date |
#dd |
nombre/number |
Version |
Origin(e) |
Infos |
180405 |
20367 |
lr_p41_q2297 |
13.8.7 mpi (alpha) |
N. Lygeros, O. Rozier |
CPU time: 321j (d) + 53j (d) |
180312 |
15733 |
lr_p251_q1193 |
13.8.7 mpi (alpha) |
N. Lygeros, O. Rozier |
CPU time: 123j (d) + 22j (d) |
150504 |
19153 |
2*(10^19153-1)/9 + 77 |
13.8.7 mpi (alpha) |
J. Shallit |
CPU time: 408j (d) + 82j (d) |
110403 |
26643 |
tau_p157_q2207 |
11.0.5 mpi |
N. Lygeros, O. Rozier |
CPU time: 1963j (d) + 392j (d) |
110130 |
14703 |
tau_p643_q953 |
11.0.5 mpi |
N. Lygeros, O. Rozier |
CPU time: 313j (d) + 42j (d) |
101015 |
25050 |
x6753y5122 |
11.0.5 mpi |
P. Leyland |
CPU time: 1696j (d) + 282j (d) |
090509 |
10081 |
Phi_{23912}(10) |
11.0.5 mpi |
D. Broadhurst |
CPU time: 49j (d) + 13 j (d) |
090404 |
10342 |
zeta(-4305)/zeta(-1) |
11.0.5 mpi |
D. Broadhurst |
CPU time: 49j (d) + 15 j (d) |
090328 |
3427 |
facteur de / factor of 7^(2^12)+3^(2^12) |
11.0.5 |
A. Björn, H. Riesel |
CPU time: 7h + 6h |
090327 |
1720 |
facteur de / factor of 7^(2^11)+3^(2^11) |
11.0.5 |
A. Björn, H. Riesel |
CPU time: 1821s |
090327 |
1092 |
facteur de / factor of 12^(2^10)+11^(2^10) |
11.0.5 |
A. Björn, H. Riesel |
CPU time: 400s |
090316 |
10255 |
59056921173 * 2^34030 +7 |
11.0.5 mpi |
M. Jordan |
CPU time: 44j(d)+16j(d) |
081117 |
10047 |
2072644824759*2^33333 + 5 |
11.0.5 mpi |
N. Luhn |
CPU time: 86j(d)+32j(d) |
070827 |
12865 |
(2^42737+1)/3 |
11.0.5 mpi |
|
|
060719 |
14885 |
((2^31-1)^1597-1)/(2^31-2)/634021777 |
11.0.5 mpi |
Lih Y Deng |
434j(d)+85j(d) on a cluster of AMD Athlon(tm) 64 Processor 3400+ |
060605 |
20562 |
(((((((((2^3+3)^3+30)^3+6)^3+80)^3+12)^3+450)^3+894)^3+3636)^3+70756)^3+97220 |
11.0.5 mpi |
FM |
1900 j(d)+319 j(d) on a cluster of AMD Athlon(tm) 64 Processor 3400+ |
040720 |
15071 |
4405^2638+2638^4405 |
11.0.5 mpi |
|
|
040606 |
7163 |
2674^477+477^2674 |
11.0.5 mpi |
|
040425 |
9020 |
2680^2319+2319^2680 |
11.0.5 mpi |
|
031220 |
10041 |
3571^648+648^3571 |
11.0.5 mpi |
|
030905 |
3167 |
2763^14+14^2763 |
11.0.5 |
|
030903 |
8046 |
2438^1995+1995^2438 |
11.0.5 mpi |
|
030716 |
7127 |
2551^622+622^2551 |
11.0.5 mpi |
|
030606 |
6016 |
2177^580+580^2177 |
11.0.5 mpi |
|
021102 |
3508 |
1154^1095+1095^1154 |
11.0.5 |
|
020923 |
3445 |
1218^673+673^1218 |
11.0.5 |
|
020816 |
3353 |
1131^920+920^1131 |
11.0.5 |
|
020813 |
3216 |
1139^666+666^1139 |
11.0.5 |
|
020629 |
2976 |
1080^569+569^1080 |
11.0.5 |
|
020611 |
2693 |
1036^397+397^1036 |
11.0.5 |
|
020517 |
3081 |
1071^752+752^1071 |
11.0.5 |
|
020417 |
3027 |
1054^743+743^1054 |
11.0.5 |
|
020328 |
2948 |
991^942+942^991 |
11.0.5 |
|
020304 |
2976 |
1132^425+425^1132 |
11.0.5 |
|
020131 |
2883 |
1528^ 77+ 77^1528 |
11.0.5 |
|
020108 |
2878 |
1148^321+321^1148 |
11.0.5 |
|
011207 |
2763 |
1040^453+453^1040 |
11.0.5 |
|
011010 |
1748 |
(2^5807+1)/3 |
|
A. Kruppa |
|
010903 |
2578 |
907^694+694^907 |
11.0.5 |
|
010828 |
2326 |
903^376+376^903 |
11.0.5 |
|
010825 |
2207 |
903^278+278^903 |
11.0.5 |
|
010727 |
2292 |
883^394+394^883 |
11.0.5 |
|
010716 |
2017 |
815^298+298^815 |
11.0.5 |
|
0107?? |
1794 |
714^325+325^714 |
11.0.5 |
|
0107?? |
1849 |
681^518+518^681 |
11.0.5 |
|
0107?? |
1800 |
675^464+464^675 |
11.0.5 |
|
0104--0105 |
1666 |
p(2253260) |
11.0.5 |
|
0104--0105 |
1669 |
p(2263037) |
11.0.5 |
|
0104--0105 |
1672 |
p(2269527) |
11.0.5 |
|
0104--0105 |
1674 |
p(2274868) |
11.0.5 |
|
0104--0105 |
1677 |
p(2284437) |
11.0.5 |
|
0104--0105 |
1680 |
p(2292181) |
11.0.5 |
|
0104--0105 |
1681 |
p(2294201) |
11.0.5 |
|
0104--0105 |
1681 |
p(2295103) |
11.0.5 |
|
0104--0105 |
1683 |
p(2299543) |
11.0.5 |
|
0104--0105 |
1688 |
p(2313711) |
11.0.5 |
|
0104--0105 |
1689 |
p(2315870) |
11.0.5 |
|
0104--0105 |
1690 |
p(2320405) |
11.0.5 |
|
0104--0105 |
1695 |
p(2332476) |
11.0.5 |
|
0104--0105 |
1696 |
p(2335166) |
11.0.5 |
|
0104--0105 |
1697 |
p(2339187) |
11.0.5 |
|
0104--0105 |
1705 |
p(2360926) |
11.0.5 |
|
0104--0105 |
1711 |
p(2376958) |
11.0.5 |
|
0104--0105 |
1714 |
p(2384875) |
11.0.5 |
|
0104--0105 |
1665 |
p(2250492) |
11.0.5 |
|
0104--0105 |
1710 |
p(2375201) |
11.0.5 |
|
010322 |
??? |
p(2384875) |
11.0.5 |
|
010910 |
1795 |
(10^1991-1)/(3^2*Phi[11](10)*Phi[181](10)*95569) |
6.4.5a |
H. Dubner |
990716 |
1005 |
(10^1039-1)/(3^2*445201111*14238624319*1141275956307919) |
|
|
990712 |
1394 |
(10^2133-1)/((10^(3^3)-1)*((10^79-1)/9)*Phi[3*79](10)*Phi[3^2*79](10)*12799*942787) |
|
|
990605 |
1371 |
(10^1631-1)/((10^7-1)*((10^233-1)/9)*150053.2231209.3114309689) |
|
|
990506 |
1241 |
(10^1333-1)/((10^31-1)*(10^43-1)/9*5333.15969690688042067) |
|
|
990419 |
1166 |
(10^1761-1)/((10^3-1)*((10^587-1)/9)*6970039) |
|
|
990408 |
1148 |
(10^1261+1)/((10^13+1)*(10^97+1)/11*22699) |
|
|
990407 |
995 |
(10^1587-1)/(10^(23^2)-1)*((10^3-1)/9)*Phi[3*23](10)*126961.5515833179839) |
|
|
990405 |
1135 |
(10^1181-1)/(3^2*30707*739307*9734505877*492507686525311*20335161877) |
|
|
990402 |
991 |
(10^1503+1)/((10^9+1)*(10^167+1)/11*((10^167)^2-10^167+1)/91*787573) |
|
|
990401 |
1052 |
(10^1355+1)/((10^5+1)*(10^271+1)/11*4260945193341481.4510549276171) |
|
|
990330 |
961 |
(10^1067+1)/((10^11+1)*(10^97+1)/11) |
|
|
990328 |
1012 |
(10^1019+1)/(11*6230167) |
|
|
990325 |
1031 |
(2^(59^2)-1)/(2^59-1) |
|
J. B. Cosgrave |
|
9712?? |
1041 |
2^3456 + 5661177712052 + 5 |
|
T. Forbes |
|
9712?? |
1041 |
2^3456 + 5661177712052 + 1 |
|
T. Forbes |
|
9711?? |
1041 |
2^3456 + 5661177712052 - 1 |
|
T. Forbes |
|
941003 |
613 |
facteur de / factor of 8^(2^10)+1^(2^10) |
|
A. Björn, H. Riesel |
see MR1433262 (98e:11008), MR2164117 (2006c:11004) |
|
|
941003 |
528 |
facteur de / factor of 11^(2^9)+8^(2^9) |
|
A. Björn, H. Riesel |
see MR1433262 (98e:11008), MR2164117 (2006c:11004) |
|
|
941002 |
509 |
facteur de / factor of 11^(2^9)+7^(2^9) |
|
A. Björn, H. Riesel |
see MR1433262 (98e:11008), MR2164117 (2006c:11004) |
|
|