login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A054767 Period of the sequence of Bell numbers A000110 (mod n). 10
1, 3, 13, 12, 781, 39, 137257, 24, 39, 2343, 28531167061, 156, 25239592216021, 411771, 10153, 48, 51702516367896047761, 39, 109912203092239643840221, 9372, 1784341, 85593501183, 949112181811268728834319677753, 312, 3905, 75718776648063, 117, 1647084 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

For p prime, a(p) divides (p^p-1)/(p-1) = A023037(p), with equality at least for p up to 19.

Wagstaff shows that N(p) = (p^p-1)/(p-1) is the period for all primes p < 102 and for primes p = 113, 163, 167 and 173. For p = 7547, N(p) is a probable prime, which means that this p may have the maximum possible period N(p) also. See A088790. - T. D. Noe, Dec 17 2008

LINKS

Table of n, a(n) for n=1..28.

J. Levine and R. E. Dalton, Minimum Periods, Modulo p, of First Order Bell Exponential Integrals, Mathematics of Computation, 16 (1962), 416-423.

W. F. Lunnon et al., Arithmetic properties of Bell numbers to a composite modulus I, Acta Arithmetica 35 (1979), pp. 1-16.

Samuel S. Wagstaff Jr., Aurifeuillian factorizations and the period of the Bell numbers modulo a prime, Math. Comp. 65 (1996), 383-391.

Eric Weisstein's World of Mathematics, Bell Number

FORMULA

If gcd(n,m) = 1, a(n*m) = lcm(a(n), a(m)). But the sequence is not in general multiplicative; e.g. a(2) = 3, a(9) = 39 and a(18) = 39. - Franklin T. Adams-Watters, Jun 06 2006

MATHEMATICA

(* n.b. this program might be incorrect beyond a(26) *) BellMod[k_, m_] := Mod[ Sum[ Mod[ StirlingS2[k, j], m], {j, 1, k}], m]; BellMod[k_, 1] := BellB[k]; period[nn_] := Module[{lgmin = 2, lgmax = 5, nn1}, lg = If[Length[nn] <= lgmax, lgmin, lgmax]; nn1 = nn[[1 ;; lg]]; km = Length[nn] - lg; Catch[ Do[ If[ nn1 == nn[[k ;; k + lg - 1]], Throw[k - 1]]; If[k == km, Throw[0]], {k, 2, km}]]]; a[1] = 1; a[p_?PrimeQ] := (p^p - 1)/(p - 1); a[n_ /; MemberQ[ FactorInteger[n][[All, 2]], 1]] := a[n] = With[{pp = Select[ FactorInteger[n], #1[[2]] == 1 & ][[All, 1]]}, a[n/Times @@ pp]*Times @@ a /@ pp]; a[n_ /; n > 4 && GCD @@ FactorInteger[n][[All, 2]] > 1] := a[n] = With[{g = GCD @@ FactorInteger[n][[All, 2]]}, n^(1/g)*a[n^(1 - 1/g)]]; a[n_] := period[ Table[ BellMod[k, n], {k, 1, 18}]]; Table[a[n], {n, 1, 26}] (* Jean-François Alcover, Jul 31 2012 *)

CROSSREFS

Cf. A000110, A023037, A214810.

Sequence in context: A107733 A273076 A272825 * A137947 A168437 A076747

Adjacent sequences: A054764 A054765 A054766 * A054768 A054769 A054770

KEYWORD

nonn,hard,nice

AUTHOR

Eric W. Weisstein, Feb 09 2002

EXTENSIONS

More information from Phil Carmody, Dec 22 2002

Extended by T. D. Noe, Dec 18 2008

a(26) corrected by Jean-François Alcover, Jul 31 2012

a(18) corrected by Charles R Greathouse IV, Jul 31 2012

a(27)-a(28) from Charles R Greathouse IV, Sep 07 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 20 19:06 EST 2023. Contains 359635 sequences. (Running on oeis4.)