檢舉內容
從生活認識微積分(十)什麼是「微分」(下)

2019/07/01閱讀時間約 6 分鐘
  上篇文章介紹物理學家如何定義瞬時速度,本篇文章將延續上回文章脈絡,帶領讀者從回顧瞬時速度的由來,一般化瞬時速度的定義,最後引入導數和可微分的的定義,說明導數、瞬間變化率、可微分,牽涉到同一極限的觀念,讓讀者由現實世界逐步走入抽象世界。

一、回顧:瞬時速度的由來

  在上篇文章中,我們介紹了物理學家的思維,如何求貓咪奔跑時第3秒的瞬時速度。因為速度就是位置對時間的變化率,雖然求的是第3秒那一眨眼間貓咪奔跑的速度,但不可能只觀測貓咪在第3秒時的位置,就能得到瞬時速度,因為只有一個時間點和一個位置,要如何求得「變化率」呢?一個時間點豈有「時間間隔」與「位置變化」呢?
以行動支持創作者!付費即可解鎖
本篇內容共 2,779 字,收錄於此專題
給個喜歡
你已經讀了 1 篇文章, 快登入支持創作者吧!
贊助支持創作者,成為他繼續創作的動力吧!
大學時專攻生命科學與數學,對於科學教育富有熱誠,時常感嘆台灣的科學教育抹滅學生的興趣,期望藉由文章讓讀者了解科學的學習方法與精神。我也熱衷於研究親子教育、心理學、哲學、語文等,希望能在文章中提供讀者教育孩童的方法,並定期分享語言的學習文章,期望讓讀者們的生活更加充實。
由於學校上課時間有限,老師礙於進度壓力,時常無法慢慢一步步地帶領學生思考和理解數學中的觀念,而是倉促講解完概念後,開始進入計算解題。然而數學不單是計算而已,數學真正的精髓卻是在於背後觀念中,邏輯的推演與歸納。也因此期盼透過本專題的數學科普文,能幫助讀者看見數學的美,並提升讀者的思考、推理邏輯能力。
如果要發表留言,請先登入註冊會員
你可能也想看
享受沈浸的閱讀體驗
徜徉在不受干擾的簡約介面,瀏覽數百萬篇原創內容。
領取見面禮
只要設定追蹤作者,即可享有 48小時
Premium 閱讀權限