
23 11

Article 16.5.2
Journal of Integer Sequences, Vol. 19 (2016),2

3

6

1

47

Computing the Inverses, their Power Sums,

and Extrema for Euler’s Totient and

Other Multiplicative Functions

Max A. Alekseyev
Department of Mathematics

The George Washington University
801 22nd St. NW

Washington, DC 20052
USA

maxal@gwu.edu

Abstract

We propose a generic algorithm for computing the inverses of a multiplicative func-
tion under the assumption that the set of inverses is finite. More generally, our algo-
rithm can compute certain functions of the inverses, such as their power sums (e.g.,
cardinality) or extrema, without direct enumeration of the inverses. We illustrate
our algorithm with Euler’s totient function ϕ(⋅) and the k-th power sum of divisors
σk(⋅). For example, we can establish that the number of solutions to σ1(x) = 10

1000 is
15,512,215,160,488,452,125,793,724,066,873,737,608,071,476, while it is intractable
to iterate over the actual solutions.

1 Introduction

A value of a multiplicative function f on a positive integer n equals the product of its values
on the prime powers in the prime factorization of n. That is, if n = pe11 ⋅ pe22 ⋯pemm , where
p1 < p2 < ⋅ ⋅ ⋅ < pm are primes and e1, e2, . . . , em are positive integers, then

f(n) = m∏
i=1

f(peii).
1

mailto:maxal@gwu.edu

In particular, f(1) = 1. Famous examples of multiplicative functions include τ(n), the
number of divisors of n (with τ(pe) = e+1); σk(n), the k-th power sum of divisors of n (with

σk(pe) = pk(e+1)−1
pk−1

); and Euler’s totient function ϕ(n) (with ϕ(pe) = (p − 1) ⋅ pe−1).
In the present work, we propose a generic algorithm for computing the set of inverses (full

pre-image) f−1(n) of a multiplicative function f for a given integer n under the following
assumptions: (i) there are finitely many prime powers pe with f(pe) ∣ n, and we can compute
them all; (ii) the prime factorization of n is known, otherwise it may be a bottleneck to obtain
(e.g., Contini et al. [2] proved that computing ϕ−1(⋅) can be used for factoring semiprime
integers with little overhead). In particular, our algorithm is well applicable for computing
ϕ−1(n) and σ−1k (n) with k > 0,1 which we will use for illustration purposes. While computing
inverses of Euler’s totient function ϕ(⋅) was studied to some extent [3, 2, 1], computing
inverses of other multiplicative functions such as σk(⋅), to the best of our knowledge, was
not addressed in the literature. Our algorithm may be viewed as a generalization and
streamlining of the “intelligent exhaustive search” for ϕ−1(n) in [2].

We present an underlying idea of the algorithm in the elegant form of formal Dirichlet
series, which allow us to easily extend it to computing certain functions of the inverses, such
as their power sums (including cardinality as the 0-th power sum) or extrema, without and
faster than direct enumeration of the inverses. For example, our algorithm can establish that

∣σ−11 (101000)∣ = 15,512,215,160,488,452,125,793,724,066,873,737,608,071,476. (1)

2 Formal Dirichlet series framework

From now on, we assume that f is a fixed multiplicative function.
We find it convenient to define binary multiplication × and addition + operations on sets

of positive integers as follows: U×V = {u⋅v ∶ u ∈ U, v ∈ V } and U+V = U∪V . Equipped with
these operations the set Pfin(Z>0) of finite2 subsets of positive integers forms a commutative
semiring (with the additive identity ∅ and the multiplicative identity {1}) and allows us to
consider formal Dirichlet series with coefficients from this semiring.3

Theorem 1. We have the following identity for formal Dirichlet series of variable s over

the semiring (Pfin(Z>0),+,×):
+
n≥1

f−1(n)
ns

= ⨉
prime p

∞+
e=0

{pe}
f(pe)s . (2)

1While τ(n) can be viewed as a special case of σk(n) with k = 0, the assumption (i) does not hold in this
case already for n = 2.

2The combinatorial identities (2), (3), (6), (7) proved in this section hold in the case of infinite pre-images
as well, while our restriction to the finite case is dictated purely by computational needs.

3To emphasize that the defined + and × are semiring operations, we use their big versions (in place of
more traditional Σ and ∏) to denote the corresponding series summation and product operators. Some
background information on formal Dirichlet series over semirings is given in the Appendix.

2

For a fixed positive integer n and every divisor d ∣ n, we further have

f−1(d) = Coeffd−s ⨉
prime p

+
e∶ f(pe)∣n

{pe}
f(pe)s . (3)

Proof. Multiplicativity of f implies that if n = f(m) and m = pe11 ⋅ pe22 ⋯pekk , where p1 < p2 <⋅ ⋅ ⋅ < pk are primes, then n = f(pe11) ⋅f(pe22)⋯f(pekk). It follows that n is the product of factors
of the form f(pe), where p is a prime and e is a positive integer, and no two such factors
share the same p. In other words,

f−1(n) = +
f(p

e1
1
)⋯f(p

ek
k
)=n

k⨉
i=1

{peii }, (4)

where the sum is taken over various tuples of primes p1 < p2 < ⋅ ⋅ ⋅ < pk (with arbitrary k ≥ 0)
and various positive integer exponents e1, e2, . . . , ek that satisfy f(pe11) ⋅ f(pe22)⋯f(pekk) = n.
Multiplying (4) by n−s, we get

f−1(n)
ns

= +
f(p

e1
1
)⋯f(p

ek
k
)=n

k⨉
i=1

{peii }
f(peii)s .

Summing over n ≥ 1, we obtain

+
n≥1

f−1(n)
ns

= +
p1<p2<⋅⋅⋅<pk
e1,e2,...,ek>0

k⨉
i=1

{peii }
f(peii)s = ⨉

prime p

∞+
e=0

{pe}
f(pe)s ,

which proves (2).

We remark that terms with e = 0 in (2) represent multiplicative identities (i.e., {p0}
f(p0)s =

{1}
1s

for any prime p), while for a prime power pe with e > 0, f(pe) may participate in a
factorization of n only if f(pe) ∣ n. Hence, to obtain the full pre-image f−1(n) from (2) for
a given n, we can restrict our attention only to such prime powers:

f−1(n) = Coeffn−s ⨉
prime p

+
e∶ f(pe)∣n

{pe}
f(pe)s . (5)

We further remark that for every divisor d ∣ n, the coefficients of d−s in the series in the right
hand side of (5) and (2) coincide, which implies formula (3).

Let (X,⊕,⊗) be a commutative semiring. A mapping C ∶ (Pfin(Z>0),+,×) → (X,⊕,⊗)
is a weak homomorphism if for any U,V ∈ Pfin(Z>0), we have C(U × V) = C(U) ⊗ C(V)
whenever the sets U and V are element-wise coprime (i.e., gcd(u, v) = 1 for any u ∈ U and
v ∈ V), and C(U + V) = C(U) ⊕ C(V) whenever U,V are disjoint. It is easy to see that if
C is a homomorphism (i.e., C(U + V) = C(U) ⊕C(V) and C(U × V) = C(U) ⊗C(V) hold
unconditionally), then it is also a weak homomorphism.

3

Theorem 2. Let (X,⊕,⊗) be a commutative semiring and C ∶ (Pfin(Z>0),+,×) → (X,⊕,⊗)
be a weak homomorphism, then

⊕
n≥1

C(f−1(n))
ns

= ⊗
prime p

∞⊕
e=0

C({pe})
f(pe)s . (6)

Furthermore, for a fixed positive integer n and every divisor d ∣ n,
C(f−1(d)) = Coeffd−s ⊗

prime p

⊕
e∶ f(pe)∣n

C({pe})
f(pe)s . (7)

Proof. We remark that the sets inside the product in (4) are coprime, while the products
inside the sum are disjoint. Since C is a weak homomorphism, we have

C(f−1(n)) = ⊕
f(p

e1
1
)⋯f(p

ek
k
)=n

k⊗
i=1

C({peii }),
which further implies identity (6). Formula (7) is derived from (6) with the same arguments
we used to derive (3) from (2).

Formula (7) under appropriate choice of the weak homomorphism C and its codomain(X,⊕,⊗) allows us to efficiently compute certain functions of the inverses without their
direct enumeration. In the next section we give some particular examples.

3 Examples of weak homomorphisms

Our first, rather trivial example is given by (X,⊕,⊗) = (Pfin(Z>0),+,×) with C being the
identity homomorphism. In this case, formulae (6) and (7) simply represent the original
formulae (2) and (3) for the full pre-images. We will keep this trivial example in mind to fit
computation of full pre-images into our generic algorithm.

Our second example is given by (X,⊕,⊗) = (Z≥0,max, ⋅), which is a commutative semiring
of nonnegative integers with a binary maximum operation (i.e., u⊕ v = max{u, v}) and the
standard integer multiplication. The mapping C(U) = max (U ∪ {0}), giving the maximum
element of U ≠ ∅ or 0 for U = ∅, represents a homomorphism between (Pfin(Z>0),+,×) and(Z≥0,max, ⋅).

Similarly, the mapping C(U) = min (U ∪ {∞}) represents a homomorphism between(Pfin(Z>0),+,×) and the commutative semiring (X,⊕,⊗) = (Z>0∪{∞},min, ⋅), wherem⊗∞ =∞⊗m =∞ and m⊕∞ =∞⊕m = m for any element m ∈ X (i.e., ∞ represents an additive
identity).

An example of a weak homomorphism, which is not a homomorphism, is given by(X,⊕,⊗) = (Z≥0,+, ⋅), a semiring of nonnegative integers with the standard integer addi-
tion and multiplication, and Cq(U) = ∑u∈U uq, where q is a fixed nonnegative integer. In
particular, C0(U) = ∣U ∣ represents the cardinality of a set U , while C1(U) is the sum of
elements of U .

4

4 Algorithm for computing C(f−1(n))
In addition to a multiplicative function f , we now fix a weak homomorphism C from(Pfin(Z>0),+,×) to a commutative semiring (X,⊕,⊗). To compute C(f−1(n)) for a given
integer n with a known prime factorization, we iteratively compute the right hand side of
(7) restricted to the terms with denominators ds for d ∣ n. This computation naturally splits
into three major steps outlined below.

Step 1. From the prime factorization of n, we easily compute the set of its divisors D.
Clearly, ∣D∣ = τ(n).

Step 2. We compute the atomic series

Lp = ⊕
e∶ f(pe)∣n

C({pe})
f(pe)s =⊕d∈D

Ad

ds

for every prime p that admits at least one4 integer e > 0 with f(pe) ∣ n. Here
Ad = ⊕

e∶ f(pe)=d

C({pe}). (8)

We remark that finiteness of full pre-images of the function f implies that the number of the
atomic series is finite, since for each atomic series Lp, some positive power of p must belong
to the finite set ⋃d∈D f−1(d). Internally it is convenient to store each such atomic series Lp

as an associative array d↦ Ad indexed by elements d ∈D.

Step 3. We multiply the constructed atomic series Lp1 , Lp2 , . . . , Lpℓ and compute partial

products P0 =
C({1})

1s
, P1 = P0 ⊗D Lp1 , . . ., Pℓ = Pℓ−1 ⊗D Lpℓ , where ⊗D denotes the result of⊗ restricted to the terms with denominators ds for d ∈ D. Each multiplication is computed

with the formula:

(⊕
d∈D

Ad

ds
) ⊗D (⊕

d∈D

Bd

ds
) =⊕

d∈D

⊕t∣dAt ⊗Bd/t

ds
. (9)

That is, if the associative arrays d↦ Ad and d↦ Bd represent Lpj+1 and the partial product
Pj, then we compute the partial product Pj+1 as an associative array d↦⊕t∣dAt ⊗Bd/t.

For every d ∈ D, the coefficient of d−s in the final product Pℓ gives us C(f−1(d)). In
particular, C(f−1(n)) = Coeffn−s Pℓ.

While Step 1 of the algorithm is rather trivial and takes O(τ(n)) arithmetic operations
on integers of length O(logn), Step 2 is specific to a particular function f and illustrated
with some examples in the next section. Below we analyze the time complexity of the generic
Step 3.

4We remark that if there is no such e > 0, then Lp =
C({1})

1s
represents the identity for ⊗-multiplication of

formal Dirichlet series.

5

Theorem 3. Let n be an integer and D be the set of divisors of n. Given ℓ atomic series

for C(f−1(n)), their ⊗D-product can be computed with O(ℓ ⋅ τ(n)2) operations in (X,⊕,⊗).
Proof. Computation of the ⊗D-product consists of ℓ iterative computations of pairwise⊗D-multiplications defined by (9). Since each operand of such ⊗D-multiplication contains
O(τ(n)) terms, its computation takes O(τ(n)2) operations ⊕ and ⊗.

As we will see in the next section, for Euler’s totient function ϕ(⋅) we have ℓ ≤ τ(n). In
particular, Step 3 in computation of the size or extrema of ϕ−1(n) takes O(τ(n)3) arithmetic
operations on integers of length O(logn), which all can be done in O(τ(n)3 ⋅ log2 n) time.
Combining with results of the next section, we obtain that Steps 1-3 in this case can be done
in O(τ(n)⋅log2 n⋅(τ(n)2+log4 n)). Similarly, for the function σk(⋅), we have ℓ ≤ τ(n)⋅log2(n),
thus computation of the size or extrema of σ−1k (n) can be done in O(τ(n) ⋅ log3 n ⋅ (τ(n)2 +
log4 n)) time.

5 Computation of atomic series

As we explained above, our algorithm is generic and works for any multiplicative function
f , provided that we can construct atomic series Lp1 , . . . , Lpℓ . To construct them, we need
to determine suitable primes p and compute the corresponding series coefficients Ad defined
by (8). Below we describe such computation in details for the functions ϕ(⋅) and σk(⋅).
We remark that in both cases we rely on primality testing, which for a number with n bits
can be done in time O(log6+ǫ n) for any ǫ > 0 [4]. Using probabilistic primality test (e.g.,
Miller–Rabin test [5]) can save a factor of log3 n.

5.1 Euler’s totient function

Our goal is to find the prime powers pe such that ϕ(pe) ∣ n. Since for e > 0, ϕ(pe) = (p−1)pe−1,
the divisibility ϕ(pe) ∣ n implies that p − 1 divides n and e ≤ νp(n) + 1, where νp(n) is the
p-adic valuation of n (i.e., the maximum integer t such that pt but not pt+1 divides n). So
we need to compute the set S = {p ∶ p − 1 ∈ D and p is prime}, which can be done by going
over the elements d of D and testing if p = d + 1 is prime. The set S gives us the indices of
the atomic series. For every prime p ∈ S, we compute the corresponding atomic series:

Lp =
C({1})

1s
⊕ νp(n)+1

⊕
e=1

C({pe})
((p − 1)pe−1)s .

Example. For n = 12 with the set of divisors D = {1,2,3,4,6,12}, we obtain the set of
primes S = {2,3,5,7,13}. If C(U) is a weak homomorphism into (X,⊕,⊗) = (Z≥0,+, ⋅) giving

6

the sum of the elements of U , then the corresponding atomic series are

L2 =
1
1s
⊕ 2

1s
⊕ 4

2s
⊕ 8

4s

=
3
1s
⊕ 4

2s
⊕ 8

4s
,

L3 =
1
1s
⊕ 3

2s
⊕ 9

6s
,

L5 =
1
1s
⊕ 5

4s
,

L7 =
1
1s
⊕ 7

6s
,

L13 =
1
1s
⊕ 13

12s
.

The partial ⊗D-products in this case are P0 =
C({1})

1s
=

1
1s

and

P1 = P0 ⊗D L2 =
3
1s
⊕ 4

2s
⊕ 8

4s
,

P2 = P1 ⊗D L3 =
3
1s
⊕ 13

2s
⊕ 20

4s
⊕ 27

6s
⊕ 36

12s
,

P3 = P2 ⊗D L5 =
3
1s
⊕ 13

2s
⊕ 35

4s
⊕ 27

6s
⊕ 36

12s
,

P4 = P3 ⊗D L7 =
3
1s
⊕ 13

2s
⊕ 35

4s
⊕ 48

6s
⊕ 127

12s
,

P5 = P4 ⊗D L13 =
3
1s
⊕ 13

2s
⊕ 35

4s
⊕ 48

6s
⊕ 166

12s
.

The coefficient of 12−s in P5 gives the sum of ϕ−1(12) = {13,21,26,28,36,42}.
To analyze the running time of this algorithm, let TC(m) be the maximum time required

to compute C({t}) for a positive integer t having at most m bits.

Theorem 4. Given an integer n and the set of its divisors D, the atomic series for C(ϕ−1(n))
can be computed in time O(τ(n) ⋅ logn ⋅ (log5+ǫ n + TC(2 logn))) for any ǫ > 0.

Proof. The proposed algorithm performs O(τ(n)) primality tests of positive integers below
n+1, each of which takes time O(log6+ǫ n). For every identified prime p, it further computes
νp(n) + 2 = O(logn) values of C on singleton sets with elements below pνp(n)+1 ≤ n(n + 1),
which takes time O(logn ⋅ TC(2 logn)).

We remark that for C computing the size or extrema of ϕ−1(n), we have TC(m) = O(1) so
that the time complexity for computing the atomic series becomes simply O(τ(n) ⋅ log6+ǫ n).
5.2 Power sum of divisors

Let k be a positive integer. Our goal is to find the prime powers pe such that σk(pe) ∣ n, i.e.,
σk(pe) = d for some d ∈ D. Since σk(pe) = 1 + pk + p2k + ⋅ ⋅ ⋅ + pek, we have pek < d ≤ (1 + p)ek
or pek ≤ d − 1 < (1 + p)ek, implying that p = ⌊(d − 1)1/(ek)⌋. We let d run over D and e run

incrementally from 1 to ⌊ log2(d−1)
k
⌋. For each such pair (d, e), we test whether p = ⌊(d−1)1/(ek)⌋

is prime and whether p(e+1)k−1
pk−1

= d. If both these conditions hold, we have σk(pe) = d and add

the term C({pe})
ds

to Lp. Here we assume that initially all Lp =
C({1})

1s
, and only those Lp that

were enriched with additional terms in the above process represent the atomic series.

7

Example. Let us compute the minimum of σ−11 (n) for n = 42. So we use the mapping
C(U) = min (U ∪ {∞}) into the semiring (X,⊕,⊗) = (Z>0 ∪ {∞},min, ⋅). We compute the
set D = {1,2,3,6,7,14,21,42} of divisors of n and use it as described above to determine
that only prime powers pe ∈ {2,22,5,13,41} satisfy σ1(pe) ∣ n. They give rise to the following
atomic series:

L2 =
1
1s
⊕ 2

3s
⊕ 4

7s
,

L5 =
1
1s
⊕ 5

6s
,

L13 =
1
1s
⊕ 13

14s
,

L41 =
1
1s
⊕ 41

42s
.

The partial ⊗D-products in this case are P0 =
C({1})

1s
=

1
1s

and

P1 = P0 ⊗D L2 =
1
1s
⊕ 2

3s
⊕ 4

7s
,

P2 = P1 ⊗D L5 =
1
1s
⊕ 2

3s
⊕ 5

6s
⊕ 4

7s
⊕ 20

42s
,

P3 = P2 ⊗D L13 =
1
1s
⊕ 2

3s
⊕ 5

6s
⊕ 4

7s
⊕ 13

14s
⊕ 20

42s
,

P4 = P3 ⊗D L41 = P3.

The coefficient of 42−s in P4 = P3 gives the minimum of σ−11 (42) = {20,26,41}, which is 20.

As above, let TC(m) be the maximum time required to compute C({t}) for a positive
integer t having at most m bits.

Theorem 5. Given an integer n and the set of its divisors D, the atomic series for C(σ−1k (n))
can be computed in time O(τ(n) ⋅ logn ⋅ (log6+ǫ n + TC(logn))) for any ǫ > 0.

Proof. The proposed algorithm performs O(τ(n) ⋅ logn) arithmetic operations and primality
tests on positive integers below n, each of which takes time O(log6+ǫ n). For every identified
prime power pe, it further computes C({pe}), which takes time O(TC(logn)).

As above, for C computing the size or extrema of σ−1k (n), we have TC(m) = O(1) so that
the time complexity for computing the atomic series becomes simply O(τ(n) ⋅ log7+ǫ n).

6 Examples in the OEIS

The Online Encyclopedia of Integer Sequences [6] contains a number of sequences, for which
the proposed algorithm can compute many terms:5

ϕ−1(n!) σ−11 (n!) ϕ−1(10n) σ−11 (10n) σ−11 (pn#)
size A055506 A055486 A072074 A110078 A153078
min A055487 A055488 A072075 A110077 A153076
max A165774 A055489 A072076 A110076 A153077

In particular, the value of ∣σ−11 (101000)∣ in (1) represents the 1000-th term of the sequence
A110078.

5Some of the terms in these sequences were computed by Ray Chandler.

8

http://oeis.org/A055506
http://oeis.org/A055486
http://oeis.org/A072074
http://oeis.org/A110078
http://oeis.org/A153078
http://oeis.org/A055487
http://oeis.org/A055488
http://oeis.org/A072075
http://oeis.org/A110077
http://oeis.org/A153076
http://oeis.org/A165774
http://oeis.org/A055489
http://oeis.org/A072076
http://oeis.org/A110076
http://oeis.org/A153077
http://oeis.org/A110078

7 Acknowledgments

The work was supported by the National Science Foundation under Grant No. IIS-1462107.

Appendix. Formal Dirichlet series

As we are not aware if Dirichlet series were considered over commutative semirings such as(Pfin(Z>0),+,×) before, we feel obliged to briefly overview their properties.
Let X = (X,⊕,⊗) be a commutative semiring. A formal6 Dirichlet series over X is an

infinite sequence (x1, x2, . . .) of elements of X, which we find convenient to represent as

x1

1s
⊕ x2

2s
⊕ ⋅ ⋅ ⋅ = ∞⊕

i=1

xi

is
,

where s is a formal variable.
It is easy to check that formal Dirichlet series over X form a commutative semiring under

the addition and multiplication binary operations inherited from X as follows:

(∞⊕
i=1

xi

is
) ⊕ (∞⊕

i=1

yi

is
) = ∞⊕

i=1

xi ⊕ yi

is

and

(∞⊕
i=1

xi

is
) ⊗ (∞⊕

i=1

yi

is
) = ∞⊕

i=1

⊕j∣i xj ⊗ yi/j

is
.

These operations can be also viewed as an extension of the operations defined on single
terms:

x

ms
⊕ y

ms
=
x⊕ y

ms

and
x

ms
⊗ y

ns
=

x⊗ y

(m ⋅ n)s .
If ǫ and ι represent respectively the additive and multiplicative identities in X , then

E = ∞⊕
i=1

ǫ

is

and

I = ι

1s
⊕ ∞

⊕
i=2

ǫ

is

represent respectively the additive and multiplicative identities in the semiring of formal
Dirichlet series over X . It is often convenient to omit terms with coefficients equal ǫ, e.g.,
we can simply write I = ι

1s
.

We denote the coefficient of 1
ds

in a formal Dirichlet series F by Coeffd−s F .

6The term “formal” in the description of Dirichlet series and its variable s reflects the fact that they do
not take any values (thus a formal Dirichlet series is not a function of s). In contrast, conventional Dirichlet
series (e.g., Riemann zeta function ζ(s) = ∑

∞
i=1

1

is
) are often viewed as functions of a real or complex variable

s.

9

References

[1] R. Coleman, On the image of Euler’s totient function, preprint, 2009. Available at
http://arxiv.org/abs/0910.2223.

[2] S. Contini, E. Croot, and I. Shparlinski, Complexity of inverting the Euler function,
Math. Comp. 75 (2006), 983–996.

[3] H. Gupta, Euler’s totient function and its inverse, Indian J. Pure Appl. Math. 12 (1981),
22–30.

[4] H. W. Lenstra, Jr. and C. Pomerance, Primality testing with Gaussian periods, preprint,
2005. Available at https://math.dartmouth.edu/~carlp/PDF/complexity12.pdf.

[5] M. O. Rabin, Probabilistic algorithm for testing primality, J. Number Theory 12 (1980),
128–138.

[6] The OEIS Foundation, The On-Line Encyclopedia of Integer Sequences, (2016), pub-
lished electronically at http://oeis.org.

2010 Mathematics Subject Classification: Primary 11Y16; Secondary 11A05, 11Y55, 11Y70,
30B50.
Keywords: multiplicative function, Euler’s totient function, sum of divisors, inverse func-
tion, Dirichlet series.

(Concerned with sequences A055486, A055487, A055488, A055489, A055506, A072074, A072075,
A072076, A110076, A110077, A110078, A153076, A153077, A153078, and A165774.)

Received November 23 2015; revised version received April 27 2016. Published in Journal of

Integer Sequences, May 11 2016.

Return to Journal of Integer Sequences home page.

10

http://arxiv.org/abs/0910.2223
https://math.dartmouth.edu/~carlp/PDF/complexity12.pdf
http://oeis.org
http://oeis.org/A055486
http://oeis.org/A055487
http://oeis.org/A055488
http://oeis.org/A055489
http://oeis.org/A055506
http://oeis.org/A072074
http://oeis.org/A072075
http://oeis.org/A072076
http://oeis.org/A110076
http://oeis.org/A110077
http://oeis.org/A110078
http://oeis.org/A153076
http://oeis.org/A153077
http://oeis.org/A153078
http://oeis.org/A165774
http://www.cs.uwaterloo.ca/journals/JIS/

	Introduction
	Formal Dirichlet series framework
	Examples of weak homomorphisms
	Algorithm for computing C(f-1(n))
	Computation of atomic series
	Euler's totient function
	Power sum of divisors

	Examples in the OEIS
	Acknowledgments

