佐久間

1,617 Tweets
See new Tweets
Opens profile photo
Follow
佐久間
@keisankionwykip
東大数理←東大数学科←理科I類←国高68th800。学生です。数学垢。5日に1回浮上。大学数学耐性のない人はフォロー非推奨。#チート式 の作者。関数解析が好き。リツイートが嫌なら「リツイートのみ非表示」に設定してください。ネタツイ→
日本 東京Joined May 2013

佐久間’s Tweets

Pinned Tweet
lim, ∫, Σ, d/dxが交換できる条件をまとめました。全ての組合せ(∫と∫の交換等、同じ記号同士も含む10通り)に対応しています。 Σは数え上げ測度に関する積分、微分は差分商の極限と見れば、∫やlimとの交換に帰着できる場合も多いです。 最低限、ルベーグの収束定理とフビニの定理は押さえましょう
Image
Image
5
2,041
じゃんけん関連の難問を作りました。勝つ人数の期待値などの基本も問いつつ、読心術の能力者が混じっていたら確率にどんな影響が出るかや、グーの出やすさを考慮したらどうなるか、手が4種類以上あるじゃんけんだとどうなるかなどマニアックなのも。期待値計算は数列の扱いの良い練習にもなります。
Image
Image
Image
Image
1
452
カメラマン「撮ります!1+1は?」 小学生「田んぼの田〜!」 情報系「何進数ですか?」 代数学徒「標数が不明なので答えられない」 PDEer「≦C」 アメリカ人「Two」 中国人「二 (èr)」 老人「え?👂」 歌手「無限大〜♪」 東條英機「80」 長野原みお「みそスープ」 哲学徒「そもそも1とは何なのか?」
9
1,855
Show this thread
「測度の弱収束」という名前もミスリーディングで、Banach空間の弱収束とは一致しません。土台の空間Xがコンパクトの場合に限れば汎弱収束に一致します。漠位相辺りの話はかなりマニアックで解析学系の教員でも知らないか誤解していることが多いです。私の指導教員も全然知らないと言っていました。
Show this thread
測度の弱コンパクト性関連の定理をまとめました。 試験関数を有界連続関数にとる「測度の弱収束」と無限遠で消える連続関数にとる「漠収束」は混同されがちですが、別物です。 プロホロフの定理、ダンフォード・ペティスの定理、有限測度に対するアラオグルの定理も雰囲気が似ていて紛らわしいので注意
Image
Image
1
145
Show this thread
三次元アイドルと比べて二次元アイドルは裏切らないとかよく言われるけど、二次元が理想的なのはキャラの実態が一意に確定していないからだという理由も大きいという考察。「本物」が存在しないからこそ二次創作や妄想の自由度も高まり魅力的に映る。 一方、「実在」は理想を担うには具体的すぎる。
Image
Image
Image
Image
2
376
三角関数の和積の公式を1本の式で表しました。 加法定理から導くよりも直接的な上に式の意味の解釈も容易です。
Image
Image
1
770
冬、布団からΔx出ると寒すぎてそれに比例した布団に戻ろうとする力-kΔxが生じて、Δxがマイナスになると今度は「今のままではいけないと思う。だからこそ…」という同じくらい強い布団から出ようとする意志の力k|Δx|が生じるから、結局微分方程式x''(t)=-(k/m)x(t)に従って単振動してしまいがち。
1
1,231
高校数学では1/xの不定積分のlogに絶対値を付けろと言われますが、複素解析ではむしろ絶対値を付けない方が自然です。例えば偏角の原理では1/zの積分であるlog(z)のlog|z|以外の部分こそが本質的な役割を担います。 あとlog|x|+CのCは実はx>0とx<0で値が一致するとは限らない一般の局所定数関数です。
Image
Image
Image
205
一般人「哲学なんて世の中の役に立つの?」 哲学徒A「そもそも役に立つとはどういうことか?」 哲学徒B「役に立つかどうか問うことは役に立つのか?」 哲学徒C「役に立たなければいけないのか?」 哲学徒D「では世の中は何の役に立つのか?」 一般人「そういうとこやぞ」 哲学徒「そういうとこやぞ」
1
537
生物系に進んだ高校の友人に数学書を見せたら「謎の記号だらけで不安になる。2みたいなよく知っている具体的な数字を見ると安心する」と言っていたので、「その2は自然数の2じゃないよ」と言ったら目のハイライトが消えたアニメキャラみたいな顔をしてきました。
74
Show this thread
数学において0, 1, 2という記号で表される対象を集めてみました。 抽象的な数学では「1」と書かれていても普通の自然数や実数の1だとは限りません。 わけの分からない代数系の単位元や代数系そのものかもしれないし、作用素かもしれないし、有界束の最大元かもしれないし、圏や圏の対象かもしれません
Image
Image
1
287
Show this thread
中学・高校の数学で「わけわかんない!点P動くなよ!止まれよ!」ってネタよくあるけど、「“動かない”点の方が好きなんですか?じゃあこの写像の不動点について考えてみましょう!」とか言って不動点定理やらされたら、もっとわけわからなくなって発狂しそう
1
836
今回のチート式は留数計算です。 (いつかやると思ってたという声が聞こえてきそうです) 高校数学では凄まじいエネルギーを消費する必殺技しか通用しない高難度の積分ですが、留数定理を使えば“積分すらせずに”積分の値が求まります。 これが複素解析の力です。 #チート式
Image
Image
5
2,452
Wikipedia、なんでこんな記事まであるんだ。 「猫は液体」「きのこたけのこ戦争」「シンカンセンスゴイカタイアイス」「親ガチャ」「ぴえん」「まじ卍」「激おこぷんぷん丸」辺りのネットミームも意外とあるし「チー牛」「サイゼで喜ぶ彼女」まであるとかニコニコ大百科かよ。
Image
Image
Image
Image
1
138
Show this thread
あと、大学1年生は「絶対収束する級数は収束する」という呪文をよく耳にすると思いますが、これはℝが完備だからであって、完備でない無限次元ノルム空間では絶対収束しても収束するとは限りません。(実はノルム空間について"絶対収束⇒収束"の成立と完備性は同値)
89
Show this thread
「条件収束する実級数は項を並べ替えればどんな値にも収束させられる」という世にも奇妙で有名なリーマンの再配列定理は少し変えれば2次元以上へも拡張できます。 ところが、無限次元では、絶対収束しないにもかかわらず、どんなに項を並べ替えても同じ値にしか収束できない級数が存在します。
Image
2
325
Show this thread

New to Twitter?

Sign up now to get your own personalized timeline!
Sign up with Apple
Create account
By signing up, you agree to the Terms of Service and Privacy Policy, including Cookie Use.

Trending now

What’s happening

UEFA Champions League
LIVE
Liverpool FC vs Real Madrid
Music · Trending
主演映画
Only on Twitter · Trending
#忍者の日
Sports · Trending
ヴィニシウス
1,692 Tweets
Trending in Japan
オシムヘン