Smart Jammer / DRFM Testing Test and Measurement Solutions for the next level

Yassen Mikhailov Market Segment Management Aerospace & Defense Content

List of acronyms

History

Technology/Trends

Test Requirements

Conclusion

List of acronyms

- ADC analog to digital converter
- AESA Active Electronically Scanned Array
- AOA angle of arrival
- CPI coherent processing interval
- CVR crystal video receiver
- DAC digital to analog converter
- **DF** direction finding
- **DIFM** digital instantaneous frequency measurement
- DRFM digital RF memory
- **DSP** digital signal processor
- FPGA field programmable gate array
- ECM Electronic Counter Measure
- ECCM electronic counter counter measures

- EW Electronic Warfare IFM – instantaneous frequency measurement RCS – radar cross section RFFE – Radio Frequency Front End RGPO – range gate pull off VGPO – velocity gate pull off SPG – signal processing gain SWAP – size weight and power
- **ToT** time on target
- TRM transmit receive module

DRFM History

Earliest references to Digital RF Memory appear in an AOC article by Sheldon C. Spector, entitled "A Coherent Microwave Memory Using Digital Storage: The Loopless Memory Loop".

RFM			Sequence Type				Phase Mode Memory V				Timing Mode					
ment				Pulse-Based V							RI v					
pence Descriptio	6			The sequence type can only b in empty sequences.	e chang	ged	In case of f set to a sta never chan	tequency te as if th ged.	steps the p e frequenc	hase is y has	Switch between time (P and frequency (PRF)	RI)				
: 2 2 1	1 1. Nr	🍠 🔦	Flement Type	PulseWereform	S.	tings	Repetition		IPM	Marker	∆ Freq	Aleal	Phase	PRI	Delev	,
1 <	>	0	Dielay V	v			repeaters			market	21104		TIME		buly	
2 <	>	P	Nise v	v 100 us 5 MHz Up Chirp			1	ĵ -	Static	1234	OHz	0.68	0.	500 us	Os	
3 <	>	P	Vise v	100 us 5 MHz Up Chirp											200.00	
Block Diagram equence Block Die	agran (Use i	eft dick	for selection, double click t	for item editing, right click for se	queros	edtrg)	1		Static	1234	OHz	0.68	0.	300.03	20105	

Principles of DRFM

DRFM History

- DRFM is further developed as an ECM technique to pulse compression in Pulse Doppler Radar
- Development included: complex EW pods, towed decoys, later also disposable decoys
- Pulse Compression Technique during WW2
 - 1. Improved range resolution and signal to noise ratio (SNR)
 - 2. Signal Processing Gain (SPG) results in high processing gain
 - 3. Barrage jamming relatively ineffective insufficient signal power due to SPG

DRFM History

Modern days

- DRFM Jammers are an essential part of the EW Electronic Attack suite
- Wideband technology and SWAP characteristics >2GHz
- Access to vast processing power via FPGAs and modern DSPs have allowed for a wide array of deceptive techniques – both coherent and non-coherent
- Freely Configurable integrated techniques generator
- Narrow and wideband coherent noise
- CW jamming
- Inverse gain techniques
- Deceptive techniques include:
 - Coherent range and velocity Pull-Off/In
 - False Doppler and range targets
 - Random false Doppler and range targets

keonardo

DRFM Technology

Basic DRFM Block Diagram

- Basic functionality: good approximation of an ideal point scatterer
- I High fidelity return in Range, Doppler and RCS
- Coherent Transmit and Receive Paths

DRFM Technology

Modern DRFM Jammers

- Modern DRFM Jammers make extensive use of
 - FPGAs

. . .

- High Speed ADCs and DACs for wideband operation
- Wideband RFFEs
- DIFM (digital instantaneous frequency measurement)
- Phase correction
- Receiver Architectures
 - IFM (instantaneous frequency measurement)
 - CVR (crystal video receiver)
 - Digital Channelized Rx

High Speed

1&0

DRFM Technology Modern DRFM Jammers – example Hensoldt

Standard ECM Functions

- Coherent range and velocity
 Pull-Off/In
- Velocity gate Pull-Off/In
- Fixed false Doppler and range targets
- Random false Doppler and range targets
- Phase modulation
- · Multi-frequency false targets
- Narrow and wideband coherent noise
- Narrow and wideband non-coherent noise
- Swept spot noise
- Multi-frequency noise
- CW jamming
- · Frequency offset jamming,
- coherent and non-coherentInverse amplitude techniques
- (with amplitude quantisation) • Target scintillation
- Due to the programmability, other "custom-made" ECM functions can be installed. A combination of ECM techniques is possible.

Characteristics and Performances

- Extremely wide band, single board DRFM
- Freely configurable integrated techniques generator
- Multi-threat capability
- Coherent and non-coherent ECM techniques
- Extremely fast digital signal detection
- Instantaneous bandwidth: up to 2,3 GHz
- Quantisation: up to 10 Bit amplitude
- Frequency accuracy: extremely accurate
- Volume: 3 litres
- Power consumption: 50 Watt

DRFM Board Specifications

Source: http://www.apissys.com/products/product/av125/23#specification

Analog Input/Output

Coupling: AC Input bandwidth > 5.5 GHz Input Full scale : 8.5 dBm Output bandwidth > 6 GHz Output Full scale : -3.5 dBm [NRZ] Impedance: 50 Dhm Connectors: SMPM

Analog-Digital Conversion

One channel, Fs ≤ 5.4 GHz Resolution: 12 bit Sampling Performances ©1 GHz, -1dBFS SNR: 55 dBFS SFDR: 60.5 dBc ENDB: 8.5 bits

Digital-Analog Conversion

One channel, Fs ≤ 5.4 GHz Resolution: 12 bit Sampling Performances ©1 GHz, OdBFS SFDR: 59 dBc, NRT2 mode Sampling Performances ©3 GHz, OdBFS SFDR: 55 dBc, NRT2 mode

Clock

Internal: 1 GHz to 5.0 GHz low jitter clock External Input Clock: Frequency: 2 GHz to 5.4 GHz Connector: SMPM, 50 Ohm and VPX P2 External reference: Frequency: 10 MHz to 800 MHz Connector: SMPM, 50 Ohm and VPX P2.

Trigger

External: O to 2 Vp Connector: SMPM, 50 Ohm

FPGA

n FPGA: Xilinx Kintex Ultrascale XCKU115-2FLVF1924

Memory

Two banks 256M64 DDR3 SDRAM. 800 MHz clock Two 1 Gbit QSPI NDR FLASH memory

VPX interface

P1:

Data plane: two fat pipes Expansion plane: one fat pipe Control plane: 2 ultra-thin pipes 2 user-defined ultra-thin pipes P2: USB2.D and 10/100 Ethernet 26 LVCMD533 signals

4 SUB-LVDS differential pairs

Software support

Software Drivers: Windows 10 Linux Application example: Windows and Linux

Firmware support

VHDL cores for all hardware resources Base design Supported by Xilinx VIVADO 2016.2 and later

Ruggedization

As per VITA 47: Air cooled : EAC4 and EAC6 Conduction cooled : ECC3 and ECC4

Power dissipation

+12V: 6.2 A max (75W) +5V: 3.0 A max (15W) +3.3V: 3.2 A max (10W) +3.3VAUX: 0.6 A max (2.0W)

Weight

Air cooled : 550g Conduction cooled : 650g

11

R&S FSW

R&S SMA100B

R&S FSWP

R&S NRPxx

R&S ZVA / ZNB / ZNT

R&S SMW

UNY 2222 ...

4

1.411

R&S CMA180

DRFM Test - excerpt of some key requirements

I System Level

- DF
- Deception
 Techniques
- Phase / Pulse Stability
- Latency
- EVM
- Spectral Purity
- GNSS Tests
- MILEMC

- RF/IF Stage
 - Spurious measurements
 - Dynamic Range
 - Compression point
 - Gain/Phase/Frequency Response
 - Noise Figure
 - Input/Output Impedance
 - Image rejection
 - Receiver sensitivity
 - IP3
 - Quadrature error
 - LO Phase Noise
 - LO Leakage
 - LO Long Term Stability
 - Antenna radiation pattern

- Digital Stage
 - Power/Signal Integrity
 - LO/Clock Jitter
 - Latency
 - Timing
 - EQ Flatness
 - EMI debugging
 - FPGA Tests
 - DSP Tests
 - ADC/DAC Tests
 - SFDR
 - EnoB
 - Speed
 - Quantization Error

DRFM Test Requirements – System Level System Level DF Deception Techniques

- Phase Stability
- Latency
- EVM
- Spectral Purity
- MILEMC

DRFM Test Requirements System Level Tests – Direction Finding

Angle-of-Arrival estimation or other applications require signals that are aligned in time and phase at the reference plane

R&S[®]SGS100A and R&S[®]SGU100A for additional RF channels

8 independent RF outputs up to 20 GHz with 160 MHz bandwidth

R&S[®]SMW200A with 4 separate, independent basebands Option SMW-B90 Phase Coherence required

R&S®NRP-Z81 power sensor

R&S[®]Pulse Sequencer software for scenario definition and full remote control of system

DRFM Test Requirements System Level Tests – AOA Simulation

- Radar scenario (blue arrows)
 - R&S Pulse Sequencer Software provides radar scenario or
 - Radar scenario is streamed to SMW200A from customer simulator
- I Key hardware requirements for best simulation performance
 - Highly repeatable and stable amplitude, phase and timing differences between RF ports
- Proposed hardware setup
 - Common local oscillator (LO) signal from SMA100B high end analog signal generator (green arrows) to all SMW200A
 - SMWs' baseband generators are synchronized (grey arrows)

4 x SMW200A with improved coupling provide 8 phase coherent RF output signals

System Level Tests – Deception Techniques Analysis

- Simulation of the dense emitter environment (up to 256 emitters in a 4GHz BW; interleaving / de-interleaving)
- Generation of realistic radar signals incl radar mode switching
- Analysis of the deception technique
- Comparison to original radar signal
- Streaming of up to 6 million PDWs per second with PDW interleaving

System Level Tests – Deception Techniques Analysis – Example RGPO

- Cover the target skin return—or synchronize
- Increase power to capture the radar's automatic gain control (AGC)
- Begin pulling or pushing the range gate in time
- Drop the jamming—forcing the radar to loose lock

Date: 10.MAR.2015 22:12:12

System Level Tests – Deception Techniques Analysis – EW Measurement Science

Multi¥iew 👪	Spectrum	×	Realctrum	×	Transi	ysis 2 🕌	×	Pulse	X Pulse 2	**	Spectrum 2	×	•
Ref Level Att TRG:EXT1	0.00 dBm 10 dB YIG Bypass	Freq 1	N.O GHZ	Meas Tim Meas BW	e 20 n 200 MH	ns Iz SRat	te 800 M	MHz					
1 Magnitud	de Captur	е				O1AP Clr	rw 2	Pulse Res	sults				
-10 dBm Ref -30 dBm	5.590 dBm et20.590 dl	3m						ID	Pulse No.	Rise Time (ns)	Pulse Width (us)	PRI (us)	
								84	14	4.320	100.000		
						200		85 86 87	1 2 3	4.580 4.672 4.574	100.000 100.000 100.000		
10.0 S		T				20.0	INS.					0140	Clinic
AZ PUISE A	mpiitude	Trend						8	_				CITW
-9.5 dBm													
-12.5 dBm													
-15.5 dBm													
Pulse 1													1.3 /
4 Off Time	: Trend							*				○1AP	Clrw
1.12 ms													
880 µs													
Pulse 1													1.3 /
3 Frequen	cy Trend											01AP	Clrw
1.5 MHz													
-9.5 MHz													1.0
Pulse I													1.3/

System Level Tests – Deception Techniques Analysis – VGPO Real Time

DRFM Test Requirements System Level Tests – Deception Techniques Analysis / Distortion Measurements – FSWK6s

DRFM Test Requirements – RF/IF Stage

I RF/IF Stage

- Spurious measurements
- Dynamic Range
- Compression point
- Gain/Phase/Frequency Response
- Noise Figure
- Input/Output Impedance
- Image rejection
- Receiver sensitivity
- IP3
- Quadrature error
- LO Phase Noise / Leakage / Long Term Stability
- Antenna radiation pattern

RF/IF Stage – Spurious Measurements – Faster & Easier with FSW-K50

- Fast Up to 20 times faster than existing spectrum analyzer spurious searches, specially at low RBWs
- Easy RBW is automatically calculated based on maximum allowed spur level

ItiView II Spec	ctrum	Spurious		rea 7.999160639.0H	7		•	Input Outpu Trigge
pectral Overview	Meas BW	15 MHz S	Rate 18 MHz		-	•1 Clrw	• R	Carrie eferer Leve
for a shell a sea of the sea	in and the second	Yeshili yana yang sa	ndel fridesylgrideter fordet	nerilienter Physical Contractions	harianih qata a tati biri kirjajida sadi je	ي <i>وليد ومعمودي ميتيا</i> دي	1	Mea Contr
) GHz		32001 pts		2.55 GHz/		26.5 GHz	—	wid
Limit Check	pectrum	PASS				O1 CINV	1	Settir
ditim								Direct Sear
) d8m								setti
1 dBm 5 dBm 0 dBm - 60m - 60m - 1 dBm - 1 dBm - 1	144	and and the second s	-	North Alfred Martin Martin				Trans
) dBm	100 0	аціянн _{а пр} арага (р. 22001 pts		2.55 GHz/		26.5 GHz	J ↓ ↓	Trans
dan dan dan dan dan dan dan dan dan dan	able Power	a i civilas grandas da 32001 pts Delta to Limit	RBW	2.55 GHz/	Segment Stop	26.5 GHz Spur ID		Trans Resi Con
1 dan 1	able Power -107.19.dBm -107.63.dBm -107.13.dBm	32001 pts 32001 pts Delta to Limit -12.19 dB -12.63 dB -12.13 dB	RBW 3.39 kHz 3.39 kHz 3.39 kHz	2.55 GHz/ Segment Start 1 GHz 1 GHz 1 GHz	Segment Stop 3.65017118 GHz 3.65017118 GHz 3.65017118 GHz	26.5 GHz Spur ID S1 S2 S3		Trans Rest Cont Displ Cont
1 dian 1 di 1 di	able Power -107.19 dBm -107.53 dBm -107.53 dBm -107.43 dBm -107.44 dBm	32001 pts 32001 pts Delta to Limit -12.19 d8 -12.63 d8 -12.69 d8 -12.69 d8	RBW 3.39 kHz 3.39 kHz 3.39 kHz 3.39 kHz	2.55 GHz/ Segment Start	Segment Stop 3.65017118 GHz 3.65017118 GHz 3.65017118 GHz 3.65017118 GHz 3.65017118 GHz 3.65017118 GHz	26.5 GHz Spur ID S1 S2 S3 S4 S5		Trans Ress Con Disp Con

DRFM Test Requirements RF/IF Stage – Phase Noise / VCO Characterization - FSWP

Benefits

- Fast from hours to minutes
- ∎ Easy at the push of a button, no additional components
- Accurate highest performance on the market

Highlights

- I Phase noise, VCO tester and a signal and spectrum analyzer in one box
- Measurement of phase noise on pulsed sources
- I Simultaneous measurement of amplitude noise and phase noise
- Internal source for measuring additive phase noise
- Low-noise internal DC sources for VCO characterization

DRFM Test Requirements RF/IF Stage - VCO Tests – All parameters in one view - FSWP

Input Sourc	e Output				
DC Config	DC Power	On Off			
	Channel Coupling	On Off			
Signal Source	Settings	V _{Tune}	VAux		Vsupply
	State	On Off	On	Off	On Off
Output	Mode				Voltage Current
	Value Limits	1.0 V	0.0 V		5.0 V
	Minimum	-10.0 V	-10.0 V		0.0 V
	Maximum	28.0 V	10.0 V		16.0 V
	Max Curr/Volt			100 mA	2000 mA
	Results Curr/Volt				
VCO Charasteria	ation		_	6	
VCO Characteriz					
DC Power (Global) On	Off			
Sweep Sour	rce VTune	VAux VSupply			
Fix Source	VTune	VAux VSupply			
DC Source VT	Tune				
State	On	Off	Start		1.0 V
Mode	Voltage	Current	Stop		1.03 V
Value	1.0 V		Meas Points		3
Minimum	-10.0 V		Settling Time	/ Meas Point	1.0 ms
Maximum	28.0 V		Frequency Re	solution	1.0 kHz

DRFM Test Requirements RF/IF Stage – LO Stability – Allen Variance

- David W. Allan (born September 25, 1936, Mapleton, Utah) is an American physicist and author of the Allan variance
- The Allan variance is a two-sample variance used to analyze the time-domain frequency stability of oscillators
- The classical variance is non-convergent for common sources of noise such as: random walk and flicker
- Whereas, the Allan Variance converges for all common noise types and allows inference to the type and level of the noise

RF/IF StageTests – Pulse Stability

- Many possible factors including mechanical, thermal and electrical effects can affect stability
 - Phase noise in components like oscillator, mixer, multiplier and filter
 - Electromagnetic perturbations (e.g. causing parasitic coupling between or inside modules)
 - Thermal variation in power devices
 - Fluctuation in switching power supply (leading to ripple and slow variation of bias)
 - AM-PM conversion in a saturated amplifier
 - Mismatch between different stages of the transmitter module
 - Memory effects (thermal and trapping effects)

RF/IF Stage – Pulse Stability – Phase / Amplitude – FSWP-K6p

- Phase stability
 - Difference to average phase
 - Correction of frequency offset (linear phase change)
- Amplitude stability
 - Difference to average amplitude

DRFM Test Requirements RF/IF Stage - Antenna Tests

DRFM Test Requirements – Digital Stage

I Digital Stage

- Power/Signal Integrity
- LO/Clock Jitter
- Latency
- Timing
- EQ Flatness
- EMI debugging
- FPGA Tests
- DSP Tests
- ADC/DAC Tests
 - SFDR
 - EnoB
 - Speed
 - Quantization Error

DRFM Test Requirements Digital Stage – Power Integrity

Building Blocks

- power distribution network (PDN)
- I low dropout regulators (LDO)

Typical Performance Parameters

- power integrity: ripple, noise, ...
- PDN impedance:
 - resonances cause PI problems
 - resonances cause EMI / EMS problems
- LDO power supply rejection ratio (PSRR)

Digital Stage – Clock Jitter

Building Blocks

- ADC / DAC clock synthesizers
- SerDes PLLs
- → often two-stage architecture:

Typical Performance Parameters

- absolute phase noise / jitter
- additive phase noise / jitter
- jitter attenuation (Jitter Transfer Function JTF)
- system margin testing
- power supply noise rejection (PSNR)

DRFM Test Requirements Digital Stage – ADC/DAC Measurements

- DAC
 - Testing of output signal quality like SFDR
 - Phase noise testing
 - Measurement of modulation quality for digital output signal like EVM, ACLR, ...
 - Test signals generated in test mode by DAC or from an external baseband source

- Testing of RF input circuitry
- Generic testing with single and dual tone CW signals (intermodulation)
- Test with real signal as used in later application

DRFM Jammer Test Our Best Solutions in Service of Our Customers

Smart Jammer / DRFM Testing Test and Measurement Solutions for the next level

Yassen Mikhailov Market Segment Management Aerospace & Defense