
POPULAR VALUES OF EULER'S FUNCTION

CARL POMERANCE

§1. Introduction. For each natural number m, let N(m) denote the number of
integers n with (f>(n) = m, where </> denotes Euler's function. There are many
interesting problems connected with the function N(m), such as the conjecture of
Carmichael that N(m) is never 1 (see [9], for example) and the study of the
distribution of the m for which N(m) > 0 (see Erdfts and Hall [5]). In this note we
shall be concerned with the maximal order of N(m).

In [3], Erdds showed that there is a positive constant c such that

N(m) > mc for infinitely many m. (1)

Erdos did not explicitly compute a value of c > 0 for which (1) is true, but such a
computation could be carried out in Erdos's proof without too much trouble. Let C
be the least upper bound of the set of c for which (1) holds. Wooldridge [11] has
recently used estimates from Selberg's upper bound sieve to show that

C Js 3 - 2 ^ / 2 > 0-17157.

In this note we use certain improvements on average in the Brun-Titchmarsh
theorem due to Hooley [8] together with Bombieri's theorem to show that

C ^ 1-625/512e ^0-55092. (2)

Recently, Iwaniec has made some further improvements on the Brun-Titchmarsh
theorem (H. Iwaniec, "On the Brun-Titchmarsh theorem", to appear—Theorems 6
and 10) that allow us to obtain the slight improvement that

C > 0-55655 . (3)

In particular, N(m) > m5/9 for infinitely many m. We do not present here a proof of
(3). Such a proof is obtained by following our proof of (2) using the new
improvements on Brun^-Titchmarsh. Erdos [4] has conjectured that C = 1.

In a private communication, Erdos informed me that Davenport and Heilbronn
corresponded about the function

F2(x) = X N(m)2 .
m ^ x

They were able to show F2(x)/x -> oo.They conjectured that there is some c > 0
such that

F2(x)>x1+C. (4)
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From our work we may choose in (4) any c < 1 — 625/256e. Using the method that
improves (2) to (3), we have F2{x) > x10/9. Erd6s conjectures that (4) holds for every
c < 1.

In §2 we show that

N{m) ^ m exp ( - (1 + o(l)) log m logloglog m/loglog m j . (5)

We also give a heuristic argument that (5) is best possible in that there is an infinite
set of m for which equality holds.

Let
Fx(x) = X N(m).

m ^ x

Bateman [1] has shown that

Fi(x) = c0x + O(x- exp {-C l(logx-loglog x)1/2})

where c0 = ((2)£(3)/((6) and cx < 1/^/2 is arbitrary. Our conjecture that (5) is best
possible implies

Fi(x)-cox = &(x • exp {-(1 + e) log x • logloglog x/loglog x})

for every e > 0, while (3) implies

I take pleasure in acknowledging the helpful comments of Harold Diamond and
Paul Erdfls. I also wish to thank Paul Bateman for informing me of [11]. I am also
grateful to H. Iwaniec for letting me see his manuscript.

§2. An upper bound for N(m) and a conjectured lower bound. Let

L(x) = log x logloglog x/loglog x .

A reading of the proof of Lemma 2 in [10], which is an improvement of Lemma 2 in
Erd6s [4], shows that actually the following result is proved.

THEOREM A. Let A(y) denote the number of square-free integers n < y such that
for every prime factor p of n, p — 1 divides m. Then

uniformly for all m, as y —> oo.

We now show that Theorem A implies (5). First note that there is an absolute
constant a such that if (j>{n) = m, then n < txm loglog m (cf. Hardy and Wright [7],
Theorem 328). Let N*(m) denote the number of square-free n with 4>(n) — m. Then
Theorem A implies

.N*(m) £ Alctm loglog m).«S m/e"+om)L(m). (6)
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This inequality is most of the battle in the proof of (5). We now make some crude
estimates that allow us to pass from N*(m) to N(m).

If <f>(n) = m, write n = uv where u is square-full, v is square-free, and (u, v) = 1.
Thus <p(v) | m and u < oc(m/</>(u)) loglog m. The number of square-full numbers below
x is O(sfx). Thus

N(m) < X i(m/d) l o8 l og rn)il2N*(d). (7)
d\m

Using the estimate (6) if d > log m and the trivial estimate N*(d) <£ d loglog d if
d ^ log m, we have for all d \ m,

d~ll2N*{d)

Thus (7) implies

N(m) <§ d(m) •

where we use the maximal order of the divisor function (due to Wigert):

d(m) ^ 2(1+D(1)|lo8m/|08108'".

We now give a heuristic argument that (5) is best possible. Let *P(x, y) denote the
number of integers n ^ x free of prime factors exceeding y and let Il(x, y) denote the
number of primes p < x such that p— 1 is free of prime factors exceeding y. It is
reasonable to guess that

if x > y and y -> oo. In a forthcoming joint paper with Canfield and Erdfis, we shall
show

- ( l + o(l))2-1(logx)1/2 loglog x) .

We now show that the conjecture that (5) is best possible follows from the conjecture

~ n(x, exp ((log x)1'2)) = exp ( - (1 + o(l))2-1(log x)1'2 loglog x) . (8)

Indeed, from (8), we have

M = n(exp ((loglog z)2), log zj

= exp ((loglog z)2 - (1 +o(l)) loglog z • logloglog z).
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Thus if B is the number of square-free numbers composed of exactly
u = [log z/(loglog z)2] of the primes counted by M, we have

But every number n counted by B satisfies

(i) n^z,

(ii) every prime factor of 4>(ri) is at most log z.

Thus (j) maps the set of integers counted by B to a set of cardinality at most
*F(z, log z). Thus there is a number m =$ z such that

V(z, log z)

where we use the result of Erd6s (cf. de Bruijn [2]) that

* P ( z , l o g z ) = 4(1+<J(1»l°gz/1°glogz _

Thus the conjecture (8) implies that (5) is best possible.

§3. The proof of (2). If 0 < u «S 1, recall that Il(x, x") denotes the number of
primes p ^ x such that p — 1 is free of prime factors exceeding x".

THEOREM B (Erdfts [3]). Suppose that there is an e > 0 such that
H(x,x") > sn(x) for all large x. Let m1 < m2 < ... be the values of m where
N{m) > m1~". Then there are infinitely many ml and, in fact, log mj + 1/log m; -» 1.

Erdds did not state his theorem as strongly as we have, but his proof, with a few
simple changes, does give Theorem B. In particular, one would argue from the Brun-
Titchmarsh theorem that there is a u' < u with II(x, x") > jen(x) for all large x.
Then following Erdfis's argument for u', we have Theorem B.

What Theorem B does is allow us to take "0" out of the problem: to get our
results we need only study the function n(x, x"). In fact, both our assertion (2) and
our choice of c in (4) follow directly from Theorem B and the following.

THEOREM 1. For each u > 625/512e, there is an e > 0 such that Tl(x, x") > en(x)
for all large x.

To prove Theorem 1, we shall first prove

THEOREM 2. II(x, x1/2) ^ (1 - 4 log (5/4) + O(1))TI(X).

Proof. Let q denote a variable prime. By n(x,q, 1) we mean the number of
primes p < x with q | (p — 1). Let

H(t)= X n(x,q,l)\ogq.
x'/2 < q H t
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Using partial summation we have

7i (x) -n(x ,x 1 / 2 )= £ <
x1/2 < q t, X

logx J t log2t

Now Goldfeld [6] has shown that Bombieri's theorem implies H{x) ~ x/2. Also
Hooley [8] has shown that

H(t) < (4 + o(l))x log (rx"1/2)/log x , x1/2 < t < x . (9)

We use (9) for x1/2 < t «£ x5/8. Beyond x5/8, we use the trivial estimate H(t) ^ H(x).
Thus

dt

t\og2t
8

= (4 log (|)+ o(l))-

x5/8

X

l o g x '

which gives our result.

Proof of Theorem 1. Let 1/2 > u > 625/512e. We have

n(x,xu) = n(x,x1/2)-(n(x,x1/2)-n(x,xu))

> ( l - 4 1 o g ( 5 / 4 ) + o( l ) ) j i (x)- X n(x,q,\), (10)
X" < q < x'l2

by Theorem 2 (again q represents primes). We now use Bombieri's theorem and the
Brun-Titchmarsh theorem to estimate the sum in (10).

From Bombieri's theorem, there is a constant B such that

^ n(x,q, 1) = TT(X) ^ («- l ) - 1 +O(x/ log 2 x) .
X" < q « xl/2/log% X" < q < xW/logBx

= 7t(x) log — + O(x loglog x/log2 x). (11)

From the Brun-Titchmarsh theorem, we have

X n(x, q, 1) <§ 7c(x) Y.1'1 <x l o g l o l x/log2x . (12)

• • • • • • • . " . * v ' ' • , - ' < " ;
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From (10), (11), (12) we have

n(x,x") > (l-41og(5/4) + log(2u) + o(l))7i(x). (13)

Let e = M l - 4 log (5/4) + log (2u)). Since u > 625/512e, we have e > 0. From (13)
we then have Il(x, x") > en(x) for all large x.

Remark. Using the new results of Iwaniec, mentioned in the introduction, we
have

n(x,x1 / 2 ) ^ 0-120025TT(X)

for all large x. Using this in the proof of Theorem 1 yields n(x, x") P n(x) for all
u ^ 0-44345.
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