsequence ordering" = the set S is equivalent to (https://en.wikipedia.org/wiki/Logical_equivalence):

("the set of the minimal elements of the base b representations of the prime numbers > b under the subsequence ordering" = S is proved if and only if all these three problems are proved, i.e. "the set of the minimal elements of the base b representations of the prime numbers > b under the subsequence ordering" = S is a theorem if and only if all these three "conjectures" are theorems)

e.g. proving that "the set of the minimal elements of the base 10 representations of the prime numbers > 10 under the subsequence ordering" = {11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 227, 251, 257, 277, 281, 349, 409, 449, 499, 521, 557, 577, 587, 727, 757, 787, 821, 827, 857, 877, 881, 887, 991, 2087, 2221, 5051, 5081, 5501, 5581, 5801, 5851, 6469, 6949, 8501, 9001, 9049, 9221, 9551, 9649, 9851, 9949, 20021, 20201, 50207, 60649, 80051, 666649, 946669, 5200007, 22000001, 60000049, 66000049, 66600049, 80555551, 555555555551, 5000000000000000000000000000027}, is equivalent to:

  • Prove that all of 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 227, 251, 257, 277, 281, 349, 409, 449, 499, 521, 557, 577, 587, 727, 757, 787, 821, 827, 857, 877, 881, 887, 991, 2087, 2221, 5051, 5081, 5501, 5581, 5801, 5851, 6469, 6949, 8501, 9001, 9049, 9221, 9551, 9649, 9851, 9949, 20021, 20201, 50207, 60649, 80051, 666649, 946669, 5200007, 22000001, 60000049, 66000049, 66600049, 80555551, 555555555551, 5000000000000000000000000000027 are primes > 10.
  • Prove that all proper subsequence of all elements in {11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 227, 251, 257, 277, 281, 349, 409, 449, 499, 521, 557, 577, 587, 727, 757, 787, 821, 827, 857, 877, 881, 887, 991, 2087, 2221, 5051, 5081, 5501, 5581, 5801, 5851, 6469, 6949, 8501, 9001, 9049, 9221, 9551, 9649, 9851, 9949, 20021, 20201, 50207, 60649, 80051, 666649, 946669, 5200007, 22000001, 60000049, 66000049, 66600049, 80555551, 555555555551, 5000000000000000000000000000027} which are > 10 are composite.
  • Prove that all primes > 10 contain at least one element in {11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 227, 251, 257, 277, 281, 349, 409, 449, 499, 521, 557, 577, 587, 727, 757, 787, 821, 827, 857, 877, 881, 887, 991, 2087, 2221, 5051, 5081, 5501, 5581, 5801, 5851, 6469, 6949, 8501, 9001, 9049, 9221, 9551, 9649, 9851, 9949, 20021, 20201, 50207, 60649, 80051, 666649, 946669, 5200007, 22000001, 60000049, 66000049, 66600049, 80555551, 555555555551, 5000000000000000000000000000027} as subsequence (equivalently, prove that all numbers > 10 not containing any element in {11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 227, 251, 257, 277, 281, 349, 409, 449, 499, 521, 557, 577, 587, 727, 757, 787, 821, 827, 857, 877, 881, 887, 991, 2087, 2221, 5051, 5081, 5501, 5581, 5801, 5851, 6469, 6949, 8501, 9001, 9049, 9221, 9551, 9649, 9851, 9949, 20021, 20201, 50207, 60649, 80051, 666649, 946669, 5200007, 22000001, 60000049, 66000049, 66600049, 80555551, 555555555551, 5000000000000000000000000000027} as subsequence are composite, since they are contraposition (https://en.wikipedia.org/wiki/Contraposition), PQ and ¬Q ⟶ ¬P are logically equivalent (https://en.wikipedia.org/wiki/Logical_equivalence)).

(since for base b = 10, all these three problems are proved, i.e. all they are theorems, thus, "the set of the minimal elements of the base 10 representations of the prime numbers > 10 under the subsequence ordering" = {11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 227, 251, 257, 277, 281, 349, 409, 449, 499, 521, 557, 577, 587, 727, 757, 787, 821, 827, 857, 877, 881, 887, 991, 2087, 2221, 5051, 5081, 5501, 5581, 5801, 5851, 6469, 6949, 8501, 9001, 9049, 9221, 9551, 9649, 9851, 9949, 20021, 20201, 50207, 60649, 80051, 666649, 946669, 5200007, 22000001, 60000049, 66000049, 66600049, 80555551, 555555555551, 5000000000000000000000000000027} is also proved, i.e. "the set of the minimal elements of the base 10 representations of the prime numbers > 10 under the subsequence ordering" = {11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 227, 251, 257, 277, 281, 349, 409, 449, 499, 521, 557, 577, 587, 727, 757, 787, 821, 827, 857, 877, 881, 887, 991, 2087, 2221, 5051, 5081, 5501, 5581, 5801, 5851, 6469, 6949, 8501, 9001, 9049, 9221, 9551, 9649, 9851, 9949, 20021, 20201, 50207, 60649, 80051, 666649, 946669, 5200007, 22000001, 60000049, 66000049, 66600049, 80555551, 555555555551, 5000000000000000000000000000027} is also a theorem)

Theorem (https://en.wikipedia.org/wiki/Theorem, https://mathworld.wolfram.com/Theorem.html, https://primes.utm.edu/notes/proofs/): The set of the minimal elements of the base 10 representations of the prime numbers > 10 under the subsequence ordering is {11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 227, 251, 257, 277, 281, 349, 409, 449, 499, 521, 557, 577, 587, 727, 757, 787, 821, 827, 857, 877, 881, 887, 991, 2087, 2221, 5051, 5081, 5501, 5581, 5801, 5851, 6469, 6949, 8501, 9001, 9049, 9221, 9551, 9649, 9851, 9949, 20021, 20201, 50207, 60649, 80051, 666649, 946669, 5200007, 22000001, 60000049, 66000049, 66600049, 80555551, 555555555551, 5000000000000000000000000000027}

Proof (https://en.wikipedia.org/wiki/Mathematical_proof, https://mathworld.wolfram.com/Proof.html, https://primes.utm.edu/notes/proofs/): (this proof uses the notation in http://www.wiskundemeisjes.nl/wp-content/uploads/2007/02/minimal.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_12.pdf), i.e. "XY" means "X is a subsequence of Y") (below, 𝜆 is the empty string (https://en.wikipedia.org/wiki/Empty_string)) (bold for minimal primes)

Assume p is a prime > 10, and the last digit of p must lie in {1,3,7,9}

Case 1: p ends with 1.

In this case we can write p = x1. If x contains 1, 3, 4, 6, or 7, then (respectively) 11p, 31p, 41p, 61p, or 71p. Hence we may assume all digits of x are 0, 2, 5, 8, or 9.

Case 1.1: p begins with 2.

In this case we can write p = 2y1. If 5 ◁ y, then 251p. If 8 ◁ y, then 281p. If 9 ◁ y, then 29 ◁ p. Hence we may assume all digits of y are 0 or 2.

If 22 ◁ y, then 2221p. Hence we may assume y contains zero or one 2's.

If y contains no 2's, then p ∈ 2{0}1. But then, since the sum of the digits of p is 3, p is divisible by 3, so p cannot be prime.

If y contains exactly one 2, then we can write p = 2z2w1, where z,w ∈ {0}. If 0 ◁ z and 0 ◁ w, then 20201p. Hence we may assume either z or w is empty.

If z is empty, then p ∈ 22{0}1, and the smallest prime p ∈ 22{0}1 is 22000001.

If w is empty, then p ∈ 2{0}21, and the smallest prime p ∈ 2{0}21 is 20021.

Case 1.2: p begins with 5.

In this case we can write p = 5y1. If 2 ◁ y, then 521p. If 9 ◁ y, then 59 ◁ p. Hence we may assume all digits of y are 0, 5, or 8.

If 05 ◁ y, then 5051p. If 08 ◁ y, then 5081p. If 50 ◁ y, then 5501p. If 58 ◁ y, then 5581p. If 80 ◁ y, then 5801p. If 85 ◁ y, then 5851p. Hence we may assume y ∈ {0} ∪ {5} ∪ {8}.

If y ∈ {0}, then p ∈ 5{0}1. But then, since the sum of the digits of p is 6, p is divisible by 3, so p cannot be prime.

If y ∈ {5}, then p ∈ 5{5}1, and the smallest prime p ∈ 5{5}1 is 555555555551.

If y ∈ {8}, since if 88 ◁ y, then 881 ◁ p, hence we may assume y ∈ {𝜆,8}, and thus p ∈ {51,581}, but 51 and 581 are both composite.

Case 1.3: p begins with 8.

In this case we can write p = 8y1. If 2 ◁ y, then 821p. If 8 ◁ y, then 881p. If 9 ◁ y, then 89 ◁ p. Hence we may assume all digits of y are 0 or 5.

If 50 ◁ y, then 8501p. Hence we may assume y ∈ {0}{5}.

If 005 ◁ y, then 80051 ◁ p. Hence we may assume y ∈ {0} ∪ {5} ∪ 0{5}.

If y ∈ {0}, then p ∈ 8{0}1. But then, since the sum of the digits of p is 9, p is divisible by 3, so p cannot be prime.

If y ∈ {5}, since if 55555555555 ◁ y, then 555555555551 ◁ p, hence we may assume y ∈ {𝜆, 5, 55, 555, 5555, 55555, 555555, 5555555, 55555555, 555555555, 5555555555}, and thus p ∈ {81, 851, 8551, 85551, 855551, 8555551, 85555551, 855555551, 8555555551, 85555555551, 855555555551}, but all of these numbers are composite.

If y ∈ 0{5}, since if 55555555555 ◁ y, then 555555555551 ◁ p, hence we may assume y ∈ {0, 05, 055, 0555, 05555, 055555, 0555555, 05555555, 055555555, 0555555555, 05555555555}, and thus p ∈ {801, 8051, 80551, 805551, 8055551, 80555551, 805555551, 8055555551, 80555555551, 805555555551, 8055555555551}, and of these numbers only 80555551 and 8055555551 are primes, but 80555551 ◁ 8055555551, thus only 80555551 is minimal prime.

Case 1.4: p begins with 9.

In this case we can write p = 9y1. If 9 ◁ y, then 991p. Hence we may assume all digits of y are 0, 2, 5, or 8.

If 00 ◁ y, then 9001p. If 22 ◁ y, then 9221p. If 55 ◁ y, then 9551p. If 88 ◁ y, then 881 ◁ p. Hence we may assume y contains at most one 0, at most one 2, at most one 5, and at most one 8.

If y only contains at most one 0 and does not contain any of {2,5,8}, then y ∈ {𝜆,0}, and thus p ∈ {91,901}, but 91 and 901 are both composite. If y only contains at most one 0 and only one of {2,5,8}, then the sum of the digits of p is divisible by 3, p is divisible by 3, so p cannot be prime. Hence we may assume y contains at least two of {2,5,8}.

If 25 ◁ y, then 251 ◁ p. If 28 ◁ y, then 281 ◁ p. If 52 ◁ y, then 521 ◁ p. If 82 ◁ y, then 821 ◁ p. Hence we may assume y contains no 2's (since if y contains 2, then y cannot contain either 5's or 8's, which is a contradiction).

If 85 ◁ y, then 9851p. Hence we may assume y ∈ {58,580,508,058}, and thus p ∈ {9581,95801,95081,90581}, and of these numbers only 95801 is prime, but 95801 is not minimal prime since 5801 ◁ 95801.

Case 2: p ends with 3.

In this case we can write p = x3. If x contains 1, 2, 4, 5, 7, or 8, then (respectively) 13p, 23p, 43p, 53p, 73p, or 83p. Hence we may assume all digits of x are 0, 3, 6, or 9, and thus all digits of p are 0, 3, 6, or 9. But then, since the digits of p all have a common factor 3, p is divisible by 3, so p cannot be prime.

Case 3: p ends with 7.

In this case we can write p = x7. If x contains 1, 3, 4, 6, or 9, then (respectively) 17p, 37p, 47p, 67p, or 97p. Hence we may assume all digits of x are 0, 2, 5, 7, or 8.

Case 3.1: p begins with 2.

In this case we can write p = 2y7. If 2 ◁ y, then 227p. If 5 ◁ y, then 257p. If 7 ◁ y, then 277p. Hence we may assume all digits of y are 0 or 8.

If 08 ◁ y, then 2087p. If 88 ◁ y, then 887 ◁ p. Hence we may assume y ∈ {0} ∪ 8{0}.

If y ∈ {0}, then p ∈ 2{0}7. But then, since the sum of the digits of p is 9, p is divisible by 3, so p cannot be prime.

If y ∈ 8{0}, then p ∈ 28{0}7. But then p is divisible by 7, since for n ≥ 0 we have 7 × 40n1 = 280n7.

Case 3.2: p begins with 5.

In this case we can write p = 5y7. If 5 ◁ y, then 557p. If 7 ◁ y, then 577p. If 8 ◁ y, then 587p. Hence we may assume all digits of y are 0 or 2.

If 22 ◁ y, then 227 ◁ p. Hence we may assume y contains zero or one 2's.

If y contains no 2's, then p ∈ 5{0}7. But then, since the sum of the digits of p is 12, p is divisible by 3, so p cannot be prime.

If y contains exactly one 2, then we can write p = 5z2w7, where z,w ∈ {0}. If 0 ◁ z and 0 ◁ w, then 50207p. Hence we may assume either z or w is empty.

If z is empty, then p ∈ 52{0}7, and the smallest prime p ∈ 52{0}7 is 5200007.

If w is empty, then p ∈ 5{0}27, and the smallest prime p ∈ 5{0}27 is 5000000000000000000000000000027.

Case 3.3: p begins with 7.

In this case we can write p = 7y7. If 2 ◁ y, then 727p. If 5 ◁ y, then 757p. If 8 ◁ y, then 787p. Hence we may assume all digits of y are 0 or 7, and thus all digits of p are 0 or 7. But then, since the digits of p all have a common factor 7, p is divisible by 7, so p cannot be prime.

Case 3.4: p begins with 8.

In this case we can write p = 8y7. If 2 ◁ y, then 827p. If 5 ◁ y, then 857p. If 7 ◁ y, then 877p. If 8 ◁ y, then 887p. Hence we may assume y ∈ {0}, and thus p ∈ 8{0}7. But then, since the sum of the digits of p is 15, p is divisible by 3, so p cannot be prime.

Case 4: p ends with 9.

In this case we can write p = x9. If x contains 1, 2, 5, 7, or 8, then (respectively) 19p, 29p, 59p, 79p, or 89p. Hence we may assume all digits of x are 0, 3, 4, 6, or 9.

If 44 ◁ x, then 449p. Hence we may assume x contains zero or one 4's.

If x contains no 4's, then all digits of x are 0, 3, 6, or 9, and thus all digits of p are 0, 3, 6, or 9. But then, since the digits of p all have a common factor 3, p is divisible by 3, so p cannot be prime. Hence we may assume that x contains exactly one 4.

Case 4.1: p begins with 3.

In this case we can write p = 3y4z9, where all digits of y, z are 0, 3, 6, or 9. We must have 349p.

Case 4.2: p begins with 4.

In this case we can write p = 4y9, where all digits of y are 0, 3, 6, or 9. If 0 ◁ y, then 409p. If 3 ◁ y, then 43 ◁ p. If 9 ◁ y, then 499p. Hence we may assume y ∈ {6}, and thus p ∈ 4{6}9. But then p is divisible by 7, since for n ≥ 0 we have 7 × 6n7 = 46n9.

Case 4.3: p begins with 6.

In this case we can write p = 6y4z9, where all digits of y, z are 0, 3, 6, or 9. If 0 ◁ z, then 409 ◁ p. If 3 ◁ z, then 43 ◁ p. If 6 ◁ z, then 6469p. If 9 ◁ z, then 499 ◁ p. Hence we may assume z is empty.

If 3 ◁ y, then 349 ◁ p. If 9 ◁ y, then 6949p. Hence we may assume all digits of y are 0 or 6.

If 06 ◁ y, then 60649p. Hence we may assume y ∈ {6}{0}.

If 666 ◁ y, then 666649p. If 00000 ◁ y, then 60000049p. Hence we may assume y ∈ {𝜆, 0, 00, 000, 0000, 6, 60, 600, 6000, 60000, 66, 660, 6600, 66000, 660000}, and thus p ∈ {649, 6049, 60049, 600049, 6000049, 6649, 66049, 660049, 6600049, 66000049, 66649, 666049, 6660049, 66600049, 666000049}, and of these numbers only 66000049 and 66600049 are primes.

Case 4.4: p begins with 9.

In this case we can write p = 9y4z9, where all digits of y, z are 0, 3, 6, or 9. If 0 ◁ y, then 9049p. If 3 ◁ y, then 349 ◁ p. If 6 ◁ y, then 9649p. If 9 ◁ y, then 9949p. Hence we may assume y is empty.

If 0 ◁ z, then 409 ◁ p. If 3 ◁ z, then 43 ◁ p. If 9 ◁ z, then 499 ◁ p. Hence we may assume z ∈ {6}, and thus p ∈ 94{6}9, and the smallest prime p ∈ 94{6}9 is 946669.

The reader may enjoy trying to write the proof for bases b = 2, 3, 4, 5, 6, 7, 8, 9, 12, of course, the proof for base b = 2 is trivial, since all primes p > 2 must start and end with 1 in base 2, thus we must have 11 ◁ p, however, for some bases b like 24 (the currently largest "proven" base b, including the primality proving for the primes in the set), it is almost impossible to write the proof by hand, since base b = 24 has too many (3409) minimal primes to write the proof, thus the C++ program code (for computer to compute (https://en.wikipedia.org/wiki/Computing) the proof) is made.

(in fact, the fully proof should also include the primality proving (https://en.wikipedia.org/wiki/Primality_test, https://www.rieselprime.de/ziki/Primality_test, https://mathworld.wolfram.com/PrimalityTest.html, https://primes.utm.edu/prove/prove3.html, https://primes.utm.edu/prove/prove4.html) for all primes in the set (like https://web.archive.org/web/20020809212051/http://www.users.globalnet.co.uk/~aads/C0034177.html (for the generalized repunit prime in base b = 3 with length 4177) and https://web.archive.org/web/20020701171455/http://www.users.globalnet.co.uk/~aads/C0066883.html (for the generalized repunit prime in base b = 6 with length 6883) and https://web.archive.org/web/20020809122706/http://www.users.globalnet.co.uk/~aads/C0071699.html (for the generalized repunit prime in base b = 7 with length 1699) and https://web.archive.org/web/20020809122635/http://www.users.globalnet.co.uk/~aads/C0101031.html (for the generalized repunit prime in base b = 10 with length 1031) and https://web.archive.org/web/20020809122237/http://www.users.globalnet.co.uk/~aads/C0114801.html (for the generalized repunit prime in base b = 11 with length 4801) and https://web.archive.org/web/20020809122947/http://www.users.globalnet.co.uk/~aads/C0130991.html (for the generalized repunit prime in base b = 13 with length 991) and https://web.archive.org/web/20020809124216/http://www.users.globalnet.co.uk/~aads/C0131021.html (for the generalized repunit prime in base b = 13 with length 1021) and https://web.archive.org/web/20020809125049/http://www.users.globalnet.co.uk/~aads/C0131193.html (for the generalized repunit prime in base b = 13 with length 1193) and https://web.archive.org/web/20020809124458/http://www.users.globalnet.co.uk/~aads/C0152579.html (for the generalized repunit prime in base b = 15 with length 2579) and https://web.archive.org/web/20020809124537/http://www.users.globalnet.co.uk/~aads/C0220857.html (for the generalized repunit prime in base b = 22 with length 857) and https://web.archive.org/web/20020809152611/http://www.users.globalnet.co.uk/~aads/C0315581.html (for the generalized repunit prime in base b = 31 with length 5581) and https://web.archive.org/web/20020809124929/http://www.users.globalnet.co.uk/~aads/C0351297.html (for the generalized repunit prime in base b = 35 with length 1297) and https://stdkmd.net/nrr/pock/p746.htm (for the prime 67457 in decimal) and https://stdkmd.net/nrr/pock/p875.htm (for the prime 68747 in decimal) and https://stdkmd.net/nrr/pock/p1204.htm (for the prime 612037 in decimal) and https://stdkmd.net/nrr/pock/p1364.htm (for the prime 613637 in decimal) and https://stdkmd.net/nrr/pock/p1657.htm (for the prime 916561 in decimal) and https://stdkmd.net/nrr/pock/p1756.htm (for the prime 191755 in decimal, in fact, this prime can be quickly proven prime using the N+1 primality proving (https://primes.utm.edu/prove/prove3_2.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://factordb.com/nmoverview.php?method=2)) and https://stdkmd.net/nrr/pock/p2065.htm (for the prime 720641 in decimal) and https://stdkmd.net/nrr/pock/p2080.htm (for the prime 420791 in decimal) and https://stdkmd.net/nrr/pock/p2240.htm (for the prime 622397 in decimal) and https://stdkmd.net/nrr/pock/p2566.htm (for the prime 225651 in decimal) and https://stdkmd.net/nrr/pock/p3021.htm (for the prime 193020 in decimal, in fact, this prime can be quickly proven prime using the N+1 primality proving (https://primes.utm.edu/prove/prove3_2.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://factordb.com/nmoverview.php?method=2)) and https://stdkmd.net/nrr/pock/p4417.htm (for the prime 844161 in decimal) and http://primes.utm.edu/lists/single_primes/50005cert.txt (for the prime https://primes.utm.edu/primes/page.php?id=12806) and https://web.archive.org/web/20150911225651/https://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0104&L=nmbrthry&P=R1807&D=0 (for the prime https://primes.utm.edu/primes/page.php?id=11084) and http://xenon.stanford.edu/~tjw/pp/7176_24691/index.html (for the prime https://primes.utm.edu/primes/page.php?id=123456) and https://web.archive.org/web/20170515153924/http://bitc.bme.emory.edu/~lzhou/blogs/?p=263 (for the primes corresponding to https://oeis.org/A181980) and https://web.archive.org/web/20131020160719/http://www.primes.viner-steward.org/andy/E/33281741.html (for the prime https://primes.utm.edu/primes/page.php?id=82858), or using an elliptic curve primality proving (https://primes.utm.edu/prove/prove4_2.html, https://en.wikipedia.org/wiki/Elliptic_curve_primality, https://primes.utm.edu/glossary/xpage/ECPP.html, https://mathworld.wolfram.com/EllipticCurvePrimalityProving.html, https://primes.utm.edu/top20/page.php?id=27) implementation such as PRIMO (http://www.ellipsa.eu/public/primo/primo.html, http://www.rieselprime.de/dl/Primo309.zip, https://primes.utm.edu/bios/page.php?id=46, https://www.rieselprime.de/ziki/Primo, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/primo-433-lx64, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/Primo309) to compute primality certificates (https://en.wikipedia.org/wiki/Primality_certificate, https://primes.utm.edu/glossary/xpage/Certificate.html, https://mathworld.wolfram.com/PrimalityCertificate.html, http://www.lix.polytechnique.fr/Labo/Francois.Morain/Primes/myprimes.html, https://stdkmd.net/nrr/cert/, http://factordb.com/certoverview.php)) and the compositeness proving for all proper subsequence of all primes in the set (usually by trial division (https://en.wikipedia.org/wiki/Trial_division, https://primes.utm.edu/glossary/xpage/TrialDivision.html, https://www.rieselprime.de/ziki/Trial_factoring, https://mathworld.wolfram.com/TrialDivision.html, http://www.numericana.com/answer/factoring.htm#trial) (usually to 109, this will covered by sieving (https://www.rieselprime.de/ziki/Sieving, https://www.rieselprime.de/ziki/Sieving_a_range_of_sequences, https://mathworld.wolfram.com/Sieve.html, http://www.rechenkraft.net/yoyo/y_status_sieve.php) for the numbers > 101000) or Fermat primality test (https://primes.utm.edu/prove/prove2_2.html, https://en.wikipedia.org/wiki/Fermat_primality_test, https://en.wikipedia.org/wiki/Fermat_pseudoprime, https://primes.utm.edu/glossary/xpage/PRP.html, https://www.rieselprime.de/ziki/Fermat_pseudoprimality_test, https://mathworld.wolfram.com/FermatPseudoprime.html, http://www.numericana.com/answer/pseudo.htm#pseudoprime, http://ntheory.org/data/psps.txt, https://sites.google.com/view/fermat-pseudoprime, https://sites.google.com/view/bases-fermat-pseudoprime, https://oeis.org/A001567, https://oeis.org/A005935, https://oeis.org/A052155, https://oeis.org/A083876, https://oeis.org/A181780, https://oeis.org/A063994, https://oeis.org/A194946, https://oeis.org/A195327, https://oeis.org/A002997, https://oeis.org/A191311, https://oeis.org/A090086, https://oeis.org/A007535) (usually base 2 and base 3)), but in the proof above we assume that we know whether a number is prime or not)

Determining the set of the minimal elements of a arbitrary set of strings under the subsequence ordering is in general unsolvable, and can be difficult even when this set is relatively simple (such as the base b representations of the prime numbers > b), also, determining the set of the minimal elements of a arbitrary set of strings under the subsequence ordering may be an open problem (https://en.wikipedia.org/wiki/Open_problem, https://en.wikipedia.org/wiki/List_of_unsolved_problems_in_mathematics, https://primes.utm.edu/glossary/xpage/OpenQuestion.html, https://mathworld.wolfram.com/UnsolvedProblems.html, http://www.numericana.com/answer/open.htm, https://primes.utm.edu/notes/conjectures/) or NP-complete (https://en.wikipedia.org/wiki/NP-complete, https://mathworld.wolfram.com/NP-CompleteProblem.html) or an undecidable problem (https://en.wikipedia.org/wiki/Undecidable_problem, https://mathworld.wolfram.com/Undecidable.html), or an example of Gödel's incompleteness theorems (https://en.wikipedia.org/wiki/G%C3%B6del%27s_incompleteness_theorems, https://mathworld.wolfram.com/GoedelsFirstIncompletenessTheorem.html) (like the continuum hypothesis (https://en.wikipedia.org/wiki/Continuum_hypothesis, https://mathworld.wolfram.com/ContinuumHypothesis.html) and the halting problem (https://en.wikipedia.org/wiki/Halting_problem, https://mathworld.wolfram.com/HaltingProblem.html)), or as hard as the unsolved problems in mathematics, such as the Riemann hypothesis (https://en.wikipedia.org/wiki/Riemann_hypothesis, https://primes.utm.edu/glossary/xpage/RiemannHypothesis.html, https://mathworld.wolfram.com/RiemannHypothesis.html, http://www.numericana.com/answer/open.htm#rh) and the abc conjecture (https://en.wikipedia.org/wiki/Abc_conjecture, https://mathworld.wolfram.com/abcConjecture.html, http://www.numericana.com/answer/open.htm#abc) and the Schinzel's hypothesis H (https://en.wikipedia.org/wiki/Schinzel%27s_hypothesis_H, https://mathworld.wolfram.com/SchinzelsHypothesis.html, http://www.numericana.com/answer/open.htm#h), which are the three famous hard problems in number theory (https://en.wikipedia.org/wiki/Number_theory, https://www.rieselprime.de/ziki/Number_theory, https://mathworld.wolfram.com/NumberTheory.html).

The following is a "semi-algorithm" (https://en.wikipedia.org/wiki/Semi-algorithm) that is guaranteed to produce the minimal elements of a arbitrary set of strings under the subsequence ordering, but it is not so easy to implement:

  1. M :=
  2. while (L) do
  3. choose x, a shortest string in L
  4. M := M ∪ {x}
  5. L := Lsup({x})

In practice, for arbitrary L, we cannot feasibly carry out step 5. Instead, we work with L', some regular overapproximation to L, until we can show L' = (which implies L = ). In practice, L' is usually chosen to be a finite union of sets of the form L1{L2}L3, where each of L1, L2, L3 is finite. In the case we consider in this project, we then have to determine whether such a family contains a prime > b or not.

To solve this problem (i.e. to compute (https://en.wikipedia.org/wiki/Computing) the set of the minimal elements of the base b representations of the prime numbers > b under the subsequence ordering), we need to determine whether a given family contains a prime. In practice, if family x{Y}z (where x and z are strings (may be empty) of digits in base b, Y is a set of digits in base b) could not be ruled out as only containing composites and Y contains two or more digits, then a relatively small prime > b could always be found in this family. Intuitively, this is because there are a large number of small strings in such a family, and at least one is likely to be prime (e.g. there are 2n−2 strings of length n in the family 1{3,7}9, and there are over a thousand strings of length 12 in the family 1{3,7}9, thus it is very impossible that these numbers are all composite). In the case Y contains only one digit, this family is of the form x{y}z, and there is only a single string of each length > (the length of x + the length of z), and it is not known if the following decision problem (https://en.wikipedia.org/wiki/Decision_problem, https://mathworld.wolfram.com/DecisionProblem.html) is recursively solvable:

Problem: Given strings x, z (may be empty), a digit y, and a base b, does there exist a prime number whose base-b expansion is of the form xynz for some n ≥ 0? (If we say "yes", then we should find a such prime (the smallest such prime may be very large, e.g. > 1025000, and if so, then we should use primality testing programs such as PFGW or LLR to find it, and before using these programs, we should use sieving programs such as srsieve (or sr1/2/5sieve) to remove the numbers either having small prime factors or having algebraic factors) and prove its primality (and if we want to solve the problem in this article, we should check whether this prime is the smallest such prime or not, i.e. prove all smaller numbers of the form xynz with n ≥ 0 are composite, usually by trial division or Fermat primality test), and if we say "no", then we should prove that such prime does not exist, may by covering congruence, algebraic factorization, or combine of them)

An algorithm to solve this problem, for example, would allow us to decide if there are any additional Fermat primes (https://en.wikipedia.org/wiki/Fermat_number, https://primes.utm.edu/glossary/xpage/FermatNumber.html, https://www.rieselprime.de/ziki/Fermat_number, https://mathworld.wolfram.com/FermatNumber.html, https://mathworld.wolfram.com/FermatPrime.html, http://www.prothsearch.com/fermat.html, http://www.fermatsearch.org/) (of the form 22n+1) other than the known ones (corresponding to n = 0, 1, 2, 3, 4). To see this, take b = 2, x = 1, y = 0, and z = 0161. Since if 2n+1 is prime then n must be a power of two (http://yves.gallot.pagesperso-orange.fr/primes/math.html), a prime of the form xynz in base b must be a new Fermat prime. Besides, it would allow us to decide if there are infinitely many Mersenne primes (https://en.wikipedia.org/wiki/Mersenne_prime, https://primes.utm.edu/glossary/xpage/MersenneNumber.html, https://primes.utm.edu/glossary/xpage/Mersennes.html, https://www.rieselprime.de/ziki/Mersenne_number, https://www.rieselprime.de/ziki/Mersenne_prime, https://mathworld.wolfram.com/MersenneNumber.html, https://mathworld.wolfram.com/MersennePrime.html, https://primes.utm.edu/top20/page.php?id=4, https://www.mersenne.org/, https://www.mersenne.org/primes/, https://www.mersenne.ca/, https://primes.utm.edu/mersenne/) (of the form 2p−1 with prime p). To see this, take b = 2, x = 𝜆 (the empty string (https://en.wikipedia.org/wiki/Empty_string)), y = 1, and z = 1n+1, where n is the exponent of the Mersenne prime which we want to know whether it is the largest Mersenne prime or not. Since if 2n−1 is prime then n must be a prime (https://primes.utm.edu/notes/proofs/Theorem2.html), a prime of the form xynz in base b must be a new Mersenne prime. Also, it would allow us to decide whether 78557 is the smallest Sierpinski number (i.e. odd numbers k such that k×2n+1 is composite for all n ≥ 1) (http://www.prothsearch.com/sierp.html, http://www.primegrid.com/forum_thread.php?id=1647, http://www.primegrid.com/forum_thread.php?id=972, http://www.primegrid.com/forum_thread.php?id=1750, http://www.primegrid.com/forum_thread.php?id=5758, http://www.primegrid.com/stats_sob_llr.php, http://www.primegrid.com/stats_psp_llr.php, http://www.primegrid.com/stats_esp_llr.php, https://web.archive.org/web/20160405211049/http://www.seventeenorbust.com/, https://en.wikipedia.org/wiki/Sierpi%C5%84ski_number, https://primes.utm.edu/glossary/xpage/SierpinskiNumber.html, https://www.rieselprime.de/ziki/Sierpi%C5%84ski_problem, https://www.rieselprime.de/ziki/Proth_2_Sierpinski, https://mathworld.wolfram.com/SierpinskiNumberoftheSecondKind.html, https://en.wikipedia.org/wiki/Seventeen_or_Bust, https://www.rieselprime.de/ziki/Seventeen_or_Bust, https://web.archive.org/web/20190929190947/https://primes.utm.edu/glossary/xpage/ColbertNumber.html, https://mathworld.wolfram.com/ColbertNumber.html, http://www.numericana.com/answer/primes.htm#sierpinski, http://www.bitman.name/math/article/204 (in Italian), https://oeis.org/A076336) and whether 509203 is the smallest Riesel number (i.e. odd numbers k such that k×2n−1 is composite for all n ≥ 1) (http://www.prothsearch.com/rieselprob.html, http://www.primegrid.com/forum_thread.php?id=1731, http://www.primegrid.com/stats_trp_llr.php, https://web.archive.org/web/20061021153313/http://stats.rieselsieve.com//queue.php, https://en.wikipedia.org/wiki/Riesel_number, https://primes.utm.edu/glossary/xpage/RieselNumber.html, https://www.rieselprime.de/ziki/Riesel_problem, https://www.rieselprime.de/ziki/Riesel_2_Riesel, https://mathworld.wolfram.com/RieselNumber.html, http://www.bitman.name/math/article/203 (in Italian), https://oeis.org/A076337, https://oeis.org/A101036), etc.

Also, there are some examples in decimal (i.e. base b = 10): (references: https://stdkmd.net/nrr/prime/primecount.htm, https://stdkmd.net/nrr/prime/primecount.txt, https://stdkmd.net/nrr/prime/primedifficulty.htm, https://stdkmd.net/nrr/prime/primedifficulty.txt)

x y z answer
7 1 7 Yes! But the smallest such prime is very large, it is 71109057, its algebraic form is (64×1010906+53)/9, its factordb entry is http://factordb.com/index.php?id=1000000000008860930, its primality certificate is http://factordb.com/cert.php?id=1000000000008860930 and https://stdkmd.net/nrr/cert/7/71117_10906.zip
9 4 9 No! All numbers of this form is divisible by some element of {3,7,11,13}, since its algebraic form is (85×10n+1+41)/9, it is divisible by 3 if n == 0 mod 3, divisible by 7 if n == 5 mod 6, divisible by 11 if n == 0 mod 2, divisible by 13 if n == 1 mod 6
56 1 𝜆 (the empty string (https://en.wikipedia.org/wiki/Empty_string)) Yes! But the smallest such prime is very large, it is 56118470, its algebraic form is (505×1018470−1)/9, its factordb entry is http://factordb.com/index.php?id=1100000000301454592, its primality certificate is http://factordb.com/cert.php?id=1100000000301454592 and https://stdkmd.net/nrr/cert/5/56111_18470.zip
38 1 𝜆 (the empty string (https://en.wikipedia.org/wiki/Empty_string)) No! All numbers of this form is either divisible by some element of {3,37} or has a difference-of-two-cubes factorization, since its algebraic form is (343×10n−1)/9, it is divisible by 3 if n == 1 mod 3, divisible by 37 if n == 2 mod 3, and can be factored to (343×10n−1)/9 = (7×10n/3−1) × (49×10n/3+7×10n/3+1) / 9 if n == 0 mod 3
𝜆 (the empty string (https://en.wikipedia.org/wiki/Empty_string)) 2 99 Yes! But the smallest such prime is very large, it is 21915199, its algebraic form is (2×1019153+691)/9, its factordb entry is http://factordb.com/index.php?id=1100000000301493137, its primality certificate is http://factordb.com/cert.php?id=1100000000301493137 and https://stdkmd.net/nrr/cert/2/2w99_19153.zip
𝜆 (the empty string (https://en.wikipedia.org/wiki/Empty_string)) 5 (at least one 5) 37 No! All numbers of this form is divisible by some element of {3,7,13,37}, since its algebraic form is (5×10n+2−167)/9, it is divisible by 3 if n == 1 mod 3, divisible by 7 if n == 2 mod 6, divisible by 13 if n == 5 mod 6, divisible by 37 if n == 0 mod 3
44 9 (at least two 9) 𝜆 (the empty string (https://en.wikipedia.org/wiki/Empty_string)) Yes! But the smallest such prime is very large, it is 44911959, its algebraic form is 45×1011959−1, its factordb entry is http://factordb.com/index.php?id=1100000000291927010, it can be proven prime by the N+1 primality proving (https://primes.utm.edu/prove/prove3_2.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://factordb.com/nmoverview.php?method=2)

My conjecture: If family xynz (with fixed strings x, z (may be empty), fixed digit y, and variable n) in base b (with fixed b ≥ 2) cannot be proven to only contain composites or only contain finitely many primes (by covering congruence, algebraic factorization, or combine of them), then family xynz in base b contains infinitely many primes (this is equivalent to: If form (a×bn+c)/gcd(a+c,b−1) (with fixed integers a ≥ 1, b ≥ 2, c ≠ 0 (with gcd(a,c) = 1 and gcd(b,c) = 1), and variable n) cannot be proven to only contain composites or only contain finitely many primes (by covering congruence, algebraic factorization, or combine of them), then form (a×bn+c)/gcd(a+c,b−1) contains infinitely many primes)

(this conjecture (https://en.wikipedia.org/wiki/Conjecture, https://primes.utm.edu/glossary/xpage/Conjecture.html, https://mathworld.wolfram.com/Conjecture.html) is very important for the problem in this article, since if this conjecture is in fact false, then there will may be some unsolved families which in fact contain no primes, thus the problem in this article in corresponding bases b will may be unsolvable (at least in current technology, unless someone find a new theorem (i.e. other than covering congruence, algebraic factorization, or combine of them) to prove that some families contain no primes, but I do not think that this is possible), however, this conjecture is currently to far to prove, much far than the Bunyakovsky conjecture (https://en.wikipedia.org/wiki/Bunyakovsky_conjecture, https://mathworld.wolfram.com/BouniakowskyConjecture.html) and even the Schinzel's hypothesis H (https://en.wikipedia.org/wiki/Schinzel%27s_hypothesis_H, https://mathworld.wolfram.com/SchinzelsHypothesis.html, http://www.numericana.com/answer/open.htm#h), besides, this conjecture is reasonable, since there is a heuristic argument (https://en.wikipedia.org/wiki/Heuristic_argument, https://primes.utm.edu/glossary/xpage/Heuristic.html, https://mathworld.wolfram.com/Heuristic.html, http://www.utm.edu/~caldwell/preprints/Heuristics.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_112.pdf)) that all families which cannot be ruled out as only containing composites or only containing finitely many primes (by covering congruence, algebraic factorization, or combine of them) contain infinitely many primes (references: https://primes.utm.edu/mersenne/heuristic.html, https://primes.utm.edu/notes/faq/NextMersenne.html, https://web.archive.org/web/20100628035147/http://www.math.niu.edu/~rusin/known-math/98/exp_primes, https://mersenneforum.org/showpost.php?p=564786&postcount=3, https://mersenneforum.org/showpost.php?p=461665&postcount=7), since by the prime number theorem (https://en.wikipedia.org/wiki/Prime_number_theorem, https://primes.utm.edu/glossary/xpage/PrimeNumberThm.html, https://mathworld.wolfram.com/PrimeNumberTheorem.html, https://primes.utm.edu/howmany.html, http://www.numericana.com/answer/primes.htm#pnt, https://oeis.org/wiki/User:Charles_R_Greathouse_IV/Tables_of_special_primes) the chance (https://en.wikipedia.org/wiki/Probability, https://mathworld.wolfram.com/Probability.html) that a random (https://en.wikipedia.org/wiki/Random_number, https://mathworld.wolfram.com/RandomNumber.html) n-digit base b number is prime is approximately (https://en.wikipedia.org/wiki/Asymptotic_analysis, https://primes.utm.edu/glossary/xpage/AsymptoticallyEqual.html, https://mathworld.wolfram.com/Asymptotic.html) 1/n (more accurately, the chance is approximately 1/(n×ln(b)), where ln is the natural logarithm (https://en.wikipedia.org/wiki/Natural_logarithm, https://primes.utm.edu/glossary/xpage/Log.html, https://mathworld.wolfram.com/NaturalLogarithm.html), i.e. the logarithm with base e = 2.718281828459... (https://en.wikipedia.org/wiki/E_(mathematical_constant), https://mathworld.wolfram.com/e.html)). If one conjectures the numbers xynz behave similarly you would expect 1/1 + 1/2 + 1/3 + 1/4 + ... = ∞ (https://en.wikipedia.org/wiki/Harmonic_series_(mathematics), https://mathworld.wolfram.com/HarmonicSeries.html) primes of the form xynz)

(this conjecture is for exponential sequences (https://en.wikipedia.org/wiki/Exponential_growth, https://mathworld.wolfram.com/ExponentialGrowth.html) (a×bn+c)/gcd(a+c,b−1) (with fixed integers a ≥ 1, b ≥ 2, c ≠ 0, gcd(a, c) = 1, gcd(b, c) = 1, and variable n), there is also a similar conjecture for polynomial sequences (https://en.wikipedia.org/wiki/Polynomial, https://mathworld.wolfram.com/Polynomial.html) a0+a1x+a2x2+a3x3+...+an−1xn−1+anxn (with fixed n, a0, a1, a2, ..., an and variable x): the Bunyakovsky conjecture (https://en.wikipedia.org/wiki/Bunyakovsky_conjecture, https://mathworld.wolfram.com/BouniakowskyConjecture.html), the condition is similar to this conjecture (divisible by small primes and algebraic factorizations), the main difference is that polynomial sequence cannot have a covering congruence with > 1 primes, nor have a combine of covering congruence and algebraic factorization)

This conjecture will imply:

We call families of the form x{y}z (where x and z are strings (may be empty) of digits in base b, y is a digit in base b) "linear" families. Our algorithm then proceeds as follows:

  1. M := {minimal primes in base b of length 2 or 3}, L := union of all x{Y}z such that x ≠ 0 and gcd(z, b) = 1 and Y is the set of digits y such that xyz has no subsequence in M
  2. While L contains non-simple families: Explore each family of L, and update L. Examine each family of L by: 2.1. Let w be the shortest string in the family. If w has a subsequence in M, then remove the family from L. If w represents a prime, then add w to M and remove the family from L. 2.2. If possible, simplify the family. 2.3. Using the techniques below (covering congruence, algebraic factorization, or combine of them), check if the family can be proven to only contain composites, and if so then remove the family from L.
  3. Update L, after each split examine the new families as in step 2.

The process of exploring/examining/splitting a family can be concisely expressed in a tree of decompositions.

Some x{y}z (where x and z are strings (may be empty) of digits in base b, y is a digit in base b) families can be proven to contain no primes > b, by covering congruence (http://irvinemclean.com/maths/siercvr.htm, http://web.archive.org/web/20060925100410/http://www.glasgowg43.freeserve.co.uk/siernums.htm, https://web.archive.org/web/20061116164533/http://www.glasgowg43.freeserve.co.uk/brier2.htm, https://sites.google.com/site/robertgerbicz/coveringsets, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/coveringsets, http://www.numericana.com/answer/primes.htm#sierpinski, http://www.iakovlev.org/zip/riesel2.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_8.pdf), https://www.ams.org/journals/mcom/1975-29-129/S0025-5718-1975-0376583-0/S0025-5718-1975-0376583-0.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_27.pdf), https://www.ams.org/journals/mcom/1983-40-161/S0025-5718-1983-0679453-8/S0025-5718-1983-0679453-8.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_40.pdf), http://yves.gallot.pagesperso-orange.fr/papers/smallbrier.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_48.pdf), https://cs.uwaterloo.ca/journals/JIS/VOL16/Ismailescu/ismailescu3.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_51.pdf), https://arxiv.org/pdf/2209.10646.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_52.pdf), https://cs.uwaterloo.ca/journals/JIS/VOL18/Baczkowski/bacz2.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_61.pdf), https://arxiv.org/pdf/1110.4671.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_62.pdf), https://cs.uwaterloo.ca/journals/JIS/VOL14/Jones/jones12.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_80.pdf), https://web.archive.org/web/20081119135435/http://math.crg4.com/a094076.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_102.pdf), http://www.renyi.hu/~p_erdos/1950-07.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_103.pdf), http://www.kurims.kyoto-u.ac.jp/EMIS/journals/INTEGERS/papers/i61/i61.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_1.pdf), https://scholar.rose-hulman.edu/cgi/viewcontent.cgi?article=1165&context=rhumj (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_2.pdf), https://www.primepuzzles.net/puzzles/puzz_614.htm, http://www.primepuzzles.net/problems/prob_029.htm, http://www.primepuzzles.net/problems/prob_030.htm, http://www.primepuzzles.net/problems/prob_036.htm, http://www.primepuzzles.net/problems/prob_049.htm, https://www.rieselprime.de/Related/LiskovetsGallot.htm, https://www.rieselprime.de/Related/RieselTwinSG.htm, https://stdkmd.net/nrr/coveringset.htm, https://stdkmd.net/nrr/9/91113.htm#prime_period, https://stdkmd.net/nrr/9/94449.htm#prime_period, https://stdkmd.net/nrr/9/95559.htm#prime_period, https://web.archive.org/web/20070220134129/http://www.users.globalnet.co.uk/~perry/maths/wildeprimes/wildeprimes.htm, https://www.rose-hulman.edu/~rickert/Compositeseq/, https://oeis.org/A244561, https://oeis.org/A244562, https://oeis.org/A244563, https://oeis.org/A244564, https://oeis.org/A244070, https://oeis.org/A244071, https://oeis.org/A244072, https://oeis.org/A244073, https://en.wikipedia.org/wiki/Covering_set, https://www.rieselprime.de/ziki/Covering_set, https://mathworld.wolfram.com/SierpinskisCompositeNumberTheorem.html) (i.e. finding a finite set (https://en.wikipedia.org/wiki/Finite_set, https://mathworld.wolfram.com/FiniteSet.html) S of primes p such that all numbers in a given family are divisible (https://en.wikipedia.org/wiki/Divides, https://primes.utm.edu/glossary/xpage/Divides.html, https://primes.utm.edu/glossary/xpage/Divisor.html, https://www.rieselprime.de/ziki/Factor, https://mathworld.wolfram.com/Divides.html, https://mathworld.wolfram.com/Divisor.html, https://mathworld.wolfram.com/Divisible.html, http://www.numericana.com/answer/primes.htm#divisor) by some element of S (this is equivalent to finding a positive integer N such that all numbers in a given family are not coprime (https://en.wikipedia.org/wiki/Coprime_integers, https://primes.utm.edu/glossary/xpage/RelativelyPrime.html, https://www.rieselprime.de/ziki/Coprime, https://mathworld.wolfram.com/RelativelyPrime.html, http://www.numericana.com/answer/primes.htm#coprime) to N, e.g. all numbers in the family 2{5} in base 11 are not coprime to 6, gcd((5×11n−1)/2, 6) can only be 2 or 3, and cannot be 1), by modular arithmetic (https://en.wikipedia.org/wiki/Modular_arithmetic, https://en.wikipedia.org/wiki/Congruence_relation, https://en.wikipedia.org/wiki/Modulo, https://primes.utm.edu/glossary/xpage/Congruence.html, https://primes.utm.edu/glossary/xpage/CongruenceClass.html, https://primes.utm.edu/glossary/xpage/Residue.html, https://mathworld.wolfram.com/Congruence.html, https://mathworld.wolfram.com/Congruent.html, https://mathworld.wolfram.com/Residue.html, https://mathworld.wolfram.com/MinimalResidue.html, https://mathworld.wolfram.com/Mod.html)), algebraic factorization (https://en.wikipedia.org/w/index.php?title=Factorization&oldid=1044289340#Factoring_other_polynomials, https://mathworld.wolfram.com/PolynomialFactorization.html, http://www.numericana.com/answer/factoring.htm#special, https://stdkmd.net/nrr/repunit/repunitnote.htm, https://stdkmd.net/nrr/1/10004.htm#about_algebraic, https://stdkmd.net/nrr/1/10008.htm#about_algebraic, https://stdkmd.net/nrr/1/13333.htm#about_algebraic, https://stdkmd.net/nrr/4/40001.htm#about_algebraic, https://stdkmd.net/nrr/5/53333.htm#about_algebraic, https://stdkmd.net/nrr/5/54444.htm#about_algebraic, https://stdkmd.net/nrr/5/55552.htm#about_algebraic, https://stdkmd.net/nrr/7/79999.htm#about_algebraic, https://stdkmd.net/nrr/8/83333.htm#about_algebraic, https://stdkmd.net/nrr/8/88889.htm#about_algebraic, https://stdkmd.net/nrr/8/89999.htm#about_algebraic, https://stdkmd.net/nrr/9/99991.htm#about_algebraic, https://stdkmd.net/nrr/9/99992.htm#about_algebraic, https://brnikat.com/nums/cullen_woodall/algebraic.txt, https://www.numberempire.com/factoringcalculator.php (e.g. for the family 3{8} in base 9, type "4*9^n-1", and it will tell you that this form can be factored to (2×3n−1) × (2×3n+1)), https://www.emathhelp.net/calculators/algebra-2/factoring-calculator/) (which includes difference-of-two-squares factorization (https://en.wikipedia.org/wiki/Difference_of_two_squares) and sum/difference-of-two-nth-powers factorization with odd n > 1 (https://en.wikipedia.org/wiki/Binomial_number, https://mathworld.wolfram.com/BinomialNumber.html) and Aurifeuillean factorization (https://en.wikipedia.org/wiki/Aurifeuillean_factorization, https://www.rieselprime.de/ziki/Aurifeuillian_factor, https://mathworld.wolfram.com/AurifeuilleanFactorization.html, http://www.numericana.com/answer/numbers.htm#aurifeuille, http://pagesperso-orange.fr/colin.barker/lpa/cycl_fac.htm, http://list.seqfan.eu/oldermail/seqfan/2017-March/017363.html, http://myfactorcollection.mooo.com:8090/source/cyclo.cpp, http://myfactorcollection.mooo.com:8090/LCD_2_199, http://myfactorcollection.mooo.com:8090/LCD_2_998, https://stdkmd.net/nrr/repunit/repunitnote.htm#aurifeuillean, https://www.unshlump.com/hcn/aurif.html) of x4+4×y4 or x6+27×y6), or combine of them (https://mersenneforum.org/showthread.php?t=11143, https://mersenneforum.org/showthread.php?t=10279, https://www.fq.math.ca/Scanned/33-3/izotov.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_46.pdf), https://doi.org/10.1016/j.jnt.2008.02.004 (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_47.pdf)), e.g. (only list the families which all numbers do not contain "prime > b" subsequence) (see post https://mersenneforum.org/showpost.php?p=594923&postcount=231 for the factor pattern for some of these families) (for the case of covering congruence, we can show that the corresponding numbers are > all elements in the sets if the corresponding numbers are > b, thus these factorizations are nontrivial; and for the case of algebraic factorization, we can show that both factors are > 1 if the corresponding numbers are > b, thus these factorizations are nontrivial; for the case of combine of them, we can show that for the part of covering congruence, the corresponding numbers are > all elements in the sets if the corresponding numbers are > b, and for the part of algebraic factorization, both factors are > 1 if the corresponding numbers are > b, thus these factorizations are nontrivial)

The multiplicative order (https://en.wikipedia.org/wiki/Multiplicative_order, https://primes.utm.edu/glossary/xpage/Order.html, https://mathworld.wolfram.com/MultiplicativeOrder.html, https://oeis.org/A250211, https://oeis.org/A139366, https://oeis.org/A086145) is very important in this problem, since if a prime p divides the number with n digits in family x{y}z in base b, then p also divides the number with k×ordp(b)+n digits in family x{y}z in base b for all nonnegative integer k (unless ordp(b) = 1, i.e. p divides b−1, in this case p also divides the number with k×p+n digits in family x{y}z in base b for all nonnegative integer k), the period of "divisible by p" for a prime p in family x{y}z in base b (if only some and not all numbers in family x{y}z in base b are divisible by p, of course, if all numbers in family x{y}z in base b are divisible by p, then the period of "divisible by p" for a prime p in family x{y}z in base b is 1) is ordp(b) (ordp(b) must divide p−1, if and only if ordp(b) is exactly p−1, then b is a primitive root (https://en.wikipedia.org/wiki/Primitive_root_modulo_n, https://mathworld.wolfram.com/PrimitiveRoot.html, https://oeis.org/A060749, https://oeis.org/A001918, https://oeis.org/A071894, https://oeis.org/A008330, https://oeis.org/A046147, https://oeis.org/A046145, https://oeis.org/A046146, https://oeis.org/A046144, https://oeis.org/A033948, https://oeis.org/A033949, http://www.bluetulip.org/2014/programs/primitive.html, http://www.numbertheory.org/php/lprimroot.html) mod p, and this is studying in Artin's conjecture on primitive roots (https://en.wikipedia.org/wiki/Artin%27s_conjecture_on_primitive_roots, https://mathworld.wolfram.com/ArtinsConjecture.html, http://www.numericana.com/answer/constants.htm#artin), which is an unsolved problem in mathematics) unless p divides b−1, in this case the period of "divisible by p" for such prime p in family x{y}z in base b is simply p, the primes p such that ordp(b) = n are exactly the prime factors of the Zsigmondy number (https://en.wikipedia.org/wiki/Zsigmondy%27s_theorem, https://mathworld.wolfram.com/ZsigmondyTheorem.html) Zs(n, b, 1), Zs(n, b, 1) = Φn(b)/gcd(Φn(b), n) (where Φ is the cyclotomic polynomial (https://en.wikipedia.org/wiki/Cyclotomic_polynomial, https://mathworld.wolfram.com/CyclotomicPolynomial.html, http://www.numericana.com/answer/polynomial.htm#cyclotomic, https://stdkmd.net/nrr/repunit/repunitnote.htm#cyclotomic) if n ≠ 2, Zs(n, 2, 1) = odd part (http://mathworld.wolfram.com/OddPart.html, https://oeis.org/A000265) of n+1, the prime factors of Zs(n, b, 1) for odd n are exactly the primitive prime factors of bn−1, the prime factors of Zs(n, b, 1) for even n are exactly the primitive prime factors of bn/2+1, references: https://en.wikipedia.org/w/index.php?title=Wikipedia:Sandbox&oldid=1039706119 (list of the ordp(b) for 2 ≤ b ≤ 128 and primes p ≤ 4096), https://en.wikipedia.org/w/index.php?title=Wikipedia:Sandbox&oldid=1040004339 (list of primes p such that ordp(b) = n for 2 ≤ b ≤ 64 and 1 ≤ n ≤ 64), also factorization of bn±1: https://homes.cerias.purdue.edu/~ssw/cun/index.html (2 ≤ b ≤ 12), https://homes.cerias.purdue.edu/~ssw/cun/pmain22.txt (2 ≤ b ≤ 12), https://doi.org/10.1090/conm/022 (2 ≤ b ≤ 12), https://www.mersenneforum.org/attachment.php?attachmentid=7727&d=1330555980 (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_7.pdf) (2 ≤ b ≤ 12), https://web.archive.org/web/20190315214330/http://cage.ugent.be/~jdemeyer/cunningham/ (2 ≤ b ≤ 12), https://maths-people.anu.edu.au/~brent/factors.html (13 ≤ b ≤ 99), https://stdkmd.net/nrr/repunit/ (b = 10), https://stdkmd.net/nrr/repunit/10001.htm (b = 10), https://stdkmd.net/nrr/repunit/phin10.htm (b = 10, only primitive factors), https://stdkmd.net/nrr/repunit/Phin10.txt (b = 10, only primitive factors), https://stdkmd.net/nrr/repunit/Phin10.txt.lz (b = 10, only primitive factors), https://stdkmd.net/nrr/repunit/Phin10.txt.gz (b = 10, only primitive factors), https://kurtbeschorner.de/ (b = 10), https://kurtbeschorner.de/fact-2500.htm (b = 10), https://repunit-koide.jimdofree.com/ (b = 10), https://repunit-koide.jimdofree.com/app/download/10034950550/Repunit100-20221222.pdf?t=1671715731 (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_26.pdf) (b = 10), https://gmplib.org/~tege/repunit.html (b = 10), https://gmplib.org/~tege/fac10m.txt (b = 10), https://gmplib.org/~tege/fac10p.txt (b = 10), https://web.archive.org/web/20120426061657/http://oddperfect.org/ (prime b), http://myfactors.mooo.com/ (any b), http://myfactorcollection.mooo.com:8090/dbio.html (any b), http://www.asahi-net.or.jp/~KC2H-MSM/cn/old/index.htm (any b, only primitive factors), http://www.asahi-net.or.jp/~KC2H-MSM/cn/index.htm (any b, only primitive factors), https://web.archive.org/web/20050922233702/http://user.ecc.u-tokyo.ac.jp/~g440622/cn/index.html (any b, only primitive factors), also for the factors of bn±1 with 2 ≤ b ≤ 100 and 1 ≤ n ≤ 100 see http://myfactorcollection.mooo.com:8090/cgi-bin/showFullRep?FBase=2&TBase=100&FExp=1&TExp=100&c0=&EN=&LM= (all factors) and http://myfactorcollection.mooo.com:8090/cgi-bin/showPrimFactors?FBase=2&TBase=100&FExp=1&TExp=100&c0=&LM= (only primitive factors); also, the period of "difference-of-two-squares factorization" in any base b is 2 if b is not square, 1 if b is square; the period of "sum/difference-of-two-pth-powers factorization with odd prime p" is p if b is not p-th power, 1 if b is p-th power; the period of "Aurifeuillean factorization of x4+4×y4" is 4 if b is not square, 2 if b is square but not 4-th power, 1 if b is 4-th power, (for more information, see https://stdkmd.net/nrr/1/10003.htm#prime_period, https://stdkmd.net/nrr/3/30001.htm#prime_period, https://stdkmd.net/nrr/1/13333.htm#prime_period, https://stdkmd.net/nrr/3/33331.htm#prime_period, https://stdkmd.net/nrr/1/11113.htm#prime_period, https://stdkmd.net/nrr/3/31111.htm#prime_period, https://oeis.org/A014664, https://oeis.org/A062117, https://oeis.org/A002371, http://www.noprimeleftbehind.net/crus/Sierp-conjectures.htm, http://www.noprimeleftbehind.net/crus/Riesel-conjectures.htm, http://www.noprimeleftbehind.net/crus/Sierp-conjectures-powers2.htm, http://www.noprimeleftbehind.net/crus/Riesel-conjectures-powers2.htm) the family x{y}z in base b can be proven to contain no primes > b (or only contain finitely many primes > b) if and only if these residue classes with these periods gives a complete residue system (https://en.wikipedia.org/wiki/Covering_system, https://mathworld.wolfram.com/CompleteResidueSystem.html).

We can show that: For the case of covering congruence, the numbers in the family are not equal to any element in S, if n makes the numbers > b, thus these factorizations are nontrivial; for the case of algebraic factorization (if the numbers are factored as F × G / d), both F and G are > d, if n makes the numbers > b, thus these factorizations are nontrivial (the exceptions are the base 9 family {1} and the base 25 family {1} and the base 32 family {1}. For the base 9 family {1}, the algebraic form is (9n−1)/8 with n ≥ 2, and can be factored to (3n−1) × (3n+1) / 8, if n ≥ 3, then both 3n−1 and 3n+1 are > 8, thus these factorizations are nontrivial, it only remains to check the case n = 2, but the number with n = 2 is 10 = 2 × 5 is not prime; for the base 25 family {1}, the algebraic form is (25n−1)/24 with n ≥ 2, and can be factored to (5n−1) × (5n+1) / 24, if n ≥ 3, then both 5n−1 and 5n+1 are > 24, thus these factorizations are nontrivial, it only remains to check the case n = 2, but the number with n = 2 is 26 = 2 × 13 is not prime; for the base 32 family {1}, the algebraic form is (32n−1)/31 with n ≥ 2, and can be factored to (2n−1) × (16n+8n+4n+2n+1) / 31, if n ≥ 6, then both 2n−1 and 16n+8n+4n+2n+1 are > 31, thus these factorizations are nontrivial, it only remains to check the cases n = 2, 3, 4, 5, but the numbers with n = 2, 3, 4, 5 are 33 = 3 × 11, 1057 = 7 × 151, 33825 = 3 × 52 × 11 × 41, 1082401 = 601 × 1801 are not primes); for the case of combine of covering congruence and algebraic factorization (if the numbers are factored as F × G / d), the numbers in the family are not equal to any element in S and both F and G are > d, if n makes the numbers > b, thus these factorizations are nontrivial.

type for proving the possible bases b such bases 2 ≤ b ≤ 36
covering congruence with 1 prime any base b
(however, all such families in base b = 2 end with 0 and thus have trailing zeros (https://en.wikipedia.org/wiki/Trailing_zero) and thus not counted)
(2), 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36
covering congruence with 2 primes b such that b+1 is not a prime power (https://en.wikipedia.org/wiki/Prime_power, https://mathworld.wolfram.com/PrimePower.html)
(however, the case b = 5 has only four such families: {1}3, {1}4, 3{1}, 4{1}, all of them are covered by the prime 111 (31 in decimal), thus the smallest base b with families which have covering congruence with 2 primes is b = 9)
(5), 9, 11, 13, 14, 17, 19, 20, 21, 23, 25, 27, 29, 32, 33, 34, 35
covering congruence with 3 primes and period 3 b such that omega(b2+b+1) ≥ 3 (where omega is the omega function (https://en.wikipedia.org/wiki/Prime_omega_function, https://oeis.org/A001221), the number of distinct primes dividing n) 16, 25
covering congruence with 3 primes and period 4 b such that b+1 is not a power of 2 (https://en.wikipedia.org/wiki/Power_of_two) and b2+1 is not a prime power (https://en.wikipedia.org/wiki/Prime_power, https://mathworld.wolfram.com/PrimePower.html)
(however, bases b = 5, 8, 9, 11, 12, 18 has no such families, base 8 family 6{4}7 is covered by the prime 42207)
(5), (8), (9), (11), (12), 13, 17, (18), 19, 21, 22, 23, 25, 27, 28, 29, 30, 32, 33, 34, 35
algebraic factorization with difference of two squares b such that b is square (https://en.wikipedia.org/wiki/Square_number, https://www.rieselprime.de/ziki/Square_number, https://mathworld.wolfram.com/SquareNumber.html)
(however, base b = 4 has no such families, the family {1} has the prime 11 (5 in decimal))
(4), 9, 16, 25, 36
algebraic factorization with difference of two cubes b such that b is cube (https://en.wikipedia.org/wiki/Cube_(algebra), https://mathworld.wolfram.com/CubicNumber.html) 8, 27
algebraic factorization with difference of two 5-th powers b such that b is 5-th power (https://en.wikipedia.org/wiki/Fifth_power_(algebra)) 32
algebraic factorization with x4+4y4 b such that b is 4-th power (https://en.wikipedia.org/wiki/Fourth_power, https://mathworld.wolfram.com/BiquadraticNumber.html) 16
combine of covering congruence with 1 prime and algebraic factorization with difference of two squares b such that b is not square (https://en.wikipedia.org/wiki/Square_number, https://www.rieselprime.de/ziki/Square_number, https://mathworld.wolfram.com/SquareNumber.html) and b+1 has a prime factor p == 1 mod 4 12, 14, 19, 24, 28, 29, 33, 34

(You can see the factorization (https://en.wikipedia.org/wiki/Integer_factorization, https://www.rieselprime.de/ziki/Factorization, https://mathworld.wolfram.com/PrimeFactorization.html, https://mathworld.wolfram.com/PrimeFactorizationAlgorithms.html, http://www.numericana.com/answer/factoring.htm) of the numbers in these families in factordb (http://factordb.com/, https://www.rieselprime.de/ziki/Factoring_Database), you have to convert them to algebraic ((a×bn+c)/gcd(a+c,b−1)) form, and you will find that all numbers in these families have status (http://factordb.com/status.html, http://factordb.com/distribution.php) either "FF" or "CF", and no numbers in these families have status (http://factordb.com/status.html, http://factordb.com/distribution.php) "C" (i.e. in http://factordb.com/listtype.php?t=3) (of course, also no numbers in these families have status (http://factordb.com/status.html, http://factordb.com/distribution.php) "U", "P", "PRP" (i.e. in http://factordb.com/listtype.php?t=2, http://factordb.com/listtype.php?t=4, http://factordb.com/listtype.php?t=1), since all numbers in these families are known to be composite), e.g. for the family 3{0}95 in base 13, its algebraic ((a×bn+c)/gcd(a+c,b−1)) form is 3×13n+2+122, and in factordb you will find that all numbers in this family are divisible by some element of {5,7,17}, see http://factordb.com/index.php?query=3*13%5E%28n%2B2%29%2B122&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show; for the family {7}D in base 21, its algebraic ((a×bn+c)/gcd(a+c,b−1)) form is (7×21n+1+113)/20, and in factordb you will find that all numbers in this family are divisible by some element of {2,13,17}, see http://factordb.com/index.php?query=%287*21%5E%28n%2B1%29%2B113%29%2F20&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show (note: for this family n = 0 is not allowed, since we only consider the numbers > base); for the family 30{F}A0F in base 16, its algebraic ((a×bn+c)/gcd(a+c,b−1)) form is 49×16n+3−1521, and in factordb you will find that no numbers in this family have a prime factor with decimal length > ((the decimal length of the number + 1)/2), and all numbers in this family have two nearly equal (prime or composite) factors, see http://factordb.com/index.php?query=49*16%5E%28n%2B3%29-1521&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show; for the family 5{1} in base 25, its algebraic ((a×bn+c)/gcd(a+c,b−1)) form is (121×25n−1)/24, and in factordb you will find that no numbers in this family have a prime factor with decimal length > ((the decimal length of the number + 1)/2), and all numbers in this family have two nearly equal (prime or composite) factors, see http://factordb.com/index.php?query=%28121*25%5En-1%29%2F24&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show (note: for this family n = 0 is not allowed, since we only consider the numbers > base); for the family {D}5 in base 14, its algebraic ((a×bn+c)/gcd(a+c,b−1)) form is 14n+1−9, and in factordb you will find that all numbers with even n in this family are divisible by 5, and you will find that no numbers with odd n in this family have a prime factor with decimal length > ((the decimal length of the number + 1)/2), and all numbers with odd n in this family have two nearly equal (prime or composite) factors, see http://factordb.com/index.php?query=14%5E%28n%2B1%29-9&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show (note: for this family n = 0 is not allowed, since we only consider the numbers > base); for the family 7{9} in base 17, its algebraic ((a×bn+c)/gcd(a+c,b−1)) form is (121×17n−9)/16, and in factordb you will find that all numbers with odd n in this family are divisible by 2, and you will find that no numbers with even n in this family have a prime factor with decimal length > ((the decimal length of the number + 1)/2), and all numbers with even n in this family have two nearly equal (prime or composite) factors, see http://factordb.com/index.php?query=%28121*17%5En-9%29%2F16&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show (note: for this family n = 0 is not allowed, since we only consider the numbers > base). In contrast, you can see the factorization of the numbers in unsolved families in base b (which are listed in the "left b" file) in factordb, you will find some numbers in these families which have neither small prime factors (say < 1016) nor two nearly equal (prime or composite) factors, also you will find some numbers in these families which have no known proper factor (https://en.wikipedia.org/wiki/Proper_factor, https://mathworld.wolfram.com/ProperFactor.html, https://mathworld.wolfram.com/ProperDivisor.html) > 1 (i.e. you will find some numbers in these families with status (http://factordb.com/status.html, http://factordb.com/distribution.php) "C" (instead of "CF" or "FF") (i.e. in http://factordb.com/listtype.php?t=3) (and maybe some large numbers in these families with status (http://factordb.com/status.html, http://factordb.com/distribution.php) "U", i.e. in http://factordb.com/listtype.php?t=2) in factordb (http://factordb.com/)), and they have positive Nash weight (https://www.rieselprime.de/ziki/Nash_weight, http://irvinemclean.com/maths/nash.htm, http://www.brennen.net/primes/ProthWeight.html, https://www.mersenneforum.org/showthread.php?t=11844, https://www.mersenneforum.org/showthread.php?t=2645, https://www.mersenneforum.org/showthread.php?t=7213, https://www.mersenneforum.org/showthread.php?t=18818, https://www.mersenneforum.org/showpost.php?p=421186&postcount=19, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/allnash, https://www.rieselprime.de/ziki/Riesel_2_Low-weight, https://www.rieselprime.de/ziki/Proth_2_Low-weight, https://www.rieselprime.de/ziki/Category:Riesel_2_Low-weight, https://www.rieselprime.de/ziki/Category:Proth_2_Low-weight, https://www.rieselprime.de/ziki/Category:Riesel_5_Low-weight, https://www.rieselprime.de/ziki/Category:Proth_5_Low-weight, http://www.noprimeleftbehind.net/crus/vstats_new/riesel_weights.txt, http://www.noprimeleftbehind.net/crus/vstats_new/sierpinski_weights.txt) (or difficulty (https://stdkmd.net/nrr/prime/primedifficulty.htm, https://stdkmd.net/nrr/prime/primedifficulty.txt, http://www.noprimeleftbehind.net/crus/vstats_new/crus-unproven.htm, http://www.noprimeleftbehind.net/crus/vstats_new/riesel_difficulty.txt, http://www.noprimeleftbehind.net/crus/vstats_new/sierpinski_difficulty.txt)), and they have prime candidates, we can use the sense of http://www.iakovlev.org/zip/riesel2.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_8.pdf), https://stdkmd.net/nrr/1/10003.htm#prime_period, https://stdkmd.net/nrr/3/30001.htm#prime_period, https://stdkmd.net/nrr/1/13333.htm#prime_period, https://stdkmd.net/nrr/3/33331.htm#prime_period, https://stdkmd.net/nrr/1/11113.htm#prime_period, https://stdkmd.net/nrr/3/31111.htm#prime_period, https://mersenneforum.org/showpost.php?p=138737&postcount=24, https://mersenneforum.org/showpost.php?p=153508&postcount=147, to show this)

(for the examples of non-simple families, see https://stdkmd.net/nrr/prime/primecount3.htm and https://stdkmd.net/nrr/prime/primecount3.txt (only base 10 families), non-simple families usually have small primes if they cannot be ruled out as only containing composites by covering congruence, see the section above)

(for the factorization of the numbers in these families, the special number field sieve (https://en.wikipedia.org/wiki/Special_number_field_sieve, https://www.rieselprime.de/ziki/Special_number_field_sieve, https://mathworld.wolfram.com/NumberFieldSieve.html, https://stdkmd.net/nrr/records.htm#BIGSNFS, https://stdkmd.net/nrr/wanted.htm#smallpolynomial) or the general number field sieve (https://en.wikipedia.org/wiki/General_number_field_sieve, https://www.rieselprime.de/ziki/General_number_field_sieve, https://mathworld.wolfram.com/NumberFieldSieve.html, https://stdkmd.net/nrr/records.htm#BIGGNFS, https://stdkmd.net/nrr/wanted.htm#suitableforgnfs) may be used, they have SNFS polynomials (https://www.rieselprime.de/ziki/SNFS_polynomial_selection), just like factorization of the numbers in https://stdkmd.net/nrr/aaaab.htm and https://stdkmd.net/nrr/abbbb.htm and https://stdkmd.net/nrr/aaaba.htm and https://stdkmd.net/nrr/abaaa.htm and https://stdkmd.net/nrr/abbba.htm and https://stdkmd.net/nrr/abbbc.htm and http://mklasson.com/factors/index.php and https://cs.stanford.edu/people/rpropper/math/factors/3n-2.txt, see https://stdkmd.net/nrr/records.htm and https://stdkmd.net/nrr/wanted.htm)

(only list the families which can be proven to be not covered by any prime > b (this would include all such families of the form x{0}y and all such families of the form x{y} (unless y = 1) and all such families of the form {x}y (unless x = 1)), the only exceptions are the base 21 family B0{H}6H (which is covered by the smallest prime in the family B{H}6H in base 21 (if such prime exists)) and the base 8 family 6{4}7 (which is covered by the prime 42207 in base 8))

(this table is sorted by: single trivial prime factor (2{0}1 in base b = 10 through D{6}R in base b = 28) → covering congruence with 2 primes ({1}5 in base b = 9 through {X}5 in base b = 34) → covering congruence with ≥ 3 primes (6{4}7 in base b = 8 through {G}L in base b = 32) → algebraic factorization ({1} in base b = 9 through 9{S}IJ in base b = 36) → combine of covering congruence and algebraic factorization (8{D} in base b = 14 through {X}P in base b = 34))

b family algebraic ((a×bn+c)/d) form of this family (n is the number of digits in the "{}", also the lower bound of n to make the numbers > b)
(note: d divides gcd(a+c,b−1), but d need not be gcd(a+c,b−1), d = gcd(a+c,b−1) if and only if the numbers in the family are not divisible by some prime factor of b−1, i.e. the numbers in the family are coprime to b−1)
why this family contain no primes > b factorization of the numbers in this family (n is the number of digits in the "{}", start with the smallest n making the number > b (if n = 0 already makes the number > b, then start with n = 0))
10 2{0}1 2×10n+1+1 (n ≥ 0) always divisible by 3 http://factordb.com/index.php?query=2*10%5E%28n%2B1%29%2B1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
10 2{0}7 2×10n+1+7 (n ≥ 0) always divisible by 3
(in fact, always divisible by 9)
http://factordb.com/index.php?query=2*10%5E%28n%2B1%29%2B7&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
10 5{0}1 5×10n+1+1 (n ≥ 0) always divisible by 3 http://factordb.com/index.php?query=5*10%5E%28n%2B1%29%2B1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
10 5{0}7 5×10n+1+7 (n ≥ 0) always divisible by 3 http://factordb.com/index.php?query=5*10%5E%28n%2B1%29%2B7&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
10 8{0}1 8×10n+1+1 (n ≥ 0) always divisible by 3
(in fact, always divisible by 9)
http://factordb.com/index.php?query=8*10%5E%28n%2B1%29%2B1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
10 8{0}7 8×10n+1+7 (n ≥ 0) always divisible by 3 http://factordb.com/index.php?query=8*10%5E%28n%2B1%29%2B7&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
10 28{0}7 28×10n+1+7 (n ≥ 0) always divisible by 7 http://factordb.com/index.php?query=28*10%5E%28n%2B1%29%2B7&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
10 4{6}9 (14×10n+1+7)/3 (n ≥ 0) always divisible by 7 http://factordb.com/index.php?query=%2814*10%5E%28n%2B1%29%2B7%29%2F3&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
10 families ending with 0, 2, 4, 6, or 8 always divisible by 2
10 families ending with 0 or 5 always divisible by 5
10 {0,3,6,9} always divisible by 3
(non-simple family)
10 {0,7} always divisible by 7
(non-simple family)
any base (b) families ending with digits d which are not coprime to b always divisible by gcd(d,b)
any base (b) families whose digits all have a common factor d > 1 always divisible by d
3 1{0}1 3n+1+1 (n ≥ 0) always divisible by 2 http://factordb.com/index.php?query=3%5E%28n%2B1%29%2B1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
4 2{0}1 2×4n+1+1 (n ≥ 0) always divisible by 3 http://factordb.com/index.php?query=2*4%5E%28n%2B1%29%2B1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
5 1{0}1 5n+1+1 (n ≥ 0) always divisible by 2 http://factordb.com/index.php?query=5%5E%28n%2B1%29%2B1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
5 1{0}3 5n+1+3 (n ≥ 0) always divisible by 2
(in fact, always divisible by 4)
http://factordb.com/index.php?query=5%5E%28n%2B1%29%2B3&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
5 3{0}1 3×5n+1+1 (n ≥ 0) always divisible by 2
(in fact, always divisible by 4)
http://factordb.com/index.php?query=3*5%5E%28n%2B1%29%2B1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
5 11{0}3 6×5n+1+3 (n ≥ 0) always divisible by 3 http://factordb.com/index.php?query=6*5%5E%28n%2B1%29%2B3&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
5 3{0}11 3×5n+2+6 (n ≥ 0) always divisible by 3 http://factordb.com/index.php?query=3*5%5E%28n%2B2%29%2B6&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
6 4{0}1 4×6n+1+1 (n ≥ 0) always divisible by 5 http://factordb.com/index.php?query=4*6%5E%28n%2B1%29%2B1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
7 1{0}1 7n+1+1 (n ≥ 0) always divisible by 2 http://factordb.com/index.php?query=7%5E%28n%2B1%29%2B1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
7 1{0}3 7n+1+3 (n ≥ 0) always divisible by 2 http://factordb.com/index.php?query=7%5E%28n%2B1%29%2B3&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
7 1{0}5 7n+1+5 (n ≥ 0) always divisible by 2
(in fact, always divisible by 6)
http://factordb.com/index.php?query=7%5E%28n%2B1%29%2B5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
7 3{0}1 3×7n+1+1 (n ≥ 0) always divisible by 2 http://factordb.com/index.php?query=3*7%5E%28n%2B1%29%2B1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
7 3{0}5 3×7n+1+5 (n ≥ 0) always divisible by 2 http://factordb.com/index.php?query=3*7%5E%28n%2B1%29%2B5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
7 5{0}1 5×7n+1+1 (n ≥ 0) always divisible by 2
(in fact, always divisible by 6)
http://factordb.com/index.php?query=5*7%5E%28n%2B1%29%2B1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
7 5{0}3 5×7n+1+3 (n ≥ 0) always divisible by 2 http://factordb.com/index.php?query=5*7%5E%28n%2B1%29%2B3&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
7 1{0}2 7n+1+2 (n ≥ 0) always divisible by 3 http://factordb.com/index.php?query=7%5E%28n%2B1%29%2B2&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
7 2{0}1 2×7n+1+1 (n ≥ 0) always divisible by 3 http://factordb.com/index.php?query=2*7%5E%28n%2B1%29%2B1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
7 4{0}5 4×7n+1+5 (n ≥ 0) always divisible by 3 http://factordb.com/index.php?query=4*7%5E%28n%2B1%29%2B5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
7 5{0}4 5×7n+1+4 (n ≥ 0) always divisible by 3 http://factordb.com/index.php?query=5*7%5E%28n%2B1%29%2B4&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
7 1{0}1{0}1 7m+n+2+7n+1+1 (m+n ≥ 0) always divisible by 3
(non-simple family)
7 1{0}3{0}5 7m+n+2+3×7n+1+5 (m+n ≥ 0) always divisible by 3
(non-simple family)
7 1{0}5{0}3 7m+n+2+5×7n+1+3 (m+n ≥ 0) always divisible by 3
(non-simple family)
7 3{0}1{0}5 3×7m+n+2+7n+1+5 (m+n ≥ 0) always divisible by 3
(non-simple family)
7 3{0}5{0}1 3×7m+n+2+5×7n+1+1 (m+n ≥ 0) always divisible by 3
(non-simple family)
7 5{0}1{0}3 5×7m+n+2+7n+1+3 (m+n ≥ 0) always divisible by 3
(non-simple family)
7 5{0}3{0}1 5×7m+n+2+3×7n+1+1 (m+n ≥ 0) always divisible by 3
(non-simple family)
7 1{0}1{0}1{0}1 7r+m+n+3+7m+n+2+7n+1+1 (r+m+n ≥ 0) always divisible by 2
(non-simple family)
7 1{0}1{0}2 7m+n+2+7n+1+2 (m+n ≥ 0) always divisible by 2
(non-simple family)
7 1{0}2{0}1 7m+n+2+2×7n+1+1 (m+n ≥ 0) always divisible by 2
(non-simple family)
7 2{0}1{0}1 2×7m+n+2+7n+1+1 (m+n ≥ 0) always divisible by 2
(non-simple family)
7 4{0}5{0}5 4×7m+n+2+5×7n+1+5 (m+n ≥ 0) always divisible by 2
(non-simple family)
7 5{0}4{0}5 5×7m+n+2+4×7n+1+5 (m+n ≥ 0) always divisible by 2
(non-simple family)
7 5{0}5{0}4 5×7m+n+2+5×7n+1+4 (m+n ≥ 0) always divisible by 2
(non-simple family)
8 2{0}5 2×8n+1+5 (n ≥ 0) always divisible by 7 http://factordb.com/index.php?query=2*8%5E%28n%2B1%29%2B5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
8 4{0}3 4×8n+1+3 (n ≥ 0) always divisible by 7 http://factordb.com/index.php?query=4*8%5E%28n%2B1%29%2B3&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
8 6{0}1 6×8n+1+1 (n ≥ 0) always divisible by 7 http://factordb.com/index.php?query=6*8%5E%28n%2B1%29%2B1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
8 44{0}3 36×8n+1+3 (n ≥ 0) always divisible by 3 http://factordb.com/index.php?query=36*8%5E%28n%2B1%29%2B3&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
8 6{0}11 6×8n+2+9 (n ≥ 0) always divisible by 3 http://factordb.com/index.php?query=6*8%5E%28n%2B2%29%2B9&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
9 {7}62 (7×9n+2−119)/8 (n ≥ 0) always divisible by 7 http://factordb.com/index.php?query=%287*9%5E%28n%2B2%29-119%29%2F8&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
11 2{5}3 (5×11n+1−5)/2 (n ≥ 0) always divisible by 5
(in fact, always divisible by 25)
http://factordb.com/index.php?query=%285*11%5E%28n%2B1%29-5%29%2F2&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
11 3{5}2 (7×11n+1−7)/2 (n ≥ 0) always divisible by 5
(in fact, always divisible by 35)
http://factordb.com/index.php?query=%287*11%5E%28n%2B1%29-7%29%2F2&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
11 3{5}9 (7×11n+1+7)/2 (n ≥ 0) always divisible by 7 http://factordb.com/index.php?query=%287*11%5E%28n%2B1%29%2B7%29%2F2&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
11 A{5}2 (21×11n+1−7)/2 (n ≥ 0) always divisible by 7 http://factordb.com/index.php?query=%2821*11%5E%28n%2B1%29-7%29%2F2&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
11 A{5}9 (21×11n+1+7)/2 (n ≥ 0) always divisible by 7 http://factordb.com/index.php?query=%2821*11%5E%28n%2B1%29%2B7%29%2F2&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
12 A{0}21 10×12n+2+25 always divisible by 5 http://factordb.com/index.php?query=10*12%5E%28n%2B2%29%2B25&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3{6}A (7×13n+1+7)/2 (n ≥ 0) always divisible by 7 http://factordb.com/index.php?query=%287*13%5E%28n%2B1%29%2B7%29%2F2&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 5{A}C (35×13n+1+7)/6 (n ≥ 0) always divisible by 7 http://factordb.com/index.php?query=%2835*13%5E%28n%2B1%29%2B7%29%2F6&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 A{6}3 (21×13n+1−7)/2 (n ≥ 0) always divisible by 7 http://factordb.com/index.php?query=%2821*13%5E%28n%2B1%29-7%29%2F2&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 C{A}5 (77×13n+1−35)/6 (n ≥ 0) always divisible by 7 http://factordb.com/index.php?query=%2877*13%5E%28n%2B1%29-35%29%2F6&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
14 8{6}9 (110×14n+1+33)/13 (n ≥ 0) always divisible by 11 http://factordb.com/index.php?query=%28110*14%5E%28n%2B1%29%2B33%29%2F13&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
14 40{4}9 (732×14n+1+61)/13 (n ≥ 0) always divisible by 61 http://factordb.com/index.php?query=%28732*14%5E%28n%2B1%29%2B61%29%2F13&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
15 9{6}8 (66×15n+1+11)/7 (n ≥ 0) always divisible by 11 http://factordb.com/index.php?query=%2866*15%5E%28n%2B1%29%2B11%29%2F7&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 2{C}3 (14×16n+1−49)/5 (n ≥ 0) always divisible by 7 http://factordb.com/index.php?query=%2814*16%5E%28n%2B1%29-49%29%2F5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 A{4}1 (154×16n+1−49)/15 (n ≥ 0) always divisible by 7 http://factordb.com/index.php?query=%28154*16%5E%28n%2B1%29-49%29%2F15&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 8{C}F (44×16n+1+11)/5 (n ≥ 0) always divisible by 11 http://factordb.com/index.php?query=%2844*16%5E%28n%2B1%29%2B11%29%2F5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 8{A}F (26×16n+1+13)/3 (n ≥ 0) always divisible by 13 http://factordb.com/index.php?query=%2826*16%5E%28n%2B1%29%2B13%29%2F3&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 A{6}9 (52×16n+1+13)/5 (n ≥ 0) always divisible by 13 http://factordb.com/index.php?query=%2852*16%5E%28n%2B1%29%2B13%29%2F5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
21 B0{H}6H (4637×21n+2−4637)/20 (n ≥ 0) always divisible by 4637 http://factordb.com/index.php?query=%284637*21%5E%28n%2B2%29-4637%29%2F20&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 4{O}9 (44×28n+1−143)/9 (n ≥ 0) always divisible by 11 http://factordb.com/index.php?query=%2844*28%5E%28n%2B1%29-143%29%2F9&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 N{6}R (209×28n+1+187)/9 (n ≥ 0) always divisible by 11 http://factordb.com/index.php?query=%28209*28%5E%28n%2B1%29%2B187%29%2F9&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 D{6}R (119×28n+1+187)/9 (n ≥ 0) always divisible by 17 http://factordb.com/index.php?query=%28119*28%5E%28n%2B1%29%2B187%29%2F9&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
9 {1}5 (9n+1+31)/8 (n ≥ 1) always divisible by some element of {2,5}
divisible by 2 if n is odd, divisible by 5 if n is even
http://factordb.com/index.php?query=%289%5E%28n%2B1%29%2B31%29%2F8&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
9 {1}61 (9n+2+359)/8 (n ≥ 0) always divisible by some element of {2,5}
divisible by 2 if n is odd, divisible by 5 if n is even
http://factordb.com/index.php?query=%289%5E%28n%2B2%29%2B359%29%2F8&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
9 2{7} (23×9n−7)/8 (n ≥ 1) always divisible by some element of {2,5}
divisible by 2 if n is even, divisible by 5 if n is odd
http://factordb.com/index.php?query=%2823*9%5En-7%29%2F8&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
9 {3}5 (3×9n+1+13)/8 (n ≥ 1) always divisible by some element of {2,5}
divisible by 2 if n is odd, divisible by 5 if n is even
http://factordb.com/index.php?query=%283*9%5E%28n%2B1%29%2B13%29%2F8&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
9 {3}8 (3×9n+1+37)/8 (n ≥ 1) always divisible by some element of {2,5}
divisible by 2 if n is even, divisible by 5 if n is odd
http://factordb.com/index.php?query=%283*9%5E%28n%2B1%29%2B37%29%2F8&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
9 {3}05 (3×9n+2−203)/8 (n ≥ 1) always divisible by some element of {2,5}
divisible by 2 if n is odd, divisible by 5 if n is even
http://factordb.com/index.php?query=%283*9%5E%28n%2B2%29-203%29%2F8&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
9 5{1} (41×9n−1)/8 (n ≥ 1) always divisible by some element of {2,5}
divisible by 2 if n is odd, divisible by 5 if n is even
http://factordb.com/index.php?query=%2841*9%5En-1%29%2F8&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
9 5{7} (47×9n−7)/8 (n ≥ 1) always divisible by some element of {2,5}
divisible by 2 if n is odd, divisible by 5 if n is even
http://factordb.com/index.php?query=%2847*9%5En-7%29%2F8&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
9 6{1} (49×9n−1)/8 (n ≥ 1) always divisible by some element of {2,5}
divisible by 2 if n is even, divisible by 5 if n is odd
http://factordb.com/index.php?query=%2849*9%5En-1%29%2F8&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
9 {7}2 (7×9n+1−47)/8 (n ≥ 1) always divisible by some element of {2,5}
divisible by 2 if n is even, divisible by 5 if n is odd
http://factordb.com/index.php?query=%287*9%5E%28n%2B1%29-47%29%2F8&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
9 {7}5 (7×9n+1−23)/8 (n ≥ 1) always divisible by some element of {2,5}
divisible by 2 if n is odd, divisible by 5 if n is even
http://factordb.com/index.php?query=%287*9%5E%28n%2B1%29-23%29%2F8&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
9 {7}05 (3×9n+2−527)/8 (n ≥ 1) always divisible by some element of {2,5}
divisible by 2 if n is odd, divisible by 5 if n is even
http://factordb.com/index.php?query=%287*9%5E%28n%2B2%29-527%29%2F8&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
9 {1}6{1} (9m+n+1+40×9n−1)/8 (m+n ≥ 1) always divisible by some element of {2,5}
(non-simple family)
divisible by 2 if m+n is even, divisible by 5 if m+n is odd
9 {7}2{7} (7×9m+n+1−40×9n−7)/8 (m+n ≥ 1) always divisible by some element of {2,5}
(non-simple family)
divisible by 2 if m+n is even, divisible by 5 if m+n is odd
9 5{0}{7} (40×9m+n+7×9n−7)/8 (m+n ≥ 1) always divisible by some element of {2,5}
(non-simple family)
divisible by 2 if n is odd, divisible by 5 if n is even
9 {3}{0}5 (3×9m+n+1−3×9n+1+40)/8 (m+n ≥ 1) always divisible by some element of {2,5}
(non-simple family)
divisible by 2 if m is odd, divisible by 5 if m is even
9 {7}{0}5 (7×9m+n+1−7×9n+1+40)/8 (m+n ≥ 1) always divisible by some element of {2,5}
(non-simple family)
divisible by 2 if m is odd, divisible by 5 if m is even
11 2{5} (5×11n−1)/2 (n ≥ 1) always divisible by some element of {2,3}
divisible by 2 if n is even, divisible by 3 if n is odd
http://factordb.com/index.php?query=%285*11%5En-1%29%2F2&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
11 3{5} (7×11n−1)/2 (n ≥ 1) always divisible by some element of {2,3}
divisible by 2 if n is odd, divisible by 3 if n is even
http://factordb.com/index.php?query=%287*11%5En-1%29%2F2&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
11 3{7} (37×11n−7)/10 (n ≥ 1) always divisible by some element of {2,3}
divisible by 2 if n is odd, divisible by 3 if n is even
http://factordb.com/index.php?query=%2837*11%5En-7%29%2F10&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
11 4{7} (47×11n−7)/10 (n ≥ 1) always divisible by some element of {2,3}
divisible by 2 if n is even, divisible by 3 if n is odd
http://factordb.com/index.php?query=%2847*11%5En-7%29%2F10&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
11 8{5} (17×11n−1)/2 (n ≥ 1) always divisible by some element of {2,3}
divisible by 2 if n is even, divisible by 3 if n is odd
http://factordb.com/index.php?query=%2817*11%5En-1%29%2F2&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
11 9{5} (19×11n−1)/2 (n ≥ 1) always divisible by some element of {2,3}
divisible by 2 if n is odd, divisible by 3 if n is even
http://factordb.com/index.php?query=%2819*11%5En-1%29%2F2&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
11 9{7} (97×11n−7)/10 (n ≥ 1) always divisible by some element of {2,3}
divisible by 2 if n is odd, divisible by 3 if n is even
http://factordb.com/index.php?query=%2897*11%5En-7%29%2F10&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
11 A{7} (107×11n−7)/10 (n ≥ 1) always divisible by some element of {2,3}
divisible by 2 if n is even, divisible by 3 if n is odd
http://factordb.com/index.php?query=%28107*11%5En-7%29%2F10&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
11 {5}2 (11n+1−7)/2 (n ≥ 1) always divisible by some element of {2,3}
divisible by 2 if n is even, divisible by 3 if n is odd
http://factordb.com/index.php?query=%2811%5E%28n%2B1%29-7%29%2F2&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
11 {5}3 (11n+1−5)/2 (n ≥ 1) always divisible by some element of {2,3}
divisible by 2 if n is odd, divisible by 3 if n is even
http://factordb.com/index.php?query=%2811%5E%28n%2B1%29-5%29%2F2&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
11 {7}3 (7×11n+1−47)/10 (n ≥ 1) always divisible by some element of {2,3}
divisible by 2 if n is odd, divisible by 3 if n is even
http://factordb.com/index.php?query=%287*11%5E%28n%2B1%29-47%29%2F10&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
11 {7}4 (7×11n+1−37)/10 (n ≥ 1) always divisible by some element of {2,3}
divisible by 2 if n is even, divisible by 3 if n is odd
http://factordb.com/index.php?query=%287*11%5E%28n%2B1%29-37%29%2F10&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
11 {5}8 (11n+1+5)/2 (n ≥ 1) always divisible by some element of {2,3}
divisible by 2 if n is even, divisible by 3 if n is odd
http://factordb.com/index.php?query=%2811%5E%28n%2B1%29%2B5%29%2F2&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
11 {5}9 (11n+1+7)/2 (n ≥ 1) always divisible by some element of {2,3}
divisible by 2 if n is odd, divisible by 3 if n is even
http://factordb.com/index.php?query=%2811%5E%28n%2B1%29%2B7%29%2F2&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
11 {7}9 (7×11n+1+13)/10 (n ≥ 1) always divisible by some element of {2,3}
divisible by 2 if n is odd, divisible by 3 if n is even
http://factordb.com/index.php?query=%287*11%5E%28n%2B1%29%2B13%29%2F10&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
11 {7}A (7×11n+1+23)/10 (n ≥ 1) always divisible by some element of {2,3}
divisible by 2 if the length is odd, divisible by 3 if the length is even
http://factordb.com/index.php?query=%287*11%5E%28n%2B1%29%2B23%29%2F10&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
11 3{0}{5} (6×11m+n+11n−1)/2 always divisible by some element of {2,3}
(non-simple family)
divisible by 2 if n is odd, divisible by 3 if n is even
11 {5}{0}3 (11m+n+1−11n+1+6)/2 always divisible by some element of {2,3}
(non-simple family)
divisible by 2 if m is odd, divisible by 3 if m is even
14 4{0}1 4×14n+1+1 (n ≥ 0) always divisible by some element of {3,5}
divisible by 3 if n is even, divisible by 5 if n is odd
http://factordb.com/index.php?query=4*14%5E%28n%2B1%29%2B1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
14 B{0}1 11×14n+1+1 (n ≥ 0) always divisible by some element of {3,5}
divisible by 3 if n is odd, divisible by 5 if n is even
http://factordb.com/index.php?query=11*14%5E%28n%2B1%29%2B1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
14 3{D} 4×14n−1 (n ≥ 1) always divisible by some element of {3,5}
divisible by 3 if n is even, divisible by 5 if n is odd
http://factordb.com/index.php?query=4*14%5En-1&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
14 A{D} 11×14n−1 (n ≥ 1) always divisible by some element of {3,5}
divisible by 3 if n is odd, divisible by 5 if n is even
http://factordb.com/index.php?query=11*14%5En-1&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
14 1{0}B 14n+1+11 (n ≥ 0) always divisible by some element of {3,5}
divisible by 3 if n is odd, divisible by 5 if n is even
http://factordb.com/index.php?query=14%5E%28n%2B1%29%2B11&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
14 {D}3 14n+1−11 (n ≥ 1) always divisible by some element of {3,5}
divisible by 3 if n is even, divisible by 5 if n is odd
http://factordb.com/index.php?query=14%5E%28n%2B1%29-11&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
14 {4}9 (4×14n+1+61)/13 (n ≥ 1) always divisible by some element of {3,5}
divisible by 3 if n is even, divisible by 5 if n is odd
http://factordb.com/index.php?query=%284*14%5E%28n%2B1%29%2B61%29%2F13&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
14 {8}5 (8×14n+1−47)/13 (n ≥ 1) always divisible by some element of {3,5}
divisible by 3 if n is odd, divisible by 5 if n is even
http://factordb.com/index.php?query=%288*14%5E%28n%2B1%29-47%29%2F13&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
20 8{0}1 8×20n+1+1 (n ≥ 0) always divisible by some element of {3,7}
divisible by 3 if n is odd, divisible by 7 if n is even
http://factordb.com/index.php?query=8*20%5E%28n%2B1%29%2B1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
20 D{0}1 13×20n+1+1 (n ≥ 0) always divisible by some element of {3,7}
divisible by 3 if n is even, divisible by 7 if n is odd
http://factordb.com/index.php?query=13*20%5E%28n%2B1%29%2B1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
20 7{J} 8×20n−1 (n ≥ 1) always divisible by some element of {3,7}
divisible by 3 if n is odd, divisible by 7 if n is even
http://factordb.com/index.php?query=8*20%5En-1&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
20 C{J} 13×20n−1 (n ≥ 1) always divisible by some element of {3,7}
divisible by 3 if n is even, divisible by 7 if n is odd
http://factordb.com/index.php?query=13*20%5En-1&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
20 1{0}D 20n+1+13 (n ≥ 0) always divisible by some element of {3,7}
divisible by 3 if n is even, divisible by 7 if n is odd
http://factordb.com/index.php?query=20%5E%28n%2B1%29%2B13&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
20 {J}7 20n+1−13 (n ≥ 1) always divisible by some element of {3,7}
divisible by 3 if n is odd, divisible by 7 if n is even
http://factordb.com/index.php?query=20%5E%28n%2B1%29-13&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
25 D{1} (313×25n−1)/24 (n ≥ 1) always divisible by some element of {2,13}
divisible by 2 if n is odd, divisible by 13 if n is even
http://factordb.com/index.php?query=%28313*25%5En-1%29%2F24&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
25 E{1} (337×25n−1)/24 (n ≥ 1) always divisible by some element of {2,13}
divisible by 2 if n is even, divisible by 13 if n is odd
http://factordb.com/index.php?query=%28337*25%5En-1%29%2F24&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
25 1E{1} (937×25n−1)/24 (n ≥ 0) always divisible by some element of {2,13}
divisible by 2 if n is odd, divisible by 13 if n is even
http://factordb.com/index.php?query=%28937*25%5En-1%29%2F24&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
25 1F{1} (961×25n−1)/24 (n ≥ 0) always divisible by some element of {2,13}
divisible by 2 if n is even, divisible by 13 if n is odd
http://factordb.com/index.php?query=%28961*25%5En-1%29%2F24&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
32 A{0}1 10×32n+1+1 (n ≥ 0) always divisible by some element of {3,11}
divisible by 3 if n is even, divisible by 11 if n is odd
http://factordb.com/index.php?query=10*32%5E%28n%2B1%29%2B1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
32 N{0}1 23×32n+1+1 (n ≥ 0) always divisible by some element of {3,11}
divisible by 3 if n is odd, divisible by 11 if n is even
http://factordb.com/index.php?query=23*32%5E%28n%2B1%29%2B1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
32 9{V} 10×32n−1 (n ≥ 1) always divisible by some element of {3,11}
divisible by 3 if n is even, divisible by 11 if n is odd
http://factordb.com/index.php?query=10*32%5En-1&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
32 M{V} 23×32n−1 (n ≥ 1) always divisible by some element of {3,11}
divisible by 3 if n is odd, divisible by 11 if n is even
http://factordb.com/index.php?query=23*32%5En-1&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
32 1{0}N 32n+1+23 (n ≥ 0) always divisible by some element of {3,11}
divisible by 3 if n is odd, divisible by 11 if n is even
http://factordb.com/index.php?query=32%5E%28n%2B1%29%2B23&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
32 {V}9 32n+1−23 (n ≥ 1) always divisible by some element of {3,11}
divisible by 3 if n is even, divisible by 11 if n is odd
http://factordb.com/index.php?query=32%5E%28n%2B1%29-23&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
34 6{0}1 6×34n+1+1 (n ≥ 0) always divisible by some element of {5,7}
divisible by 5 if n is even, divisible by 7 if n is odd
http://factordb.com/index.php?query=6*34%5E%28n%2B1%29%2B1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
34 5{X} 6×34n−1 (n ≥ 1) always divisible by some element of {5,7}
divisible by 5 if n is even, divisible by 7 if n is odd
http://factordb.com/index.php?query=6*34%5En-1&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
34 S{X} 29×34n−1 (n ≥ 1) always divisible by some element of {5,7}
divisible by 5 if n is odd, divisible by 7 if n is even
http://factordb.com/index.php?query=29*34%5En-1&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
34 {X}5 34n+1−29 (n ≥ 1) always divisible by some element of {5,7}
divisible by 5 if n is even, divisible by 7 if n is odd
http://factordb.com/index.php?query=34%5E%28n%2B1%29-29&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
8 6{4}7 (46×8n+1+17)/7 (n ≥ 0) always divisible by some element of {3,5,13}
divisible by 3 if the length is odd, divisible by 5 if the length is == 2 mod 4, divisible by 13 if the length is == 0 mod 4
(special example, as the numbers with length ≥ 222 in this family contain "prime > b" subsequence, this prime is 42207)
http://factordb.com/index.php?query=%2846*8%5E%28n%2B1%29%2B17%29%2F7&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 95{0}3 122×13n+1+3 (n ≥ 0) always divisible by some element of {5,7,17}
divisible by 7 if n is even, divisible by 5 if n == 3 mod 4, divisible by 17 if n == 1 mod 4
http://factordb.com/index.php?query=122*13%5E%28n%2B1%29%2B3&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3{0}95 3×13n+2+122 (n ≥ 0) always divisible by some element of {5,7,17}
divisible by 7 if n is odd, divisible by 5 if n == 2 mod 4, divisible by 17 if n == 0 mod 4
http://factordb.com/index.php?query=3*13%5E%28n%2B2%29%2B122&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 {4}D (4×16n+1+131)/15 (n ≥ 1) always divisible by some element of {3,7,13}
divisible by 3 if n == 2 mod 3, divisible by 7 if n == 1 mod 3, divisible by 13 if n == 0 mod 3
http://factordb.com/index.php?query=%284*16%5E%28n%2B1%29%2B131%29%2F15&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 {8}F (8×16n+1+97)/15 (n ≥ 1) always divisible by some element of {3,7,13}
divisible by 3 if n == 0 mod 3, divisible by 7 if n == 2 mod 3, divisible by 13 if n == 1 mod 3
http://factordb.com/index.php?query=%288*16%5E%28n%2B1%29%2B97%29%2F15&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
17 7F{0}D 134×17n+1+13 (n ≥ 0) always divisible by some element of {3,5,29}
divisible by 3 if n is odd, divisible by 5 if n == 2 mod 4, divisible by 29 if n == 0 mod 4
http://factordb.com/index.php?query=134*17%5E%28n%2B1%29%2B13&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
17 D{0}7F 13×17n+2+134 (n ≥ 0) always divisible by some element of {3,5,29}
divisible by 3 if n is even, divisible by 5 if n == 3 mod 4, divisible by 29 if n == 1 mod 4
http://factordb.com/index.php?query=13*17%5E%28n%2B2%29%2B134&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
21 {7}D (7×21n+1+113)/20 (n ≥ 1) always divisible by some element of {2,13,17}
divisible by 2 if n is odd, divisible by 13 if n == 0 mod 4, divisible by 17 if n == 2 mod 4
http://factordb.com/index.php?query=%287*21%5E%28n%2B1%29%2B113%29%2F20&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
23 7L{0}1 182×23n+1+1 (n ≥ 0) always divisible by some element of {3,5,53}
divisible by 3 if n is odd, divisible by 5 if n == 2 mod 4, divisible by 53 if n == 0 mod 4
http://factordb.com/index.php?query=182*23%5E%28n%2B1%29%2B1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
23 1{0}7L 23n+2+182 (n ≥ 0) always divisible by some element of {3,5,53}
divisible by 3 if n is even, divisible by 5 if n == 3 mod 4, divisible by 53 if n == 1 mod 4
http://factordb.com/index.php?query=23%5E%28n%2B2%29%2B182&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
23 {D}GA (13×23n+2+1439)/22 (n ≥ 0) always divisible by some element of {2,5,7,37,79}
divisible by 2 if n is even, divisible by 5 if n == 1 mod 4, divisible by 7 if n == 0 mod 3, divisible by 37 if n == 7 mod 12, divisible by 79 if n == 2 mod 3
http://factordb.com/index.php?query=%2813*23%5E%28n%2B2%29%2B1439%29%2F22&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
23 L{5}L (467×23n+1+347)/22 (n ≥ 0) always divisible by some element of {2,5,7,13,37}
divisible by 2 if n is even, divisible by 5 if n == 1 mod 4, divisible by 7 if n == 0 mod 3, divisible by 13 if n == 1 mod 6, divisible by 37 if n == 11 mod 12
http://factordb.com/index.php?query=%28467*23%5E%28n%2B1%29%2B347%29%2F22&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
25 9{N} (239×25n−23)/24 (n ≥ 1) always divisible by some element of {3,7,31}
divisible by 3 if n == 0 mod 3, divisible by 7 if n == 2 mod 3, divisible by 31 if n == 1 mod 3
http://factordb.com/index.php?query=%28239*25%5En-23%29%2F24&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
25 {N}E (23×25n+1−239)/24 (n ≥ 1) always divisible by some element of {3,7,31}
divisible by 3 if n == 2 mod 3, divisible by 7 if n == 0 mod 3, divisible by 31 if n == 1 mod 3
http://factordb.com/index.php?query=%2823*25%5E%28n%2B1%29-239%29%2F24&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
25 27{1} (1369×25n−1)/24 (n ≥ 0) always divisible by some element of {3,7,31}
divisible by 3 if n == 0 mod 3, divisible by 7 if n == 2 mod 3, divisible by 31 if n == 1 mod 3
http://factordb.com/index.php?query=%281369*25%5En-1%29%2F24&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
27 JP{0}1 538×27n+1+1 (n ≥ 0) always divisible by some element of {5,7,73}
divisible by 7 if n is odd, divisible by 5 if n == 2 mod 4, divisible by 73 if n == 0 mod 4
http://factordb.com/index.php?query=538*27%5E%28n%2B1%29%2B1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
27 1{0}JP 27n+2+538 (n ≥ 0) always divisible by some element of {5,7,73}
divisible by 7 if n is even, divisible by 5 if n == 3 mod 4, divisible by 73 if n == 1 mod 4
http://factordb.com/index.php?query=27%5E%28n%2B2%29%2B538&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
27 J{0}2 19×27n+1+2 (n ≥ 0) always divisible by some element of {5,7,73}
divisible by 7 if n is odd, divisible by 5 if n == 0 mod 4, divisible by 73 if n == 2 mod 4
http://factordb.com/index.php?query=19*27%5E%28n%2B1%29%2B2&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
29 {2}{5} (2×29m+n+3×29n−5)/28 always divisible by some element of {2,3,5}
(non-simple family)
divisible by 2 if n is even, divisible by 3 if m and n are both even or both odd, divisible by 5 if m is even
29 {5}{2} (5×29m+n−3×29n−2)/28 always divisible by some element of {2,3,5}
(non-simple family)
divisible by 2 if m is even, divisible by 3 if m and n are both even or both odd, divisible by 5 if n is even
29 {M}{P} (22×29m+n+3×29n−25)/28 always divisible by some element of {2,3,5}
(non-simple family)
divisible by 2 if n is even, divisible by 3 if m and n are both even or both odd, divisible by 5 if m is even
29 {P}{M} (25×29m+n−3×29n−22)/28 always divisible by some element of {2,3,5}
(non-simple family)
divisible by 2 if m is even, divisible by 3 if m and n are both even or both odd, divisible by 5 if n is even
30 A{0}9J 10×30n+2+289 (n ≥ 0) always divisible by some element of {7,13,19,31}
divisible by 7 if n == 0 mod 3, divisible by 13 if n == 4 mod 6, divisible by 19 if n == 2 mod 3, divisible by 31 if n is odd
http://factordb.com/index.php?query=10*30%5E%28n%2B2%29%2B289&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
31 O{5} (145×31n−1)/6 (n ≥ 1) always divisible by some element of {2,3,7,19}
divisible by 2 if n is even, divisible by 3 if n == 0 mod 3, divisible by 7 if n == 1 mod 6, divisible by 19 if n == 5 mod 6
http://factordb.com/index.php?query=%28145*31%5En-1%29%2F6&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
32 8{0}V 8×32n+1+31 (n ≥ 0) always divisible by some element of {3,5,41}
divisible by 3 if n is odd, divisible by 5 if n == 2 mod 4, divisible by 41 if n == 0 mod 4
http://factordb.com/index.php?query=8*32%5E%28n%2B1%29%2B31&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
32 {G}L (16×32n+1+139)/31 (n ≥ 1) always divisible by some element of {3,5,41}
divisible by 3 if n is even, divisible by 5 if n == 3 mod 4, divisible by 41 if n == 1 mod 4
http://factordb.com/index.php?query=%2816*32%5E%28n%2B1%29%2B139%29%2F31&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
9 {1} (9n−1)/8 (n ≥ 2) difference-of-two-squares factorization
(9n−1)/8 = (3n−1) × (3n+1) / 8
http://factordb.com/index.php?query=%289%5En-1%29%2F8&use=n&n=2&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
8 1{0}1 8n+1+1 (n ≥ 0) sum-of-two-cubes factorization
8n+1+1 = (2n+1+1) × (4n+1−2n+1+1)
http://factordb.com/index.php?query=8%5E%28n%2B1%29%2B1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
9 3{1} (25×9n−1)/8 (n ≥ 1) difference-of-two-squares factorization
(25×9n−1)/8 = (5×3n−1) × (5×3n+1) / 8
http://factordb.com/index.php?query=%2825*9%5En-1%29%2F8&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
9 3{8} 4×9n−1 (n ≥ 1) difference-of-two-squares factorization
4×9n−1 = (2×3n−1) × (2×3n+1)
http://factordb.com/index.php?query=4*9%5En-1&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
9 {8}5 9n+1−4 (n ≥ 1) difference-of-two-squares factorization
9n+1−4 = (3n+1−2) × (3n+1+2)
http://factordb.com/index.php?query=9%5E%28n%2B1%29-4&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
9 3{8}35 4×9n+2−49 (n ≥ 0) difference-of-two-squares factorization
4×9n+2−49 = (2×3n+2−7) × (2×3n+2+7)
http://factordb.com/index.php?query=4*9%5E%28n%2B2%29-49&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 8{F} 9×16n−1 (n ≥ 1) difference-of-two-squares factorization
9×16n−1 = (3×4n−1) × (3×4n+1)
http://factordb.com/index.php?query=9*16%5En-1&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 {F}7 16n+1−9 (n ≥ 1) difference-of-two-squares factorization
16n+1−9 = (4n+1−3) × (4n+1+3)
http://factordb.com/index.php?query=16%5E%28n%2B1%29-9&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 {4}1 (4×16n+1−49)/15 (n ≥ 1) difference-of-two-squares factorization
(4×16n+1−49)/15 = (2×4n+1−7) × (2×4n+1+7) / 15
http://factordb.com/index.php?query=%284*16%5E%28n%2B1%29-49%29%2F15&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 B{4}1 (169×16n+1−49)/15 (n ≥ 0) difference-of-two-squares factorization
(169×16n+1−49)/15 = (13×4n+1−7) × (13×4n+1+7) / 15
http://factordb.com/index.php?query=%28169*16%5E%28n%2B1%29-49%29%2F15&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 1{5} (4×16n−1)/3 (n ≥ 1) difference-of-two-squares factorization
(4×16n−1)/3 = (2×4n−1) × (2×4n+1) / 3
http://factordb.com/index.php?query=%284*16%5En-1%29%2F3&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 8{5} (25×16n−1)/3 (n ≥ 1) difference-of-two-squares factorization
(25×16n−1)/3 = (5×4n−1) × (5×4n+1) / 3
http://factordb.com/index.php?query=%2825*16%5En-1%29%2F3&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 10{5} (49×16n−1)/3 (n ≥ 1) difference-of-two-squares factorization
(49×16n−1)/3 = (7×4n−1) × (7×4n+1) / 3
http://factordb.com/index.php?query=%2849*16%5En-1%29%2F3&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 A1{5} (484×16n−1)/3 (n ≥ 0) difference-of-two-squares factorization
(484×16n−1)/3 = (22×4n−1) × (22×4n+1) / 3
http://factordb.com/index.php?query=%28484*16%5En-1%29%2F3&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 7{3} (36×16n−1)/5 (n ≥ 1) difference-of-two-squares factorization
(36×16n−1)/5 = (6×4n−1) × (6×4n+1) / 5
http://factordb.com/index.php?query=%2836*16%5En-1%29%2F5&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 3{F}AF 4×16n+2−81 (n ≥ 0) difference-of-two-squares factorization
4×16n+2−81 = (2×4n+2−9) × (2×4n+2+9)
http://factordb.com/index.php?query=4*16%5E%28n%2B2%29-81&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 30{F}AF 49×16n+2−81 (n ≥ 0) difference-of-two-squares factorization
49×16n+2−81 = (7×4n+2−9) × (7×4n+2+9)
http://factordb.com/index.php?query=49*16%5E%28n%2B2%29-81&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 3{F}A0F 4×16n+3−1521 (n ≥ 0) difference-of-two-squares factorization
4×16n+3−1521 = (2×4n+3−39) × (2×4n+3+39)
http://factordb.com/index.php?query=4*16%5E%28n%2B3%29-1521&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 30{F}A0F 49×16n+3−1521 (n ≥ 0) difference-of-two-squares factorization
49×16n+3−1521 = (7×4n+3−39) × (7×4n+3+39)
http://factordb.com/index.php?query=49*16%5E%28n%2B3%29-1521&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 {3}23 (16n+2−81)/5 (n ≥ 0) difference-of-two-squares factorization
(16n+2−81)/5 = (4n+2−9) × (4n+2+9) / 5
(in fact, difference-of-4th-powers factorization)
(16n+2−81)/5 = (2n+2−3) × (2n+2+3) × (4n+2+9) / 5
http://factordb.com/index.php?query=%2816%5E%28n%2B2%29-81%29%2F5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 {5}45 (16n+2−49)/3 (n ≥ 0) difference-of-two-squares factorization
(16n+2−49)/3 = (4n+2−7) × (4n+2+7) / 3
http://factordb.com/index.php?query=%2816%5E%28n%2B2%29-49%29%2F3&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 {C}B (4×16n+1−9)/5 (n ≥ 1) difference-of-two-squares factorization
(4×16n+1−9)/5 = (2×4n+1−3) × (2×4n+1+3) / 5
http://factordb.com/index.php?query=%284*16%5E%28n%2B1%29-9%29%2F5&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 {C}D (4×16n+1+1)/5 (n ≥ 1) Aurifeuillian factorization of x4+4×y4
(4×16n+1+1)/5 = (2×4n+1−2×2n+1+1) × (2×4n+1+2×2n+1+1) / 5
http://factordb.com/index.php?query=%284*16%5E%28n%2B1%29%2B1%29%2F5&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 {C}DD (4×16n+2+81)/5 (n ≥ 0) Aurifeuillian factorization of x4+4×y4
(4×16n+2+81)/5 = (2×4n+2−6×2n+2+9) × (2×4n+2+6×2n+2+9) / 5
http://factordb.com/index.php?query=%284*16%5E%28n%2B2%29%2B81%29%2F5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
25 {1} (25n−1)/24 (n ≥ 2) difference-of-two-squares factorization
(25n−1)/24 = (5n−1) × (5n+1) / 24
http://factordb.com/index.php?query=%2825%5En-1%29%2F24&use=n&n=2&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
25 2{1} (49×25n−1)/24 (n ≥ 1) difference-of-two-squares factorization
(49×25n−1)/24 = (7×5n−1) × (7×5n+1) / 24
http://factordb.com/index.php?query=%2849*25%5En-1%29%2F24&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
25 5{1} (121×25n−1)/24 (n ≥ 1) difference-of-two-squares factorization
(121×25n−1)/24 = (11×5n−1) × (11×5n+1) / 24
http://factordb.com/index.php?query=%28121*25%5En-1%29%2F24&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
25 7{1} (169×25n−1)/24 (n ≥ 1) difference-of-two-squares factorization
(169×25n−1)/24 = (13×5n−1) × (13×5n+1) / 24
http://factordb.com/index.php?query=%28169*25%5En-1%29%2F24&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
25 C{1} (289×25n−1)/24 (n ≥ 1) difference-of-two-squares factorization
(289×25n−1)/24 = (17×5n−1) × (17×5n+1) / 24
http://factordb.com/index.php?query=%28289*25%5En-1%29%2F24&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
25 F{1} (361×25n−1)/24 (n ≥ 1) difference-of-two-squares factorization
(361×25n−1)/24 = (19×5n−1) × (19×5n+1) / 24
http://factordb.com/index.php?query=%28361*25%5En-1%29%2F24&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
25 M{1} (529×25n−1)/24 (n ≥ 1) difference-of-two-squares factorization
(529×25n−1)/24 = (23×5n−1) × (23×5n+1) / 24
http://factordb.com/index.php?query=%28529*25%5En-1%29%2F24&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
25 7C{1} (4489×25n−1)/24 (n ≥ 0) difference-of-two-squares factorization
(4489×25n−1)/24 = (67×5n−1) × (67×5n+1) / 24
http://factordb.com/index.php?query=%284489*25%5En-1%29%2F24&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
25 D5{1} (7921×25n−1)/24 (n ≥ 0) difference-of-two-squares factorization
(7921×25n−1)/24 = (89×5n−1) × (89×5n+1) / 24
http://factordb.com/index.php?query=%287921*25%5En-1%29%2F24&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
25 1{3} (9×25n−1)/8 (n ≥ 1) difference-of-two-squares factorization
(9×25n−1)/8 = (3×5n−1) × (3×5n+1) / 8
http://factordb.com/index.php?query=%289*25%5En-1%29%2F8&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
25 1{8} (4×25n−1)/3 (n ≥ 1) difference-of-two-squares factorization
(4×25n−1)/3 = (2×5n−1) × (2×5n+1) / 3
http://factordb.com/index.php?query=%284*25%5En-1%29%2F3&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
25 5{8} (16×25n−1)/3 (n ≥ 1) difference-of-two-squares factorization
(16×25n−1)/3 = (4×5n−1) × (4×5n+1) / 3
http://factordb.com/index.php?query=%2816*25%5En-1%29%2F3&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
25 A{3} (81×25n−1)/8 (n ≥ 1) difference-of-two-squares factorization
(81×25n−1)/8 = (9×5n−1) × (9×5n+1) / 8
http://factordb.com/index.php?query=%2881*25%5En-1%29%2F8&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
25 L{8} (64×25n−1)/3 (n ≥ 1) difference-of-two-squares factorization
(64×25n−1)/3 = (8×5n−1) × (8×5n+1) / 3
http://factordb.com/index.php?query=%2864*25%5En-1%29%2F3&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
25 {3}2 (25n+1−9)/8 (n ≥ 1) difference-of-two-squares factorization
(25n+1−9)/8 = (5n+1−3) × (5n+1+3) / 8
http://factordb.com/index.php?query=%2825%5E%28n%2B1%29-9%29%2F8&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
25 {8}3 (25n+1−16)/3 (n ≥ 1) difference-of-two-squares factorization
(25n+1−16)/3 = (5n+1−4) × (5n+1+4) / 3
http://factordb.com/index.php?query=%2825%5E%28n%2B1%29-16%29%2F3&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
25 {8}7 (25n+1−4)/3 (n ≥ 1) difference-of-two-squares factorization
(25n+1−4)/3 = (5n+1−2) × (5n+1+2) / 3
http://factordb.com/index.php?query=%2825%5E%28n%2B1%29-4%29%2F3&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
25 {3}2I (25n+2−81)/8 (n ≥ 0) difference-of-two-squares factorization
(25n+2−81)/8 = (5n+2−9) × (5n+2+9) / 8
http://factordb.com/index.php?query=%2825%5E%28n%2B2%29-81%29%2F8&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
25 {8}5I (25n+2−196)/3 (n ≥ 0) difference-of-two-squares factorization
(25n+2−196)/3 = (5n+2−14) × (5n+2+14) / 3
http://factordb.com/index.php?query=%2825%5E%28n%2B2%29-196%29%2F3&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
25 {8}7C (25n+2−64)/3 (n ≥ 0) difference-of-two-squares factorization
(25n+2−64)/3 = (5n+2−8) × (5n+2+8) / 3
http://factordb.com/index.php?query=%2825%5E%28n%2B2%29-64%29%2F3&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
27 8{0}1 8×27n+1+1 (n ≥ 0) sum-of-two-cubes factorization
8×27n+1+1 = (2×3n+1+1) × (4×9n+1−2×3n+1+1)
http://factordb.com/index.php?query=8*27%5E%28n%2B1%29%2B1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
27 1{0}8 27n+1+8 (n ≥ 0) sum-of-two-cubes factorization
27n+1+8 = (3n+1+2) × (9n+1−2×3n+1+4)
http://factordb.com/index.php?query=27%5E%28n%2B1%29%2B8&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
27 {D}E (27n+1+1)/2 (n ≥ 1) sum-of-two-cubes factorization
(27n+1+1)/2 = (3n+1+1) × (9n+1−3n+1+1) / 2
http://factordb.com/index.php?query=%2827%5E%28n%2B1%29%2B1%29%2F2&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
27 7{Q} 8×27n−1 (n ≥ 1) difference-of-two-cubes factorization
8×27n−1 = (2×3n−1) × (4×9n+2×3n+1)
http://factordb.com/index.php?query=8*27%5En-1&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
27 {Q}J 27n+1−8 (n ≥ 1) difference-of-two-cubes factorization
27n+1−8 = (3n+1−2) × (9n+1+2×3n+1+4)
http://factordb.com/index.php?query=27%5E%28n%2B1%29-8&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
27 9{G} (125×27n−8)/13 (n ≥ 1) difference-of-two-cubes factorization
(125×27n−8)/13 = (5×3n−2) × (25×9n+10×3n+4) / 13
http://factordb.com/index.php?query=%28125*27%5En-8%29%2F13&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
32 1{0}1 32n+1+1 (n ≥ 0) sum-of-two-5th-powers factorization
32n+1+1 = (2n+1+1) × (16n+1−8n+1+4n+1−2n+1+1)
http://factordb.com/index.php?query=32%5E%28n%2B1%29%2B1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
32 {1} (32n−1)/31 (n ≥ 2) difference-of-two-5th-powers factorization
(32n−1)/31 = (2n−1) × (16n+8n+4n+2n+1) / 31
http://factordb.com/index.php?query=%2832%5En-1%29%2F31&use=n&n=2&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 3{7} (16×36n−1)/5 (n ≥ 1) difference-of-two-squares factorization
(16×36n−1)/5 = (4×6n−1) × (4×6n+1) / 5
http://factordb.com/index.php?query=%2816*36%5En-1%29%2F5&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 3{Z} 4×36n−1 (n ≥ 1) difference-of-two-squares factorization
4×36n−1 = (2×6n−1) × (2×6n+1)
http://factordb.com/index.php?query=4*36%5En-1&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 8{Z} 9×36n−1 (n ≥ 1) difference-of-two-squares factorization
9×36n−1 = (3×6n−1) × (3×6n+1)
http://factordb.com/index.php?query=9*36%5En-1&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 O{Z} 25×36n−1 (n ≥ 1) difference-of-two-squares factorization
25×36n−1 = (5×6n−1) × (5×6n+1)
http://factordb.com/index.php?query=25*36%5En-1&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 {Z}B 36n+1−25 (n ≥ 1) difference-of-two-squares factorization
36n+1−25 = (6n+1−5) × (6n+1+5)
http://factordb.com/index.php?query=36%5E%28n%2B1%29-25&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 8{Z}B 9×36n+1−25 (n ≥ 0) difference-of-two-squares factorization
9×36n+1−25 = (3×6n+1−5) × (3×6n+1+5)
http://factordb.com/index.php?query=9*36%5E%28n%2B1%29-25&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 F{Z}B 16×36n+1−25 (n ≥ 0) difference-of-two-squares factorization
16×36n+1−25 = (4×6n+1−5) × (4×6n+1+5)
http://factordb.com/index.php?query=16*36%5E%28n%2B1%29-25&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 {Z}RZ 36n+2−289 (n ≥ 0) difference-of-two-squares factorization
36n+2−289 = (6n+2−17) × (6n+2+17)
http://factordb.com/index.php?query=36%5E%28n%2B2%29-289&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 O{Z}RZ 25×36n+2−289 (n ≥ 0) difference-of-two-squares factorization
25×36n+2−289 = (5×6n+2−17) × (5×6n+2+17)
http://factordb.com/index.php?query=25*36%5E%28n%2B2%29-289&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 O{5} (169×36n−1)/7 (n ≥ 1) difference-of-two-squares factorization
(169×36n−1)/7 = (13×6n−1) × (13×6n+1) / 7
http://factordb.com/index.php?query=%28169*36%5En-1%29%2F7&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 O{7} (121×36n−1)/5 (n ≥ 1) difference-of-two-squares factorization
(121×36n−1)/5 = (11×6n−1) × (11×6n+1) / 5
http://factordb.com/index.php?query=%28121*36%5En-1%29%2F5&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 {9}1 (9×36n+1−289)/35 (n ≥ 1) difference-of-two-squares factorization
(9×36n+1−289)/35 = (3×6n+1−17) × (3×6n+1+17) / 35
http://factordb.com/index.php?query=%289*36%5E%28n%2B1%29-289%29%2F35&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 T{9}1 (1024×36n+1−289)/35 (n ≥ 0) difference-of-two-squares factorization
(1024×36n+1−289)/35 = (32×6n+1−17) × (32×6n+1+17) / 35
http://factordb.com/index.php?query=%281024*36%5E%28n%2B1%29-289%29%2F35&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 {G}D (16×36n+1−121)/35 (n ≥ 1) difference-of-two-squares factorization
(16×36n+1−121)/35 = (4×6n+1−11) × (4×6n+1+11) / 35
http://factordb.com/index.php?query=%2816*36%5E%28n%2B1%29-121%29%2F35&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 {G}8D (16×36n+2−10201)/35 (n ≥ 0) difference-of-two-squares factorization
(16×36n+2−10201)/35 = (4×6n+2−101) × (4×6n+2+101) / 35
http://factordb.com/index.php?query=%2816*36%5E%28n%2B2%29-10201%29%2F35&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 R{G}D (961×36n+1−121)/35 (n ≥ 0) difference-of-two-squares factorization
(961×36n+1−121)/35 = (31×6n+1−11) × (31×6n+1+11) / 35
http://factordb.com/index.php?query=%28961*36%5E%28n%2B2%29-121%29%2F35&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 3{G}8D (121×36n+2−10201)/35 (n ≥ 0) difference-of-two-squares factorization
(121×36n+2−10201)/35 = (11×6n+2−101) × (11×6n+2+101) / 35
http://factordb.com/index.php?query=%28121*36%5E%28n%2B2%29-10201%29%2F35&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 R{G}8D (961×36n+2−10201)/35 (n ≥ 0) difference-of-two-squares factorization
(961×36n+2−10201)/35 = (31×6n+2−101) × (31×6n+2+101) / 35
http://factordb.com/index.php?query=%28961*36%5E%28n%2B2%29-10201%29%2F35&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 {K}H (4×36n+1−25)/7 (n ≥ 1) difference-of-two-squares factorization
(4×36n+1−25)/7 = (2×6n+1−5) × (2×6n+1+5) / 7
http://factordb.com/index.php?query=%284*36%5E%28n%2B1%29-25%29%2F7&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 B{K}H (81×36n+1−25)/7 (n ≥ 0) difference-of-two-squares factorization
(81×36n+1−25)/7 = (9×6n+1−5) × (9×6n+1+5) / 7
http://factordb.com/index.php?query=%2881*36%5E%28n%2B1%29-25%29%2F7&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 3{K}IH (25×36n+2−529)/7 (n ≥ 0) difference-of-two-squares factorization
(25×36n+2−529)/7 = (5×6n+2−23) × (5×6n+2+23) / 7
http://factordb.com/index.php?query=%2825*36%5E%28n%2B2%29-529%29%2F7&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 B{K}IH (81×36n+2−529)/7 (n ≥ 0) difference-of-two-squares factorization
(81×36n+2−529)/7 = (9×6n+2−23) × (9×6n+2+23) / 7
http://factordb.com/index.php?query=%2881*36%5E%28n%2B2%29-529%29%2F7&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 {S}J (4×36n+1−49)/5 (n ≥ 1) difference-of-two-squares factorization
(4×36n+1−49)/5 = (2×6n+1−7) × (2×6n+1+7) / 5
http://factordb.com/index.php?query=%284*36%5E%28n%2B1%29-49%29%2F5&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 {S}IJ (4×36n+2−1849)/5 (n ≥ 0) difference-of-two-squares factorization
(4×36n+2−1849)/5 = (2×6n+2−43) × (2×6n+2+43) / 5
http://factordb.com/index.php?query=%284*36%5E%28n%2B2%29-1849%29%2F5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 1{S}J (9×36n+1−49)/5 (n ≥ 0) difference-of-two-squares factorization
(9×36n+1−49)/5 = (3×6n+1−7) × (3×6n+1+7) / 5
http://factordb.com/index.php?query=%289*36%5E%28n%2B1%29-49%29%2F5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 C{S}J (64×36n+1−49)/5 (n ≥ 0) difference-of-two-squares factorization
(64×36n+1−49)/5 = (8×6n+1−7) × (8×6n+1+7) / 5
http://factordb.com/index.php?query=%2864*36%5E%28n%2B1%29-49%29%2F5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 X{S}J (169×36n+1−49)/5 (n ≥ 0) difference-of-two-squares factorization
(169×36n+1−49)/5 = (13×6n+1−7) × (13×6n+1+7) / 5
http://factordb.com/index.php?query=%28169*36%5E%28n%2B1%29-49%29%2F5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 1{S}GJ (9×36n+2−2209)/5 (n ≥ 0) difference-of-two-squares factorization
(9×36n+2−2209)/5 = (3×6n+2−47) × (3×6n+2+47) / 5
http://factordb.com/index.php?query=%289*36%5E%28n%2B2%29-2209%29%2F5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 9{S}GJ (49×36n+2−2209)/5 (n ≥ 0) difference-of-two-squares factorization
(49×36n+2−2209)/5 = (7×6n+2−47) × (7×6n+2+47) / 5
http://factordb.com/index.php?query=%2849*36%5E%28n%2B2%29-2209%29%2F5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 C{S}GJ (64×36n+2−2209)/5 (n ≥ 0) difference-of-two-squares factorization
(64×36n+2−2209)/5 = (8×6n+2−47) × (8×6n+2+47) / 5
http://factordb.com/index.php?query=%2864*36%5E%28n%2B2%29-2209%29%2F5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 X{S}GJ (169×36n+2−2209)/5 (n ≥ 0) difference-of-two-squares factorization
(169×36n+2−2209)/5 = (13×6n+2−47) × (13×6n+2+47) / 5
http://factordb.com/index.php?query=%28169*36%5E%28n%2B2%29-2209%29%2F5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 1{S}IJ (9×36n+2−1849)/5 (n ≥ 0) difference-of-two-squares factorization
(9×36n+2−1849)/5 = (3×6n+2−43) × (3×6n+2+43) / 5
http://factordb.com/index.php?query=%289*36%5E%28n%2B2%29-1849%29%2F5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 9{S}IJ (49×36n+2−1849)/5 (n ≥ 0) difference-of-two-squares factorization
(49×36n+2−1849)/5 = (7×6n+2−43) × (7×6n+2+43) / 5
http://factordb.com/index.php?query=%2849*36%5E%28n%2B2%29-1849%29%2F5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
14 8{D} 9×14n−1 (n ≥ 1) combine of factor 5 and difference-of-two-squares factorization
divisible by 5 if n is odd, 9×14n−1 = (3×14n/2−1) × (3×14n/2+1) if n is even
http://factordb.com/index.php?query=9*14%5En-1&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
12 {B}9B 12n+2−25 (n ≥ 0) combine of factor 13 and difference-of-two-squares factorization
divisible by 13 if n is odd, 12n+2−25 = (12(n+2)/2−5) × (12(n+2)/2+5) if n is even
http://factordb.com/index.php?query=12%5E%28n%2B2%29-25&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
14 {D}5 14n+1−9 (n ≥ 1) combine of factor 5 and difference-of-two-squares factorization
divisible by 5 if n is even, 14n+1−9 = (14(n+1)/2−3) × (14(n+1)/2+3) if n is odd
http://factordb.com/index.php?query=14%5E%28n%2B1%29-9&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
17 1{9} (25×17n−9)/16 (n ≥ 1) combine of factor 2 and difference-of-two-squares factorization
divisible by 2 if n is odd, (25×17n−9)/16 = (5×17n/2−3) × (5×17n/2+3) / 16 if n is even
http://factordb.com/index.php?query=%2825*17%5En-9%29%2F16&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
17 7{9} (121×17n−9)/16 (n ≥ 1) combine of factor 2 and difference-of-two-squares factorization
divisible by 2 if n is odd, (121×17n−9)/16 = (11×17n/2−3) × (11×17n/2+3) / 16 if n is even
http://factordb.com/index.php?query=%28121*17%5En-9%29%2F16&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
17 {9}2 (9×17n+1−121)/16 (n ≥ 1) combine of factor 2 and difference-of-two-squares factorization
divisible by 2 if n is even, (9×17n+1−121)/16 = (3×17(n+1)/2−11) × (3×17(n+1)/2+11) / 16 if n is odd
http://factordb.com/index.php?query=%289*17%5E%28n%2B1%29-121%29%2F16&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
17 {9}8 (9×17n+1−25)/16 (n ≥ 1) combine of factor 2 and difference-of-two-squares factorization
divisible by 2 if n is even, (9×17n+1−25)/16 = (3×17(n+1)/2−5) × (3×17(n+1)/2+5) / 16 if n is odd
http://factordb.com/index.php?query=%289*17%5E%28n%2B1%29-25%29%2F16&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
19 1{6} (4×19n−1)/3 (n ≥ 1) combine of factor 5 and difference-of-two-squares factorization
divisible by 5 if n is odd, (4×19n−1)/3 = (2×19n/2−1) × (2×19n/2+1) / 3 if n is even
http://factordb.com/index.php?query=%284*19%5En-1%29%2F3&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
19 {6}5 (19n+1−4)/3 (n ≥ 1) combine of factor 5 and difference-of-two-squares factorization
divisible by 5 if n is even, (19n+1−4)/3 = (19(n+1)/2−2) × (19(n+1)/2+2) / 3 if n is odd
http://factordb.com/index.php?query=%2819%5E%28n%2B1%29-4%29%2F3&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
19 7{2} (64×19n−1)/9 (n ≥ 1) combine of factor 5 and difference-of-two-squares factorization
divisible by 5 if n is odd, (64×19n−1)/9 = (8×19n/2−1) × (8×19n/2+1) / 9 if n is even
http://factordb.com/index.php?query=%2864*19%5En-1%29%2F9&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
19 89{6} (484×19n−1)/3 (n ≥ 0) combine of factor 5 and difference-of-two-squares factorization
divisible by 5 if n is odd, (484×19n−1)/3 = (22×19n/2−1) × (22×19n/2+1) / 3 if n is even
http://factordb.com/index.php?query=%28484*19%5En-1%29%2F3&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
24 3{N} 4×24n−1 (n ≥ 1) combine of factor 5 and difference-of-two-squares factorization
divisible by 5 if n is odd, 4×24n−1 = (2×24n/2−1) × (2×24n/2+1) if n is even
http://factordb.com/index.php?query=4*24%5En-1&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
24 5{N} 6×24n−1 (n ≥ 1) combine of factor 5 and difference-of-two-squares factorization
divisible by 5 if n is even, 6×24n−1 = (12×24(n−1)/2−1) × (12×24(n−1)/2+1) if n is odd
http://factordb.com/index.php?query=6*24%5En-1&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
24 8{N} 9×24n−1 (n ≥ 1) combine of factor 5 and difference-of-two-squares factorization
divisible by 5 if n is odd, 9×24n−1 = (3×24n/2−1) × (3×24n/2+1) if n is even
http://factordb.com/index.php?query=9*24%5En-1&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
24 {6}1 (6×24n+1−121)/23 (n ≥ 1) combine of factor 5 and difference-of-two-squares factorization
divisible by 5 if n is odd, (6×24n+1−121)/23 = (12×24n/2−11) × (12×24n/2+11) / 23 if n is even
http://factordb.com/index.php?query=%286*24%5E%28n%2B1%29-121%29%2F23&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
24 {N}LN 24n+2−49 (n ≥ 0) combine of factor 5 and difference-of-two-squares factorization
divisible by 5 if n is odd, 24n+2−49 = (24(n+2)/2−7) × (24(n+2)/2+7) if n is even
http://factordb.com/index.php?query=24%5E%28n%2B2%29-49&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
33 F{W} 16×33n−1 (n ≥ 1) combine of factor 17 and difference-of-two-squares factorization
divisible by 17 if n is odd, 16×33n−1 = (4×33n/2−1) × (4×33n/2+1) if n is even
http://factordb.com/index.php?query=16*33%5En-1&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
33 {W}H 33n+1−16 (n ≥ 1) combine of factor 17 and difference-of-two-squares factorization
divisible by 17 if n is even, 33n+1−16 = (33(n+1)/2−4) × (33(n+1)/2+4) if n is odd
http://factordb.com/index.php?query=33%5E%28n%2B1%29-16&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
33 3{P} (121×33n−25)/32 (n ≥ 1) combine of factor 2 and difference-of-two-squares factorization
divisible by 2 if n is odd, (121×33n−25)/32 = (11×33n/2−5) × (11×33n/2+5) / 32 if n is even
http://factordb.com/index.php?query=%28121*33%5En-25%29%2F32&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
33 D{P} (441×33n−25)/32 (n ≥ 1) combine of factor 2 and difference-of-two-squares factorization
divisible by 2 if n is odd, (441×33n−25)/32 = (21×33n/2−5) × (21×33n/2+5) / 32 if n is even
http://factordb.com/index.php?query=%28441*33%5En-25%29%2F32&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
33 {9}4 (9×33n+1−169)/32 (n ≥ 1) combine of factor 2 and difference-of-two-squares factorization
divisible by 2 if n is even, (9×33n+1−169)/32 = (3×33(n+1)/2−13) × (3×33(n+1)/2+13) / 32 if n is odd
http://factordb.com/index.php?query=%289*33%5E%28n%2B1%29-169%29%2F32&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
34 1{B} (4×34n−1)/3 (n ≥ 1) combine of factor 5 and difference-of-two-squares factorization
divisible by 5 if n is odd, (4×34n−1)/3 = (2×34n/2−1) × (2×34n/2+1) / 3 if n is even
http://factordb.com/index.php?query=%284*34%5En-1%29%2F3&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
34 8{X} 9×34n−1 (n ≥ 1) combine of factor 5 and difference-of-two-squares factorization
divisible by 5 if n is odd, 9×34n−1 = (3×34n/2−1) × (3×34n/2+1) if n is even
http://factordb.com/index.php?query=9*34%5En-1&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
34 {X}P 34n+1−9 (n ≥ 1) combine of factor 5 and difference-of-two-squares factorization
divisible by 5 if n is even, 34n+1−9 = (34(n+1)/2−3) × (34(n+1)/2+3) if n is odd
http://factordb.com/index.php?query=34%5E%28n%2B1%29-9&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show

Also families which contain only one very small prime > b: (this is because: for the case of covering congruence, an element in S is indeed in the family and > b, to make the factorizations be trivial; for the case of algebraic factorization (if the numbers are factored as F × G / d), F (or G) is equal to d and G (or F) is prime > b, to make the factorizations be trivial; for the case of combine of covering congruence and algebraic factorization (if the numbers are factored as F × G / d), an element in S is indeed in the family and > b or/and F (or G) is equal to d and G (or F) is prime > b, to make the factorizations be trivial)

b family algebraic ((a×bn+c)/d) form of this family (n is the number of digits in the "{}", also the lower bound of n to make the numbers > b)
(note: d divides gcd(a+c,b−1), but d need not be gcd(a+c,b−1), d = gcd(a+c,b−1) if and only if the numbers in the family are not divisible by some prime factor of b−1, i.e. the numbers in the family are coprime to b−1)
the only prime > b in this family this prime > b written in decimal why this family contains only this prime > b factorization of the numbers in this family (n is the number of digits in the "{}", start with the smallest n making the number > b (if n = 0 already makes the number > b, then start with n = 0))
9 2{7}5 (23×9n+1−23)/8 (n ≥ 0) 25 23 always divisible by 23 http://factordb.com/index.php?query=%2823*9%5E%28n%2B1%29-23%29%2F8&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
9 5{7}2 (47×9n+1−47)/8 (n ≥ 0) 52 47 always divisible by 47 http://factordb.com/index.php?query=%2847*9%5E%28n%2B1%29-47%29%2F8&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
11 3{7}4 (37×11n+1−37)/10 (n ≥ 0) 34 37 always divisible by 37 http://factordb.com/index.php?query=%2837*11%5E%28n%2B1%29-37%29%2F10&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
11 4{7}3 (47×11n+1−47)/10 (n ≥ 0) 43 47 always divisible by 47 http://factordb.com/index.php?query=%2847*11%5E%28n%2B1%29-47%29%2F10&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
27 2{0}J 2×27n+1+19 (n ≥ 0) 2J 73 always divisible by some element of {5,7,73}
divisible by 7 if n is odd, divisible by 5 if n == 2 mod 4, divisible by 73 if n == 0 mod 4
http://factordb.com/index.php?query=2*27%5E%28n%2B1%29%2B19&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
4 {1} (4n−1)/3 (n ≥ 2) 11 5 difference-of-two-squares factorization
but 11 is prime, and 11 is the only prime > b in this family
(4n−1)/3 = (2n−1) × (2n+1) / 3
http://factordb.com/index.php?query=%284%5En-1%29%2F3&use=n&n=2&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
8 {1} (8n−1)/7 (n ≥ 2) 111 73 difference-of-two-cubes factorization
but 111 is prime, and 111 is the only prime > b in this family
(8n−1)/7 = (2n−1) × (4n+2n+1) / 7
http://factordb.com/index.php?query=%288%5En-1%29%2F7&use=n&n=2&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 {1} (16n−1)/15 (n ≥ 2) 11 17 difference-of-two-squares factorization
but 11 is prime, and 11 is the only prime > b in this family
(16n−1)/15 = (4n−1) × (4n+1) / 15
(in fact, difference-of-4th-powers factorization)
(16n−1)/15 = (2n−1) × (2n+1) × (4n+1) / 15
http://factordb.com/index.php?query=%2816%5En-1%29%2F15&use=n&n=2&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
27 {1} (27n−1)/26 (n ≥ 2) 111 757 difference-of-two-cubes factorization
but 111 is prime, and 111 is the only prime > b in this family
(27n−1)/26 = (3n−1) × (9n+3n+1) / 26
http://factordb.com/index.php?query=%2827%5En-1%29%2F26&use=n&n=2&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
27 {G}7 (8×27n+1−125)/13 (n ≥ 1) G7 439 difference-of-two-cubes factorization
but G7 is prime, and G7 is the only prime > b in this family
(8×27n+1−125)/13 = (2×3n+1−5) × (4×9n+1+10×3n+1+25) / 13
http://factordb.com/index.php?query=%288*27%5E%28n%2B1%29-125%29%2F13&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 {1} (36n−1)/35 (n ≥ 2) 11 37 difference-of-two-squares factorization
but 11 is prime, and 11 is the only prime > b in this family
(36n−1)/35 = (6n−1) × (6n+1) / 35
http://factordb.com/index.php?query=%2836%5En-1%29%2F35&use=n&n=2&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show

Some x{y}z (where x and z are strings (may be empty) of digits in base b, y is a digit in base b) families could not be proven to contain no primes > b (by covering congruence, algebraic factorization, or combine of them) but no primes > b could be found in the family, even after searching through numbers with over 100000 digits. In such a case, the only way to proceed is to test the primality of larger and larger numbers of such form and hope a prime is eventually discovered.

Many x{y}z (where x and z are strings (may be empty) of digits in base b, y is a digit in base b) families contain no small primes > b even though they do contain very large primes. e.g. the smallest prime in base 13 family 9{5} is 95197420 (http://www.primenumbers.net/prptop/searchform.php?form=%28113*13%5E197420-5%29%2F12&action=Search, http://factordb.com/index.php?id=1100000003943359311, for this prime written in base b = 13 see http://factordb.com/index.php?showid=1100000003943359311&base=13, and for the factorization of the numbers in the family (n is the number of digits in the "{}", start with the smallest n making the number > b) see http://factordb.com/index.php?query=%28113*13%5En-5%29%2F12&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show), its algebraic form is (113×13197420−5)/12, when written in decimal it contains 219916 digits; and the smallest prime in base 16 family {3}AF is 3116137AF (http://www.primenumbers.net/prptop/searchform.php?form=%2816%5E116139%2B619%29%2F5&action=Search, http://factordb.com/index.php?id=1100000003851731988, for this prime written in base b = 16 see http://factordb.com/index.php?showid=1100000003851731988&base=16, and for the factorization of the numbers in the family (n is the number of digits in the "{}", start with the smallest n making the number > b) see http://factordb.com/index.php?query=%2816%5E%28n%2B2%29%2B619%29%2F5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show), its algebraic form is (16116139+619)/5, when written in decimal it contains 139845 digits; and the smallest prime in base 23 family 9{E} is 9E800873 (http://www.primenumbers.net/prptop/searchform.php?form=%28106*23%5E800873-7%29%2F11&action=Search, http://factordb.com/index.php?id=1100000000782858648, for this prime written in base b = 23 see http://factordb.com/index.php?showid=1100000000782858648&base=23, and for the factorization of the numbers in the family (n is the number of digits in the "{}", start with the smallest n making the number > b) see http://factordb.com/index.php?query=%28106*23%5En-7%29%2F11&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show), its algebraic form is (106×23800873−7)/11, when written in decimal it contains 1090573 digits; and the smallest prime in base 25 family 71JD{0}1 is 71JD04585491 (http://primes.utm.edu/primes/page.php?id=111834, http://factordb.com/index.php?id=1100000002341496334, for this prime written in base b = 25 see http://factordb.com/index.php?showid=1100000002341496334&base=25, and for the factorization of the numbers in the family (n is the number of digits in the "{}", start with the smallest n making the number > b) see http://factordb.com/index.php?query=110488*25%5E%28n%2B1%29%2B1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show), its algebraic form is 110488×25458550+1, when written in decimal it contains 641031 digits (this number can be proven prime by N−1 test (https://primes.utm.edu/prove/prove3_1.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://factordb.com/nmoverview.php?method=1), since N−1 is trivially fully factored); and the smallest prime in base 32 family NU{0}1 is NU06618631 (https://primes.utm.edu/primes/page.php?id=134216, http://factordb.com/index.php?id=1100000003813355148, for this prime written in base b = 32 see http://factordb.com/index.php?showid=1100000003813355148&base=32, and for the factorization of the numbers in the family (n is the number of digits in the "{}", start with the smallest n making the number > b) see http://factordb.com/index.php?query=766*32%5E%28n%2B1%29%2B1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show), its algebraic form is 766×32661864+1, when written in decimal it contains 996208 digits (this number can be proven prime by N−1 test (https://primes.utm.edu/prove/prove3_1.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://factordb.com/nmoverview.php?method=1), since N−1 is trivially fully factored); and the smallest prime in base 36 family {P}SZ is P81993SZ (http://www.primenumbers.net/prptop/searchform.php?form=%285*36%5E81995%2B821%29%2F7&action=Search, http://factordb.com/index.php?id=1100000002394962083, for this prime written in base b = 36 see http://factordb.com/index.php?showid=1100000002394962083&base=36, and for the factorization of the numbers in the family (n is the number of digits in the "{}", start with the smallest n making the number > b) see http://factordb.com/index.php?query=%285*36%5E%28n%2B2%29%2B821%29%2F7&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show), its algebraic form is (5×3681995+821)/7, when written in decimal it contains 127609 digits. (technically, probable (https://en.wikipedia.org/wiki/Probabilistic_algorithm) primality tests (https://primes.utm.edu/prove/prove2.html) were used to show these for the numbers which cannot be proven prime by N−1 test (https://primes.utm.edu/prove/prove3_1.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://factordb.com/nmoverview.php?method=1) or N+1 test (https://primes.utm.edu/prove/prove3_2.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://factordb.com/nmoverview.php?method=2), i.e. for the ordinary primes (https://primes.utm.edu/glossary/xpage/OrdinaryPrime.html) (which have a very small chance of making an error (https://primes.utm.edu/notes/prp_prob.html, https://www.ams.org/journals/mcom/1989-53-188/S0025-5718-1989-0982368-4/S0025-5718-1989-0982368-4.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_22.pdf))) because all known primality tests (https://en.wikipedia.org/wiki/Primality_test, https://www.rieselprime.de/ziki/Primality_test, https://mathworld.wolfram.com/PrimalityTest.html, https://primes.utm.edu/prove/prove3.html, https://primes.utm.edu/prove/prove4.html) run far too slowly (the CPU time (https://en.wikipedia.org/wiki/CPU_time) is longer than the life expectancy of human (https://en.wikipedia.org/wiki/Life_expectancy) for numbers > 10100000, and longer than the age of the universe (https://en.wikipedia.org/wiki/Age_of_the_universe) for numbers > 10500000, and longer than one quettasecond (https://en.wikipedia.org/wiki/Quetta-) for numbers > 103000000, even if we can do 109 bitwise operations (https://en.wikipedia.org/wiki/Bitwise_operation) per second (https://en.wikipedia.org/wiki/Second) to run on these numbers) to run on numbers of these sizes unless either N−1 (https://primes.utm.edu/prove/prove3_1.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://factordb.com/nmoverview.php?method=1) or N+1 (https://primes.utm.edu/prove/prove3_2.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://factordb.com/nmoverview.php?method=2) (or both) (unfortunely, none of Wikipedia, Prime Wiki, Mathworld has article for N−1 primality test or N+1 primality test, but a similar article for Pocklington primality test: https://en.wikipedia.org/wiki/Pocklington_primality_test, https://www.rieselprime.de/ziki/Pocklington%27s_theorem, https://mathworld.wolfram.com/PocklingtonsTheorem.html, also see the article for the cyclotomy primality test: https://primes.utm.edu/glossary/xpage/Cyclotomy.html) can be ≥ 1/3 factored (https://en.wikipedia.org/wiki/Integer_factorization, https://www.rieselprime.de/ziki/Factorization, https://mathworld.wolfram.com/PrimeFactorization.html, https://mathworld.wolfram.com/PrimeFactorizationAlgorithms.html, http://www.numericana.com/answer/factoring.htm) or can be ≥ 1/4 factored and the number is not very large (say not > 10100000), or Nn−1 can be ≥ 1/3 factored for a small n. If either N−1 or N+1 (or both) can be ≥ 1/2 factored, then we can use the Pocklington N−1 primality test (https://primes.utm.edu/prove/prove3_1.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, https://en.wikipedia.org/wiki/Pocklington_primality_test, https://www.rieselprime.de/ziki/Pocklington%27s_theorem, https://mathworld.wolfram.com/PocklingtonsTheorem.html, https://stdkmd.net/nrr/pock/, http://factordb.com/nmoverview.php?method=1) (the N−1 case) or the Morrison N+1 primality test (https://primes.utm.edu/prove/prove3_2.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://factordb.com/nmoverview.php?method=2) (the N+1 case); if either N−1 or N+1 (or both) can be ≥ 1/3 factored, then we can use the Brillhart-Lehmer-Selfridge primality test (https://www.ams.org/journals/mcom/1975-29-130/S0025-5718-1975-0384673-1/S0025-5718-1975-0384673-1.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_23.pdf), https://en.wikipedia.org/wiki/Pocklington_primality_test#Extensions_and_variants); if either N−1 or N+1 (or both) can be ≥ 1/4 factored but neither can be ≥ 1/3 factored, then we need to use CHG (https://mersenneforum.org/attachment.php?attachmentid=21133&d=1571237465, https://primes.utm.edu/bios/page.php?id=797, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/CHG) to prove its primality (see https://mersenneforum.org/showpost.php?p=528149&postcount=3 and https://mersenneforum.org/showpost.php?p=603181&postcount=438), however, unlike Brillhart-Lehmer-Selfridge primality test for the numbers N such that N−1 or N+1 (or both) can be ≥ 1/3 factored can run for arbitrarily large numbers N (thus, there are no unproven probable primes N such that N−1 or N+1 (or both) can be ≥ 1/3 factored), CHG for the numbers N such that either N−1 or N+1 (or both) can be ≥ 1/4 factored but neither can be ≥ 1/3 factored cannot run for very large N (say > 10100000), for the examples of the numbers which are proven prime by CHG, see https://primes.utm.edu/primes/page.php?id=126454, https://primes.utm.edu/primes/page.php?id=131964, https://primes.utm.edu/primes/page.php?id=123456, https://primes.utm.edu/primes/page.php?id=130933, https://stdkmd.net/nrr/cert/1/ (search for "CHG"), https://stdkmd.net/nrr/cert/2/ (search for "CHG"), https://stdkmd.net/nrr/cert/3/ (search for "CHG"), https://stdkmd.net/nrr/cert/4/ (search for "CHG"), https://stdkmd.net/nrr/cert/5/ (search for "CHG"), https://stdkmd.net/nrr/cert/6/ (search for "CHG"), https://stdkmd.net/nrr/cert/7/ (search for "CHG"), https://stdkmd.net/nrr/cert/8/ (search for "CHG"), https://stdkmd.net/nrr/cert/9/ (search for "CHG"), however, factordb (http://factordb.com/, https://www.rieselprime.de/ziki/Factoring_Database) lacks the ability to verify CHG proofs, see https://mersenneforum.org/showpost.php?p=608362&postcount=165; if neither N−1 nor N+1 can be ≥ 1/4 factored but Nn−1 can be ≥ 1/3 factored for a small n, then we can use the cyclotomy primality test (https://primes.utm.edu/glossary/xpage/Cyclotomy.html, https://primes.utm.edu/prove/prove3_3.html, http://factordb.com/nmoverview.php?method=3)), i.e. it is too hard to prove primes for general numbers (https://primes.utm.edu/glossary/xpage/OrdinaryPrime.html) of this size, but they are expected to be primes, since they are > 1025000 and the probability that they are in fact composite is < 10−2000, see https://primes.utm.edu/notes/prp_prob.html and https://www.ams.org/journals/mcom/1989-53-188/S0025-5718-1989-0982368-4/S0025-5718-1989-0982368-4.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_22.pdf).

The numbers in x{y}z (where x and z are strings (may be empty) of digits in base b, y is a digit in base b) families are of the form (a×bn+c)/gcd(a+c,b−1) for some fixed a, b, c such that a ≥ 1, b ≥ 2 (b is the base), c ≠ 0, gcd(a,c) = 1, gcd(b,c) = 1. Except in the special case c = ±1 and gcd(a+c,b−1) = 1 (since this special case c = ±1 and gcd(a+c,b−1) = 1 is the only case which N−1 and/or N+1 is smooth (https://en.wikipedia.org/wiki/Smooth_number, https://mathworld.wolfram.com/SmoothNumber.html), i.e. the case c = 1 and gcd(a+c,b−1) = 1 (corresponding to generalized Proth prime (https://en.wikipedia.org/wiki/Proth_prime, https://primes.utm.edu/glossary/xpage/ProthPrime.html, https://www.rieselprime.de/ziki/Proth_prime, https://mathworld.wolfram.com/ProthNumber.html, https://www.numbersaplenty.com/set/Proth_number/, https://primes.utm.edu/top20/page.php?id=66, https://www.primegrid.com/forum_thread.php?id=2665, https://www.primegrid.com/stats_pps_llr.php, https://www.primegrid.com/stats_ppse_llr.php, https://www.primegrid.com/stats_mega_llr.php) base b: a×bn+1, they are related to generalized Sierpinski conjecture base b (http://www.noprimeleftbehind.net/crus/Sierp-conjectures.htm, http://www.noprimeleftbehind.net/crus/Sierp-conjectures-powers2.htm, http://www.noprimeleftbehind.net/crus/Sierp-conjecture-reserves.htm, http://www.noprimeleftbehind.net/crus/vstats_new/all_ck_sierpinski.txt, https://www.utm.edu/staff/caldwell/preprints/2to100.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_3.pdf), http://www.bitman.name/math/article/1259 (in Italian))) can be easily proven prime using Pocklington N−1 method (https://primes.utm.edu/prove/prove3_1.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, https://en.wikipedia.org/wiki/Pocklington_primality_test, https://www.rieselprime.de/ziki/Pocklington%27s_theorem, https://mathworld.wolfram.com/PocklingtonsTheorem.html, https://stdkmd.net/nrr/pock/, http://factordb.com/nmoverview.php?method=1), and the case c = −1 and gcd(a+c,b−1) = 1 (corresponding to generalized Riesel prime (https://www.rieselprime.de/ziki/Riesel_prime) base b: a×bn−1, they are related to generalized Riesel conjecture base b (http://www.noprimeleftbehind.net/crus/Riesel-conjectures.htm, http://www.noprimeleftbehind.net/crus/Riesel-conjectures-powers2.htm, http://www.noprimeleftbehind.net/crus/Riesel-conjecture-reserves.htm, http://www.noprimeleftbehind.net/crus/vstats_new/all_ck_riesel.txt)) can be easily proven prime using Morrison N+1 method (https://primes.utm.edu/prove/prove3_2.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://factordb.com/nmoverview.php?method=2), these primes can be proven prime using Yves Gallot's Proth.exe (https://primes.utm.edu/programs/gallot/, https://primes.utm.edu/bios/page.php?id=411, https://www.rieselprime.de/ziki/Proth.exe, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/proth), these primes can also be proven prime using Jean Penné's LLR (http://jpenne.free.fr/index2.html, https://primes.utm.edu/bios/page.php?id=431, https://www.rieselprime.de/ziki/LLR, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/llr403win64, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/llr403linux64), see https://mersenneforum.org/showpost.php?p=611607&postcount=10 and https://mersenneforum.org/showpost.php?p=235113&postcount=8 and https://mersenneforum.org/showpost.php?p=541285&postcount=4 and https://mersenneforum.org/showpost.php?p=586913&postcount=429 and https://mersenneforum.org/showpost.php?p=605958&postcount=441, also see https://web.archive.org/web/20020809212051/http://www.users.globalnet.co.uk/~aads/C0034177.html and https://web.archive.org/web/20020701171455/http://www.users.globalnet.co.uk/~aads/C0066883.html and https://web.archive.org/web/20020809122706/http://www.users.globalnet.co.uk/~aads/C0071699.html and https://web.archive.org/web/20020809122635/http://www.users.globalnet.co.uk/~aads/C0101031.html and https://web.archive.org/web/20020809122237/http://www.users.globalnet.co.uk/~aads/C0114801.html and https://web.archive.org/web/20020809122947/http://www.users.globalnet.co.uk/~aads/C0130991.html and https://web.archive.org/web/20020809124216/http://www.users.globalnet.co.uk/~aads/C0131021.html and https://web.archive.org/web/20020809125049/http://www.users.globalnet.co.uk/~aads/C0131193.html and https://web.archive.org/web/20020809124458/http://www.users.globalnet.co.uk/~aads/C0152579.html and https://web.archive.org/web/20020809124537/http://www.users.globalnet.co.uk/~aads/C0220857.html and https://web.archive.org/web/20020809152611/http://www.users.globalnet.co.uk/~aads/C0315581.html and https://web.archive.org/web/20020809124929/http://www.users.globalnet.co.uk/~aads/C0351297.html and http://www.fermatquotient.com/PrimSerien/GenFermOdd.txt (the bottom of the page, about the factorization of (7116384+1)/2−1 and (7116384+1)/2+1) and https://web.archive.org/web/20170515153924/http://bitc.bme.emory.edu/~lzhou/blogs/?p=263, also see the README file for LLR (https://github.com/xayahrainie4793/prime-programs-cached-copy/blob/main/llr403win64/Readme.txt, https://github.com/xayahrainie4793/prime-programs-cached-copy/blob/main/llr403linux64/Readme.txt, http://jpenne.free.fr/index2.html), also see the (generalized) Proth/Riesel prime search page (https://primes.utm.edu/primes/search_proth.php), also you can compare the top definitely primes page (https://primes.utm.edu/primes/lists/all.txt) and the top probable primes page (http://www.primenumbers.net/prptop/prptop.php), also see https://stdkmd.net/nrr/records.htm (compare the sections "Prime numbers" and "Probable prime numbers")), when n is large the known primality tests (https://en.wikipedia.org/wiki/Primality_test, https://www.rieselprime.de/ziki/Primality_test, https://mathworld.wolfram.com/PrimalityTest.html, https://primes.utm.edu/prove/prove3.html, https://primes.utm.edu/prove/prove4.html) for such a number are too inefficient to run. In this case one must resort to a probable (https://en.wikipedia.org/wiki/Probabilistic_algorithm) primality test (https://primes.utm.edu/prove/prove2.html) such as a Miller–Rabin primality test (https://primes.utm.edu/prove/prove2_3.html, https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test, https://en.wikipedia.org/wiki/Strong_pseudoprime, https://primes.utm.edu/glossary/xpage/StrongPRP.html, https://www.rieselprime.de/ziki/Miller-Rabin_pseudoprimality_test, https://mathworld.wolfram.com/Rabin-MillerStrongPseudoprimeTest.html, https://mathworld.wolfram.com/StrongPseudoprime.html, http://www.numericana.com/answer/pseudo.htm#rabin, http://www.numericana.com/answer/pseudo.htm#strong, http://www.javascripter.net/math/primes/millerrabinprimalitytest.htm, http://ntheory.org/data/spsps.txt, https://sites.google.com/view/strong-pseudoprime, https://sites.google.com/view/bases-strong-pseudoprime, https://oeis.org/A001262, https://oeis.org/A020229, https://oeis.org/A072276, https://oeis.org/A014233, https://oeis.org/A181782, https://oeis.org/A071294, https://oeis.org/A141768, https://oeis.org/A195328, https://oeis.org/A329759, https://oeis.org/A298756) or a Baillie–PSW primality test (https://en.wikipedia.org/wiki/Baillie%E2%80%93PSW_primality_test, https://mathworld.wolfram.com/Baillie-PSWPrimalityTest.html), unless a divisor of the number can be found. Since we are testing many numbers in an exponential sequence (https://en.wikipedia.org/wiki/Exponential_growth, https://mathworld.wolfram.com/ExponentialGrowth.html), it is possible to use a sieving process (https://www.rieselprime.de/ziki/Sieving, https://www.rieselprime.de/ziki/Sieving_a_range_of_sequences, https://mathworld.wolfram.com/Sieve.html, http://www.rechenkraft.net/yoyo/y_status_sieve.php) to find divisors rather than using trial division (https://en.wikipedia.org/wiki/Trial_division, https://primes.utm.edu/glossary/xpage/TrialDivision.html, https://www.rieselprime.de/ziki/Trial_factoring, https://mathworld.wolfram.com/TrialDivision.html, http://www.numericana.com/answer/factoring.htm#trial).

To do this, we made use of Geoffrey Reynolds' SRSIEVE software (https://www.bc-team.org/app.php/dlext/?cat=3, http://web.archive.org/web/20160922072340/https://sites.google.com/site/geoffreywalterreynolds/programs/, http://www.rieselprime.de/dl/CRUS_pack.zip, https://primes.utm.edu/bios/page.php?id=905, https://www.rieselprime.de/ziki/Srsieve, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/srsieve_1.1.4, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/sr1sieve_1.4.6, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/sr2sieve_2.0.0, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/srbsieve, https://github.com/xayahrainie4793/prime-programs-cached-copy/blob/main/mtsieve_2.4.1/srsieve2.exe, https://github.com/xayahrainie4793/prime-programs-cached-copy/blob/main/mtsieve_2.4.1/srsieve2cl.exe). This program uses the baby-step giant-step (https://en.wikipedia.org/wiki/Baby-step_giant-step) algorithm (https://en.wikipedia.org/wiki/Algorithm, https://www.rieselprime.de/ziki/Algorithm, https://mathworld.wolfram.com/Algorithm.html) to find all primes p which divide a×bn+c where p and n lie in a specified range (https://en.wikipedia.org/wiki/Interval_(mathematics), https://mathworld.wolfram.com/Interval.html), by using discrete logarithm (https://en.wikipedia.org/wiki/Discrete_logarithm, https://mathworld.wolfram.com/DiscreteLogarithm.html) to solve the equation (https://en.wikipedia.org/wiki/Equation, https://mathworld.wolfram.com/Equation.html) a×bn+c == 0 mod p (i.e. solve the equation (https://en.wikipedia.org/wiki/Equation, https://mathworld.wolfram.com/Equation.html) a×bn+c = 0 in the finite field (https://en.wikipedia.org/wiki/Finite_field, https://mathworld.wolfram.com/FiniteField.html) Zp) (also, this program was updated so that it also removes the n such that a×bn+c has algebraic factors (e.g. difference-of-two-squares factorization (https://en.wikipedia.org/wiki/Difference_of_two_squares) and sum/difference-of-two-nth-powers factorization with odd n > 1 (https://en.wikipedia.org/wiki/Binomial_number, https://mathworld.wolfram.com/BinomialNumber.html) and Aurifeuillean factorization (https://en.wikipedia.org/wiki/Aurifeuillean_factorization, https://www.rieselprime.de/ziki/Aurifeuillian_factor, https://mathworld.wolfram.com/AurifeuilleanFactorization.html, http://www.numericana.com/answer/numbers.htm#aurifeuille, http://pagesperso-orange.fr/colin.barker/lpa/cycl_fac.htm, http://list.seqfan.eu/oldermail/seqfan/2017-March/017363.html, http://myfactorcollection.mooo.com:8090/source/cyclo.cpp, http://myfactorcollection.mooo.com:8090/LCD_2_199, http://myfactorcollection.mooo.com:8090/LCD_2_998, https://stdkmd.net/nrr/repunit/repunitnote.htm#aurifeuillean, https://www.unshlump.com/hcn/aurif.html) of x4+4×y4 or x6+27×y6), see https://mersenneforum.org/showpost.php?p=452132&postcount=66 and https://mersenneforum.org/showthread.php?t=21916 and https://github.com/xayahrainie4793/prime-programs-cached-copy/blob/main/srsieve_1.1.4/algebraic.c (note: for the sequence (a×bn+c)/gcd(a+c,b−1), the case of "Mersenne number" in https://github.com/xayahrainie4793/prime-programs-cached-copy/blob/main/srsieve_1.1.4/algebraic.c is the case which a is rational power of b, c = −1 and the case which a is rational power of b, c = 1, gcd(a+c,b−1) ≥ 3, and the case of "GFN" in https://github.com/xayahrainie4793/prime-programs-cached-copy/blob/main/srsieve_1.1.4/algebraic.c is the case which a is rational power of b, c = 1, gcd(a+c,b−1) is either 1 or 2)). Since this program cannot handle the general case (a×bn+c)/gcd(a+c,b−1) when gcd(a+c,b−1) > 1 we only used it to sieve the sequence a×bn+c for primes p not dividing gcd(a+c,b−1), and initialized the list of candidates to not include n for which there is some prime p dividing gcd(a+c,b−1) for which p dividing (a×bn+c)/gcd(a+c,b−1). The program had to be modified slightly to remove a check which would prevent it from running in the case when a, b, and c were all odd (since then 2 divides a×bn+c, but 2 may not divide (a×bn+c)/gcd(a+c,b−1)) (see https://github.com/curtisbright/mepn-data/commit/1b55b353f46c707bbe52897573914128b3303960).

Once the numbers with small divisors had been removed, it remained to test the remaining numbers using a probable primality test. For this we used the software LLR by Jean Penné (http://jpenne.free.fr/index2.html, https://primes.utm.edu/bios/page.php?id=431, https://www.rieselprime.de/ziki/LLR, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/llr403win64, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/llr403linux64) or PFGW (https://sourceforge.net/projects/openpfgw/, https://primes.utm.edu/bios/page.php?id=175, https://www.rieselprime.de/ziki/PFGW, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/pfgw_win_4.0.3). Although undocumented, it is possible to run these two programs on numbers of the form (a×bn+c)/d when d > 1 (however, of course, the numbers (a×bn+c)/d with |c| ≠ 1 and/or d <> 1 and/or a > bn can only be PRP (https://en.wikipedia.org/wiki/Probable_prime, https://primes.utm.edu/glossary/xpage/PRP.html, https://www.rieselprime.de/ziki/Probable_prime, https://mathworld.wolfram.com/ProbablePrime.html, https://stdkmd.net/nrr/records.htm#probableprimenumbers, https://stdkmd.net/nrr/repunit/prpfactors.htm, http://factordb.com/listtype.php?t=1) tested; the numbers a×2n±1 (with a < 2n) are the fastest to test, a×2n+1 numbers are tested using the Proth algorithm (https://en.wikipedia.org/wiki/Proth%27s_theorem, https://www.rieselprime.de/ziki/Proth%27s_theorem, https://mathworld.wolfram.com/ProthsTheorem.html, http://www.numericana.com/answer/primes.htm#proth), a×2n−1 numbers are tested using the Lucas-Lehmer-Riesel algorithm (https://en.wikipedia.org/wiki/Lucas%E2%80%93Lehmer%E2%80%93Riesel_test); the numbers a×bn±1 (with b > 2, a < bn) can also be definitely prime (https://en.wikipedia.org/wiki/Provable_prime, https://stdkmd.net/nrr/records.htm#primenumbers, http://factordb.com/listtype.php?t=4) tested, a×bn+1 numbers are tested using the N−1 Pocklington algorithm (https://primes.utm.edu/prove/prove3_1.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, https://en.wikipedia.org/wiki/Pocklington_primality_test, https://www.rieselprime.de/ziki/Pocklington%27s_theorem, https://mathworld.wolfram.com/PocklingtonsTheorem.html, https://stdkmd.net/nrr/pock/, http://factordb.com/nmoverview.php?method=1), a×bn−1 numbers are tested using the N+1 Morrison algorithm (https://primes.utm.edu/prove/prove3_2.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://factordb.com/nmoverview.php?method=2)), so this program required no modifications. A script was also written which allowed one to run srsieve while LLR or PFGW was testing the remaining candidates, so that when a divisor was found by srsieve on a number which had not yet been tested by LLR or PFGW it would be removed from the list of candidates.

For the primes < 1025000 for the solved or near-solved bases (bases b with ≤ 6 unsolved families, i.e. bases b = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22, 24, 26, 28, 30, 36), we employed PRIMO by Marcel Martin (http://www.ellipsa.eu/public/primo/primo.html, http://www.rieselprime.de/dl/Primo309.zip, https://primes.utm.edu/bios/page.php?id=46, https://www.rieselprime.de/ziki/Primo, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/primo-433-lx64, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/Primo309), an elliptic curve primality proving (https://primes.utm.edu/prove/prove4_2.html, https://en.wikipedia.org/wiki/Elliptic_curve_primality, https://primes.utm.edu/glossary/xpage/ECPP.html, https://mathworld.wolfram.com/EllipticCurvePrimalityProving.html, https://primes.utm.edu/top20/page.php?id=27) implementation, to compute primality certificates (https://en.wikipedia.org/wiki/Primality_certificate, https://primes.utm.edu/glossary/xpage/Certificate.html, https://mathworld.wolfram.com/PrimalityCertificate.html, http://www.lix.polytechnique.fr/Labo/Francois.Morain/Primes/myprimes.html, https://stdkmd.net/nrr/cert/, http://factordb.com/certoverview.php) for the candidates for minimal prime base b which are > 10299 and neither N−1 nor N+1 can be ≥ 1/3 factored (need CHG proof if either N−1 or N+1 (or both) can be ≥ 1/4 factored but neither can be ≥ 1/3 factored, but factordb (http://factordb.com/, https://www.rieselprime.de/ziki/Factoring_Database) lacks the ability to verify CHG proofs, see https://mersenneforum.org/showpost.php?p=608362&postcount=165).

We have completely solved this problem for bases b = 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 18, 20, 24 (i.e. we have found all minimal primes in these bases and proved that they are all such primes and proved that they are definitely primes (https://en.wikipedia.org/wiki/Provable_prime, http://factordb.com/listtype.php?t=4) (i.e. not merely probable primes)) (thus, currently we can complete the classification of the minimal primes in these bases, and the "minimal prime problem" for these bases are theorems (https://en.wikipedia.org/wiki/Theorem, https://mathworld.wolfram.com/Theorem.html, https://primes.utm.edu/notes/proofs/)), also we have completely solved this problem for bases b = 11, 16, 22, 30 if we allow probable primes (https://en.wikipedia.org/wiki/Probable_prime, https://primes.utm.edu/glossary/xpage/PRP.html, https://www.rieselprime.de/ziki/Probable_prime, https://mathworld.wolfram.com/ProbablePrime.html, https://stdkmd.net/nrr/records.htm#probableprimenumbers, https://stdkmd.net/nrr/repunit/prpfactors.htm, http://factordb.com/listtype.php?t=1) > 1025000 in place of proven primes, besides, we have completely solved this problem for bases b = 13, 17, 19, 21, 23, 25, 26, 27, 28, 32, 34, 36 (if we allow strong probable primes in place of proven primes) except the families x{y}z (where x and z are strings (may be empty) of digits in base b, y is a digit in base b) listed in the "left b" files (see the condensed table below for the searching limit of these families) (thus, currently the "minimal prime problem" for these bases are still unsolved problems (https://en.wikipedia.org/wiki/Open_problem, https://en.wikipedia.org/wiki/List_of_unsolved_problems_in_mathematics, https://primes.utm.edu/glossary/xpage/OpenQuestion.html, https://mathworld.wolfram.com/UnsolvedProblems.html, https://primes.utm.edu/notes/conjectures/)).

These sets of minimal primes are computed (https://en.wikipedia.org/wiki/Computing) by: make data up to linear families (i.e. only linear families left) (https://github.com/xayahrainie4793/minimal-elements-of-the-prime-numbers/blob/main/code/kGMP.cc, https://github.com/xayahrainie4793/minimal-elements-of-the-prime-numbers/blob/main/code/searchpp.cc) (see https://github.com/curtisbright/mepn-data/commit/7acfa0656d3c6b759f95a031f475a30f7664a122) → search the left linear families to length 1000 (https://github.com/xayahrainie4793/minimal-elements-of-the-prime-numbers/blob/main/code/searchpm.cc) → use a program like SRSIEVE (https://www.bc-team.org/app.php/dlext/?cat=3, http://web.archive.org/web/20160922072340/https://sites.google.com/site/geoffreywalterreynolds/programs/, http://www.rieselprime.de/dl/CRUS_pack.zip, https://primes.utm.edu/bios/page.php?id=905, https://www.rieselprime.de/ziki/Srsieve, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/srsieve_1.1.4, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/sr1sieve_1.4.6, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/sr2sieve_2.0.0, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/srbsieve, https://github.com/xayahrainie4793/prime-programs-cached-copy/blob/main/mtsieve_2.4.1/srsieve2.exe, https://github.com/xayahrainie4793/prime-programs-cached-copy/blob/main/mtsieve_2.4.1/srsieve2cl.exe) to sieve (https://www.rieselprime.de/ziki/Sieving, https://www.rieselprime.de/ziki/Sieving_a_range_of_sequences, https://mathworld.wolfram.com/Sieve.html, http://www.rechenkraft.net/yoyo/y_status_sieve.php) the left linear families with primes p < 109 (https://github.com/xayahrainie4793/minimal-elements-of-the-prime-numbers/blob/main/code/searchLLR.cc) → use LLR (http://jpenne.free.fr/index2.html, https://primes.utm.edu/bios/page.php?id=431, https://www.rieselprime.de/ziki/LLR, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/llr403win64, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/llr403linux64) to primality test (or probable-primality test) the numbers in the sieve files (LLR will do the Miller–Rabin primality test (https://primes.utm.edu/prove/prove2_3.html, https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test, https://en.wikipedia.org/wiki/Strong_pseudoprime, https://primes.utm.edu/glossary/xpage/StrongPRP.html, https://www.rieselprime.de/ziki/Miller-Rabin_pseudoprimality_test, https://mathworld.wolfram.com/Rabin-MillerStrongPseudoprimeTest.html, https://mathworld.wolfram.com/StrongPseudoprime.html, http://www.numericana.com/answer/pseudo.htm#rabin, http://www.numericana.com/answer/pseudo.htm#strong, http://www.javascripter.net/math/primes/millerrabinprimalitytest.htm, http://ntheory.org/data/spsps.txt, https://sites.google.com/view/strong-pseudoprime, https://sites.google.com/view/bases-strong-pseudoprime, https://oeis.org/A001262, https://oeis.org/A020229, https://oeis.org/A072276, https://oeis.org/A014233, https://oeis.org/A181782, https://oeis.org/A071294, https://oeis.org/A141768, https://oeis.org/A195328, https://oeis.org/A329759, https://oeis.org/A298756) with first 50 prime bases, the strong Lucas primality test (https://en.wikipedia.org/wiki/Lucas_pseudoprime#Strong_Lucas_pseudoprimes, https://mathworld.wolfram.com/StrongLucasPseudoprime.html), and the strong Frobenius primality test (https://en.wikipedia.org/wiki/Frobenius_pseudoprime#Strong_Frobenius_pseudoprimes, https://primes.utm.edu/glossary/xpage/FrobeniusPseudoprime.html, https://mathworld.wolfram.com/StrongFrobeniusPseudoprime.html), also for a×bn+1 numbers with a < bn, LLR will do the N−1 Pocklington primality test (https://primes.utm.edu/prove/prove3_1.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, https://en.wikipedia.org/wiki/Pocklington_primality_test, https://www.rieselprime.de/ziki/Pocklington%27s_theorem, https://mathworld.wolfram.com/PocklingtonsTheorem.html, https://stdkmd.net/nrr/pock/, http://factordb.com/nmoverview.php?method=1) and can prove that these numbers are primes, also for a×bn−1 numbers a < bn, LLR will do the N+1 Morrison algorithm (https://primes.utm.edu/prove/prove3_2.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://factordb.com/nmoverview.php?method=2) and can prove that these numbers are primes) → trial factor (https://en.wikipedia.org/wiki/Trial_division, https://primes.utm.edu/glossary/xpage/TrialDivision.html, https://www.rieselprime.de/ziki/Trial_factoring, https://mathworld.wolfram.com/TrialDivision.html, http://www.numericana.com/answer/factoring.htm#trial) from 109 to 1016 → use PRIMO (http://www.ellipsa.eu/public/primo/primo.html, http://www.rieselprime.de/dl/Primo309.zip, https://primes.utm.edu/bios/page.php?id=46, https://www.rieselprime.de/ziki/Primo, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/primo-433-lx64, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/Primo309) to elliptic curve primality prove (https://primes.utm.edu/prove/prove4_2.html, https://en.wikipedia.org/wiki/Elliptic_curve_primality, https://primes.utm.edu/glossary/xpage/ECPP.html, https://mathworld.wolfram.com/EllipticCurvePrimalityProving.html, https://primes.utm.edu/top20/page.php?id=27) the numbers < 1025000.

We are unable to determine if the families x{y}z (where x and z are strings (may be empty) of digits in base b, y is a digit in base b) listed in the "left b" files (see the condensed table below for the searching limit of these families) contain a prime (only count the numbers > b) or not (even if we allow strong probable primes), i.e. these families have no known prime (or strong probable prime) members > b, nor can they be ruled out as only containing composites (only count the numbers > b) (by covering congruence, algebraic factorization, or combine of them), i.e. whether these families contain a prime or a strong probable prime (only count the numbers > b) are open problems (https://en.wikipedia.org/wiki/Open_problem, https://en.wikipedia.org/wiki/List_of_unsolved_problems_in_mathematics, https://primes.utm.edu/glossary/xpage/OpenQuestion.html, https://mathworld.wolfram.com/UnsolvedProblems.html, http://www.numericana.com/answer/open.htm, https://primes.utm.edu/notes/conjectures/), and all of these families are expected to contain a prime > b (in fact, expected to contain infinitely many primes), since there is a heuristic argument (https://en.wikipedia.org/wiki/Heuristic_argument, https://primes.utm.edu/glossary/xpage/Heuristic.html, https://mathworld.wolfram.com/Heuristic.html, http://www.utm.edu/~caldwell/preprints/Heuristics.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_112.pdf)) that all families which cannot be ruled out as only containing composites or only containing finitely many primes (by covering congruence, algebraic factorization, or combine of them) contain infinitely many primes (references: https://primes.utm.edu/mersenne/heuristic.html, https://primes.utm.edu/notes/faq/NextMersenne.html, https://web.archive.org/web/20100628035147/http://www.math.niu.edu/~rusin/known-math/98/exp_primes, https://mersenneforum.org/showpost.php?p=564786&postcount=3, https://mersenneforum.org/showpost.php?p=461665&postcount=7), since by the prime number theorem (https://en.wikipedia.org/wiki/Prime_number_theorem, https://primes.utm.edu/glossary/xpage/PrimeNumberThm.html, https://mathworld.wolfram.com/PrimeNumberTheorem.html, https://primes.utm.edu/howmany.html, http://www.numericana.com/answer/primes.htm#pnt, https://oeis.org/wiki/User:Charles_R_Greathouse_IV/Tables_of_special_primes) the chance (https://en.wikipedia.org/wiki/Probability, https://mathworld.wolfram.com/Probability.html) that a random (https://en.wikipedia.org/wiki/Random_number, https://mathworld.wolfram.com/RandomNumber.html) n-digit base b number is prime is approximately (https://en.wikipedia.org/wiki/Asymptotic_analysis, https://primes.utm.edu/glossary/xpage/AsymptoticallyEqual.html, https://mathworld.wolfram.com/Asymptotic.html) 1/n (more accurately, the chance is approximately 1/(n×ln(b)), where ln is the natural logarithm (https://en.wikipedia.org/wiki/Natural_logarithm, https://primes.utm.edu/glossary/xpage/Log.html, https://mathworld.wolfram.com/NaturalLogarithm.html), i.e. the logarithm with base e = 2.718281828459... (https://en.wikipedia.org/wiki/E_(mathematical_constant), https://mathworld.wolfram.com/e.html, https://oeis.org/A001113)). If one conjectures the numbers x{y}z behave similarly you would expect 1/1 + 1/2 + 1/3 + 1/4 + ... = ∞ (https://en.wikipedia.org/wiki/Harmonic_series_(mathematics), https://mathworld.wolfram.com/HarmonicSeries.html) primes of the form x{y}z (of course, this does not always happen, since some x{y}z families can be ruled out as only containing composites (only count the numbers > b) (by covering congruence, algebraic factorization, or combine of them), and every family has its own Nash weight (https://www.rieselprime.de/ziki/Nash_weight, http://irvinemclean.com/maths/nash.htm, http://www.brennen.net/primes/ProthWeight.html, https://www.mersenneforum.org/showthread.php?t=11844, https://www.mersenneforum.org/showthread.php?t=2645, https://www.mersenneforum.org/showthread.php?t=7213, https://www.mersenneforum.org/showthread.php?t=18818, https://www.mersenneforum.org/showpost.php?p=421186&postcount=19, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/allnash, https://www.rieselprime.de/ziki/Riesel_2_Low-weight, https://www.rieselprime.de/ziki/Proth_2_Low-weight, https://www.rieselprime.de/ziki/Category:Riesel_2_Low-weight, https://www.rieselprime.de/ziki/Category:Proth_2_Low-weight, https://www.rieselprime.de/ziki/Category:Riesel_5_Low-weight, https://www.rieselprime.de/ziki/Category:Proth_5_Low-weight, http://www.noprimeleftbehind.net/crus/vstats_new/riesel_weights.txt, http://www.noprimeleftbehind.net/crus/vstats_new/sierpinski_weights.txt) (or difficulty (https://stdkmd.net/nrr/prime/primedifficulty.htm, https://stdkmd.net/nrr/prime/primedifficulty.txt, http://www.noprimeleftbehind.net/crus/vstats_new/crus-unproven.htm, http://www.noprimeleftbehind.net/crus/vstats_new/riesel_difficulty.txt, http://www.noprimeleftbehind.net/crus/vstats_new/sierpinski_difficulty.txt)), see https://mersenneforum.org/showpost.php?p=564786&postcount=3, families which can be proven to only contain composites or only contain finitely many primes (by covering congruence, algebraic factorization, or combine of them) have Nash weight (or difficulty) 0, and families which cannot be proven to only contain composites or only contain finitely many primes (by covering congruence, algebraic factorization, or combine of them) have positive Nash weight (or difficulty), but it is at least a reasonable conjecture in the absence of evidence to the contrary).

Some of the left families may cover another left family, e.g. the base 19 left family 5{H}5 covers another base 19 left family 5{H}05, and if the smallest prime in family 5{H}5 in base 19 has length n, and the family 5{H}05 in base 19 has no prime with length ≤ n, then family 5{H}05 in base 19 can be removed from the unsolved families for base 19, however, if the smallest prime in family 5{H}5 in base 19 has length n, but the family 5{H}05 in base 19 is not tested to length n or more, then family 5{H}05 in base 19 should not be removed from the unsolved families for base 19, since a number in family 5{H}05 covers the prime in family 5{H}5 with length n if and only if the length of this number is ≥ n+1; besides, the base 19 left family FH0{H} covers another base 19 left family FHHH0{H}, and if the smallest prime in family FH0{H} in base 19 has length n, and the family FHHH0{H} in base 19 has no prime with length ≤ n+1, then family FHHH0{H} in base 19 can be removed from the unsolved families for base 19, however, if the smallest prime in family FH0{H} in base 19 has length n, but the family FHHH0{H} in base 19 is not tested to length n+1 or more, then family FHHH0{H} in base 19 should not be removed from the unsolved families for base 19, since a number in family FHHH0{H} covers the prime in family FH0{H} with length n if and only if the length of this number is ≥ n+2; besides, the base 21 left family {9}D covers another base 21 left family F{9}D, and if the smallest prime in family {9}D in base 21 has length n, and the family F{9}D in base 21 has no prime with length ≤ n, then family F{9}D in base 21 can be removed from the unsolved families for base 21, however, if the smallest prime in family {9}D in base 21 has length n, but the family F{9}D in base 21 is not tested to length n or more, then family F{9}D in base 21 should not be removed from the unsolved families for base 21, since a number in family F{9}D covers the prime in family {9}D with length n if and only if the length of this number is ≥ n+1 (if a family has no primes, then we say "the smallest prime in this family has length ∞ (https://en.wikipedia.org/wiki/Infinity, https://primes.utm.edu/glossary/xpage/Infinite.html, https://mathworld.wolfram.com/Infinity.html) (instead of 0 or −1)", see http://gladhoboexpress.blogspot.com/2019/05/prime-sandwiches-made-with-one-derbread.html and http://chesswanks.com/seq/a306861.txt (for the OEIS sequence https://oeis.org/A306861) and http://chesswanks.com/seq/a269254.txt (for the OEIS sequence https://oeis.org/A269254) (since this is more convenient, e.g. the n of the smallest prime in the base 13 family A3nA, this family has been searched to n = 358000 with no prime or probable prime found, we can use ">358000" for the n of the smallest prime in the base 13 family A3nA (while for the n of the smallest prime in the base 13 family 95n, it is 197420), ">358000" includes infinity (since infinity is > 358000) but does not includes 0 or −1, it is still possible that there is no prime in the base 13 family A3nA, although by the heuristic argument (https://en.wikipedia.org/wiki/Heuristic_argument, https://primes.utm.edu/glossary/xpage/Heuristic.html, https://mathworld.wolfram.com/Heuristic.html, http://www.utm.edu/~caldwell/preprints/Heuristics.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_112.pdf)) above, this is very impossible, also "the smallest n ≥ 1 such that (a×bn+c)/gcd(a+c,b−1) is prime" should be the infimum (https://en.wikipedia.org/wiki/Infimum, https://mathworld.wolfram.com/Infimum.html) of the set S of the numbers n ≥ 1 such that (a×bn+c)/gcd(a+c,b−1) is prime, and if there is no n ≥ 1 such that (a×bn+c)/gcd(a+c,b−1) is prime, then this set S is the empty set (https://en.wikipedia.org/wiki/Empty_set, https://mathworld.wolfram.com/EmptySet.html), and by the definition of "inf", the infimum of the empty set is ∞), ∞ is > any finite number, e.g. "the smallest n ≥ 1 such that k×2n+1 is prime" is ∞ for k = 78557, 157114, 271129, 271577, 314228, 322523, 327739, 482719, ..., while it is 31172165 for k = 10223 and 13018586 for k = 19249, another example is "the smallest n such that (bn−1)/(b−1) is prime" is ∞ for b = 9, 25, 32, 49, 64, 81, 121, 125, 144, 169, 216, 225, 243, 289, 324, 343, 361, 441, 484, 529, 625, 729, 784, 841, 900, 961, 1000, ..., while it is 62903 for b = 691 and 41189 for b = 693).

There are also unproven probable primes (however, in this project our results assume that they are in fact primes, since they are > 1025000 and the probability that they are in fact composite is < 10−2000, see https://primes.utm.edu/notes/prp_prob.html and https://www.ams.org/journals/mcom/1989-53-188/S0025-5718-1989-0982368-4/S0025-5718-1989-0982368-4.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_22.pdf)), the unproven probable primes for bases b = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22, 24, 26, 28, 30, 36 (the solved or near-solved bases, i.e. the bases b with ≤ 6 unsolved families) are (together with the factorization of the numbers in their corresponding families): (you can click the "show" in the factordb page to see these unproven probable primes written in base 10 and base b as well as the length of these unproven probable primes in base 10 and base b (for base b, change the "10" in "Digits (Base 10)" box to "b", support bases 2 ≤ b ≤ 36), also you can click the "N−1" or the "N+1" (open the "Primality proving" box) to see the factorization of N−1 and N+1)

(for the factorization of the numbers in these families, the special number field sieve (https://en.wikipedia.org/wiki/Special_number_field_sieve, https://www.rieselprime.de/ziki/Special_number_field_sieve, https://mathworld.wolfram.com/NumberFieldSieve.html) or the general number field sieve (https://en.wikipedia.org/wiki/General_number_field_sieve, https://www.rieselprime.de/ziki/General_number_field_sieve, https://mathworld.wolfram.com/NumberFieldSieve.html) may be used, they have SNFS polynomials (https://www.rieselprime.de/ziki/SNFS_polynomial_selection), just like factorization of the numbers in https://stdkmd.net/nrr/aaaab.htm and https://stdkmd.net/nrr/abbbb.htm and https://stdkmd.net/nrr/aaaba.htm and https://stdkmd.net/nrr/abaaa.htm and https://stdkmd.net/nrr/abbba.htm and https://stdkmd.net/nrr/abbbc.htm and http://mklasson.com/factors/index.php and https://cs.stanford.edu/people/rpropper/math/factors/3n-2.txt, see https://stdkmd.net/nrr/records.htm and https://stdkmd.net/nrr/wanted.htm)

b index of this minimal prime in base b (assuming the primality of all probable primes in base b) base-b form of this unproven probable prime algebraic ((a×bn+c)/gcd(a+c,b−1)) form of this unproven probable prime (which is a minimal prime assuming its primality) factordb entry of this unproven probable prime (which is a minimal prime assuming its primality) Primo input file of this unproven probable prime (which is a minimal prime assuming its primality) factorization of the numbers in corresponding family (n is the number of digits in the "{}", start with the smallest n making the number > b (if n = 0 already makes the number > b, then start with n = 0))
11 1068 5762668 (57×1162668−7)/10 http://factordb.com/index.php?id=1100000003573679860 http://factordb.com/cert.php?id=1100000003573679860&inputfile http://factordb.com/index.php?query=%2857*11%5En-7%29%2F10&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3194 C523755C (149×1323756+79)/12 http://factordb.com/index.php?id=1100000003590647776 http://factordb.com/cert.php?id=1100000003590647776&inputfile http://factordb.com/index.php?query=%28149*13%5E%28n%2B1%29%2B79%29%2F12&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3195 8032017111 8×1332020+183 http://factordb.com/index.php?id=1100000000490878060 http://factordb.com/cert.php?id=1100000000490878060&inputfile http://factordb.com/index.php?query=8*13%5E%28n%2B3%29%2B183&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3196 95197420 (113×13197420−5)/12 http://factordb.com/index.php?id=1100000003943359311 (no Primo input file, since this unproven probable prime is too large (> 10149999) to be PRP-tested in factordb, and factordb does not have Primo input file for numbers with status (http://factordb.com/status.html, http://factordb.com/distribution.php) "U" (i.e. in http://factordb.com/listtype.php?t=2), factordb only has Primo input file for numbers with status "PRP" (i.e. in http://factordb.com/listtype.php?t=1)) http://factordb.com/index.php?query=%28113*13%5En-5%29%2F12&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 2345 DB32234 (206×1632234−11)/15 http://factordb.com/index.php?id=1100000002383583629 http://factordb.com/cert.php?id=1100000002383583629&inputfile http://factordb.com/index.php?query=%28206*16%5En-11%29%2F15&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 2346 472785DD (4×1672787+2291)/15 http://factordb.com/index.php?id=1100000003615909841 http://factordb.com/cert.php?id=1100000003615909841&inputfile http://factordb.com/index.php?query=%284*16%5E%28n%2B2%29%2B2291%29%2F15&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 2347 3116137AF (16116139+619)/5 http://factordb.com/index.php?id=1100000003851731988 http://factordb.com/cert.php?id=1100000003851731988&inputfile http://factordb.com/index.php?query=%2816%5E%28n%2B2%29%2B619%29%2F5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
22 8003 BK220015 (251×2222002−335)/21 http://factordb.com/index.php?id=1100000003594696838 http://factordb.com/cert.php?id=1100000003594696838&inputfile http://factordb.com/index.php?query=%28251*22%5E%28n%2B1%29-335%29%2F21&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25250 5193916F (2619393+179)/5 http://factordb.com/index.php?id=1100000003850151202 http://factordb.com/cert.php?id=1100000003850151202&inputfile http://factordb.com/index.php?query=%2826%5E%28n%2B2%29%2B179%29%2F5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25251 720279OL (7×2620281+11393)/25 http://factordb.com/index.php?id=1100000003892628605 http://factordb.com/cert.php?id=1100000003892628605&inputfile http://factordb.com/index.php?query=%287*26%5E%28n%2B2%29%2B11393%29%2F25&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25252 LD0209757 559×2620976+7 http://factordb.com/index.php?id=1100000003892628658 http://factordb.com/cert.php?id=1100000003892628658&inputfile http://factordb.com/index.php?query=559*26%5E%28n%2B1%29%2B7&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25253 6K233005 (34×2623301−79)/5 http://factordb.com/index.php?id=1100000003892628745 http://factordb.com/cert.php?id=1100000003892628745&inputfile http://factordb.com/index.php?query=%2834*26%5E%28n%2B1%29-79%29%2F5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25254 J044303KCB 19×2644306+13843 http://factordb.com/index.php?id=1100000003968156595 http://factordb.com/cert.php?id=1100000003968156595&inputfile http://factordb.com/index.php?query=19*26%5E%28n%2B3%29%2B13843&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25255 M0611862BB 22×2661189+1649 http://factordb.com/index.php?id=1100000003968169875 http://factordb.com/cert.php?id=1100000003968169875&inputfile http://factordb.com/index.php?query=22*26%5E%28n%2B3%29%2B1649&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 25526 N624051LR (209×2824053+3967)/9 http://factordb.com/index.php?id=1100000003879667576 http://factordb.com/cert.php?id=1100000003879667576&inputfile http://factordb.com/index.php?query=%28209*28%5E%28n%2B2%29%2B3967%29%2F9&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 25527 5OA31238F (4438×2831239+125)/27 http://factordb.com/index.php?id=1100000003880455200 http://factordb.com/cert.php?id=1100000003880455200&inputfile http://factordb.com/index.php?query=%284438*28%5E%28n%2B1%29%2B125%29%2F27&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 25528 O4O945359 (6092×2894536−143)/9 http://factordb.com/index.php?id=1100000000808118231 http://factordb.com/cert.php?id=1100000000808118231&inputfile http://factordb.com/index.php?query=%286092*28%5E%28n%2B1%29-143%29%2F9&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
30 2618 I024608D 18×3024609+13 http://factordb.com/index.php?id=1100000003593967511 http://factordb.com/cert.php?id=1100000003593967511&inputfile http://factordb.com/index.php?query=18*30%5E%28n%2B1%29%2B13&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35284 7K26567Z (53×3626568+101)/7 http://factordb.com/index.php?id=1100000003896952461 http://factordb.com/cert.php?id=1100000003896952461&inputfile http://factordb.com/index.php?query=%2853*36%5E%28n%2B1%29%2B101%29%2F7&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35285 S0750078H 28×3675009+305 http://factordb.com/index.php?id=1100000004020085177 http://factordb.com/cert.php?id=1100000004020085177&inputfile http://factordb.com/index.php?query=28*36%5E%28n%2B2%29%2B305&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35286 P81993SZ (5×3681995+821)/7 http://factordb.com/index.php?id=1100000002394962083 http://factordb.com/cert.php?id=1100000002394962083&inputfile http://factordb.com/index.php?query=%285*36%5E%28n%2B2%29%2B821%29%2F7&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show

All these numbers are strong probable primes (https://en.wikipedia.org/wiki/Strong_pseudoprime, https://primes.utm.edu/glossary/xpage/StrongPRP.html, https://mathworld.wolfram.com/StrongPseudoprime.html) to bases 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61 (see https://oeis.org/A014233 and https://oeis.org/A141768 and https://oeis.org/A001262 and https://oeis.org/A074773 and http://ntheory.org/data/spsps.txt), and strong Lucas probable primes (https://en.wikipedia.org/wiki/Lucas_pseudoprime#Strong_Lucas_pseudoprimes, https://mathworld.wolfram.com/StrongLucasPseudoprime.html) with parameters (P, Q) defined by Selfridge's Method A (see https://oeis.org/A217255 and http://ntheory.org/data/slpsps-baillie.txt), and trial factored (https://en.wikipedia.org/wiki/Trial_division, https://primes.utm.edu/glossary/xpage/TrialDivision.html, https://www.rieselprime.de/ziki/Trial_factoring, https://mathworld.wolfram.com/TrialDivision.html, http://www.numericana.com/answer/factoring.htm#trial) to 1016 (i.e. all these numbers are 1016-rough numbers (https://en.wikipedia.org/wiki/Rough_number, https://mathworld.wolfram.com/RoughNumber.html)), thus, all these numbers are Baillie–PSW probable primes (https://en.wikipedia.org/wiki/Baillie%E2%80%93PSW_primality_test, https://mathworld.wolfram.com/Baillie-PSWPrimalityTest.html), and no composites < 264 pass the Baillie–PSW probable prime test (see http://ntheory.org/pseudoprimes.html and https://faculty.lynchburg.edu/~nicely/misc/bpsw.html), thus if one of these numbers is in fact composite, it will be a pseudoprime to the Baillie–PSW probable prime test, which currently no single example is known!

The unsolved families for bases b = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22, 24, 26, 28, 30, 36 (the solved or near-solved bases, i.e. the bases b with ≤ 6 unsolved families) and the factorization of the numbers in these families:

(you can calculate "equivalent searching limit of length in decimal" by: "current searching limit of length of this family" × log(b), where log is the common logarithm (https://en.wikipedia.org/wiki/Common_logarithm, https://mathworld.wolfram.com/CommonLogarithm.html), i.e. the logarithm with base 10)

(for the factorization of the numbers in these families, the special number field sieve (https://en.wikipedia.org/wiki/Special_number_field_sieve, https://www.rieselprime.de/ziki/Special_number_field_sieve, https://mathworld.wolfram.com/NumberFieldSieve.html, https://stdkmd.net/nrr/records.htm#BIGSNFS, https://stdkmd.net/nrr/wanted.htm#smallpolynomial) or the general number field sieve (https://en.wikipedia.org/wiki/General_number_field_sieve, https://www.rieselprime.de/ziki/General_number_field_sieve, https://mathworld.wolfram.com/NumberFieldSieve.html, https://stdkmd.net/nrr/records.htm#BIGGNFS, https://stdkmd.net/nrr/wanted.htm#suitableforgnfs) may be used, they have SNFS polynomials (https://www.rieselprime.de/ziki/SNFS_polynomial_selection), just like factorization of the numbers in https://stdkmd.net/nrr/aaaab.htm and https://stdkmd.net/nrr/abbbb.htm and https://stdkmd.net/nrr/aaaba.htm and https://stdkmd.net/nrr/abaaa.htm and https://stdkmd.net/nrr/abbba.htm and https://stdkmd.net/nrr/abbbc.htm and http://mklasson.com/factors/index.php and https://cs.stanford.edu/people/rpropper/math/factors/3n-2.txt, see https://stdkmd.net/nrr/records.htm and https://stdkmd.net/nrr/wanted.htm)

b base-b form of the unsolved family algebraic ((a×bn+c)/gcd(a+c,b−1)) form of the unsolved family current searching limit of length of this family factorization of the numbers in this family (n is the number of digits in the "{}", start with the smallest n making the number > b (if n = 0 already makes the number > b, then start with n = 0))
13 A{3}A (41×13n+1+27)/4 358000 http://factordb.com/index.php?query=%2841*13%5E%28n%2B1%29%2B27%29%2F4&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 85{M}B (5347×26n+1−297)/25 100000 http://factordb.com/index.php?query=%285347*26%5E%28n%2B1%29-297%29%2F25&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 {A}6F (2×26n+2−497)/5 100000 http://factordb.com/index.php?query=%282*26%5E%28n%2B2%29-497%29%2F5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 {H}MH (17×26n+2+3233)/25 100000 http://factordb.com/index.php?query=%2817*26%5E%28n%2B2%29%2B3233%29%2F25&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 {I}GL (18×26n+2−1243)/25 100000 http://factordb.com/index.php?query=%2818*26%5E%28n%2B2%29-1243%29%2F25&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 O{A}F (658×28n+1+125)/27 543203 http://factordb.com/index.php?query=(658*28^(n%2B1)%2B125)/27&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 B{0}EUV 11×36n+3+19255 100000 http://factordb.com/index.php?query=11*36%5E%28n%2B3%29%2B19255&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 HM{0}N 634×36n+1+23 100000 http://factordb.com/index.php?query=634*36%5E%28n%2B1%29%2B23&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 N{0}YYN 23×36n+3+45311 100000 http://factordb.com/index.php?query=23*36%5E%28n%2B3%29%2B45311&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 O{L}Z (123×36n+1+67)/5 100000 http://factordb.com/index.php?query=%28123*36%5E%28n%2B1%29%2B67%29%2F5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show

The large proven primes (> 10299) for bases b = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22, 24, 26, 28, 30, 36 (the solved or near-solved bases, i.e. the bases b with ≤ 6 unsolved families) and their primality certificates (https://en.wikipedia.org/wiki/Primality_certificate, https://primes.utm.edu/glossary/xpage/Certificate.html, https://mathworld.wolfram.com/PrimalityCertificate.html, http://www.lix.polytechnique.fr/Labo/Francois.Morain/Primes/myprimes.html, https://stdkmd.net/nrr/cert/, http://factordb.com/certoverview.php) and the factorization of the numbers in their corresponding families: (you can click the "show" in the factordb page to see these primes written in base 10 and base b as well as the length of these primes in base 10 and base b (for base b, change the "10" in "Digits (Base 10)" box to "b", support bases 2 ≤ b ≤ 36), also you can click the "N−1" or the "N+1" (open the "Primality proving" box) to see the factorization of N−1 and N+1)

(for the factorization of the numbers in these families, the special number field sieve (https://en.wikipedia.org/wiki/Special_number_field_sieve, https://www.rieselprime.de/ziki/Special_number_field_sieve, https://mathworld.wolfram.com/NumberFieldSieve.html, https://stdkmd.net/nrr/records.htm#BIGSNFS, https://stdkmd.net/nrr/wanted.htm#smallpolynomial) or the general number field sieve (https://en.wikipedia.org/wiki/General_number_field_sieve, https://www.rieselprime.de/ziki/General_number_field_sieve, https://mathworld.wolfram.com/NumberFieldSieve.html, https://stdkmd.net/nrr/records.htm#BIGGNFS, https://stdkmd.net/nrr/wanted.htm#suitableforgnfs) may be used, they have SNFS polynomials (https://www.rieselprime.de/ziki/SNFS_polynomial_selection), just like factorization of the numbers in https://stdkmd.net/nrr/aaaab.htm and https://stdkmd.net/nrr/abbbb.htm and https://stdkmd.net/nrr/aaaba.htm and https://stdkmd.net/nrr/abaaa.htm and https://stdkmd.net/nrr/abbba.htm and https://stdkmd.net/nrr/abbbc.htm and http://mklasson.com/factors/index.php and https://cs.stanford.edu/people/rpropper/math/factors/3n-2.txt, see https://stdkmd.net/nrr/records.htm and https://stdkmd.net/nrr/wanted.htm)

b index of this minimal prime in base b base-b form of this minimal prime algebraic ((a×bn+c)/gcd(a+c,b−1)) form of this minimal prime factordb entry of this minimal prime primality certificate for this minimal prime factorization of the numbers in corresponding family (n is the number of digits in the "{}", start with the smallest n making the number > b (if n = 0 already makes the number > b, then start with n = 0))
9 149 763292 (31×9330−19)/4 http://factordb.com/index.php?id=1100000002359003642 http://factordb.com/cert.php?id=1100000002359003642 http://factordb.com/index.php?query=%2831*9%5E%28n%2B1%29-19%29%2F4&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
9 150 2768607 (23×9688−511)/8 http://factordb.com/index.php?id=1100000002495467486 http://factordb.com/cert.php?id=1100000002495467486 http://factordb.com/index.php?query=%2823*9%5E%28n%2B2%29-511%29%2F8&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
9 151 30115811 3×91160+10 http://factordb.com/index.php?id=1100000002376318423 http://factordb.com/cert.php?id=1100000002376318423 http://factordb.com/index.php?query=3*9%5E%28n%2B2%29%2B10&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
11 1065 A71358 11715−58 http://factordb.com/index.php?id=1100000003576826487 http://factordb.com/cert.php?id=1100000003576826487 http://factordb.com/index.php?query=11%5E%28n%2B2%29-58&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
11 1066 775944 (7×11761−367)/10 http://factordb.com/index.php?id=1100000002505568840 http://factordb.com/cert.php?id=1100000002505568840 http://factordb.com/index.php?query=%287*11%5E%28n%2B2%29-367%29%2F10&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
11 1067 5571011 (607×111011−7)/10 http://factordb.com/index.php?id=1100000002361376522 http://factordb.com/cert.php?id=1100000002361376522 http://factordb.com/index.php?query=%28607*11%5En-7%29%2F10&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3165 5027044 5×13272+56 http://factordb.com/index.php?id=1100000002632397005 http://factordb.com/cert.php?id=1100000002632397005 http://factordb.com/index.php?query=5*13%5E%28n%2B2%29%2B56&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3166 9271095 (3×13274−6103)/4 http://factordb.com/index.php?id=1100000003590431654 http://factordb.com/cert.php?id=1100000003590431654 http://factordb.com/index.php?query=%283*13%5E%28n%2B3%29-6103%29%2F4&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3167 102867771 13290+16654 http://factordb.com/index.php?id=1100000003590431633 http://factordb.com/cert.php?id=1100000003590431633 http://factordb.com/index.php?query=13%5E%28n%2B4%29%2B16654&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3168 93081 (3×13309−35)/4 http://factordb.com/index.php?id=1100000000840126705 proven prime by N−1 test (https://primes.utm.edu/prove/prove3_1.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://factordb.com/nmoverview.php?method=1), since N−1 is 39/4×(13308−1), thus factor N−1 is equivalent to factor 13308−1, and for the factorization of 13308−1, see http://myfactorcollection.mooo.com:8090/cgi-bin/showSingleEntry?Base=13&Exp=308&c0=-&EN= http://factordb.com/index.php?query=%283*13%5E%28n%2B1%29-35%29%2F4&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3169 B341C4 (11×13343+61)/12 http://factordb.com/index.php?id=1100000003590431618 http://factordb.com/cert.php?id=1100000003590431618 http://factordb.com/index.php?query=%2811*13%5E%28n%2B2%29%2B61%29%2F12&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3170 8B343 (107×13343−11)/12 http://factordb.com/index.php?id=1100000002321018736 http://factordb.com/cert.php?id=1100000002321018736 http://factordb.com/index.php?query=%28107*13%5En-11%29%2F12&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3171 710371111 92×13374+183 http://factordb.com/index.php?id=1100000003590431609 http://factordb.com/cert.php?id=1100000003590431609 http://factordb.com/index.php?query=92*13%5E%28n%2B3%29%2B183&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3172 753757 (89×13376+19)/12 http://factordb.com/index.php?id=1100000003590431596 http://factordb.com/cert.php?id=1100000003590431596 http://factordb.com/index.php?query=%2889*13%5E%28n%2B1%29%2B19%29%2F12&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3173 9B03919 128×13392+9 http://factordb.com/index.php?id=1100000002632396790 http://factordb.com/cert.php?id=1100000002632396790 http://factordb.com/index.php?query=128*13%5E%28n%2B1%29%2B9&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3174 7B0B397 (15923×13397−11)/12 http://factordb.com/index.php?id=1100000003590431574 http://factordb.com/cert.php?id=1100000003590431574 http://factordb.com/index.php?query=%2815923*13%5En-11%29%2F12&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3175 1041493 13416+120 http://factordb.com/index.php?id=1100000002523249240 http://factordb.com/cert.php?id=1100000002523249240 http://factordb.com/index.php?query=13%5E%28n%2B2%29%2B120&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3176 810104151 17746×13416+1 http://factordb.com/index.php?id=1100000003590431555 proven prime by N−1 test (https://primes.utm.edu/prove/prove3_1.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://factordb.com/nmoverview.php?method=1), since N−1 is trivially fully factored http://factordb.com/index.php?query=17746*13%5E%28n%2B1%29%2B1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3177 81104351 1366×13436+1 http://factordb.com/index.php?id=1100000002373259109 proven prime by N−1 test (https://primes.utm.edu/prove/prove3_1.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://factordb.com/nmoverview.php?method=1), since N−1 is trivially fully factored http://factordb.com/index.php?query=1366*13%5E%28n%2B1%29%2B1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3178 B7486 (139×13486−7)/12 http://factordb.com/index.php?id=1100000002321015892 http://factordb.com/cert.php?id=1100000002321015892 http://factordb.com/index.php?query=%28139*13%5En-7%29%2F12&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3179 B563C (11×13564+1)/12 http://factordb.com/index.php?id=1100000000000217927 proven prime by N−1 test (https://primes.utm.edu/prove/prove3_1.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://factordb.com/nmoverview.php?method=1), since N−1 is 11/12×(13564−1), thus factor N−1 is equivalent to factor 13564−1, and for the factorization of 13564−1, see http://myfactorcollection.mooo.com:8090/cgi-bin/showSingleEntry?Base=13&Exp=564&c0=-&EN= http://factordb.com/index.php?query=%2811*13%5E%28n%2B1%29%2B1%29%2F12&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3180 1B576 (23×13576−11)/12 http://factordb.com/index.php?id=1100000002321021456 proven prime by N−1 test (https://primes.utm.edu/prove/prove3_1.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://factordb.com/nmoverview.php?method=1), since N−1 is 23/12×(13576−1), thus factor N−1 is equivalent to factor 13576−1, and for the factorization of 13576−1, see http://myfactorcollection.mooo.com:8090/cgi-bin/showSingleEntry?Base=13&Exp=576&c0=-&EN= http://factordb.com/index.php?query=%2823*13%5En-11%29%2F12&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3181 8069387 8×13695+111 http://factordb.com/index.php?id=1100000002615636527 http://factordb.com/cert.php?id=1100000002615636527 http://factordb.com/index.php?query=8*13%5E%28n%2B2%29%2B111&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3182 CC5713 (2021×13713−5)/12 http://factordb.com/index.php?id=1100000002615627353 http://factordb.com/cert.php?id=1100000002615627353 http://factordb.com/index.php?query=%282021*13%5En-5%29%2F12&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3183 B83474 (11×13836−719)/12 http://factordb.com/index.php?id=1100000003590430871 http://factordb.com/cert.php?id=1100000003590430871 http://factordb.com/index.php?query=%2811*13%5E%28n%2B2%29-719%29%2F12&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3184 9968B (3×13969+5)/4 http://factordb.com/index.php?id=1100000000258566244 http://factordb.com/cert.php?id=1100000000258566244 http://factordb.com/index.php?query=%283*13%5E%28n%2B1%29%2B5%29%2F4&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3185 101295181 131298+274 http://factordb.com/index.php?id=1100000002615445013 http://factordb.com/cert.php?id=1100000002615445013 http://factordb.com/index.php?query=13%5E%28n%2B3%29%2B274&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3186 913625 (3×131363−19)/4 http://factordb.com/index.php?id=1100000002321017776 http://factordb.com/cert.php?id=1100000002321017776 http://factordb.com/index.php?query=%283*13%5E%28n%2B1%29-19%29%2F4&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3187 715041 (7×131505−79)/12 http://factordb.com/index.php?id=1100000002320890755 http://factordb.com/cert.php?id=1100000002320890755 http://factordb.com/index.php?query=%287*13%5E%28n%2B1%29-79%29%2F12&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3188 93015511 120×131552+1 http://factordb.com/index.php?id=1100000000765961452 proven prime by N−1 test (https://primes.utm.edu/prove/prove3_1.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://factordb.com/nmoverview.php?method=1), since N−1 is trivially fully factored http://factordb.com/index.php?query=120*13%5E%28n%2B1%29%2B1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3189 72022972 93×132298+2 http://factordb.com/index.php?id=1100000002632396910 http://factordb.com/cert.php?id=1100000002632396910 http://factordb.com/index.php?query=93*13%5E%28n%2B1%29%2B2&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3190 1770270317 267×132705+20 http://factordb.com/index.php?id=1100000003590430825 http://factordb.com/cert.php?id=1100000003590430825 http://factordb.com/index.php?query=267*13%5E%28n%2B2%29%2B20&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3191 39062661 48×136267+1 http://factordb.com/index.php?id=1100000000765961441 proven prime by N−1 test (https://primes.utm.edu/prove/prove3_1.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://factordb.com/nmoverview.php?method=1), since N−1 is trivially fully factored http://factordb.com/index.php?query=48*13%5E%28n%2B1%29%2B1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3192 B06540BBA 11×136543+2012 http://factordb.com/index.php?id=1100000002616382906 http://factordb.com/cert.php?id=1100000002616382906 http://factordb.com/index.php?query=11*13%5E%28n%2B3%29%2B2012&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3193 C1063192 1310633−50 http://factordb.com/index.php?id=1100000003590493750 http://factordb.com/cert.php?id=1100000003590493750 http://factordb.com/index.php?query=13%5E%28n%2B2%29-50&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
14 649 34D708 47×14708−1 http://factordb.com/index.php?id=1100000001540144903 proven prime by N+1 test (https://primes.utm.edu/prove/prove3_2.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://factordb.com/nmoverview.php?method=2), since N+1 is trivially fully factored http://factordb.com/index.php?query=47*14%5En-1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
14 650 4D19698 5×1419698−1 http://factordb.com/index.php?id=1100000000884560233 proven prime by N+1 test (https://primes.utm.edu/prove/prove3_2.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://factordb.com/nmoverview.php?method=2), since N+1 is trivially fully factored http://factordb.com/index.php?query=5*14%5En-1&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 2328 8802467 136×16247+7 http://factordb.com/index.php?id=1100000002468140199 proven prime by N−1 test (https://primes.utm.edu/prove/prove3_1.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://factordb.com/nmoverview.php?method=1), N−1 is 23×3×7×13×25703261×(289-digit prime) http://factordb.com/index.php?query=136*16%5E%28n%2B1%29%2B7&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 2329 D4263D (199×16264+131)/15 http://factordb.com/index.php?id=1100000002468170238 http://factordb.com/cert.php?id=1100000002468170238 http://factordb.com/index.php?query=%28199*16%5E%28n%2B1%29%2B131%29%2F15&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 2330 E02614DD 14×16264+1245 http://factordb.com/index.php?id=1100000003588388352 http://factordb.com/cert.php?id=1100000003588388352 http://factordb.com/index.php?query=14*16%5E%28n%2B3%29%2B1245&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 2331 8C0290ED 140×16292+237 http://factordb.com/index.php?id=1100000003588388307 http://factordb.com/cert.php?id=1100000003588388307 http://factordb.com/index.php?query=140*16%5E%28n%2B2%29%2B237&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 2332 DA3055 (41×16306−17)/3 http://factordb.com/index.php?id=1100000003588388284 http://factordb.com/cert.php?id=1100000003588388284 http://factordb.com/index.php?query=%2841*16%5E%28n%2B1%29-17%29%2F3&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 2333 CE80422D 3304×16423+13 http://factordb.com/index.php?id=1100000003588388257 http://factordb.com/cert.php?id=1100000003588388257 http://factordb.com/index.php?query=3304*16%5E%28n%2B1%29%2B13&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 2334 5F5446F 6×16546−145 http://factordb.com/index.php?id=1100000002604723967 http://factordb.com/cert.php?id=1100000002604723967 http://factordb.com/index.php?query=6*16%5E%28n%2B2%29-145&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 2335 88F545 137×16545−1 http://factordb.com/index.php?id=1100000000413679658 proven prime by N+1 test (https://primes.utm.edu/prove/prove3_2.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://factordb.com/nmoverview.php?method=2), since N+1 is trivially fully factored http://factordb.com/index.php?query=137*16%5En-1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 2336 BE0792BB 190×16794+187 http://factordb.com/index.php?id=1100000003588387938 http://factordb.com/cert.php?id=1100000003588387938 http://factordb.com/index.php?query=190*16%5E%28n%2B2%29%2B187&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 2337 D91052 (68×161052−3)/5 http://factordb.com/index.php?id=1100000002321036020 http://factordb.com/cert.php?id=1100000002321036020 http://factordb.com/index.php?query=%2868*16%5En-3%29%2F5&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 2338 FAF106245 251×161064−187 http://factordb.com/index.php?id=1100000003588387610 http://factordb.com/cert.php?id=1100000003588387610 http://factordb.com/index.php?query=251*16%5E%28n%2B2%29-187&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 2339 F81517F (233×161518+97)/15 http://factordb.com/index.php?id=1100000000633744824 http://factordb.com/cert.php?id=1100000000633744824 http://factordb.com/index.php?query=%28233*16%5E%28n%2B1%29%2B97%29%2F15&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 2340 201713321 2×161716+801 http://factordb.com/index.php?id=1100000003588386735 http://factordb.com/cert.php?id=1100000003588386735 http://factordb.com/index.php?query=2*16%5E%28n%2B3%29%2B801&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 2341 300F1960AF 769×161962−81 http://factordb.com/index.php?id=1100000003588368750 http://factordb.com/cert.php?id=1100000003588368750 http://factordb.com/index.php?query=769*16%5E%28n%2B2%29-81&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 2342 90354291 9×163544+145 http://factordb.com/index.php?id=1100000000633424191 http://factordb.com/cert.php?id=1100000000633424191 http://factordb.com/index.php?query=9*16%5E%28n%2B2%29%2B145&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 2343 5BC3700D (459×163701+1)/5 http://factordb.com/index.php?id=1100000000993764322 http://factordb.com/cert.php?id=1100000000993764322 http://factordb.com/index.php?query=%28459*16%5E%28n%2B1%29%2B1%29%2F5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 2344 D0B17804 (3131×1617804−11)/15 http://factordb.com/index.php?id=1100000003589278511 http://factordb.com/cert.php?id=1100000003589278511 http://factordb.com/index.php?query=%283131*16%5En-11%29%2F15&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
18 547 80298B 8×18299+11 http://factordb.com/index.php?id=1100000002355574745 http://factordb.com/cert.php?id=1100000002355574745 http://factordb.com/index.php?query=8*18%5E%28n%2B1%29%2B11&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
18 548 H766FH 18768−37 http://factordb.com/index.php?id=1100000003590430490 http://factordb.com/cert.php?id=1100000003590430490 http://factordb.com/index.php?query=18%5E%28n%2B2%29-37&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
18 549 C06268C5 12×186270+221 http://factordb.com/index.php?id=1100000003590442437 http://factordb.com/cert.php?id=1100000003590442437 http://factordb.com/index.php?query=12*18%5E%28n%2B2%29%2B221&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
20 3301 H247A0H (17×20250−59677)/19 http://factordb.com/index.php?id=1100000003590502619 http://factordb.com/cert.php?id=1100000003590502619 http://factordb.com/index.php?query=%2817*20%5E%28n%2B3%29-59677%29%2F19&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
20 3302 7249A7 (7×20251+1133)/19 http://factordb.com/index.php?id=1100000003590502602 http://factordb.com/cert.php?id=1100000003590502602 http://factordb.com/index.php?query=%287*20%5E%28n%2B2%29%2B1133%29%2F19&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
20 3303 J7270 (368×20270−7)/19 http://factordb.com/index.php?id=1100000002325395462 http://factordb.com/cert.php?id=1100000002325395462 http://factordb.com/index.php?query=%28368*20%5En-7%29%2F19&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
20 3304 J330CCC7 20334−58953 http://factordb.com/index.php?id=1100000003590502572 http://factordb.com/cert.php?id=1100000003590502572 http://factordb.com/index.php?query=20%5E%28n%2B4%29-58953&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
20 3305 40387404B 4×20391+32091 http://factordb.com/index.php?id=1100000003590502563 http://factordb.com/cert.php?id=1100000003590502563 http://factordb.com/index.php?query=4*20%5E%28n%2B4%29%2B32091&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
20 3306 EC04297 292×20430+7 http://factordb.com/index.php?id=1100000002633348702 http://factordb.com/cert.php?id=1100000002633348702 http://factordb.com/index.php?query=292*20%5E%28n%2B1%29%2B7&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
20 3307 G44799 (16×20449−2809)/19 http://factordb.com/index.php?id=1100000000840126753 http://factordb.com/cert.php?id=1100000000840126753 http://factordb.com/index.php?query=%2816*20%5E%28n%2B2%29-2809%29%2F19&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
20 3308 3A5273 (67×20528−143)/19 http://factordb.com/index.php?id=1100000003590502531 http://factordb.com/cert.php?id=1100000003590502531 http://factordb.com/index.php?query=%2867*20%5E%28n%2B1%29-143%29%2F19&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
20 3309 E566C7 (14×20568−907)/19 http://factordb.com/index.php?id=1100000003590502516 http://factordb.com/cert.php?id=1100000003590502516 http://factordb.com/index.php?query=%2814*20%5E%28n%2B2%29-907%29%2F19&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
20 3310 JCJ629 393×20629−1 http://factordb.com/index.php?id=1100000001559454258 proven prime by N+1 test (https://primes.utm.edu/prove/prove3_2.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://factordb.com/nmoverview.php?method=2), since N+1 is trivially fully factored http://factordb.com/index.php?query=393*20%5En-1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
20 3311 J65505J 20658−7881 http://factordb.com/index.php?id=1100000003590502490 http://factordb.com/cert.php?id=1100000003590502490 http://factordb.com/index.php?query=20%5E%28n%2B3%29-7881&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
20 3312 501163AJ 5×201165+219 http://factordb.com/index.php?id=1100000003590502412 http://factordb.com/cert.php?id=1100000003590502412 http://factordb.com/index.php?query=5*20%5E%28n%2B2%29%2B219&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
20 3313 CD2449 (241×202449−13)/19 http://factordb.com/index.php?id=1100000002325393915 http://factordb.com/cert.php?id=1100000002325393915 http://factordb.com/index.php?query=%28241*20%5En-13%29%2F19&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
20 3314 G06269D 16×206270+13 http://factordb.com/index.php?id=1100000003590539457 http://factordb.com/cert.php?id=1100000003590539457 http://factordb.com/index.php?query=16*20%5E%28n%2B1%29%2B13&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
22 7984 I7G0254H 8882×22255+17 http://factordb.com/index.php?id=1100000003591372788 http://factordb.com/cert.php?id=1100000003591372788 http://factordb.com/index.php?query=8882*22%5E%28n%2B1%29%2B17&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
22 7985 D02555EEF 13×22259+60339 http://factordb.com/index.php?id=1100000003591371932 http://factordb.com/cert.php?id=1100000003591371932 http://factordb.com/index.php?query=13*22%5E%28n%2B4%29%2B60339&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
22 7986 IK322F (398×22323−125)/21 http://factordb.com/index.php?id=1100000000840384145 http://factordb.com/cert.php?id=1100000000840384145 http://factordb.com/index.php?query=%28398*22%5E%28n%2B1%29-125%29%2F21&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
22 7987 C0340G9 12×22342+361 http://factordb.com/index.php?id=1100000000840384159 http://factordb.com/cert.php?id=1100000000840384159 http://factordb.com/index.php?query=12*22%5E%28n%2B2%29%2B361&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
22 7988 77E348K7 (485×22350+373)/3 http://factordb.com/index.php?id=1100000003591369779 http://factordb.com/cert.php?id=1100000003591369779 http://factordb.com/index.php?query=%28485*22%5E%28n%2B2%29%2B373%29%2F3&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
22 7989 J379KJ (19×22381+443)/21 http://factordb.com/index.php?id=1100000003591369027 http://factordb.com/cert.php?id=1100000003591369027 http://factordb.com/index.php?query=%2819*22%5E%28n%2B2%29%2B443%29%2F21&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
22 7990 J388EJ (19×22390−2329)/21 http://factordb.com/index.php?id=1100000003591367729 http://factordb.com/cert.php?id=1100000003591367729 http://factordb.com/index.php?query=%2819*22%5E%28n%2B2%29-2329%29%2F21&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
22 7991 DJ400 (292×22400−19)/21 http://factordb.com/index.php?id=1100000002325880110 http://factordb.com/cert.php?id=1100000002325880110 http://factordb.com/index.php?query=%28292*22%5En-19%29%2F21&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
22 7992 E404K7 (2×22406+373)/3 http://factordb.com/index.php?id=1100000003591366298 http://factordb.com/cert.php?id=1100000003591366298 http://factordb.com/index.php?query=%282*22%5E%28n%2B2%29%2B373%29%2F3&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
22 7993 66F453B3 (971×22455−705)/7 http://factordb.com/index.php?id=1100000003591365809 http://factordb.com/cert.php?id=1100000003591365809 http://factordb.com/index.php?query=%28971*22%5E%28n%2B2%29-705%29%2F7&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
22 7994 L0454B63 21×22457+5459 http://factordb.com/index.php?id=1100000003591365331 http://factordb.com/cert.php?id=1100000003591365331 http://factordb.com/index.php?query=21*22%5E%28n%2B3%29%2B5459&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
22 7995 L483G3 22485−129 http://factordb.com/index.php?id=1100000003591364730 http://factordb.com/cert.php?id=1100000003591364730 http://factordb.com/index.php?query=22%5E%28n%2B2%29-129&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
22 7996 E60496L 314×22497+21 http://factordb.com/index.php?id=1100000000632703239 http://factordb.com/cert.php?id=1100000000632703239 http://factordb.com/index.php?query=314*22%5E%28n%2B1%29%2B21&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
22 7997 I626AF (6×22628−1259)/7 http://factordb.com/index.php?id=1100000000632724334 http://factordb.com/cert.php?id=1100000000632724334 http://factordb.com/index.php?query=%286*22%5E%28n%2B2%29-1259%29%2F7&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
22 7998 K0760EC1 20×22763+7041 http://factordb.com/index.php?id=1100000000632724415 http://factordb.com/cert.php?id=1100000000632724415 http://factordb.com/index.php?query=20*22%5E%28n%2B3%29%2B7041&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
22 7999 J0767IGGJ 19×22771+199779 http://factordb.com/index.php?id=1100000003591362567 http://factordb.com/cert.php?id=1100000003591362567 http://factordb.com/index.php?query=19*22%5E%28n%2B4%29%2B199779&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
22 8000 7959K7 (22961+857)/3 http://factordb.com/index.php?id=1100000003591361817 http://factordb.com/cert.php?id=1100000003591361817 http://factordb.com/index.php?query=%2822%5E%28n%2B2%29%2B857%29%2F3&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
22 8001 L2385KE7 222388−653 http://factordb.com/index.php?id=1100000003591360774 http://factordb.com/cert.php?id=1100000003591360774 http://factordb.com/index.php?query=22%5E%28n%2B3%29-653&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
22 8002 738152L (223817−289)/3 http://factordb.com/index.php?id=1100000003591359839 http://factordb.com/cert.php?id=1100000003591359839 http://factordb.com/index.php?query=%2822%5E%28n%2B2%29-289%29%2F3&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
24 3400 I0241I5 18×24243+437 http://factordb.com/index.php?id=1100000002633360037 http://factordb.com/cert.php?id=1100000002633360037 http://factordb.com/index.php?query=18*24%5E%28n%2B2%29%2B437&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
24 3401 D0259KKD 13×24262+12013 http://factordb.com/index.php?id=1100000003593270725 http://factordb.com/cert.php?id=1100000003593270725 http://factordb.com/index.php?query=13*24%5E%28n%2B3%29%2B12013&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
24 3402 C7298 (283×24298−7)/23 http://factordb.com/index.php?id=1100000002326181235 http://factordb.com/cert.php?id=1100000002326181235 http://factordb.com/index.php?query=%28283*24%5En-7%29%2F23&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
24 3403 203137 2×24314+7 http://factordb.com/index.php?id=1100000002355610241 http://factordb.com/cert.php?id=1100000002355610241 http://factordb.com/index.php?query=2*24%5E%28n%2B1%29%2B7&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
24 3404 BC0331B 276×24332+11 http://factordb.com/index.php?id=1100000002633359842 http://factordb.com/cert.php?id=1100000002633359842 http://factordb.com/index.php?query=276*24%5E%28n%2B1%29%2B11&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
24 3405 N2644LLN 242647−1201 http://factordb.com/index.php?id=1100000003593270089 http://factordb.com/cert.php?id=1100000003593270089 http://factordb.com/index.php?query=24%5E%28n%2B3%29-1201&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
24 3406 D2698LD (13×242700+4403)/23 http://factordb.com/index.php?id=1100000003593269876 http://factordb.com/cert.php?id=1100000003593269876 http://factordb.com/index.php?query=%2813*24%5E%28n%2B2%29%2B4403%29%2F23&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
24 3407 A029518ID 10×242954+5053 http://factordb.com/index.php?id=1100000003593269654 http://factordb.com/cert.php?id=1100000003593269654 http://factordb.com/index.php?query=10*24%5E%28n%2B3%29%2B5053&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
24 3408 88N5951 201×245951−1 http://factordb.com/index.php?id=1100000003593275880 proven prime by N+1 test (https://primes.utm.edu/prove/prove3_2.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://factordb.com/nmoverview.php?method=2), since N+1 is trivially fully factored http://factordb.com/index.php?query=201*24%5En-1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
24 3409 N00N8129LN 13249×248131−49 http://factordb.com/index.php?id=1100000003593391606 http://factordb.com/cert.php?id=1100000003593391606 http://factordb.com/index.php?query=13249*24%5E%28n%2B2%29-49&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25174 OL0214M9 645×26216+581 http://factordb.com/index.php?id=1100000000840631576 proven prime by N−1 test (https://primes.utm.edu/prove/prove3_1.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://factordb.com/nmoverview.php?method=1), N−1 is 22×52×7×223×42849349×(296-digit prime) http://factordb.com/index.php?query=645*26%5E%28n%2B2%29%2B581&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25175 1A219P (7×26220+73)/5 http://factordb.com/index.php?id=1100000000840631595 http://factordb.com/cert.php?id=1100000000840631595 http://factordb.com/index.php?query=%287*26%5E%28n%2B1%29%2B73%29%2F5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25176 A223DP (2×26225+463)/5 http://factordb.com/index.php?id=1100000003850155262 http://factordb.com/cert.php?id=1100000003850155262 http://factordb.com/index.php?query=%282*26%5E%28n%2B2%29%2B463%29%2F5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25177 6J225 (169×26225−19)/25 http://factordb.com/index.php?id=1100000002328050895 http://factordb.com/cert.php?id=1100000002328050895 http://factordb.com/index.php?query=%28169*26%5En-19%29%2F25&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25178 O2285 (24×26229−499)/25 http://factordb.com/index.php?id=1100000002328059255 http://factordb.com/cert.php?id=1100000002328059255 http://factordb.com/index.php?query=%2824*26%5E%28n%2B1%29-499%29%2F25&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25179 K0230K0IP 20×26234+352013 http://factordb.com/index.php?id=1100000000840631669 http://factordb.com/cert.php?id=1100000000840631669 http://factordb.com/index.php?query=20*26%5E%28n%2B4%29%2B352013&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25180 B0236OB 11×26238+635 http://factordb.com/index.php?id=1100000002634136234 http://factordb.com/cert.php?id=1100000002634136234 http://factordb.com/index.php?query=11*26%5E%28n%2B2%29%2B635&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25181 11G02399 718×26240+9 http://factordb.com/index.php?id=1100000000840631687 http://factordb.com/cert.php?id=1100000000840631687 http://factordb.com/index.php?query=718*26%5E%28n%2B1%29%2B9&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25182 K0241E5 20×26243+369 http://factordb.com/index.php?id=1100000002634136479 http://factordb.com/cert.php?id=1100000002634136479 http://factordb.com/index.php?query=20*26%5E%28n%2B2%29%2B369&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25183 J2430L (19×26245−12319)/25 http://factordb.com/index.php?id=1100000003850155263 http://factordb.com/cert.php?id=1100000003850155263 http://factordb.com/index.php?query=%2819*26%5E%28n%2B2%29-12319%29%2F25&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25184 B251I9 (11×26253+4489)/25 http://factordb.com/index.php?id=1100000003850155264 http://factordb.com/cert.php?id=1100000003850155264 http://factordb.com/index.php?query=%2811*26%5E%28n%2B2%29%2B4489%29%2F25&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25185 F2500PCF (3×26254−1284793)/5 http://factordb.com/index.php?id=1100000000840631708 http://factordb.com/cert.php?id=1100000000840631708 http://factordb.com/index.php?query=%283*26%5E%28n%2B4%29-1284793%29%2F5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25186 4E7262 (2957×26262−7)/25 http://factordb.com/index.php?id=1100000003850155265 http://factordb.com/cert.php?id=1100000003850155265 http://factordb.com/index.php?query=%282957*26%5En-7%29%2F25&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25187 E7264OL (357×26266+11393)/25 http://factordb.com/index.php?id=1100000003850155266 http://factordb.com/cert.php?id=1100000003850155266 http://factordb.com/index.php?query=%28357*26%5E%28n%2B2%29%2B11393%29%2F25&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25188 EIL267 (9571×26267−21)/25 http://factordb.com/index.php?id=1100000000840631801 http://factordb.com/cert.php?id=1100000000840631801 http://factordb.com/index.php?query=%289571*26%5En-21%29%2F25&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25189 62684F (6×26270−1081)/25 http://factordb.com/index.php?id=1100000000840631976 http://factordb.com/cert.php?id=1100000000840631976 http://factordb.com/index.php?query=%286*26%5E%28n%2B2%29-1081%29%2F25&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25190 D020273H 8790×26274+17 http://factordb.com/index.php?id=1100000003850155267 http://factordb.com/cert.php?id=1100000003850155267 http://factordb.com/index.php?query=8790*26%5E%28n%2B1%29%2B17&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25191 B291KB (11×26293+5839)/25 http://factordb.com/index.php?id=1100000003850155268 http://factordb.com/cert.php?id=1100000003850155268 http://factordb.com/index.php?query=%2811*26%5E%28n%2B2%29%2B5839%29%2F25&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25192 5293O5 (26295+2469)/5 http://factordb.com/index.php?id=1100000003850155269 http://factordb.com/cert.php?id=1100000003850155269 http://factordb.com/index.php?query=%2826%5E%28n%2B2%29%2B2469%29%2F5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25193 D7300 (332×26300−7)/25 http://factordb.com/index.php?id=1100000002328053362 http://factordb.com/cert.php?id=1100000002328053362 http://factordb.com/index.php?query=%28332*26%5En-7%29%2F25&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25194 E305IL (14×26307+2761)/25 http://factordb.com/index.php?id=1100000000840632032 http://factordb.com/cert.php?id=1100000000840632032 http://factordb.com/index.php?query=%2814*26%5E%28n%2B2%29%2B2761%29%2F25&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25195 PO5312 (3371×26312−1)/5 http://factordb.com/index.php?id=1100000003850155270 http://factordb.com/cert.php?id=1100000003850155270 http://factordb.com/index.php?query=%283371*26%5En-1%29%2F5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25196 47314 (107×26314−7)/25 http://factordb.com/index.php?id=1100000002328050727 http://factordb.com/cert.php?id=1100000002328050727 http://factordb.com/index.php?query=%28107*26%5En-7%29%2F25&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25197 A33560F (2×26338−14797)/5 http://factordb.com/index.php?id=1100000000840632163 http://factordb.com/cert.php?id=1100000000840632163 http://factordb.com/index.php?query=%282*26%5E%28n%2B3%29-14797%29%2F5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25198 O5K5341 (81871×26341−1)/5 http://factordb.com/index.php?id=1100000003850155271 http://factordb.com/cert.php?id=1100000003850155271 http://factordb.com/index.php?query=%2887871*26%5En-1%29%2F5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25199 9K343AP (49×26345−1279)/5 http://factordb.com/index.php?id=1100000000840632228 proven prime by N−1 test (https://primes.utm.edu/prove/prove3_1.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://factordb.com/nmoverview.php?method=1), since N−1 is 1274/5×(26344−1), thus factor N−1 is equivalent to factor 26344−1, and for the factorization of 26344−1, see http://myfactorcollection.mooo.com:8090/cgi-bin/showSingleEntry?Base=26&Exp=344&c0=-&EN= http://factordb.com/index.php?query=%2849*26%5E%28n%2B2%29-1279%29%2F5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25200 83541 (8×26355−183)/25 http://factordb.com/index.php?id=1100000000840632517 proven prime by N−1 test (https://primes.utm.edu/prove/prove3_1.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://factordb.com/nmoverview.php?method=1), since N−1 is 208/25×(26354−1), thus factor N−1 is equivalent to factor 26354−1, and for the factorization of 26354−1, see http://myfactorcollection.mooo.com:8090/cgi-bin/showSingleEntry?Base=26&Exp=354&c0=-&EN= http://factordb.com/index.php?query=%288*26%5E%28n%2B1%29-183%29%2F25&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25201 L035666K9 21×26360+110041 http://factordb.com/index.php?id=1100000000840632748 http://factordb.com/cert.php?id=1100000000840632748 http://factordb.com/index.php?query=21*26%5E%28n%2B4%29%2B110041&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25202 K0358KIP 20×26361+14013 http://factordb.com/index.php?id=1100000000840632880 http://factordb.com/cert.php?id=1100000000840632880 http://factordb.com/index.php?query=20*26%5E%28n%2B3%29%2B14013&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25203 J0360A0P 19×26363+6785 http://factordb.com/index.php?id=1100000003850155272 http://factordb.com/cert.php?id=1100000003850155272 http://factordb.com/index.php?query=19*26%5E%28n%2B3%29%2B6785&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25204 OK63769 (16106×26377+69)/25 http://factordb.com/index.php?id=1100000000840633320 http://factordb.com/cert.php?id=1100000000840633320 http://factordb.com/index.php?query=%2816106*26%5E%28n%2B1%29%2B69%29%2F25&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25205 J4067 (19×26407−319)/25 http://factordb.com/index.php?id=1100000002328055467 http://factordb.com/cert.php?id=1100000002328055467 http://factordb.com/index.php?query=%2819*26%5E%28n%2B1%29-319%29%2F25&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25206 9B437 (236×26437−11)/25 http://factordb.com/index.php?id=1100000002328051905 http://factordb.com/cert.php?id=1100000002328051905 http://factordb.com/index.php?query=%28236*26%5En-11%29%2F25&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25207 3442GL (3×26444+8897)/25 http://factordb.com/index.php?id=1100000003850155273 http://factordb.com/cert.php?id=1100000003850155273 http://factordb.com/index.php?query=%283*26%5E%28n%2B2%29%2B8897%29%2F25&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25208 1M491P (47×26492+53)/25 http://factordb.com/index.php?id=1100000000840633390 http://factordb.com/cert.php?id=1100000000840633390 http://factordb.com/index.php?query=%2847*26%5E%28n%2B1%29%2B53%29%2F25&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25209 40509GL 4×26511+437 http://factordb.com/index.php?id=1100000000840633483 http://factordb.com/cert.php?id=1100000000840633483 http://factordb.com/index.php?query=4*26%5E%28n%2B2%29%2B437&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25210 BFA5115 (1507×26512−27)/5 http://factordb.com/index.php?id=1100000003850155274 http://factordb.com/cert.php?id=1100000003850155274 http://factordb.com/index.php?query=%281507*26%5E%28n%2B1%29-27%29%2F5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25211 LK5185 (109×26519−79)/5 http://factordb.com/index.php?id=1100000003850155276 http://factordb.com/cert.php?id=1100000003850155276 http://factordb.com/index.php?query=%28109*26%5E%28n%2B1%29-79%29%2F5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25212 MI5433 (568×26544−393)/25 http://factordb.com/index.php?id=1100000003850155277 http://factordb.com/cert.php?id=1100000003850155277 http://factordb.com/index.php?query=%28568*26%5E%28n%2B1%29-393%29%2F25&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25213 E4E5597 (9214×26560−189)/25 http://factordb.com/index.php?id=1100000003850155278 http://factordb.com/cert.php?id=1100000003850155278 http://factordb.com/index.php?query=%289214*26%5E%28n%2B1%29-189%29%2F25&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25214 80577C7 8×26579+319 http://factordb.com/index.php?id=1100000002634136160 http://factordb.com/cert.php?id=1100000002634136160 http://factordb.com/index.php?query=8*26%5E%28n%2B2%29%2B319&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25215 9E0619B 248×26620+11 http://factordb.com/index.php?id=1100000002634136193 http://factordb.com/cert.php?id=1100000002634136193 http://factordb.com/index.php?query=248*26%5E%28n%2B1%29%2B11&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25216 G60618KJ 422×26620+539 http://factordb.com/index.php?id=1100000003850155283 http://factordb.com/cert.php?id=1100000003850155283 http://factordb.com/index.php?query=422*26%5E%28n%2B2%29%2B539&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25217 OO0620D3 648×26622+341 http://factordb.com/index.php?id=1100000003850155285 http://factordb.com/cert.php?id=1100000003850155285 http://factordb.com/index.php?query=648*26%5E%28n%2B2%29%2B341&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25218 K0653IP 20×26655+493 http://factordb.com/index.php?id=1100000000840633594 http://factordb.com/cert.php?id=1100000000840633594 http://factordb.com/index.php?query=20*26%5E%28n%2B2%29%2B493&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25219 J00J698L (321119×26699+31)/25 http://factordb.com/index.php?id=1100000003850155288 http://factordb.com/cert.php?id=1100000003850155288 http://factordb.com/index.php?query=%28321119*26%5E%28n%2B1%29%2B31%29%2F25&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25220 B077290J 11×26775+6103 http://factordb.com/index.php?id=1100000003850155290 http://factordb.com/cert.php?id=1100000003850155290 http://factordb.com/index.php?query=11*26%5E%28n%2B3%29%2B6103&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25221 J844B (19×26845−219)/25 http://factordb.com/index.php?id=1100000002328055693 http://factordb.com/cert.php?id=1100000002328055693 http://factordb.com/index.php?query=%2819*26%5E%28n%2B1%29-219%29%2F25&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25222 H855M0H (17×26858+73433)/25 http://factordb.com/index.php?id=1100000003850155291 http://factordb.com/cert.php?id=1100000003850155291 http://factordb.com/index.php?query=%2817*26%5E%28n%2B3%29%2B73433%29%2F25&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25223 J861OOL (19×26864+87781)/25 http://factordb.com/index.php?id=1100000003850155296 http://factordb.com/cert.php?id=1100000003850155296 http://factordb.com/index.php?query=%2819*26%5E%28n%2B3%29%2B87781%29%2F25&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25224 B0979H 11×26980+17 http://factordb.com/index.php?id=1100000002355639467 http://factordb.com/cert.php?id=1100000002355639467 http://factordb.com/index.php?query=11*26%5E%28n%2B1%29%2B17&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25225 L09914000J 21×26996+1827923 http://factordb.com/index.php?id=1100000003850155301 http://factordb.com/cert.php?id=1100000003850155301 http://factordb.com/index.php?query=21*26%5E%28n%2B5%29%2B1827923&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25226 E01101K2B 14×261104+13583 http://factordb.com/index.php?id=1100000003850155305 http://factordb.com/cert.php?id=1100000003850155305 http://factordb.com/index.php?query=14*26%5E%28n%2B3%29%2B13583&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25227 G1105OO9 (16×261108+140209)/25 http://factordb.com/index.php?id=1100000000840633717 http://factordb.com/cert.php?id=1100000000840633717 http://factordb.com/index.php?query=%2816*26%5E%28n%2B3%29%2B140209%29%2F25&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25228 MC01109N 584×261110+23 http://factordb.com/index.php?id=1100000002634136576 http://factordb.com/cert.php?id=1100000002634136576 http://factordb.com/index.php?query=584*26%5E%28n%2B1%29%2B23&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25229 G11599 (16×261160−191)/25 http://factordb.com/index.php?id=1100000000840633844 http://factordb.com/cert.php?id=1100000000840633844 http://factordb.com/index.php?query=%2816*26%5E%28n%2B1%29-191%29%2F25&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25230 A129506F (2×261298−34297)/5 http://factordb.com/index.php?id=1100000000840633998 http://factordb.com/cert.php?id=1100000000840633998 http://factordb.com/index.php?query=%282*26%5E%28n%2B3%29-34297%29%2F5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25231 KIA1298F (2692×261299+23)/5 http://factordb.com/index.php?id=1100000000840634108 http://factordb.com/cert.php?id=1100000000840634108 http://factordb.com/index.php?query=%282692*26%5E%28n%2B1%29%2B23%29%2F5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25232 L71319OL (532×261321+11393)/25 http://factordb.com/index.php?id=1100000003850155311 http://factordb.com/cert.php?id=1100000003850155311 http://factordb.com/index.php?query=%28532*26%5E%28n%2B2%29%2B11393%29%2F25&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25233 J1365L (19×261366+31)/25 http://factordb.com/index.php?id=1100000002328055922 http://factordb.com/cert.php?id=1100000002328055922 http://factordb.com/index.php?query=%2819*26%5E%28n%2B1%29%2B31%29%2F25&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25234 21498H (2×261499+373)/25 http://factordb.com/index.php?id=1100000002328050300 http://factordb.com/cert.php?id=1100000002328050300 http://factordb.com/index.php?query=%282*26%5E%28n%2B1%29%2B373%29%2F25&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25235 O51509 (121×261509−1)/5 http://factordb.com/index.php?id=1100000000894500022 http://factordb.com/cert.php?id=1100000000894500022 http://factordb.com/index.php?query=%28121*26%5En-1%29%2F5&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25236 DM1519P (347×261520+53)/25 http://factordb.com/index.php?id=1100000003850155312 http://factordb.com/cert.php?id=1100000003850155312 http://factordb.com/index.php?query=%28347*26%5E%28n%2B1%29%2B53%29%2F25&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25237 J01523P 19×261524+25 http://factordb.com/index.php?id=1100000002355640604 http://factordb.com/cert.php?id=1100000002355640604 http://factordb.com/index.php?query=19*26%5E%28n%2B1%29%2B25&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25238 F1569PCF (3×261572+33407)/5 http://factordb.com/index.php?id=1100000000840634210 http://factordb.com/cert.php?id=1100000000840634210 http://factordb.com/index.php?query=%283*26%5E%28n%2B3%29%2B33407%29%2F5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25239 N01647NEN 23×261650+15935 http://factordb.com/index.php?id=1100000003850155313 http://factordb.com/cert.php?id=1100000003850155313 http://factordb.com/index.php?query=23*26%5E%28n%2B3%29%2B15935&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25240 518854P (261887−31)/5 http://factordb.com/index.php?id=1100000003850155314 http://factordb.com/cert.php?id=1100000003850155314 http://factordb.com/index.php?query=%2826%5E%28n%2B2%29-31%29%2F5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25241 6K2556A5 (34×262558−1379)/5 http://factordb.com/index.php?id=1100000003850155315 http://factordb.com/cert.php?id=1100000003850155315 http://factordb.com/index.php?query=%2834*26%5E%28n%2B2%29-1379%29%2F5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25242 702613CN 7×262615+335 http://factordb.com/index.php?id=1100000002634136105 http://factordb.com/cert.php?id=1100000002634136105 http://factordb.com/index.php?query=7*26%5E%28n%2B2%29%2B335&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25243 E02673H 14×262674+17 http://factordb.com/index.php?id=1100000002355640062 http://factordb.com/cert.php?id=1100000002355640062 http://factordb.com/index.php?query=14*26%5E%28n%2B1%29%2B17&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25244 G602740J 422×262741+19 http://factordb.com/index.php?id=1100000002634136363 http://factordb.com/cert.php?id=1100000002634136363 http://factordb.com/index.php?query=422*26%5E%28n%2B1%29%2B19&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25245 B29159 (11×262916−61)/25 http://factordb.com/index.php?id=1100000002328052611 http://factordb.com/cert.php?id=1100000002328052611 http://factordb.com/index.php?query=%2811*26%5E%28n%2B1%29-61%29%2F25&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25246 J4222P (19×264223+131)/25 http://factordb.com/index.php?id=1100000002328056865 http://factordb.com/cert.php?id=1100000002328056865 http://factordb.com/index.php?query=%2819*26%5E%28n%2B1%29%2B131%29%2F25&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25247 K04364I5 20×264366+473 http://factordb.com/index.php?id=1100000002634136508 http://factordb.com/cert.php?id=1100000002634136508 http://factordb.com/index.php?query=20*26%5E%28n%2B2%29%2B473&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25248 M8772P (22×268773+53)/25 http://factordb.com/index.php?id=1100000000758011195 http://factordb.com/cert.php?id=1100000000758011195 http://factordb.com/index.php?query=%2822*26%5E%28n%2B1%29%2B53%29%2F25&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25249 9GDK15920P (32569×2615921+21)/5 http://factordb.com/index.php?id=1100000003850155316 http://factordb.com/cert.php?id=1100000003850155316 http://factordb.com/index.php?query=%2832569*26%5E%28n%2B1%29%2B21%29%2F5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 25485 JN206 (536×28206−23)/27 http://factordb.com/index.php?id=1100000002611724435 proven prime by N−1 test (https://primes.utm.edu/prove/prove3_1.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://factordb.com/nmoverview.php?method=1), N−1 is 2×1061×1171×74311×(289-digit prime) http://factordb.com/index.php?query=%28536*28%5En-23%29%2F27&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 25486 3211M9 (28213+4841)/9 http://factordb.com/index.php?id=1100000003850161936 http://factordb.com/cert.php?id=1100000003850161936 http://factordb.com/index.php?query=%2828%5E%28n%2B2%29%2B4841%29%2F9&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 25487 HD0213D 489×28214+13 http://factordb.com/index.php?id=1100000003850161937 http://factordb.com/cert.php?id=1100000003850161937 http://factordb.com/index.php?query=489*28%5E%28n%2B1%29%2B13&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 25488 64O2179 (1556×28218−143)/9 http://factordb.com/index.php?id=1100000000840840215 http://factordb.com/cert.php?id=1100000000840840215 http://factordb.com/index.php?query=%281556*28%5E%28n%2B1%29-143%29%2F9&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 25489 G0217A0N 16×28220+7863 http://factordb.com/index.php?id=1100000003850161938 http://factordb.com/cert.php?id=1100000003850161938 http://factordb.com/index.php?query=16*28%5E%28n%2B3%29%2B7863&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 25490 55OA226F (110278×28227+125)/27 http://factordb.com/index.php?id=1100000003850161939 http://factordb.com/cert.php?id=1100000003850161939 http://factordb.com/index.php?query=%28110278*28%5E%28n%2B1%29%2B125%29%2F27&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 25491 L0229Q3 21×28231+731 http://factordb.com/index.php?id=1100000003850161940 http://factordb.com/cert.php?id=1100000003850161940 http://factordb.com/index.php?query=21*28%5E%28n%2B2%29%2B731&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 25492 B02317ID 11×28234+6005 http://factordb.com/index.php?id=1100000003850161941 http://factordb.com/cert.php?id=1100000003850161941 http://factordb.com/index.php?query=11*28%5E%28n%2B3%29%2B6005&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 25493 PM233B (697×28234−319)/27 http://factordb.com/index.php?id=1100000003850161942 http://factordb.com/cert.php?id=1100000003850161942 http://factordb.com/index.php?query=%28697*28%5E%28n%2B1%29-319%29%2F27&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 25494 K0238OF 20×28240+687 http://factordb.com/index.php?id=1100000000840840142 http://factordb.com/cert.php?id=1100000000840840142 http://factordb.com/index.php?query=20*28%5E%28n%2B2%29%2B687&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 25495 I262E3 (2×28264−383)/3 http://factordb.com/index.php?id=1100000003850161943 http://factordb.com/cert.php?id=1100000003850161943 http://factordb.com/index.php?query=%282*28%5E%28n%2B2%29-383%29%2F3&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 25496 C5A273F (9217×28274+125)/27 http://factordb.com/index.php?id=1100000003850161944 http://factordb.com/cert.php?id=1100000003850161944 http://factordb.com/index.php?query=%289217*28%5E%28n%2B1%29%2B125%29%2F27&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 25497 J0276IMB 19×28279+14739 http://factordb.com/index.php?id=1100000003850161945 http://factordb.com/cert.php?id=1100000003850161945 http://factordb.com/index.php?query=19*28%5E%28n%2B3%29%2B14739&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 25498 F0282QAP 15×28285+20689 http://factordb.com/index.php?id=1100000000840840006 http://factordb.com/cert.php?id=1100000000840840006 http://factordb.com/index.php?query=15*28%5E%28n%2B3%29%2B20689&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 25499 M0296KKN 22×28299+16263 http://factordb.com/index.php?id=1100000003850161946 http://factordb.com/cert.php?id=1100000003850161946 http://factordb.com/index.php?query=22*28%5E%28n%2B3%29%2B16263&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 25500 C31043 (4×28312−2101)/9 http://factordb.com/index.php?id=1100000003850161947 http://factordb.com/cert.php?id=1100000003850161947 http://factordb.com/index.php?query=%284*28%5E%28n%2B2%29-2101%29%2F9&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 25501 RN319 (752×28319−23)/27 http://factordb.com/index.php?id=1100000002611723967 http://factordb.com/cert.php?id=1100000002611723967 http://factordb.com/index.php?query=%28752*28%5En-23%29%2F27&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 25502 CA320F (334×28321+125)/27 http://factordb.com/index.php?id=1100000000840839995 http://factordb.com/cert.php?id=1100000000840839995 http://factordb.com/index.php?query=%28334*28%5E%28n%2B1%29%2B125%29%2F27&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 25503 D6326LR (119×28328+3967)/9 http://factordb.com/index.php?id=1100000003850161948 http://factordb.com/cert.php?id=1100000003850161948 http://factordb.com/index.php?query=%28119*28%5E%28n%2B2%29%2B3967%29%2F9&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 25504 B350AB (11×28352−767)/27 http://factordb.com/index.php?id=1100000003850161949 http://factordb.com/cert.php?id=1100000003850161949 http://factordb.com/index.php?query=%2811*28%5E%28n%2B2%29-767%29%2F27&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 25505 GA0355N 458×28356+23 http://factordb.com/index.php?id=1100000003850161950 http://factordb.com/cert.php?id=1100000003850161950 http://factordb.com/index.php?query=458*28%5E%28n%2B1%29%2B23&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 25506 A0356P7P 10×28359+19821 http://factordb.com/index.php?id=1100000003850161951 http://factordb.com/cert.php?id=1100000003850161951 http://factordb.com/index.php?query=10*28%5E%28n%2B3%29%2B19821&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 25507 J363H (19×28364−73)/27 http://factordb.com/index.php?id=1100000002611724460 http://factordb.com/cert.php?id=1100000002611724460 http://factordb.com/index.php?query=%2819*28%5E%28n%2B1%29-73%29%2F27&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 25508 4B381 (119×28381−11)/27 http://factordb.com/index.php?id=1100000002611724588 http://factordb.com/cert.php?id=1100000002611724588 http://factordb.com/index.php?query=%28119*28%5En-11%29%2F27&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 25509 EB04051 403×28406+1 http://factordb.com/index.php?id=1100000001534442374 proven prime by N−1 test (https://primes.utm.edu/prove/prove3_1.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://factordb.com/nmoverview.php?method=1), since N−1 is trivially fully factored http://factordb.com/index.php?query=403*28%5E%28n%2B1%29%2B1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 25510 AN461 (293×28461−23)/27 http://factordb.com/index.php?id=1100000002611724556 http://factordb.com/cert.php?id=1100000002611724556 http://factordb.com/index.php?query=%28293*28%5En-23%29%2F27&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 25511 4O61409 (44×28616−6191)/9 http://factordb.com/index.php?id=1100000000840839989 http://factordb.com/cert.php?id=1100000000840839989 http://factordb.com/index.php?query=%2844*28%5E%28n%2B2%29-6191%29%2F9&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 25512 2D641 (67×28641−13)/27 http://factordb.com/index.php?id=1100000002611725341 http://factordb.com/cert.php?id=1100000002611725341 http://factordb.com/index.php?query=%2867*28%5En-13%29%2F27&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 25513 70748M5 7×28750+621 http://factordb.com/index.php?id=1100000003850161956 http://factordb.com/cert.php?id=1100000003850161956 http://factordb.com/index.php?query=7*28%5E%28n%2B2%29%2B621&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 25514 4A0804B 122×28805+11 http://factordb.com/index.php?id=1100000003850161957 http://factordb.com/cert.php?id=1100000003850161957 http://factordb.com/index.php?query=122*28%5E%28n%2B1%29%2B11&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 25515 LK925F (587×28926−155)/27 http://factordb.com/index.php?id=1100000000840839978 http://factordb.com/cert.php?id=1100000000840839978 http://factordb.com/index.php?query=%28587*28%5E%28n%2B1%29-155%29%2F27&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 25516 J01071AC5 19×281074+8181 http://factordb.com/index.php?id=1100000003850161959 http://factordb.com/cert.php?id=1100000003850161959 http://factordb.com/index.php?query=19*28%5E%28n%2B3%29%2B8181&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 25517 J01252J5 19×281254+537 http://factordb.com/index.php?id=1100000003850161963 http://factordb.com/cert.php?id=1100000003850161963 http://factordb.com/index.php?query=19*28%5E%28n%2B2%29%2B537&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 25518 513046F (5×281306+1021)/27 http://factordb.com/index.php?id=1100000003850161964 http://factordb.com/cert.php?id=1100000003850161964 http://factordb.com/index.php?query=%285*28%5E%28n%2B2%29%2B1021%29%2F27&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 25519 51332P8P (5×281335+426163)/27 http://factordb.com/index.php?id=1100000003850161965 http://factordb.com/cert.php?id=1100000003850161965 http://factordb.com/index.php?query=%285*28%5E%28n%2B3%29%2B426163%29%2F27&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 25520 5I1370F (17×281371−11)/3 http://factordb.com/index.php?id=1100000003850161972 http://factordb.com/cert.php?id=1100000003850161972 http://factordb.com/index.php?query=%2817*28%5E%28n%2B1%29-11%29%2F3&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 25521 A14236F (10×281425−2899)/27 http://factordb.com/index.php?id=1100000000840839947 http://factordb.com/cert.php?id=1100000000840839947 http://factordb.com/index.php?query=%2810*28%5E%28n%2B2%29-2899%29%2F27&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 25522 G01899AN 16×281901+303 http://factordb.com/index.php?id=1100000003850161973 http://factordb.com/cert.php?id=1100000003850161973 http://factordb.com/index.php?query=16*28%5E%28n%2B2%29%2B303&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 25523 537468P (5×283748+2803)/27 http://factordb.com/index.php?id=1100000003850161974 http://factordb.com/cert.php?id=1100000003850161974 http://factordb.com/index.php?query=%285*28%5E%28n%2B2%29%2B2803%29%2F27&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 25524 QO423969 (242×284241−4679)/9 http://factordb.com/index.php?id=1100000000840839934 http://factordb.com/cert.php?id=1100000000840839934 http://factordb.com/index.php?query=%28242*28%5E%28n%2B2%29-4679%29%2F9&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 25525 D0526777D 13×285270+5697 http://factordb.com/index.php?id=1100000003850151420 http://factordb.com/cert.php?id=1100000003850151420 http://factordb.com/index.php?query=13*28%5E%28n%2B3%29%2B5697&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
30 2613 AN206 (313×30206−23)/29 http://factordb.com/index.php?id=1100000002327651073 http://factordb.com/cert.php?id=1100000002327651073 http://factordb.com/index.php?query=%28313*30%5En-23%29%2F29&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
30 2614 M241QB (22×30243+3139)/29 http://factordb.com/index.php?id=1100000003593408295 http://factordb.com/cert.php?id=1100000003593408295 http://factordb.com/index.php?query=%2822*30%5E%28n%2B2%29%2B3139%29%2F29&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
30 2615 M0547SS7 22×30550+26047 http://factordb.com/index.php?id=1100000003593407988 http://factordb.com/cert.php?id=1100000003593407988 http://factordb.com/index.php?query=22*30%5E%28n%2B3%29%2B26047&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
30 2616 C010221 12×301023+1 http://factordb.com/index.php?id=1100000000785448736 proven prime by N−1 test (https://primes.utm.edu/prove/prove3_1.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://factordb.com/nmoverview.php?method=1), since N−1 is trivially fully factored http://factordb.com/index.php?query=12*30%5E%28n%2B1%29%2B1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
30 2617 54882J (5×304883+401)/29 http://factordb.com/index.php?id=1100000002327649423 http://factordb.com/cert.php?id=1100000002327649423 http://factordb.com/index.php?query=%285*30%5E%28n%2B1%29%2B401%29%2F29&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
30 2619 OT34205 25×3034205−1 http://factordb.com/index.php?id=1100000000800812865 proven prime by N+1 test (https://primes.utm.edu/prove/prove3_2.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://factordb.com/nmoverview.php?method=2), since N+1 is trivially fully factored http://factordb.com/index.php?query=25*30%5En-1&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35212 Q19577 (26×36197−24631)/35 http://factordb.com/index.php?id=1100000003807362350 http://factordb.com/cert.php?id=1100000003807362350 http://factordb.com/index.php?query=%2826*36%5E%28n%2B2%29-24631%29%2F35&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35213 W0199ND 32×36201+841 http://factordb.com/index.php?id=1100000002634136732 http://factordb.com/cert.php?id=1100000002634136732 http://factordb.com/index.php?query=32*36%5E%28n%2B2%29%2B841&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35214 G0204YT 16×36206+1253 http://factordb.com/index.php?id=1100000002634137789 http://factordb.com/cert.php?id=1100000002634137789 http://factordb.com/index.php?query=16*36%5E%28n%2B2%29%2B1253&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35215 RHY223H (34649×36224−629)/35 http://factordb.com/index.php?id=1100000003807362353 http://factordb.com/cert.php?id=1100000003807362353 http://factordb.com/index.php?query=%2834649*36%5E%28n%2B1%29-629%29%2F35&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35216 T0223ST 29×36225+1037 http://factordb.com/index.php?id=1100000002634136882 http://factordb.com/cert.php?id=1100000002634136882 http://factordb.com/index.php?query=29*36%5E%28n%2B2%29%2B1037&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35217 J0224U6V 19×36227+39127 http://factordb.com/index.php?id=1100000003807362355 http://factordb.com/cert.php?id=1100000003807362355 http://factordb.com/index.php?query=19*36%5E%28n%2B3%29%2B39127&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35218 BE0235IV 410×36237+679 http://factordb.com/index.php?id=1100000003807362356 http://factordb.com/cert.php?id=1100000003807362356 http://factordb.com/index.php?query=410*36%5E%28n%2B2%29%2B679&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35219 E0236KY1 14×36239+27145 http://factordb.com/index.php?id=1100000000840634520 http://factordb.com/cert.php?id=1100000000840634520 http://factordb.com/index.php?query=14*36%5E%28n%2B3%29%2B27145&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35220 JXV0244B 25843×36245+11 http://factordb.com/index.php?id=1100000003807362357 http://factordb.com/cert.php?id=1100000003807362357 http://factordb.com/index.php?query=25843*36%5E%28n%2B1%29%2B11&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35221 5Q2497 (201×36250−691)/35 http://factordb.com/index.php?id=1100000003807362359 http://factordb.com/cert.php?id=1100000003807362359 http://factordb.com/index.php?query=%28201*36%5E%28n%2B1%29-691%29%2F35&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35222 N30253H 831×36254+17 http://factordb.com/index.php?id=1100000002634137359 http://factordb.com/cert.php?id=1100000002634137359 http://factordb.com/index.php?query=831*36%5E%28n%2B1%29%2B17&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35223 Y261AH (34×36263−30869)/35 http://factordb.com/index.php?id=1100000003807362360 http://factordb.com/cert.php?id=1100000003807362360 http://factordb.com/index.php?query=%2834*36%5E%28n%2B2%29-30869%29%2F35&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35224 90277VV 9×36279+1147 http://factordb.com/index.php?id=1100000002634138388 http://factordb.com/cert.php?id=1100000002634138388 http://factordb.com/index.php?query=9*36%5E%28n%2B2%29%2B1147&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35225 J0281VB 19×36283+1127 http://factordb.com/index.php?id=1100000002634137683 http://factordb.com/cert.php?id=1100000002634137683 http://factordb.com/index.php?query=19*36%5E%28n%2B2%29%2B1127&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35226 J0281WV 19×36283+1183 http://factordb.com/index.php?id=1100000002634137660 http://factordb.com/cert.php?id=1100000002634137660 http://factordb.com/index.php?query=19*36%5E%28n%2B2%29%2B1183&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35227 DE028161 482×36283+217 http://factordb.com/index.php?id=1100000003807362361 http://factordb.com/cert.php?id=1100000003807362361 http://factordb.com/index.php?query=482*36%5E%28n%2B2%29%2B217&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35228 9H297 (332×36297−17)/35 http://factordb.com/index.php?id=1100000002332535884 http://factordb.com/cert.php?id=1100000002332535884 http://factordb.com/index.php?query=%28332*36%5En-17%29%2F35&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35229 M70297FD 799×36299+553 http://factordb.com/index.php?id=1100000003807362363 http://factordb.com/cert.php?id=1100000003807362363 http://factordb.com/index.php?query=799*36%5E%28n%2B2%29%2B553&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35230 9X301B (348×36302−803)/35 http://factordb.com/index.php?id=1100000003807362364 http://factordb.com/cert.php?id=1100000003807362364 http://factordb.com/index.php?query=%28348*36%5E%28n%2B1%29-803%29%2F35&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35231 XE03257 1202×36326+7 http://factordb.com/index.php?id=1100000002634136674 http://factordb.com/cert.php?id=1100000002634136674 http://factordb.com/index.php?query=1202*36%5E%28n%2B1%29%2B7&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35232 KP330SZ (145×36332+821)/7 http://factordb.com/index.php?id=1100000000840634515 http://factordb.com/cert.php?id=1100000000840634515 http://factordb.com/index.php?query=%28145*36%5E%28n%2B2%29%2B821%29%2F7&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35233 5347QP (36349+5431)/7 http://factordb.com/index.php?id=1100000003807362365 http://factordb.com/cert.php?id=1100000003807362365 http://factordb.com/index.php?query=%2836%5E%28n%2B2%29%2B5431%29%2F7&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35234 E03496U1 14×36352+8857 http://factordb.com/index.php?id=1100000000840634509 http://factordb.com/cert.php?id=1100000000840634509 http://factordb.com/index.php?query=14*36%5E%28n%2B3%29%2B8857&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35235 K0367E6T 20×36370+18389 http://factordb.com/index.php?id=1100000003807362367 http://factordb.com/cert.php?id=1100000003807362367 http://factordb.com/index.php?query=20*36%5E%28n%2B3%29%2B18389&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35236 U0370WP 30×36372+1177 http://factordb.com/index.php?id=1100000000840634503 http://factordb.com/cert.php?id=1100000000840634503 http://factordb.com/index.php?query=30*36%5E%28n%2B2%29%2B1177&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35237 P8Z390 909×36390−1 http://factordb.com/index.php?id=1100000000764100228 proven prime by N+1 test (https://primes.utm.edu/prove/prove3_2.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://factordb.com/nmoverview.php?method=2), since N+1 is trivially fully factored http://factordb.com/index.php?query=909*36%5En-1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35238 903974B 9×36399+155 http://factordb.com/index.php?id=1100000002634138490 http://factordb.com/cert.php?id=1100000002634138490 http://factordb.com/index.php?query=9*36%5E%28n%2B2%29%2B155&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35239 50405WW5 5×36408+42629 http://factordb.com/index.php?id=1100000003807362369 http://factordb.com/cert.php?id=1100000003807362369 http://factordb.com/index.php?query=5*36%5E%28n%2B3%29%2B42629&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35240 V0405EE4B 31×36409+671483 http://factordb.com/index.php?id=1100000003807362370 http://factordb.com/cert.php?id=1100000003807362370 http://factordb.com/index.php?query=31*36%5E%28n%2B4%29%2B671483&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35241 TTR0434T 38655×36435+29 http://factordb.com/index.php?id=1100000003807362372 http://factordb.com/cert.php?id=1100000003807362372 http://factordb.com/index.php?query=38655*36%5E%28n%2B1%29%2B29&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35242 LK443Z (151×36444+101)/7 http://factordb.com/index.php?id=1100000000840634496 http://factordb.com/cert.php?id=1100000000840634496 http://factordb.com/index.php?query=%28151*36%5E%28n%2B1%29%2B101%29%2F7&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35243 Q4547 (26×36455−691)/35 http://factordb.com/index.php?id=1100000002332534290 http://factordb.com/cert.php?id=1100000002332534290 http://factordb.com/index.php?query=%2826*36%5E%28n%2B1%29-691%29%2F35&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35244 R04587 27×36459+7 http://factordb.com/index.php?id=1100000002356257765 http://factordb.com/cert.php?id=1100000002356257765 http://factordb.com/index.php?query=27*36%5E%28n%2B1%29%2B7&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35245 50460KGZ 5×36463+26531 http://factordb.com/index.php?id=1100000003807362374 http://factordb.com/cert.php?id=1100000003807362374 http://factordb.com/index.php?query=5*36%5E%28n%2B3%29%2B26531&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35246 K0474OY1 20×36477+32329 http://factordb.com/index.php?id=1100000000840634488 http://factordb.com/cert.php?id=1100000000840634488 http://factordb.com/index.php?query=20*36%5E%28n%2B3%29%2B32329&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35247 B478KB (11×36480+11329)/35 http://factordb.com/index.php?id=1100000003807362381 http://factordb.com/cert.php?id=1100000003807362381 http://factordb.com/index.php?query=%2811*36%5E%28n%2B2%29%2B11329%29%2F35&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35248 WY507H (1154×36508−629)/35 http://factordb.com/index.php?id=1100000003807362386 http://factordb.com/cert.php?id=1100000003807362386 http://factordb.com/index.php?query=%281154*36%5E%28n%2B1%29-629%29%2F35&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35249 G0510USJ 16×36513+39907 http://factordb.com/index.php?id=1100000003807362389 http://factordb.com/cert.php?id=1100000003807362389 http://factordb.com/index.php?query=16*36%5E%28n%2B3%29%2B39907&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35250 Z527EX7 36530−27317 http://factordb.com/index.php?id=1100000003807362391 http://factordb.com/cert.php?id=1100000003807362391 http://factordb.com/index.php?query=36%5E%28n%2B3%29-27317&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35251 EY0534A1 538×36536+361 http://factordb.com/index.php?id=1100000000840634482 http://factordb.com/cert.php?id=1100000000840634482 http://factordb.com/index.php?query=538*36%5E%28n%2B2%29%2B361&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35252 Z0563995 35×36566+11993 http://factordb.com/index.php?id=1100000003807362394 http://factordb.com/cert.php?id=1100000003807362394 http://factordb.com/index.php?query=35*36%5E%28n%2B3%29%2B11993&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35253 F59095 (3×36592−1585)/7 http://factordb.com/index.php?id=1100000003807362398 http://factordb.com/cert.php?id=1100000003807362398 http://factordb.com/index.php?query=%283*36%5E%28n%2B2%29-1585%29%2F7&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35254 990591B 333×36592+11 http://factordb.com/index.php?id=1100000002634138415 http://factordb.com/cert.php?id=1100000002634138415 http://factordb.com/index.php?query=333*36%5E%28n%2B1%29%2B11&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35255 J675T (19×36676+331)/35 http://factordb.com/index.php?id=1100000002332534943 http://factordb.com/cert.php?id=1100000002332534943 http://factordb.com/index.php?query=%2819*36%5E%28n%2B1%29%2B331%29%2F35&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35256 FZ708OEB 16×36711−15037 http://factordb.com/index.php?id=1100000003807362403 http://factordb.com/cert.php?id=1100000003807362403 http://factordb.com/index.php?query=16*36%5E%28n%2B3%29-15037&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35257 EX732B (523×36733−803)/35 http://factordb.com/index.php?id=1100000003807362408 http://factordb.com/cert.php?id=1100000003807362408 http://factordb.com/index.php?query=%28523*36%5E%28n%2B1%29-803%29%2F35&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35258 M7648B (22×36766−18047)/35 http://factordb.com/index.php?id=1100000003807362414 http://factordb.com/cert.php?id=1100000003807362414 http://factordb.com/index.php?query=%2822*36%5E%28n%2B2%29-18047%29%2F35&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35259 3EG777D (4286×36778−121)/35 http://factordb.com/index.php?id=1100000003807362419 http://factordb.com/cert.php?id=1100000003807362419 http://factordb.com/index.php?query=%284286*36%5E%28n%2B1%29-121%29%2F35&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35260 W9627 (32×36963−907)/35 http://factordb.com/index.php?id=1100000002332533447 http://factordb.com/cert.php?id=1100000002332533447 http://factordb.com/index.php?query=%2832*36%5E%28n%2B1%29-907%29%2F35&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35261 G97988D (16×36982−373081)/35 http://factordb.com/index.php?id=1100000003807362435 http://factordb.com/cert.php?id=1100000003807362435 http://factordb.com/index.php?query=%2816*36%5E%28n%2B3%29-373081%29%2F35&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35262 701050XQN 7×361053+43727 http://factordb.com/index.php?id=1100000003807362444 http://factordb.com/cert.php?id=1100000003807362444 http://factordb.com/index.php?query=7*36%5E%28n%2B3%29%2B43727&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35263 EB01083UV 515×361085+1111 http://factordb.com/index.php?id=1100000003807362457 http://factordb.com/cert.php?id=1100000003807362457 http://factordb.com/index.php?query=515*36%5E%28n%2B2%29%2B1111&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35264 F02R01237D 699939×361238+13 http://factordb.com/index.php?id=1100000003807362472 http://factordb.com/cert.php?id=1100000003807362472 http://factordb.com/index.php?query=699939*36%5E%28n%2B1%29%2B13&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35265 501313WMN 5×361316+42287 http://factordb.com/index.php?id=1100000003807362473 http://factordb.com/cert.php?id=1100000003807362473 http://factordb.com/index.php?query=5*36%5E%28n%2B3%29%2B42287&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35266 V01328444B 31×361332+191963 http://factordb.com/index.php?id=1100000003807362474 http://factordb.com/cert.php?id=1100000003807362474 http://factordb.com/index.php?query=31*36%5E%28n%2B4%29%2B191963&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35267 SI01712KH 1026×361714+737 http://factordb.com/index.php?id=1100000003807362475 http://factordb.com/cert.php?id=1100000003807362475 http://factordb.com/index.php?query=1026*36%5E%28n%2B2%29%2B737&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35268 Z01714387 35×361717+4183 http://factordb.com/index.php?id=1100000003807362477 http://factordb.com/cert.php?id=1100000003807362477 http://factordb.com/index.php?query=35*36%5E%28n%2B3%29%2B4183&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35269 519363Z (361938−295)/7 http://factordb.com/index.php?id=1100000003807362478 http://factordb.com/cert.php?id=1100000003807362478 http://factordb.com/index.php?query=%2836%5E%28n%2B2%29-295%29%2F7&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35270 402478RV 4×362480+1003 http://factordb.com/index.php?id=1100000002634138559 http://factordb.com/cert.php?id=1100000002634138559 http://factordb.com/index.php?query=4*36%5E%28n%2B2%29%2B1003&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35271 IS02684A0H 676×362687+12977 http://factordb.com/index.php?id=1100000003807362479 http://factordb.com/cert.php?id=1100000003807362479 http://factordb.com/index.php?query=676*36%5E%28n%2B3%29%2B12977&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35272 5Z285995 6×362861−967 http://factordb.com/index.php?id=1100000003807362480 http://factordb.com/cert.php?id=1100000003807362480 http://factordb.com/index.php?query=6*36%5E%28n%2B2%29-967&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35273 Q29422D (26×362944−30721)/35 http://factordb.com/index.php?id=1100000003807362481 http://factordb.com/cert.php?id=1100000003807362481 http://factordb.com/index.php?query=%2826*36%5E%28n%2B2%29-30721%29%2F35&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35274 D030476E01 13×363051+298081 http://factordb.com/index.php?id=1100000003807362482 http://factordb.com/cert.php?id=1100000003807362482 http://factordb.com/index.php?query=13*36%5E%28n%2B4%29%2B298081&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35275 CNS3424J (2279×363425−49)/5 http://factordb.com/index.php?id=1100000003807362483 http://factordb.com/cert.php?id=1100000003807362483 http://factordb.com/index.php?query=%282279*36%5E%28n%2B1%29-49%29%2F5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35276 43925V (4×363926+941)/35 http://factordb.com/index.php?id=1100000002332536659 http://factordb.com/cert.php?id=1100000002332536659 http://factordb.com/index.php?query=%284*36%5E%28n%2B1%29%2B941%29%2F35&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35277 OZ3932AZ 25×363934−901 http://factordb.com/index.php?id=1100000000840634476 http://factordb.com/cert.php?id=1100000000840634476 http://factordb.com/index.php?query=25*36%5E%28n%2B2%29-901&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35278 RY4562H (979×364563−629)/35 http://factordb.com/index.php?id=1100000003807362485 http://factordb.com/cert.php?id=1100000003807362485 http://factordb.com/index.php?query=%28979*36%5E%28n%2B1%29-629%29%2F35&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35279 T0946181 (36549×364619−289)/35 http://factordb.com/index.php?id=1100000003807362486 http://factordb.com/cert.php?id=1100000003807362486 http://factordb.com/index.php?query=%2836549*36%5E%28n%2B1%29-289%29%2F35&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35280 FZ57773P 16×365779−1163 http://factordb.com/index.php?id=1100000003807362487 http://factordb.com/cert.php?id=1100000003807362487 http://factordb.com/index.php?query=16*36%5E%28n%2B2%29-1163&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35281 EO06177V 528×366178+31 http://factordb.com/index.php?id=1100000003807362488 http://factordb.com/cert.php?id=1100000003807362488 http://factordb.com/index.php?query=528*36%5E%28n%2B1%29%2B31&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35282 VL07258J 1137×367259+19 http://factordb.com/index.php?id=1100000003807362489 http://factordb.com/cert.php?id=1100000003807362489 http://factordb.com/index.php?query=1137*36%5E%28n%2B1%29%2B19&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35283 J10117LJ (19×3610119+2501)/35 http://factordb.com/index.php?id=1100000003807362491 http://factordb.com/cert.php?id=1100000003807362491 http://factordb.com/index.php?query=%2819*36%5E%28n%2B2%29%2B2501%29%2F35&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show

Condensed table for bases 2 ≤ b ≤ 36: (the bases b = 11, 13, 16, 17, 19, 21~23, 25~36 data assumes the primality of the probable primes) (This data assumes that a number > 1025000 which has passed the Miller–Rabin primality tests (https://primes.utm.edu/prove/prove2_3.html, https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test, https://en.wikipedia.org/wiki/Strong_pseudoprime, https://primes.utm.edu/glossary/xpage/StrongPRP.html, https://www.rieselprime.de/ziki/Miller-Rabin_pseudoprimality_test, https://mathworld.wolfram.com/Rabin-MillerStrongPseudoprimeTest.html, https://mathworld.wolfram.com/StrongPseudoprime.html, http://www.numericana.com/answer/pseudo.htm#rabin, http://www.numericana.com/answer/pseudo.htm#strong, http://www.javascripter.net/math/primes/millerrabinprimalitytest.htm, http://ntheory.org/data/spsps.txt, https://sites.google.com/view/strong-pseudoprime, https://sites.google.com/view/bases-strong-pseudoprime, https://oeis.org/A001262, https://oeis.org/A020229, https://oeis.org/A072276, https://oeis.org/A014233, https://oeis.org/A181782, https://oeis.org/A071294, https://oeis.org/A141768, https://oeis.org/A195328, https://oeis.org/A329759, https://oeis.org/A298756) to all prime bases p < 64 and has passed the Baillie–PSW primality test (https://en.wikipedia.org/wiki/Baillie%E2%80%93PSW_primality_test, https://mathworld.wolfram.com/Baillie-PSWPrimalityTest.html) and has trial factored (https://en.wikipedia.org/wiki/Trial_division, https://primes.utm.edu/glossary/xpage/TrialDivision.html, https://www.rieselprime.de/ziki/Trial_factoring, https://mathworld.wolfram.com/TrialDivision.html, http://www.numericana.com/answer/factoring.htm#trial) to 1016 is in fact prime, since in some cases (e.g. b = 11) a candidate for minimal prime base b is too large to be proven prime rigorously, this candidate for minimal prime base 11 has 65263 decimal digits, while the top record ordinary prime (https://primes.utm.edu/glossary/xpage/OrdinaryPrime.html) (i.e. neither N−1 (https://primes.utm.edu/prove/prove3_1.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, https://en.wikipedia.org/wiki/Pocklington_primality_test, https://www.rieselprime.de/ziki/Pocklington%27s_theorem, https://mathworld.wolfram.com/PocklingtonsTheorem.html, https://stdkmd.net/nrr/pock/, http://factordb.com/nmoverview.php?method=1) nor N+1 (https://primes.utm.edu/prove/prove3_2.html, http://bln.curtisbright.com/2013/10/09/the-n-1-and-n1-primality-tests/, http://factordb.com/nmoverview.php?method=2) can be ≥ 1/4 factored (https://en.wikipedia.org/wiki/Integer_factorization, https://www.rieselprime.de/ziki/Factorization, https://mathworld.wolfram.com/PrimeFactorization.html, https://mathworld.wolfram.com/PrimeFactorizationAlgorithms.html, http://www.numericana.com/answer/factoring.htm)) has 57125 decimal digits (the entry of this prime in top definitely primes is https://primes.utm.edu/primes/page.php?id=134371), see https://primes.utm.edu/top20/page.php?id=27, and 65263 > 57125) (you can click the "show" in the factordb page to see these primes (or probable primes) written in base 10 and base b as well as the length of these primes (or probable primes) in base 10 and base b (for base b, change the "10" in "Digits (Base 10)" box to "b", support bases 2 ≤ b ≤ 36), also you can click the "N−1" or the "N+1" (open the "Primality proving" box) to see the factorization of N−1 and N+1 for the primes > 10299 (for the factorization of N−1 and N+1 for the primes < 10299, you can just enter "-1" or "+1" after the prime in the searching box, then click "Factorize!"))

b number of minimal primes (or probable prime, which is a minimal prime assuming its primality) base b base-b form of the top 10 known minimal prime (or probable prime, which is a minimal prime assuming its primality) base b (write "dn" if there are 5 or more (n) consecutive same digits d) length of the top 10 known minimal prime (or probable prime, which is a minimal prime assuming its primality) base b algebraic ((a×bn+c)/gcd(a+c,b−1)) form of the top 10 known minimal prime (or probable prime, which is a minimal prime assuming its primality) base b factordb entry of this minimal prime (or probable prime, which is a minimal prime assuming its primality) number of unsolved families in base b searching limit of length for the unsolved families in base b (if there are different searching limits for the unsolved families in base b, choose the lowest searching limit)
2 1 11 2 3 http://factordb.com/index.php?id=3 0
3 3 111
21
12
3
2
2
13
7
5
http://factordb.com/index.php?id=13
http://factordb.com/index.php?id=7
http://factordb.com/index.php?id=5
0
4 5 221
31
23
13
11
3
2
2
2
2
41
13
11
7
5
http://factordb.com/index.php?id=41
http://factordb.com/index.php?id=13
http://factordb.com/index.php?id=11
http://factordb.com/index.php?id=7
http://factordb.com/index.php?id=5
0
5 22 109313
300031
44441
33331
33001
30301
14444
10103
3101
414
96
6
5
5
5
5
5
5
4
3
595+8
9391
3121
2341
2251
1951
1249
653
401
109
http://factordb.com/index.php?id=1100000000034686071
http://factordb.com/index.php?id=9391
http://factordb.com/index.php?id=3121
http://factordb.com/index.php?id=2341
http://factordb.com/index.php?id=2251
http://factordb.com/index.php?id=1951
http://factordb.com/index.php?id=1249
http://factordb.com/index.php?id=653
http://factordb.com/index.php?id=401
http://factordb.com/index.php?id=109
0
6 11 40041
4441
4401
51
45
35
31
25
21
15
5
4
4
2
2
2
2
2
2
2
5209
1033
1009
31
29
23
19
17
13
11
http://factordb.com/index.php?id=5209
http://factordb.com/index.php?id=1033
http://factordb.com/index.php?id=1009
http://factordb.com/index.php?id=31
http://factordb.com/index.php?id=29
http://factordb.com/index.php?id=23
http://factordb.com/index.php?id=19
http://factordb.com/index.php?id=17
http://factordb.com/index.php?id=13
http://factordb.com/index.php?id=11
0
7 71 3161
51071
3601
1100021
531101
351101
300053
150001
100121
40054
17
10
8
7
6
6
6
6
6
5
(717−5)/2
36×78+1
(78−47)/2
134471
91631
62819
50459
28813
16871
9643
http://factordb.com/index.php?id=116315256993601
http://factordb.com/index.php?id=207532837
http://factordb.com/index.php?id=2882377
http://factordb.com/index.php?id=134471
http://factordb.com/index.php?id=91631
http://factordb.com/index.php?id=62819
http://factordb.com/index.php?id=50459
http://factordb.com/index.php?id=28813
http://factordb.com/index.php?id=16871
http://factordb.com/index.php?id=9643
0
8 75 42207
51325
7121
7777461
7471
481
55025
5550525
5500525
4577
221
15
13
11
9
9
8
7
7
7
(4×8221+17)/7
(5×815−173)/7
813−7
(28669×87−25)/7
(53×88−25)/7
(4×89−25)/7
(5×88−2413)/7
1495381
1474901
(4×87+185)/7
http://factordb.com/index.php?id=1100000000416605822
http://factordb.com/index.php?id=25131694349141
http://factordb.com/index.php?id=549755813881
http://factordb.com/index.php?id=8589035809
http://factordb.com/index.php?id=127027489
http://factordb.com/index.php?id=76695841
http://factordb.com/index.php?id=11983381
http://factordb.com/index.php?id=1495381
http://factordb.com/index.php?id=1474901
http://factordb.com/index.php?id=1198399
0
9 151 30115811
2768607
763292
56136
102557
302051
819335
7271507
511361
1011507
1161
689
331
38
28
23
22
19
16
15
3×91160+10
(23×9688−511)/8
(31×9330−19)/4
(409×936−1)/8
927+52
3×922+46
922−454
(527×917−511)/8
(41×915+359)/8
914+412
http://factordb.com/index.php?id=1100000002376318423
http://factordb.com/index.php?id=1100000002495467486
http://factordb.com/index.php?id=1100000002359003642
http://factordb.com/index.php?id=1100000001554010824
http://factordb.com/index.php?id=1100000002512830927
http://factordb.com/index.php?id=1100000000032261811
http://factordb.com/index.php?id=1100000002495736583
http://factordb.com/index.php?id=1100000003446800389
http://factordb.com/index.php?id=1055192051985121
http://factordb.com/index.php?id=22876792455373
0
10 77 502827
5111
80551
66600049
66000049
60549
22051
5200007
946669
666649
31
12
8
8
8
8
8
7
6
6
5×1030+27
(5×1012−41)/9
(725×106−41)/9
66600049
66000049
6×107+49
22×106+1
5200007
946669
666649
http://factordb.com/index.php?id=1100000000204142046
http://factordb.com/index.php?id=555555555551
http://factordb.com/index.php?id=80555551
http://factordb.com/index.php?id=66600049
http://factordb.com/index.php?id=66000049
http://factordb.com/index.php?id=60000049
http://factordb.com/index.php?id=22000001
http://factordb.com/index.php?id=5200007
http://factordb.com/index.php?id=946669
http://factordb.com/index.php?id=666649
0
11 1068 5762668
5571011
775944
A71358
8522005
507206
51612A
5012657
1012551
326122
62669
1013
761
715
223
208
163
129
128
124
(57×1162668−7)/10
(607×111011−7)/10
(7×11761−367)/10
11715−58
(17×11222−111)/2
(557×11206−7)/10
(11163−57)/2
5×11128+62
11127+56
(178×11122−3)/5
http://factordb.com/index.php?id=1100000003573679860
http://factordb.com/index.php?id=1100000002361376522
http://factordb.com/index.php?id=1100000002505568840
http://factordb.com/index.php?id=1100000003576826487
http://factordb.com/index.php?id=1100000003576826769
http://factordb.com/index.php?id=1100000002518512744
http://factordb.com/index.php?id=1100000002391585327
http://factordb.com/index.php?id=1100000002632393378
http://factordb.com/index.php?id=1100000002391531300
http://factordb.com/index.php?id=1100000003576826781
0
12 106 403977
B0279B
B699B
AA051
B00099B
AAA0001
BBBAA1
A00065
44AAA1
BBBB1
42
30
9
8
7
7
6
6
6
5
4×1241+91
11×1229+119
129−313
130×126+1
32847239
32555521
2985817
2488397
1097113
248821
http://factordb.com/index.php?id=1100000002375054575
http://factordb.com/index.php?id=1100000002354113100
http://factordb.com/index.php?id=5159780039
http://factordb.com/index.php?id=388177921
http://factordb.com/index.php?id=32847239
http://factordb.com/index.php?id=32555521
http://factordb.com/index.php?id=2985817
http://factordb.com/index.php?id=2488397
http://factordb.com/index.php?id=1097113
http://factordb.com/index.php?id=248821
0
13 3196~3197 95197420
8032017111
C523755C
C1063192
B06540BBA
39062661
1770270317
72022972
93015511
715041
197421
32021
23757
10633
6544
6269
2708
2300
1554
1505
(113×13197420−5)/12
8×1332020+183
(149×1323756+79)/12
1310633−50
11×136543+2012
48×136267+1
267×132705+20
93×132298+2
120×131552+1
(7×131505−79)/12
http://factordb.com/index.php?id=1100000003943359311
http://factordb.com/index.php?id=1100000000490878060
http://factordb.com/index.php?id=1100000003590647776
http://factordb.com/index.php?id=1100000003590493750
http://factordb.com/index.php?id=1100000002616382906
http://factordb.com/index.php?id=1100000000765961441
http://factordb.com/index.php?id=1100000003590430825
http://factordb.com/index.php?id=1100000002632396910
http://factordb.com/index.php?id=1100000000765961452
http://factordb.com/index.php?id=1100000002320890755
1 358000
14 650 4D19698
34D708
8D14185
886B
408349
8C793
1879B
6B772B
46309
A593
19699
710
144
87
86
81
81
80
65
60
5×1419698−1
47×14708−1
9×14143−79
(8×1487+31)/13
4×1485+65
(116×1480−129)/13
(21×1480+31)/13
(89×1479−1649)/13
(4×1465−667)/13
(10×1460−101)/13
http://factordb.com/index.php?id=1100000000884560233
http://factordb.com/index.php?id=1100000001540144903
http://factordb.com/index.php?id=1100000003575856650
http://factordb.com/index.php?id=1100000002321014379
http://factordb.com/index.php?id=1100000000823937973
http://factordb.com/index.php?id=1100000002631073246
http://factordb.com/index.php?id=1100000002384401372
http://factordb.com/index.php?id=1100000002631077787
http://factordb.com/index.php?id=1100000000840126683
http://factordb.com/index.php?id=1100000002321038522
0
15 1284 715597
E145397
9610408
773CE
759CCE
503317
EB31
6330261
705024B
B70241
157
148
107
75
62
36
32
30
28
27
(15157+59)/2
15148−2558
(66×15106−619)/7
(1575+163)/2
(1562+2413)/2
5×1535+22
(207×1531−11)/14
1398×1527+1
1580×1525+11
172×1525+1
http://factordb.com/index.php?id=1100000002454891840
http://factordb.com/index.php?id=1100000002454900849
http://factordb.com/index.php?id=1100000000823937997
http://factordb.com/index.php?id=1100000003588407143
http://factordb.com/index.php?id=1100000003588407386
http://factordb.com/index.php?id=1100000002632398579
http://factordb.com/index.php?id=1100000002321033312
http://factordb.com/index.php?id=1100000002391199877
http://factordb.com/index.php?id=1100000003588407806
http://factordb.com/index.php?id=1100000000851967288
0
16 2347 3116137AF
472785DD
DB32234
D0B17804
5BC3700D
90354291
300F1960AF
201713321
F81517F
FAF106245
116139
72787
32235
17806
3703
3545
1965
1717
1519
1066
(16116139+619)/5
(4×1672787+2291)/15
(206×1632234−11)/15
(3131×1617804−11)/15
(459×163701+1)/5
9×163544+145
769×161962−81
2×161716+801
(233×161518+97)/15
251×161064−187
http://factordb.com/index.php?id=1100000003851731988
http://factordb.com/index.php?id=1100000003615909841
http://factordb.com/index.php?id=1100000002383583629
http://factordb.com/index.php?id=1100000003589278511
http://factordb.com/index.php?id=1100000000993764322
http://factordb.com/index.php?id=1100000000633424191
http://factordb.com/index.php?id=1100000003588368750
http://factordb.com/index.php?id=1100000003588386735
http://factordb.com/index.php?id=1100000000633744824
http://factordb.com/index.php?id=1100000003588387610
0
17 10409~10427 B671032E
570513101
E9B44732
D0GD37096
G732072F
15024325D
34716074
B3013077D
9D0103985
1090191F
67105
51313
44734
37099
32074
24328
16076
13080
10401
9022
(11×1767105−2411)/16
92×1751311+1
(3963×1744732−11)/16
(60381×1737096−13)/16
(263×1732073+121)/16
22×1724326+13
(887×1716074−7)/16
190×1713078+13
166×1710399+5
179021+32
http://factordb.com/index.php?id=1100000003993647842
http://factordb.com/index.php?id=1100000000765961389
http://factordb.com/index.php?id=1100000003883765450
http://factordb.com/index.php?id=1100000003848346668
http://factordb.com/index.php?id=1100000003838755382
http://factordb.com/index.php?id=1100000003815568647
http://factordb.com/index.php?id=1100000003802992457
http://factordb.com/index.php?id=1100000003782940761
http://factordb.com/index.php?id=1100000003782940760
http://factordb.com/index.php?id=1100000001100010542
18 100000
18 549 C06268C5
H766FH
80298B
C0116F5
HD93
GG0301
CF305
B196B
CCF145
714G7
6271
768
300
119
94
33
32
21
17
16
12×186270+221
18768−37
8×18299+11
12×18118+275
(302×1893−13)/17
304×1831+1
(219×1831−185)/17
(11×1821−1541)/17
(3891×1815−185)/17
(7×1816+2747)/17
http://factordb.com/index.php?id=1100000003590442437
http://factordb.com/index.php?id=1100000003590430490
http://factordb.com/index.php?id=1100000002355574745
http://factordb.com/index.php?id=1100000002632837015
http://factordb.com/index.php?id=1100000002321052894
http://factordb.com/index.php?id=1100000000819230161
http://factordb.com/index.php?id=1100000002631240657
http://factordb.com/index.php?id=1100000003590430474
http://factordb.com/index.php?id=1100000003590430470
http://factordb.com/index.php?id=1100000003590430465
0
19 31412~31435 H862916
D90730469
4F0498476
2482247
2458867A
9042994G
DB36272
333531088
B26588FG
10227907717
86292
73049
49850
48225
45888
42996
36273
31091
26590
22795
(17×1986292−215)/18
256×1973047+9
91×1949848+6
(1948225+44)/9
(1945888+926)/9
9×1942995+16
(245×1936272−11)/18
(20579×1931088−5)/18
(11×1926590+1447)/18
1922794+50566
http://factordb.com/index.php?id=1100000004163040839
http://factordb.com/index.php?id=1100000003998413751
http://factordb.com/index.php?id=1100000000808118332
http://factordb.com/index.php?id=1100000003949188041
http://factordb.com/index.php?id=1100000003949189035
http://factordb.com/index.php?id=1100000000808118328
http://factordb.com/index.php?id=1100000003968090004
http://factordb.com/index.php?id=1100000003949189435
http://factordb.com/index.php?id=1100000003968087931
http://factordb.com/index.php?id=1100000003949187975
23 100000
20 3314 G06269D
CD2449
501163AJ
J65505J
JCJ629
E566C7
3A5273
G44799
EC04297
40387404B
6271
2450
1166
658
631
568
529
449
432
392
16×206270+13
(241×202449−13)/19
5×201165+219
20658−7881
393×20629−1
(14×20568−907)/19
(67×20528−143)/19
(16×20449−2809)/19
292×20430+7
4×20391+32091
http://factordb.com/index.php?id=1100000003590539457
http://factordb.com/index.php?id=1100000002325393915
http://factordb.com/index.php?id=1100000003590502412
http://factordb.com/index.php?id=1100000003590502490
http://factordb.com/index.php?id=1100000001559454258
http://factordb.com/index.php?id=1100000003590502516
http://factordb.com/index.php?id=1100000003590502531
http://factordb.com/index.php?id=1100000000840126753
http://factordb.com/index.php?id=1100000002633348702
http://factordb.com/index.php?id=1100000003590502563
0
21 13382~13394 40473339G
B9045019E5
HD37414
BD35027B
9903323999H
530606FEK
4329236B
J233046J
9211260D
5D0198481
47336
45023
37415
35029
33244
30609
29238
23306
21128
19851
4×2147335+205
240×2145021+299
(353×2137414−13)/20
(233×2135028−53)/20
198×2133242+4175
(2130609+18455)/4
(83×2129237+157)/20
(19×2123306−5479)/20
(9×2121128−3709)/20
118×2119849+1
http://factordb.com/index.php?id=1100000000808118331
http://factordb.com/index.php?id=1100000003996110311
http://factordb.com/index.php?id=1100000003996110479
http://factordb.com/index.php?id=1100000003996110718
http://factordb.com/index.php?id=1100000003996110944
http://factordb.com/index.php?id=1100000003996111130
http://factordb.com/index.php?id=1100000003996112263
http://factordb.com/index.php?id=1100000003996112521
http://factordb.com/index.php?id=1100000003996112710
http://factordb.com/index.php?id=1100000000777265872
12 100000
22 8003 BK220015
738152L
L2385KE7
7959K7
J0767IGGJ
K0760EC1
I626AF
E60496L
L483G3
L0454B63
22003
3817
2388
961
772
764
628
499
485
458
(251×2222002−335)/21
(223817−289)/3
222388−653
(22961+857)/3
19×22771+199779
20×22763+7041
(6×22628−1259)/7
314×22497+21
22485−129
21×22457+5459
http://factordb.com/index.php?id=1100000003594696838
http://factordb.com/index.php?id=1100000003591359839
http://factordb.com/index.php?id=1100000003591360774
http://factordb.com/index.php?id=1100000003591361817
http://factordb.com/index.php?id=1100000003591362567
http://factordb.com/index.php?id=1100000000632724415
http://factordb.com/index.php?id=1100000000632724334
http://factordb.com/index.php?id=1100000000632703239
http://factordb.com/index.php?id=1100000003591364730
http://factordb.com/index.php?id=1100000003591365331
0
23 65168~65268 9479687
H3899429
L35I36858
L35884D5
L9735333
3D34854G
BF034431D
HHLH032823H
555331954
J31543A4
47969
38996
36861
35889
35335
34856
34434
32828
31957
31545
(9×2347969−53)/22
(17×2338996−7783)/22
(123022×2336858−9)/11
(21×2335889−8×235−13)/22
(10831×2335333−7)/22
(79×2334855+53)/22
268×2334432+13
216332×2332824+17
(60833×2331954−3)/22
(19×2331545−4903)/22
http://factordb.com/index.php?id=1100000004149262767
http://factordb.com/index.php?id=1100000004149263445
http://factordb.com/index.php?id=1100000004149263708
http://factordb.com/index.php?id=1100000004149263936
http://factordb.com/index.php?id=1100000004149264140
http://factordb.com/index.php?id=1100000004149264399
http://factordb.com/index.php?id=1100000004149264460
http://factordb.com/index.php?id=1100000004149265024
http://factordb.com/index.php?id=1100000004149265030
http://factordb.com/index.php?id=1100000004149265063
100 50000
24 3409 N00N8129LN
88N5951
A029518ID
D2698LD
N2644LLN
BC0331B
203137
C7298
D0259KKD
I0241I5
8134
5953
2955
2700
2647
334
315
299
263
244
13249×248131−49
201×245951−1
10×242954+5053
(13×242700+4403)/23
242647−1201
276×24332+11
2×24314+7
(283×24298−7)/23
13×24262+12013
18×24243+437
http://factordb.com/index.php?id=1100000003593391606
http://factordb.com/index.php?id=1100000003593275880
http://factordb.com/index.php?id=1100000003593269654
http://factordb.com/index.php?id=1100000003593269876
http://factordb.com/index.php?id=1100000003593270089
http://factordb.com/index.php?id=1100000002633359842
http://factordb.com/index.php?id=1100000002355610241
http://factordb.com/index.php?id=1100000002326181235
http://factordb.com/index.php?id=1100000003593270725
http://factordb.com/index.php?id=1100000002633360037
0
25 133625~133724 5J46728
JD1046037D07
4F42783OO
D41667G
GHN040444H
537981A8
DH0H35773
5034151HHBB
H32683FH
M2131741
46729
46043
42786
41668
40448
37983
35776
34156
32685
31743
(139×2546728−19)/24
12201×2546040+8132
(37×2542785+1867)/8
(13×2541668+59)/24
10448×2540445+17
(5×2537983+3067)/24
(205217×2535773−17)/24
5×2534155+276536
(17×2532685−1217)/24
(13249×2531741−1)/24
http://factordb.com/index.php?id=1100000004141587423
http://factordb.com/index.php?id=1100000004141587957
http://factordb.com/index.php?id=1100000000819229846
http://factordb.com/index.php?id=1100000004141588107
http://factordb.com/index.php?id=1100000004141588234
http://factordb.com/index.php?id=1100000004141590563
http://factordb.com/index.php?id=1100000004141590642
http://factordb.com/index.php?id=1100000004141590737
http://factordb.com/index.php?id=1100000004141590789
http://factordb.com/index.php?id=1100000004141590830
99 50000
26 25255~25259 M0611862BB
J044303KCB
6K233005
LD0209757
720279OL
5193916F
9GDK15920P
M8772P
K04364I5
J4222P
61190
44307
23302
20978
20281
19393
15924
8773
4367
4223
22×2661189+1649
19×2644306+13843
(34×2623301−79)/5
559×2620976+7
(7×2620281+11393)/25
(2619393+179)/5
(32569×2615921+21)/5
(22×268773+53)/25
20×264366+473
(19×264223+131)/25
http://factordb.com/index.php?id=1100000003968169875
http://factordb.com/index.php?id=1100000003968156595
http://factordb.com/index.php?id=1100000003892628745
http://factordb.com/index.php?id=1100000003892628658
http://factordb.com/index.php?id=1100000003892628605
http://factordb.com/index.php?id=1100000003850151202
http://factordb.com/index.php?id=1100000003850155316
http://factordb.com/index.php?id=1100000000758011195
http://factordb.com/index.php?id=1100000002634136508
http://factordb.com/index.php?id=1100000002328056865
4 100000
27 102850~102896 O44L660167
NJ064369H
ME496409G
PH0478901
QF47165AF5
J040791PD
51039164I07
NGN036329N
153F358315
L35564GLG
66020
64372
49643
47893
47169
40794
39169
36333
35835
35567
(457829×2766017−385)/26
640×2764370+17
(293×2749642−1736)/13
692×2747891+1
(691×2747168−95045)/26
19×2740793+688
136×2739167+13129
17222×2736330+23
(22557×2735832−275)/26
(21×2735567−94921)/26
http://factordb.com/index.php?id=1100000004374140861
http://factordb.com/index.php?id=1100000004374138999
http://factordb.com/index.php?id=1100000000819229859
http://factordb.com/index.php?id=1100000004102754118
http://factordb.com/index.php?id=1100000004102755880
http://factordb.com/index.php?id=1100000004102758254
http://factordb.com/index.php?id=1100000004102875088
http://factordb.com/index.php?id=1100000004103372866
http://factordb.com/index.php?id=1100000004103376142
http://factordb.com/index.php?id=1100000000819229833
46 75000
28 25528~25529 O4O945359
5OA31238F
N624051LR
D0526777D
QO423969
537468P
G01899AN
A14236F
5I1370F
51332P8P
94538
31241
24054
5271
4242
3748
1902
1425
1372
1335
(6092×2894536−143)/9
(4438×2831239+125)/27
(209×2824053+3967)/9
13×285270+5697
(242×284241−4679)/9
(5×283748+2803)/27
16×281901+303
(10×281425−2899)/27
(17×281371−11)/3
(5×281335+426163)/27
http://factordb.com/index.php?id=1100000000808118231
http://factordb.com/index.php?id=1100000003880455200
http://factordb.com/index.php?id=1100000003879667576
http://factordb.com/index.php?id=1100000003850151420
http://factordb.com/index.php?id=1100000000840839934
http://factordb.com/index.php?id=1100000003850161974
http://factordb.com/index.php?id=1100000003850161973
http://factordb.com/index.php?id=1100000000840839947
http://factordb.com/index.php?id=1100000003850161972
http://factordb.com/index.php?id=1100000003850161965
1 543202
29
30 2619 OT34205
I024608D
54882J
C010221
M0547SS7
M241QB
AN206
50164B
J153QJ
J94QQJ
34206
24610
4883
1024
551
243
207
166
155
97
25×3034205−1
18×3024609+13
(5×304883+401)/29
12×301023+1
22×30550+26047
(22×30243+3139)/29
(313×30206−23)/29
5×30165+11
(19×30155+6071)/29
(19×3097+188771)/29
http://factordb.com/index.php?id=1100000000800812865
http://factordb.com/index.php?id=1100000003593967511
http://factordb.com/index.php?id=1100000002327649423
http://factordb.com/index.php?id=1100000000785448736
http://factordb.com/index.php?id=1100000003593407988
http://factordb.com/index.php?id=1100000003593408295
http://factordb.com/index.php?id=1100000002327651073
http://factordb.com/index.php?id=1100000002356282476
http://factordb.com/index.php?id=1100000003593409109
http://factordb.com/index.php?id=1100000003593409165
0
31
32 168868~169008 H488824H
L46942S6L
L45942A99
S6045403L
9A42225L
7041783UT
641476AOF
K40117U9
PI392573
D38797OD
48884
46945
45945
45406
42227
41786
41479
40119
39259
38799
(17×3248884−12913)/31
(21×3246945+207307)/31
(21×3245945−361481)/31
902×3245404+21
(289×3242226+331)/31
7×3241785+989
(6×3241479+145105)/31
(20×3240119+9559)/31
(793×3239258−483)/31
(13×3238799+10899)/31
http://factordb.com/index.php?id=1100000004230594707
http://factordb.com/index.php?id=1100000004230594958
http://factordb.com/index.php?id=1100000004230596384
http://factordb.com/index.php?id=1100000004230596933
http://factordb.com/index.php?id=1100000004230597870
http://factordb.com/index.php?id=1100000004230601701
http://factordb.com/index.php?id=1100000004230609228
http://factordb.com/index.php?id=1100000004230610293
http://factordb.com/index.php?id=1100000004230611223
http://factordb.com/index.php?id=1100000004230611188
140 50000
33 279994~280093 FL484077
FUD47546
70J045590P
L743052IS
U041604BMW
50V40962
B0402557N
H739303BS
F0R038550T
WF38251W
48409
47548
45594
43055
41608
40964
40258
39306
38554
38253
(501×3348408−469)/32
(16813×3347546−13)/32
7642×3345591+25
(679×3343054+12281)/32
30×3341607+12737
(5311×3340962−31)/32
11×3340257+254
(551×3339305+4889)/32
16362×3338551+29
(1039×3338252+529)/32
http://factordb.com/index.php?id=1100000004378726800
http://factordb.com/index.php?id=1100000004378727308
http://factordb.com/index.php?id=1100000004378727577
http://factordb.com/index.php?id=1100000004378727887
http://factordb.com/index.php?id=1100000004378728175
http://factordb.com/index.php?id=1100000004378738121
http://factordb.com/index.php?id=1100000004378738229
http://factordb.com/index.php?id=1100000004378738467
http://factordb.com/index.php?id=1100000004378738500
http://factordb.com/index.php?id=1100000004378738574
99 50000
34 184772~184833 UKN49845
I469468FF
M45310UIF
QG44663L
W043669MKN
NA0417331
K038239J4J
F34013X5
K032901E1
K732021
49847
46949
45313
44665
43673
41736
38243
34015
32904
32022
(34343×3449845−23)/33
(6×3446949−128321)/11
(2×3445313+27313)/3
(874×3444664+149)/33
32×3443672+26135
792×3441734+1
20×3438242+22119
(5×3434015+6617)/11
20×3432903+477
(667×3432021−7)/33
http://factordb.com/index.php?id=1100000004125629992
http://factordb.com/index.php?id=1100000004125644307
http://factordb.com/index.php?id=1100000004125646708
http://factordb.com/index.php?id=1100000004125649832
http://factordb.com/index.php?id=1100000004125652107
http://factordb.com/index.php?id=1100000004125653362
http://factordb.com/index.php?id=1100000004125708803
http://factordb.com/index.php?id=1100000004125741107
http://factordb.com/index.php?id=1100000004125751526
http://factordb.com/index.php?id=1100000004125755574
61 50000
35
36 35286~35290 P81993SZ
S0750078H
7K26567Z
J10117LJ
VL07258J
EO06177V
FZ57773P
T0946181
RY4562H
OZ3932AZ
81995
75010
26569
10119
7261
6180
5780
4621
4564
3935
(5×3681995+821)/7
28×3675009+305
(53×3626568+101)/7
(19×3610119+2501)/35
1137×367259+19
528×366178+31
16×365779−1163
(36549×364619−289)/35
(979×364563−629)/35
25×363934−901
http://factordb.com/index.php?id=1100000002394962083
http://factordb.com/index.php?id=1100000004020085177
http://factordb.com/index.php?id=1100000003896952461
http://factordb.com/index.php?id=1100000003807362491
http://factordb.com/index.php?id=1100000003807362489
http://factordb.com/index.php?id=1100000003807362488
http://factordb.com/index.php?id=1100000003807362487
http://factordb.com/index.php?id=1100000003807362486
http://factordb.com/index.php?id=1100000003807362485
http://factordb.com/index.php?id=1100000000840634476
4 100000

Links for top (probable) primes: (also pages for the largest known prime: https://en.wikipedia.org/wiki/Largest_known_prime_number, https://en.wikipedia.org/wiki/List_of_largest_known_primes_and_probable_primes, http://www.numericana.com/answer/primes.htm#history, and related pages: https://en.wikipedia.org/wiki/Megaprime, https://primes.utm.edu/glossary/xpage/TitanicPrime.html, https://primes.utm.edu/glossary/xpage/GiganticPrime.html, https://primes.utm.edu/glossary/xpage/Megaprime.html, https://www.rieselprime.de/ziki/Titanic_prime, https://www.rieselprime.de/ziki/Gigantic_prime, https://www.rieselprime.de/ziki/Megaprime, https://www.rieselprime.de/ziki/Gigaprime, https://mathworld.wolfram.com/TitanicPrime.html, https://mathworld.wolfram.com/GiganticPrime.html)

and the search result page for the (probable) primes of special forms: (note: a large prime of the form (a×bn+c)/d with small a, b, c, d and large n can be easily proven prime if and only if c = ±1 and d = 1)

Definitely primes (i.e. c = ±1 and d = 1):

Probable primes (i.e. c ≠ ±1 and/or d ≠ 1):

Home page of Proth Primes Search (search of primes of the form k×2n+1 with odd k): http://www.prothsearch.com/

Home page of Riesel Prime Search (search of primes of the form k×2n−1 with odd k): https://web.archive.org/web/20210817181915/http://www.15k.org/

References of minimal primes (https://en.wikipedia.org/wiki/Minimal_prime_(recreational_mathematics), https://primes.utm.edu/glossary/xpage/MinimalPrime.html) (the original definition, i.e. prime > base (b) is not required):

  1. http://www.cs.uwaterloo.ca/~shallit/Papers/minimal5.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_11.pdf) (base 10)
  2. https://cs.uwaterloo.ca/~cbright/reports/mepn.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_17.pdf) (bases 2 to 30)
  3. https://cs.uwaterloo.ca/~shallit/Papers/br10.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_18.pdf) (bases 2 to 30)
  4. https://cs.uwaterloo.ca/~cbright/talks/minimal-slides.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_19.pdf) (bases 2 to 30)
  5. https://doi.org/10.1080/10586458.2015.1064048 (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_20.pdf) (bases 2 to 30)
  6. https://scholar.colorado.edu/downloads/hh63sw661 (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_16.pdf) (bases 2 to 10) (warning: the datas for bases 8 and 10 have errors, the data for base 8 misses the prime 6101 and the data for base 10 misses the primes 9001 and 9049 and instead wrongly includes the primes 90001, 90469, and 9000049, and the correct values of Sm for bases 8 and 10 are 15 and 26 (instead of 14 and 27), respectively)
  7. https://github.com/curtisbright/mepn-data (bases 2 to 30)
  8. https://github.com/curtisbright/mepn (bases 2 to 30)
  9. https://github.com/RaymondDevillers/primes (bases 28 to 50)
  10. http://recursed.blogspot.com/2006/12/prime-game.html (base 10)
  11. https://inzitan.blogspot.com/2007/07/prime-game.html (in Spain) (base 10)
  12. http://www.pourlascience.fr/ewb_pages/a/article-nombres-premiers-inevitables-et-pyramidaux-24978.php (in French) (base 10)
  13. http://villemin.gerard.free.fr/aNombre/TYPMULTI/PremInev.htm (base 10)
  14. https://schoolbag.info/mathematics/numbers/66.html (base 10)
  15. https://www.microsiervos.com/archivo/ciencia/2-3-5-7-11.html (in Spain) (base 10)
  16. https://math.stackexchange.com/questions/58292/how-to-check-if-an-integer-has-a-prime-number-in-it (base 10)
  17. https://www.metafilter.com/62794/3-is-an-odd-prime-5-is-an-odd-prime-7-is-an-odd-prime-9-is-a-very-odd-prime (base 10)
  18. https://www.ocf.berkeley.edu/~wwu/cgi-bin/yabb/YaBB.cgi?board=riddles_medium;action=display;num=1165031124 (base 10)
  19. https://www.cristal.univ-lille.fr/profil/jdelahay/pls:2002:094.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_100.pdf) (bases 2 to 10) (warning: the data for base 8 has error, the data misses the primes 444641 and 444444441)
  20. https://logs.esolangs.org/freenode-esoteric/2011-02-04.html (bases 2 to 10) (warning: the data for base 8 has error, the data misses the prime 111 and instead wrongly includes the primes 1101, 101111, 600111, 1000011, 1000111, 4411111, 64111111, 601111111, 41111111111111111, and possibly 6111111111111111111111 if the author of this article continues to search)
  21. http://www.bitman.name/math/article/730 (in Italian) (bases 2 to 20)
  22. http://www.bitman.name/math/table/497 (in Italian) (bases 2 to 16)
  23. http://www.bitman.name/math/table/498 (in Italian) (base 17)
  24. http://www.bitman.name/math/table/499 (in Italian) (base 18)
  25. http://www.bitman.name/math/table/500 (in Italian) (base 19)
  26. http://www.bitman.name/math/table/501 (in Italian) (base 20)
  27. https://www.primepuzzles.net/puzzles/puzz_178.htm (base 10)
  28. https://oeis.org/A071062 (base 10)

Other researches for the digits of the primes:

Left-truncatable primes (https://en.wikipedia.org/wiki/Truncatable_prime, https://primes.utm.edu/glossary/xpage/LeftTruncatablePrime.html, https://mathworld.wolfram.com/TruncatablePrime.html, https://www.numbersaplenty.com/set/truncatable_prime/), i.e. every nonempty suffix is prime:

  1. http://primerecords.dk/left-truncatable.txt (base 10)
  2. http://chesswanks.com/num/LTPs/ (bases 3 to 120)
  3. https://rosettacode.org/wiki/Find_largest_left_truncatable_prime_in_a_given_base (bases 3 to 17)
  4. https://www.ams.org/journals/mcom/1977-31-137/S0025-5718-1977-0427213-2/S0025-5718-1977-0427213-2.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_28.pdf) (bases 3 to 11)
  5. http://www.primerecords.dk/left-truncatable.htm (base 10)
  6. http://rosettacode.org/wiki/Truncatable_primes (base 10)
  7. https://www.primepuzzles.net/puzzles/puzz_002.htm (base 10)
  8. https://web.archive.org/web/20041204160717/http://www.wschnei.de/digit-related-numbers/circular-primes.html (base 10)
  9. http://www.bitman.name/math/article/1155 (in Italian) (bases 2 to 20)
  10. http://www.bitman.name/math/table/524 (in Italian) (bases 2 to 20)
  11. https://oeis.org/A103443 (largest left-truncatable prime in base b)
  12. https://oeis.org/A103463 (length of the largest left-truncatable prime in base b)
  13. https://oeis.org/A076623 (number of left-truncatable primes in base b)

Right-truncatable primes (https://en.wikipedia.org/wiki/Truncatable_prime, https://primes.utm.edu/glossary/xpage/RightTruncatablePrime.html, https://mathworld.wolfram.com/TruncatablePrime.html, https://www.numbersaplenty.com/set/truncatable_prime/), i.e. every nonempty prefix is prime:

  1. http://primerecords.dk/right-truncatable.txt (base 10)
  2. http://fatphil.org/maths/rtp/rtp.html (bases 3 to 90)
  3. https://www.ams.org/journals/mcom/1977-31-137/S0025-5718-1977-0427213-2/S0025-5718-1977-0427213-2.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_28.pdf) (bases 3 to 15)
  4. http://rosettacode.org/wiki/Truncatable_primes (base 10)
  5. https://www.primepuzzles.net/puzzles/puzz_002.htm (base 10)
  6. https://web.archive.org/web/20041204160717/http://www.wschnei.de/digit-related-numbers/circular-primes.html (base 10)
  7. http://www.bitman.name/math/article/1155 (in Italian) (bases 2 to 20)
  8. http://www.bitman.name/math/table/525 (in Italian) (bases 2 to 20)
  9. https://oeis.org/A023107 (largest right-truncatable prime in base b)
  10. https://oeis.org/A103483 (length of the largest right-truncatable prime in base b)
  11. https://oeis.org/A076586 (number of right-truncatable primes in base b)

Other researches for the minimal elements of other subsets of positive integers written in the positional numeral system with radix b, as digit strings with subsequence ordering:

Primes == 1 mod 4:

  1. https://www.primepuzzles.net/puzzles/puzz_178.htm
  2. https://github.com/curtisbright/mepn-data/blob/master/data/primes1mod4/minimal.10.txt
  3. https://www.primepuzzles.net/puzzles/Minimal%20Primes%204k+1,%204k-1,%20pu%20178.doc (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/doc_1.doc) (warning: the data has many errors, the data wrongly including many primes which are not minimal primes, including the largest "minimal 4k+1 prime" in the list: 9630493, this prime is not a minimal 4k+1 prime since 9949 is also a prime == 1 mod 4, and 9949 is a subsequence of 9630493, there are 146 (instead of 173) minimal 4k+1 primes and 113 (instead of 138) minimal 4k−1 primes, and the largest minimal 4k+1 prime is 87733 = (8*1079−503)/9 instead of 9630493 = 10633−507)
  4. https://oeis.org/A111055

Primes == 3 mod 4:

  1. https://www.primepuzzles.net/puzzles/puzz_178.htm
  2. https://github.com/curtisbright/mepn-data/blob/master/data/primes3mod4/minimal.10.txt
  3. https://www.primepuzzles.net/puzzles/Minimal%20Primes%204k+1,%204k-1,%20pu%20178.doc (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/doc_1.doc) (warning: the data has many errors, the data wrongly including many primes which are not minimal primes, including the largest "minimal 4k+1 prime" in the list: 9630493, this prime is not a minimal 4k+1 prime since 9949 is also a prime == 1 mod 4, and 9949 is a subsequence of 9630493, there are 146 (instead of 173) minimal 4k+1 primes and 113 (instead of 138) minimal 4k−1 primes, and the largest minimal 4k+1 prime is 87733 = (8*1079−503)/9 instead of 9630493 = 10633−507)
  4. https://oeis.org/A111056 (warning: the b-file does not include the prime 21915199)

Palindromic primes:

  1. https://www.primepuzzles.net/puzzles/puzz_178.htm
  2. https://oeis.org/A114835 (warning: the b-file does not include the probable prime 9943401999)

Composites:

  1. https://github.com/curtisbright/mepn-data/tree/master/data/composites
  2. http://www.bitman.name/math/table/504
  3. https://oeis.org/A071070

Squares:

  1. http://recursed.blogspot.com/2006/12/prime-game.html
  2. https://oeis.org/A130448

Powers of 2:

  1. https://oeis.org/A071071/a071071.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_13.pdf)
  2. https://oeis.org/A071071

Multiples of 3:

  1. https://oeis.org/A071073

Multiples of 4:

  1. https://oeis.org/A071072

Other sets:

  1. https://arxiv.org/pdf/1607.01548.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_14.pdf) (sums of three squares, quadratic residues mod 6, quadratic residues mod 7, range of Euler’s totient function, range of "Euler’s totient function + 3", range of Dedekind psi function, perfect numbers)
  2. https://nntdm.net/papers/nntdm-25/NNTDM-25-1-036-047.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_15.pdf) (range of "Euler’s totient function + n", for 0 ≤ n ≤ 5)

Tools about this research: (in fact, you can also use Wolfram Alpha (https://www.wolframalpha.com/) or online Magma calculator (http://magma.maths.usyd.edu.au/calc/) or Pari/GP (https://pari.math.u-bordeaux.fr/) or Wolfram Mathematica (https://www.wolfram.com/mathematica/) or Maple (https://www.maplesoft.com/))

Prime checkers:

  1. https://primes.utm.edu/curios/includes/primetest.php
  2. https://www.numberempire.com/primenumbers.php
  3. http://www.numbertheory.org/php/lucas.html
  4. http://www.javascripter.net/faq/numberisprime.htm
  5. http://www.javascripter.net/math/primes/millerrabinprimalitytest.htm
  6. http://www.javascripter.net/math/calculators/100digitbigintcalculator.htm (just type x and click "prime?")
  7. http://www.math.com/students/calculators/source/prime-number.htm
  8. https://www.calculatorsoup.com/calculators/math/prime-number-calculator.php
  9. https://onlinemathtools.com/test-prime-number
  10. https://www.bigprimes.net/primalitytest
  11. https://www.archimedes-lab.org/primOmatic.html
  12. http://www.sonic.net/~undoc/java/PrimeCalc.html
  13. http://www.primzahlen.de/primzahltests/testverfahren.htm (in German)
  14. http://www.proftnj.com/calcprem.htm (in French) (use the box "Rechercher si un nombre est premier" and click "Rechercher")
  15. https://primes.utm.edu/nthprime/ (calculate the nth prime)
  16. http://factordb.com/nextprime.php (calculate the next (probable) prime above N, in fact, links 2, 6, 10, 11, 12, 13 can also calculate the next prime above N, besides, links 2, 6 can also calculate the previous prime below N)

Integer factorizers:

  1. https://www.numberempire.com/numberfactorizer.php
  2. https://www.alpertron.com.ar/ECM.HTM
  3. http://www.javascripter.net/math/calculators/primefactorscalculator.htm
  4. https://betaprojects.com/calculators/prime_factors.html
  5. https://www.emathhelp.net/calculators/pre-algebra/prime-factorization-calculator/
  6. http://www.numbertheory.org/php/factor.html
  7. https://primefan.tripod.com/Factorer.html
  8. https://www.calculatorsoup.com/calculators/math/prime-factors.php
  9. https://www.calculator.net/prime-factorization-calculator.html
  10. http://www.se16.info/js/factor.htm
  11. http://math.fau.edu/Richman/mla/factor-f.htm
  12. http://www.rsok.com/~jrm/factor.html
  13. http://www.brennen.net/primes/FactorApplet.html (need run with Java)
  14. https://web.archive.org/web/20161004191531/http://britton.disted.camosun.bc.ca/jbprimefactor.htm
  15. http://wims.unice.fr/~wims/en_tool~algebra~factor.en.html
  16. http://www.analyzemath.com/Calculators_3/prime_factors.html
  17. https://www.archimedes-lab.org/primOmatic.html
  18. http://www.proftnj.com/calcprem.htm (in French) (use the box "Factoriser un nombre" and click "Factoriser")
  19. http://factordb.com/ (online factor database)
  20. http://myfactorcollection.mooo.com:8090/dbio.html (online factor database for numbers of the form bn±1)
  21. https://web.archive.org/web/20120722020628/http://homes.cerias.purdue.edu/~ssw/cun/prime.php (online factor database for numbers of the form bn±1 for 2 ≤ b ≤ 12)
  22. https://web.archive.org/web/20120330032919/http://homes.cerias.purdue.edu/~ssw/cun/clientold.html (online factor database for numbers of the form bn±1 for 2 ≤ b ≤ 12)

Base converters:

  1. https://baseconvert.com/
  2. https://baseconvert.com/high-precision
  3. https://baseconvert.com/ieee-754-floating-point (for IEEE 754 (https://en.wikipedia.org/wiki/IEEE_754))
  4. https://www.calculand.com/unit-converter/zahlen.php?og=Base+2-36&ug=1
  5. https://www.calculand.com/unit-converter/zahlen.php?og=Base62&ug=1
  6. https://www.calculand.com/unit-converter/zahlen.php?og=Base64&ug=1
  7. https://www.calculand.com/unit-converter/zahlen.php?og=Base85&ug=1
  8. https://www.calculand.com/unit-converter/zahlen.php?og=System+calculand&ug=1
  9. http://www.math.com/students/converters/source/base.htm
  10. https://www.dcode.fr/base-n-convert
  11. https://www.cut-the-knot.org/Curriculum/Algorithms/BaseConversion.shtml
  12. http://www.tonymarston.net/php-mysql/converter.php
  13. http://math.fau.edu/Richman/mla/convert.htm
  14. https://web.archive.org/web/20190629223750/http://thedevtoolkit.com/tools/base_conversion
  15. http://www.kwuntung.net/hkunit/base/base.php (in Chinese)
  16. https://linesegment.web.fc2.com/application/math/numbers/RadixConversion.html (in Japanese)
  17. http://factordb.com/index.php?showid=1000000000000000127 (you can change the "showid" to the ID for your number)

Expression generators:

  1. https://stdkmd.net/nrr/exprgen.htm (only support base 10 forms)
  2. https://www.numberempire.com/simplifyexpression.php (e.g. for the form 5{7} in base 11, type "5*11^n+7*(11^n-1)/10")

Lists of small primes: (see https://primes.utm.edu/notes/faq/LongestList.html and https://primes.utm.edu/notes/faq/x_digit_primes.html, although we can quickly determine whether a number < 10300 is prime or not, but there is no list of all primes < 10300, since the space which we need is larger than the number of elementary particles (https://en.wikipedia.org/wiki/Elementary_particle) (i.e. quarks (https://en.wikipedia.org/wiki/Quark) and electrons (https://en.wikipedia.org/wiki/Electron)) in the universe (https://en.wikipedia.org/wiki/Universe))

  1. https://primes.utm.edu/lists/small/1000.txt
  2. https://primes.utm.edu/lists/small/10000.txt
  3. https://primes.utm.edu/lists/small/100000.txt
  4. https://primes.utm.edu/lists/small/millions/
  5. https://oeis.org/A000040/b000040.txt
  6. https://oeis.org/A000040/a000040.txt
  7. https://oeis.org/A000040/b000040_1.txt
  8. https://oeis.org/A000040/a000040_1B.7z
  9. http://www.prime-numbers.org/
  10. http://prime-numbers.org/sample.zip
  11. https://metanumbers.com/prime-numbers
  12. https://www.calculatorsoup.com/calculators/math/prime-numbers.php
  13. https://www2.cs.arizona.edu/icon/oddsends/primes.htm
  14. https://www.numbersaplenty.com/set/prime_number/more.php
  15. https://cdn1.byjus.com/wp-content/uploads/2021/10/Prime-Numbers-from-1-to-1000.png
  16. http://noe-education.org/D11102.php (in French)
  17. https://web.archive.org/web/20060513054350/http://www.walter-fendt.de/m14i/primes_i.htm (in Italian)
  18. https://primefan.tripod.com/500Primes1.html (warning: this site incorrectly includes 1 as a prime and misses the primes 3229 and 3329)
  19. https://www.gutenberg.org/files/65/65.txt
  20. http://www.primos.mat.br/indexen.html
  21. https://www.walter-fendt.de/html5/men/primenumbers_en.htm
  22. http://www.rsok.com/~jrm/printprimes.html
  23. http://www.numbertheory.org/php/prime_generator.html
  24. http://www.primzahlen.de/primzahltests/2-100003.htm (in German)
  25. https://jocelyn.quizz.chat/np/cache/index.html (in French)
  26. http://www.sosmath.com/tables/prime/prime.html
  27. https://www.bigprimes.net/archive/prime
  28. https://web.archive.org/web/20201130071856/http://www.mathematical.com/primelist1to100kk.html
  29. https://web.archive.org/web/20191118082053/http://www.tsm-resources.com/alists/prim.html
  30. https://web.archive.org/web/20090917191047/http://planetmath.org/encyclopedia/FirstThousandPositivePrimeNumbers.html
  31. https://faculty.lynchburg.edu/~nicely/gaps/gaplist.html (the longest list ever calculated, with all primes < 264 (but unlikely other lists here, the primes are not all stored))
  32. https://en.wikipedia.org/wiki/List_of_prime_numbers#The_first_1000_prime_numbers

Lists of factorizations of small integers:

  1. http://primefan.tripod.com/500factored.html
  2. http://www.sosmath.com/tables/factor/factor.html
  3. https://sites.google.com/view/prime-factorization-of-integer
  4. https://web.archive.org/web/20060210182347/http://bearnol.is-a-geek.com/Panfur%20Project/ (warning: this site does not factor the composite numbers 15, 51, 85, 91, 255, 435, 451, 561, 595, 679, 703, 771, 1105, 1261, 1285, 1351, 1387, ...)
  5. http://www.datapointed.net/visualizations/math/factorization/animated-diagrams/
  6. http://www.datapointed.net/visualizations/math/factorization/animated-diagrams/?infinity
  7. https://oeis.org/A027750/a027750.txt (all (prime or composite or unit) factors of N)
  8. http://factorzone.tripod.com/factors.htm (all (prime or composite or unit) factors of N)
  9. http://functions.wolfram.com/NumberTheoryFunctions/Divisors/03/02 (all (prime or composite or unit) factors of N)
  10. https://en.wikipedia.org/wiki/Table_of_prime_factors
  11. https://en.wikipedia.org/wiki/Table_of_divisors (all (prime or composite or unit) factors of N)
  12. http://factordb.com/index.php?query=n&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show (from factordb)

Lists of small integers in various bases:

  1. https://en.wikipedia.org/wiki/Table_of_bases

Also, programs related to this research: (some of these programs can also be downloaded in http://www.fermatsearch.org/download.php or https://www.mersenne.org/download/freeware.php or https://download.mersenne.ca/) (some of these programs need to use GMP (https://gmplib.org/))

Primality (or probable primality) testing (https://en.wikipedia.org/wiki/Primality_test, https://www.rieselprime.de/ziki/Primality_test, https://mathworld.wolfram.com/PrimalityTest.html, https://primes.utm.edu/prove/index.html) programs (https://www.rieselprime.de/ziki/Primality_testing_program):

  1. LLR (http://jpenne.free.fr/index2.html, https://primes.utm.edu/bios/page.php?id=431, https://www.rieselprime.de/ziki/LLR, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/llr403win64, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/llr403linux64)
  2. PFGW (https://sourceforge.net/projects/openpfgw/, https://primes.utm.edu/bios/page.php?id=175, https://www.rieselprime.de/ziki/PFGW, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/pfgw_win_4.0.3)
  3. Primo (http://www.ellipsa.eu/public/primo/primo.html, http://www.rieselprime.de/dl/Primo309.zip, https://primes.utm.edu/bios/page.php?id=46, https://www.rieselprime.de/ziki/Primo, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/primo-433-lx64, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/Primo309)
  4. Proth.exe (https://primes.utm.edu/programs/gallot/, https://primes.utm.edu/bios/page.php?id=411, https://www.rieselprime.de/ziki/Proth.exe, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/proth)
  5. CHG (https://mersenneforum.org/attachment.php?attachmentid=21133&d=1571237465, https://primes.utm.edu/bios/page.php?id=797, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/CHG)

Sieving (https://www.rieselprime.de/ziki/Sieving, https://www.rieselprime.de/ziki/Sieving_a_range_of_sequences, https://mathworld.wolfram.com/Sieve.html, http://www.rechenkraft.net/yoyo/y_status_sieve.php) programs (https://www.rieselprime.de/ziki/Sieving_program):

  1. SRSieve (https://www.bc-team.org/app.php/dlext/?cat=3, http://web.archive.org/web/20160922072340/https://sites.google.com/site/geoffreywalterreynolds/programs/, http://www.rieselprime.de/dl/CRUS_pack.zip, https://primes.utm.edu/bios/page.php?id=905, https://www.rieselprime.de/ziki/Srsieve, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/srsieve_1.1.4, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/sr1sieve_1.4.6, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/sr2sieve_2.0.0, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/srbsieve)
  2. MTSieve (https://sourceforge.net/projects/mtsieve/, https://primes.utm.edu/bios/page.php?id=449, https://www.rieselprime.de/ziki/Mtsieve, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/mtsieve_2.3.3)
  3. NewPGen (https://primes.utm.edu/programs/NewPGen/, https://primes.utm.edu/bios/page.php?id=105, https://www.rieselprime.de/ziki/NewPGen, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/newpgen, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/newpgenlinux)

Integer factoring (https://en.wikipedia.org/wiki/Integer_factorization, https://www.rieselprime.de/ziki/Factorization, https://mathworld.wolfram.com/PrimeFactorization.html, https://mathworld.wolfram.com/PrimeFactorizationAlgorithms.html, http://www.numericana.com/answer/factoring.htm) programs (https://www.rieselprime.de/ziki/Factoring_program):

  1. GMP-ECM (https://web.archive.org/web/20210803045418/https://gforge.inria.fr/projects/ecm, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/ecm704dev-svn2990-win64, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/ecm704dev-svn2990-linux64, https://www.rieselprime.de/ziki/GMP-ECM)
  2. MSieve (https://sourceforge.net/projects/msieve, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/msieve153_win64)
  3. GGNFS (http://sourceforge.net/projects/ggnfs, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/GGNFS)
  4. CADO-NFS (https://web.archive.org/web/20210506173015/http://cado-nfs.gforge.inria.fr/index.html, https://www.rieselprime.de/ziki/CADO-NFS, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/cado-nfs-2.3.0)
  5. YAFU (http://bbuhrow.googlepages.com/home, https://github.com/bbuhrow/yafu)
  6. YTools (https://github.com/bbuhrow/ytools)
  7. YSieve (https://github.com/bbuhrow/ysieve)

For the files in this page:

  • File "kernel b": Data for all known minimal primes in base b, expressed as base b strings
  • File "left b": x{y}z (where x and z are strings (may be empty) of digits in base b, y is a digit in base b) families in base b such that we were unable to determine if they contain a prime > b or not (i.e. x{y}z (where x and z are strings (may be empty) of digits in base b, y is a digit in base b) families in base b such that no prime member > b could be found, nor could the family be ruled out as only containing composites (only count the numbers > b)), these families are sorted by "the length n number in these families, from the smallest number to the largest number, this n is large enough such that n replaced to any larger number does not affect the sorting" (e.g. for base 17, we sort with B{0}B3 -> B{0}DB -> {B}2BE -> {B}2E -> {B}E9 -> {B}EE, since in this case 7 digits is enough, B0000B3 < B0000DB < BBBB2BE < BBBBB2E < BBBBBE9 < BBBBBEE, if the 7 replaced to any larger number, this result of the sorting will not change)

See my article about this research: https://docs.google.com/document/d/e/2PACX-1vQct6Hx-IkJd5-iIuDuOKkKdw2teGmmHW-P75MPaxqBXB37u0odFBml5rx0PoLa0odTyuW67N_vn96J/pub