POPULAR VALUES OF EULER’S FUNCTION

CARL POMERANCE

§1. Introduction. For each natural number m, let N(m) denote the number of
integers n with ¢(n) = m, where ¢ denotes Euler’s function. There are many
interesting problems connected with the function N(m), such as the conjecture of
Carmichael that N(m) is never 1 (see [9], for example) and the study of the
distribution of the m for which N(m) > 0 (see Erdds and Hall [5]). In this note we
shall be concerned with the maximal order of N(m).

In [3], Erd8s showed that there is a positive constant ¢ such that

" N(m) > m® for infinitely many m. (1)

Erdés did not explicitly compute a value of ¢ > O for which (1) is true, but such a
computation could be carried out in Erdés’s proof without too much trouble. Let C
be the least upper bound of the set of ¢ for which (1) holds. Wooldridge [11] has
recently used estimates from Selberg’s upper bound sieve to show that

C>23-2/2>017157.

In this note we use certain improvements on average in the Brun-Titchmarsh
theorem due to Hooley [8] together with Bombieri’s theorem to show that

C =2 1-625/512e ~ 0-55092. 2)

Recently, Iwaniec has made some further improvements on the Brun-Titchmarsh
theorem (H. Iwaniec, “On the Brun-Titchmarsh theorem”, to appear—Theorems 6
and 10) that allow us to obtain the slight improvement that

C > 0-55655. 3)

In particular, N(m) > m>'® for infinitely many m. We do not present here a proof of
(3)- Such a proof is obtained by following our proof of (2) using the new
improvements on Brun-Titchmarsh. Erdés [4] has conjectured that C = 1.

In a private communication, Erd6és informed me that Davenport and Heilbronn
corresponded about the function

Fx)= Y N(m).

m<x

They were able to show F,(x)/x — o0. They conjectured that there is some ¢ > 0
such that

Fy(x) > xi*e. (4)
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From our work we may choose in (4) any ¢ < 1-625/256e. Using the method that
improves (2) to (3), we have F,(x) > x'%°. Erd6s conjectures that (4) holds for every
c <1

In §2 we show that

N(m) < mexp (— (1+0(1)) log m logloglog m/loglog m) . (%)
We also give a heuristic argument that (5) is best possible in that there is an infinite

set of m for which equality holds.
Let
Fi(x)= } N(m).

m< x

Bateman [1] has shown that
Fi(x) = cox+0 (x - exp { —c,(log x - loglog x)*/2})

where ¢, = ((2){(3)/{(6) and ¢, < 1/\/5 is arbitrary. Our conjecture that (5) is best
possible implies

Fi(x)—cox = Q(x - exp { —(1 +¢) log x - logloglog x/loglog x})
for every ¢ > 0, while (3) implies
Fi(x)—cox = Q(x"%).

I take pleasure in acknowledging the helpful comments of Harold Diamond and
Paul Erdés. I also wish to thank Paul Bateman for informing me of [11]. I am also
grateful to H. Iwaniec for letting me see his manuscript.

§2. An upper bound for N(m) and a conjectured lower bound. Let
L(x) = log x logloglog x/loglog x .

A reading of the proof of Lemma 2 in [10], which is an improvement of Lemma 2 in
Erd6s [4], shows that actually the following result is proved.

THEOREM A. Let A(y) denote the number of square-free integers n < y such that
for every prime factor p of n, p—1 divides m. Then
A(y) < y/e(1+0(1))Uy) ,
uniformly for all m, as y — 0.
We now show that Theorem A implies (5). First note that there is an absolute
constant o such that if ¢(n) = m, then n < am loglog m (c¢f. Hardy and Wright [7],

Theorem 328). Let N*(m) denote the number of square-free n with ¢(n) = m. Then
Theorem A implies

N*@m) £ Afom loglog m).< m/el! +o(WUm (6)
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This inequality is most of the battle in the proof of (5). We now make some crude
estimates that allow us to pass from N*(m) to N(m).

If ¢(n) = m, write n = uv where u is square-full, v is square-free, and (u,v) = 1.
Thus ¢(v) | m and u < om/¢p(v)) loglog m. The number of square-full numbers below
x is O(/x). Thus

N(m) < 3 ((m/d) loglog m)'> N*(d). ™

dim

Using the estimate (6) if d > log m and the trivial estimate N*(d) < d loglog d if
d < log m, we have for all d | m,

d‘“zN*(d) < ml/Z/e(l-&o(l))L(m)'
Thus (7) implies
N(m) < d(m) . m/e(1+a(l>)L(M) < m/e(l+o(1»um) ,

where we use the maximal order of the divisor function (due to Wigert):

d(m) < 2(1+n(1)) log m/loglog m .

We now give a heuristic argument that (5) is best possible. Let ¥(x, y) denote the
number of integers n < x free of prime factors exceeding y and let I1(x, y) denote the
number of primes p < x such that p—1 is free of prime factors exceeding y. It is
reasonable to guess that

1
< Y )~ (x, y)

( n(x)

if x = yand y — 0. In a forthcoming joint paper with Canfield and Erdds, we shall
show

% lI’(x, exp ((log x)”z)) = exp (—(1 +0(1))2" Y(log x)*/? loglog x) .
We now show that the conjecture that (5) is best possible follows from the conjecture

n( ) <x exp ((log x)”z)) = exp( (1+0(1))27 Y(log x)'/2 loglog x). ®)

Indeed, from (8), we have

M= H(exp ((loglog z)?), log z)

= exp ((loglog 2> — (1 +o0(1)) loglog z - logloglog z) .
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Thus if B is the number of square-free numbers composed of exactly
u = [log z/(loglog z)*] of the primes counted by M, we have

B = M P MY = z/el +oILE)
u u

But every number n counted by B satisfies
(i) n<z,

(ii) every prime factor of ¢(n) is at most log z.

Thus ¢ maps the set of integers counted by B to a set of cardinality at most
Y¥(z, log z). Thus there is a number m < z such that
B

Ni > > (1 +o(1))L(z) ,
m > $e gz = /¢

where we use the result of Erdés (cf. de Bruijn [2]) that

\P(Z, IOg Z) — 4(1+a(l)) log z/loglog z .

Thus the conjecture (8) implies that (5) is best possible.

§3. The proof of (2). If 0 < u < 1, recall that Il(x, x*) denotes the number of
primes p < x such that p—1 is free of prime factors exceeding x".

TueoreM B (Erd6és [3]). Suppose that there is an ¢ >0 such that
II(x, x*) > en(x) for all large x. Let m; < m, < ... be the values of m where
N(m) > m'~*. Then there are infinitely many m; and, in fact, log m;, /log m; — 1.

Erdds did not state his theorem as strongly as we have, but his proof, with a few
simple changes, does give Theorem B. In particular, one would argue from the Brun—
Titchmarsh theorem that there is a ' < u with I(x, x*) > ien(x) for all large x.
Then following Erd6s’s argument for «’, we have Theorem B.

What Theorem B does is allow us to take “¢” out of the problem: to get our
results we need only study the function I(x, x¥). In fact, both our assertion (2) and
our choice of ¢ in (4) follow directly from Theorem B and the following.

TueoreM 1. For each u > 625/512e, there is an ¢ > 0 such that TI(x, x*) > en(x)
for all large x.

To prove Theorem 1, we shall first prove
Tueorem 2. TI(x, x'/?) > (1 —4 log (5/4) + o(1))n(x).

Proof. Let g denote a variable prime. By n(x, g, 1) we mean the number of
primes p < x with g |(p—1). Let

Ht) = Y n(x,q,1)]loggq.

x2<gst
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Using partial summation we have

x)-x,x"?) = Y  alx,q,1)

x12<g<x

_HW J H(@)

" log x tlog?t

)

Now Goldfeld [6] has shown that Bombieri’s theorem implies H(x) ~ x/2. Also
Hooley [8] has shown that

H(t) < (4+o(1))x log (tx~'?)/log x , x? <t <x. )

We use (9) for x!/? < t < x>®. Beyond x>/%, we use the trivial estimate H(t) < H(x).
Thus

X5/
(4+o(1)x J’ log (tx~1/2) i

tlog?t

X
n(x)—T(x, x*'2) < (3+o(1)) ogx T Togx
%12

+(+o(1)x J

5/

= (41og () +o(1))

dt
t log?t

log x’
which gives our result.
Proof of Theorem 1. Let 1/2 > u > 625/512¢. We have
M(x, x*) = M(x, x}2)—(T(x, x*2)—TI(x, x*))

> (1—4log 5/ +o())n(x)— Y  nlx,q,1), (10)

X< g < x12
by Theorem 2 (again g represents primes). We now use Bombieri’s theorem and the

Brun-Titchmarsh theorein to estimate the sum in (10).
From Bombieri’s theorem, there is a constant B such that

m(x,q, 1) = n(x) Y (g—1)"' +0(x/log?x).

x¢ < g < x12flogBx x¢ < g < x1/2/logBx
1 2
= 7(x) log o + O(x loglog x/log*x) . (11)

From the Brun-Titchmarsh theorem, we have

m(x,q,1) < n(x) ) ¢7' < xloglog x/log?x . (12)

x1/2/logBx < g < x1/2
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From (10), (11), (12) we have
II(x, x*) = (1—4 log (5/4)+log (2u)+ o(1)) n(x) . (13)

Let ¢ = Y1 —41log(5/4)+1log (2u)). Since u > 625/512e, we have ¢ > 0. From (13)
we then have I(x, x*) > en(x) for all large x.

Remark. Using the new results of Iwaniec, mentioned in the introduction, we
have

(x, x1'?) > 0-120025x(x)

for all large x. Using this in the proof of Theorem 1 yields Il(x, x*) » n(x) for all
u = 044345,

References

1. P. T. Bateman. “The distribution of values of the Euler function”, Acta Arith., 21 (1972), 329-345.
2. N. G. de Bruijn. “On the number of positive integers <x and free of prime factors >y, II”, Nederl.
Akad. Wetensch. Proc. Ser. A, 69 = Indag. Math., 38 (1966), 239-247.

3. P. Erdés. “On the normal number of prime factors of p—1 and some other related problems
concerning Euler’s ¢-function”, Quart. J. Math. (Oxford Ser.), 6 (1935), 205-213.

. P. Erd6s. “On pseudoprimes and Carmichael numbers”, Publ. Math. Debrecen, 4 (1956), 201-206.

. P. Erd6s and R. R. Hall. “Distinct values of Euler’s ¢-function”, Mathematika, 23 (1976), 1-3.

. M. Goldfeld. “On the number of primes p for which p+a has a large prime factor”, Mathematika, 16
(1969), 23-27.

7. G. H. Hardy and E. M. Wright. An introduction to the theory of numbers (Fourth Ed., Oxford
University Press, London, 1960).

. C. Hooley. “On the greatest prime factor of p+ a”, Mathematika, 20 (1973), 135-143.

. C. Pomerance. “On Carmichael’s conjecture”, Proc. Amer. Math. Soc., 43 (1974), 297-298.

. C. Pomerance, J. L. Selfridge and S. S. Wagstaff. “The pseudoprimes to 25-10°”, Math. Comp., to
appear.

11. K. R. Wooldridge. “Values taken many times by Euler’s phi-function”, Proc. Amer. Math. Soc., 76

(1979), 229-234,

N A

& \o e

Department of Mathematics, 10A20: NUMBER THEORY; Elementary number
University of Georgia, theory; Number theoretic functions.
Athens, Georgia 30602.

Received on the 20th of November, 1979.



