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The period of the Bell exponential
integers modulo a prime

SAMUEL S. WAGSTAFF, JR.

ABSTRACT. We show that the minimum period of the Bell exponential
integers reduced modulo p is (p? — 1)/(p — 1) for all primes p < 82 and
several larger p. Our proof of this result requires the prime factorization of
these periods. For about one-half of the primes p the factoring is aided by
an algebraic formula.

The first-order Bell exponential integer B(n) is the number of ways of placing
n distinguishable objects into 1 to n indistinguishable cells so that no cell is
empty. The Bell numbers may be expressed as a sum B(n) = >.""_, S(n,r) of
Stirling numbers of the second kind. See [4] and its references.

The first few Bell numbers may be computed easily from the difference formula
B(n) = A™B(1) of Cesaro [2]. The first few values are B(0) = 1 (by definition),
B(1) =1, B(2) = 2, B(3) =5, B(4) = 15, B(5) = 52 and B(6) = 203.

Consider the sequence of Bell numbers reduced modulo a prime p. After one
computes B(n) mod p for 0 < n < p by Cesaro’s formula, one may compute
further terms quickly by the congruence

(1) B(n+p)=B(n)+ B(n+1) (mod p)
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of Touchard [7]. It is clear from (1) that the sequence {B(n) mod p;n =0,1,...}
is eventually periodic. Williams [8] proved that for each prime p the sequence is
periodic from the beginning and that the minimum period divides

pP—1

p = p—].

By hand compuation, he showed that the minimum period is precisely IV, for p
= 2, 3 and 5. Levine and Dalton [4] used a computer to show that the minimum
period is exactly N, for p = 7, 11, 13 and 17. They also investigated the period
for the other primes < 50. Using the same general technique, we show that
the minimum period is exactly N, for each prime < 82 and for several larger
primes. Great advances in integer-factoring methods since 1962 allowed us to
extend their work so far.

Given a prime p, to test whether the period of { B(n) mod p} divides some fac-
tor N of N,, it suffices because of (1) to compare B(N+i) mod p with B(i) mod p
for 0 <4 < p. For primes p < 180, we factored IV, as much as possible, using
techniques described below. The factorization of NV, was complete for all primes
p < 82 and for the six larger primes mentioned in Theorem 1. For each prime
p < 180 and each known prime divisor g of IV, we tested whether the period
divides N = N, /q. It never did, and we have proved

THEOREM 1. The minimum period of the sequence {B(n) mod p} is N, when
p is a prime < 82 and also when p = 89, 97, 101, 163, 167 or 173.

We conjecture that the minimum period of the sequence {B(n) mod p} is N,
for every prime p.

We computed B(N) mod p for large N via the congruence B(n + p™) =
B(n+1)+mB(n) (mod p) of Touchard [7], which generalizes (1). Starting from
the block B(i) mod p, 0 < i < p, we computed successive blocks of length p + 1,
using the digits of N in radix p to direct our choice of the blocks towards the
final block B(N + ) mod p, 0 < i < p. See Levine and Dalton [4] for details.

We now describe our efforts to factor N, for primes p < 180. The Table
shows the factorization of those IV, which we could factor completely. We use
Pzz in the Table to mean a prime of zx digits. Some trial division was done
first, using the fact that all prime factors of IV, have the form 2kp + 1 for some
positive integer k. Most of the larger factors in the Table were found by the
Elliptic Curve Method [3], using a program written by Peter Montgomery. This
work was aided greatly by the use of Aurifeuillian factorizations. That is, when
pis prime and = 1 (mod 4), N, splits algebraically into two nearly equal factors
(called pL and pM in the Table). We computed these two Aurifeuillian factors
from Theorem 2.

We would be happy to send our partial factorizations of the IV, not shown in
the Table to any reader. The first p for which we could not factor IV, completely
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was p = 83, which has a composite cofactor of 147 digits. The smallest remaining
composite cofactor of an N, was the 100-digit divisor of 113M. For the primes
p < 180 not listed in the Table, we checked that no known proper divisor of NV,
can be a period.

For integers n > 0 let ®,,(x) denote the cyclotomic polynomial. When p is an
odd prime, N, = ®,(p). Let (m,n) be the greatest common divisor of m and
n. Let ¢(n) denote Euler’s totient function. Let (m|n) be the Jacobi symbol.
Theorem 2 follows from Theorem 1 of Schinzel [6].

THEOREM 2. Let p =1 (mod 4) be squarefree. Then there exist polynomials
Cp(z) and Dy(z) with integer coefficients and degrees ¢(p)/2 and ¢(p)/2 — 1,
respectively, with the following properties. For any odd positive integer h,

®,(p") = (Cp(p") — p"V/2D, (p™)(Cp (") + P12 D,y (p")).
The coefficients of Cp(x) and Dy(x) may be computed from the identity

(p—1)/2 s
Cp(2?) — /paDy(a?) = H (z® — 2(s|p) cos 7:17 +1).

s=1

(s,p)=1

Brent [1] gives an algorithm for computing the coefficients of Cp,(x) and D,(x),
which uses integer arithmetic throughout.

A table of coefficients of Cp(x) and Dp(z) for p < 120 may be found in Table
34 on page 453 ff. of Riesel [5].

To prove Theorem 1, we used Theorem 2 only when p is prime and h = 1.
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Table. Factors of N, = (p? — 1)/(p — 1) for some primes p in 10 < p < 180

P Prime factorization of N,

11 15797 - 1806113

13L 1803647

13M 53 - 264031

17L 2699538733

17M 10949 - 1749233

19 109912203092239643840221

23 461 - 1289 - 831603031789 - 1920647391913

29L 84449 - 2428577 - 549334763

29M 59 - 16763 - 14111459 - 58320973

31 568972471024107865287021434301977158534824481

37L 149 - 41903425553544839998158239

3TM 1999 - 7993 - 16651 - 17317 - 10192715656759

411 1752341 - 20567159 - 1876859311090803007

41M 83 - 5926187589691497537793497756719

43 173 - 120401 - P62

47 1693 - 255742492896763511474638530188876017 - P39
53L 107 - 16505521259654533 - 143470720478589313288313473
53M 141829 - 13033960579631324880455449881408994392143
99 709 - 141579233 - P92

61L 977 - 343625872243632312073 - 398853286456071792609917995907
61M 1000403244183535565720394723140528028235711874491322863

67 269 - 4021 - 730837 - 10960933-
-1514954885096604023562287915730049 - P69
71 105649 - 3388409395214741 - 17882954877203881 - P93

73L 1414741 - 1295720382587 - 1192167517020392933 - P31

3M 293 - 439 - 25239167 - 56377463 - 3611379501352361 - P32

79 317 - 1558537597 - 171355071830508389477-

-54493132908043378263202913 - P91

89L 179 - 8009862103557709 - 5964844210432006407836201 - P43

89M 37307598912253490893302199133 - P58

97L P95

9TM 389 - 363751 - 684640163 - 11943728733741294764390602153 - P51
101L 1213 - 9931988588681 - 102208068907493 - 393101595766008847 - P53
101M 607 - 5657 - 157561 - P89

163 653 - 2609 - 41729 - 31943437 - 3727539197017 - 391683908074297-
-8224734227858383253 - P294
167 16033 - 1001953110409 - 669806250678629514045626189 - P326

173L 347 - 685081 - P184
173M 161297590410850151 - P176
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