
MATHEMATICS OF COMPUTATION
Volume 00, Number 0, Pages 000–000
S 0025-5718(XX)0000-0

THE PERIOD OF THE BELL NUMBERS MODULO A PRIME

PETER L. MONTGOMERY, SANGIL NAHM, AND SAMUEL S. WAGSTAFF, JR.

Abstract. We discuss the numbers in the title, and in particular whether the
minimum period of the Bell numbers modulo a prime p can be a proper divisor
of Np = (pp

− 1)/(p − 1). It is known that the period always divides Np. The
period is shown to equal Np for most primes p below 180. The investigation
leads to interesting new results about the possible prime factors of Np. For
example, we show that if p is an odd positive integer and m is a positive integer

and q = 4m2p + 1 is prime, then q divides pm
2
p
− 1. Then we explain how

this theorem influences the probability that q divides Np.

1. Introduction

The Bell exponential numbers B(n) are positive integers that arise in combina-
torics. They can be defined by the generating function

eex−1 =

∞
∑

n=0

B(n)
xn

n!
.

See [5] for more background. Williams [11] proved that for each prime p, the Bell
numbers modulo p are periodic and that the period divides Np = (pp − 1)/(p− 1).
In fact the minimum period equals Np for every prime p for which this period is
known.

Theorem 1.1. The minimum period of the sequence {B(n) mod p} is Np when p
is a prime < 126 and also when p = 137, 149, 157, 163, 167 or 173.

Theorem 1.1 improves the first part of Theorem 3 of [10]. The statements about
the primes p = 103, 107, 109, 137, 149 and 157 are new here and result from
calculations we did using the same method as in [10]. These calculations are possible
now because new prime factors have been discovered for these Np. Table 1 lists all
new prime factors discovered for Np since [10], even when the factorization remains
incomplete. Table 1 uses the same notation and format as Table 1 of [10]. The “L”
and “M” in the table represent pieces of algebraic factorizations explained in [10].
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Table 1. Some new prime factors
p New prime factors of Np

103 66372424944116825940401913193.
103 167321256949237716863040684441514323749790592645938001.P98
107 847261197784821583381604854855693.P165
109L 7080226051839942554344215177418365113791664072203.P58
137L 14502230930480689611402075474137987.P85
149L 14897084928588789671974072568141537826492971.P115
149M 24356237167368011037018270166971738740925336580189261.P84
151 7606586095815204010302267401765907353.C277
157L 26924627624276327689812\

23371662397585576503452818526793420773.P99
179 618311908211315583991314548081149.C369

Theorem 1.1 is proved by showing that the period does not divide Np/q for any
prime divisor q of Np. (We made this check for each new prime q in Table 1,
including those written as “Pxxx,” and not just those for the p for which Np is
completely factored.) In [10], this condition was checked also for all pairs (p, q) of
primes for which p < 1100, q < 231 and q divides Np. It was conjectured there that
the minimum period is always Np. As early as 1979 [6] others wondered whether
the minimum period is always Np. See [3] for a summary of work on this conjecture
up to 2008. We present a heuristic argument below supporting the conjecture.

Touchard’s [8] congruence B(n+p) ≡ B(n)+B(n+1) mod p, valid for any prime
p and for all n ≥ 0, shows that any p consecutive values of B(n) mod p determine
the sequence modulo p after that point.

If N divides Np, then one can test whether the period of the Bell numbers modulo
p divides N by checking whether B(N + i) ≡ B(i) mod p for 0 ≤ i ≤ p − 1. The
period divides N if and only if all p of these congruences hold.

A polynomial time algorithm for computing B(n) mod p has been known at least
since 1962 [5]. Pseudocode for the algorithm appears in [10].

In the last section of this note we give a heuristic argument for the probability
that the conjecture holds for a prime p and estimate the expected number of primes
p > 126 for which the conjecture fails. The most difficult piece of this heuristic
argument is determining the probability that a given prime q divides Np. We
investigate this probability in the next section. The assumptions made in the
heuristic argument are clearly labeled with the words “assume” or “assuming.”

2. How often does 2kp + 1 divide Np as p varies?

It is well known that every prime factor of Np has the form 2kp + 1 when p
is an odd prime. According to page 381 of Dickson [4], Euler proved this fact in
1755. On the following page Dickson writes that Legendre proved it again in 1798.
A recent proof of a slightly more general result appears on page 642 of Sabia and
Tesauri [7]. Here is a short proof. Suppose q is prime and q | Np. The radix-p
expansion

Np = 1 +

p−1
∑

i=1

pi ≡ 1 +

p−1
∑

i=1

p = 1 + p(p − 1) ≡ 1 mod (p2 − p)
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shows gcd(Np, p
2 − p) = 1, whence gcd(q, p2 − p) = 1. In particular q is odd, q 6= p,

and q - (p − 1).
We have pp ≡ 1 mod q because q | Np. Let d be the smallest positive integer for

which pd ≡ 1 mod q. We cannot have d = 1 because q does not divide p − 1. But
d | p, so d = p. By Fermat’s little theorem, pq−1 ≡ 1 mod q, so p | (q − 1). The
quotient (q − 1)/p must be even because both p and q are odd. Thus, q = 2kp + 1.

For each 1 ≤ k ≤ 50 and for all odd primes p < 100000, we computed the
fraction of the primes q = 2kp + 1 that divide Np. For example, when k = 5 there
are 1352 primes p < 100000 for which q = 2kp + 1 is also prime, and 129 of these
q divide Np, so the fraction is 129/1352 = 0.095. This fraction is called “Prob” in
Table 2 because it approximates the probability that q divides Np, given that p and
q = 2kp + 1 are prime, for fixed k.

Table 2. Probability that (2kp + 1) | Np

Odd k Even k
k 1/(2k) Prob k 1/k Prob
1 0.500 0.503 2 0.500 1.000
3 0.167 0.171 4 0.250 0.247
5 0.100 0.095 6 0.167 0.173
7 0.071 0.076 8 0.125 0.496
9 0.056 0.047 10 0.100 0.096

11 0.045 0.042 12 0.083 0.082
13 0.038 0.051 14 0.071 0.068
15 0.033 0.033 16 0.063 0.064
17 0.029 0.032 18 0.056 0.111
19 0.026 0.021 20 0.050 0.050
21 0.024 0.016 22 0.045 0.054
23 0.022 0.021 24 0.042 0.042
25 0.020 0.021 26 0.038 0.052
27 0.019 0.021 28 0.036 0.036
29 0.017 0.022 30 0.033 0.031
31 0.016 0.019 32 0.031 0.055
33 0.015 0.021 34 0.029 0.032
35 0.014 0.015 36 0.028 0.030
37 0.014 0.014 38 0.026 0.024
39 0.013 0.011 40 0.025 0.020
41 0.012 0.010 42 0.024 0.023
43 0.012 0.010 44 0.023 0.020
45 0.011 0.012 46 0.022 0.022
47 0.011 0.011 48 0.021 0.025
49 0.010 0.014 50 0.020 0.043

The first observation is that usually Prob is approximately 1/k when k is even
and 1/(2k) when k is odd. The greatest anomalies to this observation in the table
are that Prob is about 2/k when k = 2, 18, 32 and 50, and that Prob is about
4/k when k = 8. Note that these exceptional values of k have the form 2m2 for
1 ≤ m ≤ 5. (These numbers arise also in chemistry as the row lengths in the
periodic table of elements.)



4 PETER L. MONTGOMERY, SANGIL NAHM, AND SAMUEL S. WAGSTAFF, JR.

We will now explain these observations. Suppose k is a positive integer and that
both p and q = 2kp + 1 are odd primes. Let g be a primitive root modulo q.

If p ≡ 1 mod 4 or k is even (so q ≡ 1 mod 4), then by the Law of Quadratic
Reciprocity

(

p

q

)

=

(

q

p

)

=

(

2kp + 1

p

)

=

(

1

p

)

= +1,

so p is a quadratic residue modulo q. In this case g2s ≡ p mod q for some s. Now,
by Euler’s criterion for power residues, (2kp + 1) | (pp − 1) if and only if p is a
(2k)-ic residue of 2kp + 1, that is, if and only if (2k) | (2s). It is natural to assume
that k | s with probability 1/k because k is fixed and s is a random integer.

If p ≡ 3 mod 4 and k is odd (so q ≡ 3 mod 4), then
(

p

q

)

= −

(

q

p

)

= −

(

2kp + 1

p

)

= −

(

1

p

)

= −1,

so p is a quadratic nonresidue modulo q. Now g2s+1 ≡ p mod q for some s. Reason-
ing as before, (2kp + 1) | (pp − 1) if and only if (2k) | (2s + 1), which is impossible.
Therefore q does not divide Np. (This statement is equivalent to Lemma 1.1(c) of
[3].)

Thus, if we fix k and let p run over all primes, then the probability that q = 2kp+1
divides Np is 1/k when k is even and 1/(2k) when k is odd because, when k is odd
only those p ≡ 1 mod 4 (that is, half of the primes p) offer a chance for q to divide
Np.

In fact, when k = 1 and p ≡ 1 mod 4, q always divides Np. This theorem must
have been known long ago, but we could not find it in the literature.

Theorem 2.1. If p is odd and q = 2p + 1 is prime, then q divides Np if and only
if p ≡ 1 mod 4.

Proof. We have just seen that q does not divide Np when p ≡ 3 mod 4. If p ≡
1 mod 4, then p is a quadratic residue modulo q, as was mentioned above, so pp =
p(q−1)/2 ≡ +1 mod q by Euler’s criterion. Finally, q is too large to divide p − 1, so
q divides Np.

We now explain the anomalies, beginning with k = 2.

Theorem 2.2. If q = 4p + 1 is prime, then q divides Np.

This result was an old problem posed and solved more than 100 years ago. In [2]
it was proposed as Problem 13058 by C. E. Bickmore and solved by him, by Nath
Coondoo, and by others. Here is a modern proof.

Proof. Since q ≡ 1 mod 4, there exists an integer I with I2 ≡ −1 mod q. Then

(1 + I)4 ≡ (2I)2 ≡ −4 ≡
1

p
mod q.

Hence

pp ≡

(

1

p

)−p

≡ (1 + I)−4p ≡ (1 + I)1−q ≡ 1 mod q

by Fermat’s theorem. Thus, q divides pp − 1. But q = 4p + 1 is too large to divide
p − 1, so q divides Np.

Lemma 2.3. Suppose q is prime and q ≡ 1 mod 4. If the integer ` divides (q−1)/4,
then ` is a quadratic residue modulo q.



THE PERIOD OF THE BELL NUMBERS MODULO A PRIME 5

Proof. The hypothesis implies gcd(q, `) = 1. In particular ` 6= 0. Factor

(2.1) ` = ±`1 . . . `ν

where each `j is prime.
The hypotheses that q is prime and q ≡ 1 mod 4 imply that ±1 are quadratic

residues modulo q.
We claim each `j is a quadratic residue modulo q, so their product (2.1) (or its

negative) is also a quadratic residue.
If `j = 2, then ` is even and q ≡ 1 mod 8. Since q is prime, 2 is a quadratic

residue modulo q.
If instead `j is odd, then we can use quadratic reciprocity:

(

`j

q

)

=

(

q

`j

)

=

(

1

`j

)

= +1,

which completes the proof.

Theorem 2.4. Let p be an odd positive integer and m be a positive integer. If

q = 4m2p + 1 is prime, then q divides pm2p − 1.

Proof. As in the proof of Theorem 2.2, q ≡ 1 mod 4, so there is an integer I with
I2 ≡ −1 mod q and (1 + I)4 ≡ −4 mod q. By Lemma 2.3, m is a quadratic residue
modulo q, so

−4m2 ≡ (1 + I)4m2 mod q

is a fourth power modulo q, say r4 ≡ −4m2 mod q. Then

pm2p =

(

q − 1

4m2

)(q−1)/4

≡ ((−4m2)−1)(q−1)/4 = r1−q ≡ 1 mod q,

which proves the theorem.

Of course, Theorem 2.2 is the case m = 1 of Theorem 2.4.
We now apply Theorem 2.4. As before, let g be a primitive root modulo q and let

a = g(q−1)/m2

mod q. Then aj , 0 ≤ j < m2, are all the solutions to xm2

≡ 1 mod q.

Let b = pp mod q. By the theorem, bm2

≡ 1 mod q, so b ≡ aj mod q for some
0 ≤ j < m2. It is natural to assume that the case j = 0, that is, q | Np, happens
with probability 1/m2.

In the case m = 2, that is, k = 8, we can do even better.

Theorem 2.5. If q = 16p + 1 is prime, then q divides p2p − 1.

Proof. As in the proof of Theorem 2.2, there is an integer I with I2 ≡ −1 mod q
and (1 + I)4 ≡ −4 mod q. Therefore, (1 + I)8 ≡ 16 ≡ −1/p mod q and so

p2p ≡

(

−1

p

)−2p

≡ (1 + I)−16p ≡ (1 + I)1−q ≡ 1 mod q,

which proves the theorem.

Thus, a prime q = 2kp + 1 divides (pp − 1)(pp + 1) when k = 8. Assuming that
q has equal chance to divide either factor, the probability that q divides pp − 1 is
1/2.

So far, we have explained all the behavior seen in Table 2. Further experiments
with q = 2m2p + 1 lead us to the following result, which generalizes Theorems 2.4
and 2.5.
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Theorem 2.6. Suppose p, m, t are positive integers, with t a power of 2 and t > 1.
Let k = (2m)t/2 and q = 2kp+1 = (2m)tp+1. If q is prime, then (a) p is a (2t)-th
power modulo q, and (b) pkp/t ≡ 1 mod q.

Proof. To prove part (a), note that since q ≡ 1 mod 2t, the cyclic multiplicative

group (Z/qZ)∗ of order q−1 has an element ω of order 2t. Then ω2t−1

≡ −1 mod q

so I = ω2t−2

satisfies I2 ≡ −1 mod q.
Now mt = (q − 1)/ (p2t), so m is a quadratic residue modulo q by Lemma 2.3.

We will show that p−1 ≡ (1 − q)/p = −(2m)t mod q is a (2t)-th power modulo q.
If t = 2, then −(2m)t ≡ (2Im)2 = (1 + I)4m2 mod q is a fourth power modulo

q.
If t > 2, then t ≥ 4 because t is a power of 2. Then (q− 1)/4 = 2mp((2m)t−1/4)

is divisible by 2m. Hence 2m is a quadratic residue modulo q by Lemma 2.3.
Therefore, (2m)t is a (2t)-th power modulo q. Finally, −1 is a (2t−1)-th power
modulo q because 2t−1 divides (q − 1)/2. Hence −1 is a (2t)-th power modulo q
because 2t ≤ 2t−1 when t ≥ 4.

For part (b), apply part (a) and choose r with r2t ≡ p mod q. Observe that 2t
divides 2t which divides q − 1 = 2kp. Hence,

1 ≡ rq−1 ≡ (r2t)2kp/2t ≡ pkp/t mod q.

This completes the proof.

When t = 2, the theorem is just Theorem 2.4.
When t = 4, Theorem 2.6 says that if q = (2m)4p + 1 = 16m4p + 1 is prime,

then q divides p2m4p − 1. Theorem 2.5 is the case m = 1 of this statement.
When t = 8, Theorem 2.6 says that if q = (2m)8p + 1 = 256m8p + 1 is prime,

then q divides p16m8p − 1. The first case, m = 1, of this statement is for k = 128,
which is beyond the end of Table 2.

We now apply Theorem 2.6. As above, let g be a primitive root modulo q and let
a = g(q−1)t/k mod q. Then aj , 0 ≤ j < k/t, are all the solutions to xk/t ≡ 1 mod q.
Let b = pp mod q. By the theorem, bk/t ≡ 1 mod q, so b ≡ aj mod q for some
0 ≤ j < k/t. It is natural to assume that the case j = 0, that is, q | Np, happens
with probability 1/(k/t) = t/k.

When k is an odd positive integer, define c(k) = 1/2. When k is an even positive
integer, define c(k) to be the largest power of 2, call it t, for which there exists an
integer m so that k = (2m)t/2. Note that c(k) = 1 if k is even and not of the form
2m2. Also, c(k) ≥ 2 whenever k = 2n2 because if k = (2m)t/2 with t ≥ 2, then
k = 2n2 with n = 2(t−2)/2mt/2. Note that

c(k) =







1/2 if k is odd,
1 if k is even and not of the form 2m2,
O(log k) if k = 2m2 for some positive integer m.

Hence the average value of c(k) is 3/4 because the numbers 2m2 are rare.
We have given heuristic arguments which conclude that, for fixed k, when p and

q = 2kp + 1 are both prime, the probability that q divides Np is c(k)/k. Empirical
evidence in Table 2 supports this conclusion. We have explained all the behavior
shown in Table 2. We tested many other values of k and found no further anomalies
beyond those listed in this section.
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3. Is the conjecture about the period of the Bell numbers true?

We follow, in principle, the heuristic argument on page 386 of [9]. According to
the Bateman-Horn conjecture [1], for each positive integer k the number of p ≤ x
for which both p and 2kp + 1 are prime is asymptotically

2C2f(2k)
x

(log x) log(2kx)
,

where

C2 =
∏

q odd prime

(

1 − (q − 1)−2
)

, f(n) =
∏

q|n
q odd prime

q − 1

q − 2
.

Thus, by the Prime Number Theorem, if p is known to be prime and k is a positive
integer, then the probability that 2kp + 1 is prime is 2C2f(2k)/ log(2kp).

Now we apply the results of the previous section. If p is prime and k is a
positive integer, then the probability that 2kp + 1 is prime and divides Np is
(2C2f(2k)/ log(2kp)) × (c(k)/k). For a fixed prime p and real numbers A < B,
let Fp(A, B) denote the expected number of prime factors of Np between A and B.
Then

Fp(A, B) ≈
∑

k
A<2kp+1≤B

2C2f(2k)c(k)

k log(2kp)
.

The anomalous values of c(k) occur when k is twice a square, and these numbers
are rare. The denominator k log(2kp) changes slowly with k. If B − A is large, so
that there are many k in the sum, then we may ignore the anomalies and replace
c(k) by its average value 3/4. This change makes little difference in the sum. Thus,

Fp(A, B) ≈
∑

k
A<2kp+1≤B

3C2f(2k)

2k log(2kp)
.

Just as in the heuristic argument on page 386 of [9] we may replace C2f(2k) by 1
and find

Fp(A, B) ≈
∑

k
A<2kp+1≤B

3

2k log(2kp)
≈

3

2
log

(

log B

log A

)

.

We can now estimate the expected value of the number dp of distinct prime
factors of Np. (Question: Is Np always square free?) The expected value of dp is

Fp (2p, Np ) ≈
3

2
log

(

log Np

log(2p)

)

=
3

2
log

(

logp Np

logp(2p)

)

≈
3

2
log p.

Now we are ready to compute the probability that the conjecture holds for a
prime p. If the conjecture fails for p, then there is a prime factor q of Np such that
the period of the Bell numbers modulo p divides N = Np/q. The period will divide
N if and only if B(N + i) ≡ B(i) mod p for all i in 0 ≤ i ≤ p − 1.

Assume that the numbers B(N + i) mod p for 0 ≤ i ≤ p − 1 are independent
random variables uniformly distributed in the interval [0, p − 1]. Then the proba-
bility that the period divides N is p−p because, for each i, there is one chance in
p that B(N + i) will have the needed value B(i) mod p. The probability that the
period does not divide N is 1 − p−p.

Assume also that the probabilities that the period divides N = Np/q for different
prime divisors q of Np are independent. Then the probability that the minimum
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period is Np is (1 − p−p)dp , where dp is the number of distinct prime factors of

Np. Using our estimate for dp, we find that this probability is (1 − p−p)3(log p)/2.
When p is large, this number is approximately 1 − (3 log p)/(2pp) by the binomial
theorem. This shows that the heuristic probability that the minimum period of the
Bell numbers modulo p is Np is exceedingly close to 1 when p is large.

Finally, we compute the expected number of primes p > x for which the conjec-
ture fails. When x > 2, this number is

∑

p>x

3 log p

2pp
<

∑

p>x

p1−x ≤

∫ ∞

x

t1−x dt =
x2−x

x − 2
.

By Theorem 1.1, the conjecture holds for all primes p < 126. Taking x = 126, the
expected number of primes for which the conjecture fails is < 126−124/124 < 10−262.
Thus, the heuristic argument predicts that the conjecture is almost certainly true.
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