POPULAR VALUES OF EULER'S FUNCTION

CARL POMERANCE

§1. Introduction. For each natural number m, let N(m) denote the number of integers n with $\phi(n) = m$, where ϕ denotes Euler's function. There are many interesting problems connected with the function N(m), such as the conjecture of Carmichael that N(m) is never 1 (see [9], for example) and the study of the distribution of the m for which N(m) > 0 (see Erdős and Hall [5]). In this note we shall be concerned with the maximal order of N(m).

In [3], Erdős showed that there is a positive constant c such that

$$N(m) > m^c$$
 for infinitely many m . (1)

Erdős did not explicitly compute a value of c > 0 for which (1) is true, but such a computation could be carried out in Erdős's proof without too much trouble. Let C be the least upper bound of the set of c for which (1) holds. Wooldridge [11] has recently used estimates from Selberg's upper bound sieve to show that

$$C \ge 3 - 2\sqrt{2} > 0.17157$$
.

In this note we use certain improvements on average in the Brun-Titchmarsh theorem due to Hooley [8] together with Bombieri's theorem to show that

$$C \geqslant 1 - 625/512e \approx 0.55092. \tag{2}$$

Recently, Iwaniec has made some further improvements on the Brun-Titchmarsh theorem (H. Iwaniec, "On the Brun-Titchmarsh theorem", to appear—Theorems 6 and 10) that allow us to obtain the slight improvement that

$$C > 0.55655$$
 . (3)

In particular, $N(m) > m^{5/9}$ for infinitely many m. We do not present here a proof of (3). Such a proof is obtained by following our proof of (2) using the new improvements on Brun-Titchmarsh. Erdős [4] has conjectured that C = 1.

In a private communication, Erdős informed me that Davenport and Heilbronn corresponded about the function

$$F_2(x) = \sum_{m \leqslant x} N(m)^2.$$

They were able to show $F_2(x)/x \to \infty$. They conjectured that there is some c > 0 such that

$$F_2(x) \gg x^{1+c} \,. \tag{4}$$

From our work we may choose in (4) any c < 1 - 625/256e. Using the method that improves (2) to (3), we have $F_2(x) \gg x^{10/9}$. Erdős conjectures that (4) holds for every c < 1.

In §2 we show that

$$N(m) \le m \exp\left(-(1+o(1))\log m \log\log\log m/\log\log m\right).$$
 (5)

We also give a heuristic argument that (5) is best possible in that there is an infinite set of m for which equality holds.

Let

$$F_1(x) = \sum_{m \leq x} N(m).$$

Bateman [1] has shown that

$$F_1(x) = c_0 x + O\left(x \cdot \exp\left\{-c_1(\log x \cdot \log\log x)^{1/2}\right\}\right)$$

where $c_0 = \zeta(2)\zeta(3)/\zeta(6)$ and $c_1 < 1/\sqrt{2}$ is arbitrary. Our conjecture that (5) is best possible implies

$$F_1(x) - c_0 x = \Omega(x \cdot \exp\{-(1+\varepsilon)\log x \cdot \log\log\log x/\log\log x\})$$

for every $\varepsilon > 0$, while (3) implies

$$F_1(x) - c_0 x = \Omega(x^{5/9})$$
.

I take pleasure in acknowledging the helpful comments of Harold Diamond and Paul Erdős. I also wish to thank Paul Bateman for informing me of [11]. I am also grateful to H. Iwaniec for letting me see his manuscript.

§2. An upper bound for N(m) and a conjectured lower bound. Let

$$L(x) = \log x \log \log x / \log \log x$$
.

A reading of the proof of Lemma 2 in [10], which is an improvement of Lemma 2 in Erdős [4], shows that actually the following result is proved.

THEOREM A. Let A(y) denote the number of square-free integers $n \le y$ such that for every prime factor p of n, p-1 divides m. Then

$$A(y) \leq y/e^{(1+o(1))L(y)}$$
,

uniformly for all m, as $y \to \infty$.

We now show that Theorem A implies (5). First note that there is an absolute constant α such that if $\phi(n) = m$, then $n < \alpha m \log \log m$ (cf. Hardy and Wright [7], Theorem 328). Let $N^*(m)$ denote the number of square-free n with $\phi(n) = m$. Then Theorem A implies

$$N^*(m) \leqslant A(\alpha m \log \log m) \leqslant m/e^{(1+o(1))L(m)}$$
(6)

This inequality is most of the battle in the proof of (5). We now make some crude estimates that allow us to pass from $N^*(m)$ to N(m).

If $\phi(n) = m$, write n = uv where u is square-full, v is square-free, and (u, v) = 1. Thus $\phi(v) \mid m$ and $u < \alpha(m/\phi(v)) \log\log m$. The number of square-full numbers below x is $O(\sqrt{x})$. Thus

$$N(m) \leqslant \sum_{d \mid m} ((m/d) \log \log m)^{1/2} N^*(d).$$
 (7)

Using the estimate (6) if $d > \log m$ and the trivial estimate $N^*(d) \leqslant d \log \log d$ if $d \leqslant \log m$, we have for all $d \mid m$,

$$d^{-1/2}N^*(d) \leq m^{1/2}/e^{(1+o(1))L(m)}$$
.

Thus (7) implies

$$N(m) \ll d(m) \cdot m/e^{(1+o(1))L(m)} \ll m/e^{(1+o(1))L(m)}$$

where we use the maximal order of the divisor function (due to Wigert):

$$d(m) \leqslant 2^{(1+o(1))\log m/\log\log m}.$$

We now give a heuristic argument that (5) is best possible. Let $\Psi(x, y)$ denote the number of integers $n \le x$ free of prime factors exceeding y and let $\Pi(x, y)$ denote the number of primes $p \le x$ such that p-1 is free of prime factors exceeding y. It is reasonable to guess that

$$\frac{1}{x}\Psi(x,y) \sim \frac{1}{\pi(x)}\Pi(x,y)$$

if $x \ge y$ and $y \to \infty$. In a forthcoming joint paper with Canfield and Erdős, we shall show

$$\frac{1}{x}\Psi(x, \exp((\log x)^{1/2})) = \exp(-(1+o(1))2^{-1}(\log x)^{1/2}\log\log x).$$

We now show that the conjecture that (5) is best possible follows from the conjecture

$$\frac{1}{\pi(x)} \prod \left(x, \exp\left((\log x)^{1/2} \right) \right) = \exp\left(-(1 + o(1)) 2^{-1} (\log x)^{1/2} \log \log x \right). \tag{8}$$

Indeed, from (8), we have

$$M = \Pi\left(\exp\left((\log\log z)^2\right), \log z\right)$$
$$= \exp\left((\log\log z)^2 - (1 + o(1))\log\log z \cdot \log\log\log z\right).$$

Thus if B is the number of square-free numbers composed of exactly $u = \lceil \log z / (\log \log z)^2 \rceil$ of the primes counted by M, we have

$$B = {M \choose u} \geqslant \left(\frac{M}{u}\right)^u = z/e^{(1+o(1))L(z)}.$$

But every number n counted by B satisfies

- (i) $n \leq z$,
- (ii) every prime factor of $\phi(n)$ is at most log z.

Thus ϕ maps the set of integers counted by B to a set of cardinality at most $\Psi(z, \log z)$. Thus there is a number $m \leq z$ such that

$$N(m) \geqslant \frac{B}{\Psi(z, \log z)} \geqslant z/e^{(1+o(1))L(z)},$$

where we use the result of Erdős (cf. de Bruijn [2]) that

$$\Psi(z, \log z) = 4^{(1+o(1))\log z/\log\log z}.$$

Thus the conjecture (8) implies that (5) is best possible.

§3. The proof of (2). If $0 < u \le 1$, recall that $\Pi(x, x^u)$ denotes the number of primes $p \le x$ such that p-1 is free of prime factors exceeding x^u .

THEOREM B (Erdős [3]). Suppose that there is an $\varepsilon > 0$ such that $\Pi(x, x^{u}) > \varepsilon \pi(x)$ for all large x. Let $m_{1} < m_{2} < ...$ be the values of m where $N(m) > m^{1-u}$. Then there are infinitely many m_{i} and, in fact, $\log m_{i+1}/\log m_{i} \to 1$.

Erdős did not state his theorem as strongly as we have, but his proof, with a few simple changes, does give Theorem B. In particular, one would argue from the Brun-Titchmarsh theorem that there is a u' < u with $\Pi(x, x^{u'}) > \frac{1}{2}\varepsilon\pi(x)$ for all large x. Then following Erdős's argument for u', we have Theorem B.

What Theorem B does is allow us to take " ϕ " out of the problem: to get our results we need only study the function $\Pi(x, x^u)$. In fact, both our assertion (2) and our choice of c in (4) follow directly from Theorem B and the following.

THEOREM 1. For each u > 625/512e, there is an $\varepsilon > 0$ such that $\Pi(x, x^u) > \varepsilon \pi(x)$ for all large x.

To prove Theorem 1, we shall first prove

THEOREM 2.
$$\Pi(x, x^{1/2}) \ge (1 - 4 \log (5/4) + o(1)) \pi(x)$$
.

Proof. Let q denote a variable prime. By $\pi(x, q, 1)$ we mean the number of primes $p \le x$ with $q \mid (p-1)$. Let

$$H(t) = \sum_{x^{1/2} < q \le t} \pi(x, q, 1) \log q.$$

Using partial summation we have

$$\pi(x) - \Pi(x, x^{1/2}) = \sum_{x^{1/2} < q \leqslant x} \pi(x, q, 1)$$
$$= \frac{H(x)}{\log x} + \int_{x^{1/2}}^{x} \frac{H(t)}{t \log^2 t} dt.$$

Now Goldfeld [6] has shown that Bombieri's theorem implies $H(x) \sim x/2$. Also Hooley [8] has shown that

$$H(t) \le (4 + o(1))x \log(tx^{-1/2})/\log x$$
, $x^{1/2} < t < x$. (9)

We use (9) for $x^{1/2} < t \le x^{5/8}$. Beyond $x^{5/8}$, we use the trivial estimate $H(t) \le H(x)$. Thus

$$\pi(x) - \Pi(x, x^{1/2}) \le \left(\frac{1}{2} + o(1)\right) \frac{x}{\log x} + \frac{\left(4 + o(1)\right)x}{\log x} \int_{x^{1/2}}^{x^{5/8}} \frac{\log (tx^{-1/2})}{t \log^2 t} dt$$
$$+ \left(\frac{1}{2} + o(1)\right)x \int_{x^{5/8}}^{x} \frac{dt}{t \log^2 t}$$
$$= \left(4 \log \left(\frac{5}{4}\right) + o(1)\right) \frac{x}{\log x},$$

which gives our result.

Proof of Theorem 1. Let 1/2 > u > 625/512e. We have

$$\Pi(x, x^{u}) = \Pi(x, x^{1/2}) - (\Pi(x, x^{1/2}) - \Pi(x, x^{u}))$$

$$\geqslant (1 - 4\log(5/4) + o(1))\pi(x) - \sum_{x^{u} < q \le x^{1/2}} \pi(x, q, 1), \qquad (10)$$

by Theorem 2 (again q represents primes). We now use Bombieri's theorem and the Brun-Titchmarsh theorem to estimate the sum in (10).

From Bombieri's theorem, there is a constant B such that

$$\sum_{x^{u} < q \leqslant x^{1/2/\log B_{x}}} \pi(x, q, 1) = \pi(x) \sum_{x^{u} < q \leqslant x^{1/2/\log B_{x}}} (q - 1)^{-1} + O(x/\log^{2} x).$$

$$= \pi(x) \log \frac{1}{2u} + O(x \log \log x/\log^{2} x). \tag{11}$$

From the Brun-Titchmarsh theorem, we have

$$\sum_{x^{1/2}/\log^B x < q \leqslant x^{1/2}} \pi(x, q, 1) \ll \pi(x) \sum_{x > q} q^{-1} \ll x \log\log x / \log^2 x.$$
 (12)

From (10), (11), (12) we have

$$\Pi(x, x^{u}) \geqslant (1 - 4\log(5/4) + \log(2u) + o(1))\pi(x). \tag{13}$$

Let $\varepsilon = \frac{1}{2}(1 - 4\log(5/4) + \log(2u))$. Since u > 625/512e, we have $\varepsilon > 0$. From (13) we then have $\Pi(x, x^u) > \varepsilon \pi(x)$ for all large x.

Remark. Using the new results of Iwaniec, mentioned in the introduction, we have

$$\Pi(x, x^{1/2}) \ge 0.120025\pi(x)$$

for all large x. Using this in the proof of Theorem 1 yields $\Pi(x, x^u) \gg \pi(x)$ for all $u \gg 0.44345$.

References

- 1. P. T. Bateman. "The distribution of values of the Euler function", Acta Arith., 21 (1972), 329-345.
- N. G. de Bruijn. "On the number of positive integers ≤ x and free of prime factors > y, II", Nederl.
 Akad. Wetensch. Proc. Ser. A, 69 = Indag. Math., 38 (1966), 239-247.
- P. Erdős. "On the normal number of prime factors of p-1 and some other related problems concerning Euler's φ-function", Quart. J. Math. (Oxford Ser.), 6 (1935), 205-213.
- 4. P. Erdős. "On pseudoprimes and Carmichael numbers", Publ. Math. Debrecen, 4 (1956), 201-206.
- 5. P. Erdős and R. R. Hall. "Distinct values of Euler's ϕ -function", Mathematika, 23 (1976), 1–3.
- 6. M. Goldfeld. "On the number of primes p for which p+a has a large prime factor", Mathematika, 16 (1969), 23-27.
- 7. G. H. Hardy and E. M. Wright. An introduction to the theory of numbers (Fourth Ed., Oxford University Press, London, 1960).
- 8. C. Hooley. "On the greatest prime factor of p+a", Mathematika, 20 (1973), 135–143.
- 9. C. Pomerance. "On Carmichael's conjecture", Proc. Amer. Math. Soc., 43 (1974), 297-298.
- C. Pomerance, J. L. Selfridge and S. S. Wagstaff. "The pseudoprimes to 25 109", Math. Comp., to appear.
- 11. K. R. Wooldridge. "Values taken many times by Euler's phi-function", Proc. Amer. Math. Soc., 76 (1979), 229-234.

Department of Mathematics, University of Georgia, Athens, Georgia 30602. 10A20: NUMBER THEORY; Elementary number theory; Number theoretic functions.

Received on the 20th of November, 1979.