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The Bell Numbers

The Bell numbers arise in combinatorics.

The Bell number B(n) is the number of

partitions of a set of n distinct objects into

nonempty subsets.

The Bell number B(n) is the number of ways

to factor a product of n different primes into

factors > 1.

They may be defined by

eex−1 =
∞
∑

n=0

B(n)
xn

n!
.

The first few Bell numbers are:

n 0 1 2 3 4 5 6 7 8
B(n) 1 1 2 5 15 52 203 877 4140
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The Bell Numbers modulo p

The sequence of Bell numbers modulo a prime

p has been studied for about a century.

Many congruences have been proved for B(n)

modulo p. The basic facts we need are these:

J. Touchard’s congruence [1933]

B(n + p) ≡ B(n) + B(n + 1) mod p,

valid for any prime p and for all n ≥ 0, shows

that any p consecutive values of B(n) mod p
determine the sequence modulo p after that

point.

It follows from this congruence that B(n) mod

p must be periodic with period ≤ pp.

In 1945, G. T. Williams proved that for each

prime p, the period of the Bell numbers modulo

p divides

Np = (pp − 1)/(p − 1).
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In fact the minimum period equals Np for every

prime p for which this period is known.

Theorem 1. The minimum period of the

sequence {B(n) mod p} is Np when p is a prime

< 126 and also when p = 137, 149, 157, 163,

167 or 173.

This theorem is proved by showing that the pe-

riod does not divide Np/q for any prime divisor

q of Np.

If q divides Np and N = Np/q, then one can test

whether the period of the Bell numbers modulo

p divides N by checking whether B(N + i) ≡

B(i) mod p for 0 ≤ i ≤ p−1. The period divides

N if and only if all p of these congruences hold.

A polynomial time algorithm for computing

B(n) mod p is known.

The theorem for p can be proved (or disproved)

this way if we know the factorization of Np.
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It is conjectured that the minimum period of

the Bell numbers modulo p equals Np for every

prime p.

The conjecture is known to be true for all

primes < 126 and for a few larger primes.

Below we will give a heuristic argument for

the probability that the conjecture holds for a

prime p and estimate the expected number of

primes p > 126 for which the conjecture fails.

The most difficult piece of this heuristic

argument is determining the probability that a

prime q divides Np. We investigate this

probability in the next few slides.

The assumptions made in the heuristic

argument are clearly labeled with the words

“assume” or “assuming.”
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How often does 2kp + 1

divide Np as p varies?

It is well known (Euler, 1755) that when p is

prime every prime factor of Np has the form

2kp + 1.

For each 1 ≤ k ≤ 50 and for all odd primes

p < 100000, we computed the fraction of the

primes q = 2kp + 1 that divide Np.

For example, when k = 5 there are 1352 primes

p < 100000 for which q = 2kp+1 is also prime,

and 129 of these q divide Np, so the fraction

is 129/1352 = 0.095.

This fraction is called “Prob” in the table

because it approximates the probability that q

divides Np, given that p and q = 2kp + 1 are

prime, for fixed k.

6



Probability that q = (2kp + 1) | Np

k Prob

1 0.503
2 1.000
3 0.171
4 0.247
5 0.095
6 0.173
7 0.076
8 0.496
9 0.047

10 0.096
11 0.042
12 0.082
13 0.051
14 0.068
15 0.033
16 0.064
17 0.032
18 0.111
19 0.021
20 0.050
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Probability that q = (2kp + 1) | Np

k 1/k Prob

1 1.000 0.503
2 0.500 1.000
3 0.333 0.171
4 0.250 0.247
5 0.200 0.095
6 0.167 0.173
7 0.143 0.076
8 0.125 0.496
9 0.111 0.047

10 0.100 0.096
11 0.091 0.042
12 0.083 0.082
13 0.077 0.051
14 0.071 0.068
15 0.067 0.033
16 0.063 0.064
17 0.059 0.032
18 0.056 0.111
19 0.053 0.021
20 0.050 0.050
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Probability that q = (2kp + 1) | Np

Odd k Even k
k 1/(2k) Prob k 1/k Prob

1 0.500 0.503 2 0.500 1.000
3 0.167 0.171 4 0.250 0.247
5 0.100 0.095 6 0.167 0.173
7 0.071 0.076 8 0.125 0.496
9 0.056 0.047 10 0.100 0.096

11 0.045 0.042 12 0.083 0.082
13 0.038 0.051 14 0.071 0.068
15 0.033 0.033 16 0.063 0.064
17 0.029 0.032 18 0.056 0.111
19 0.026 0.021 20 0.050 0.050
21 0.024 0.016 22 0.045 0.054
23 0.022 0.021 24 0.042 0.042
25 0.020 0.021 26 0.038 0.052
27 0.019 0.021 28 0.036 0.036
29 0.017 0.022 30 0.033 0.031
31 0.016 0.019 32 0.031 0.055

49 0.010 0.014 50 0.020 0.043
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Obervations about the table

1. Prob is approximately 1/(2k) when k is odd.

2. Usually Prob is approximately 1/k when k

is even.

3. Some anomalies to 2. are that Prob is about

2/k when k = 2, 18, 32 and 50.

4. Also, Prob is about 4/k when k = 8.

5. The exceptional values of k in 3. and 4. have

the form 2m2 for 1 ≤ m ≤ 5. (These numbers

also arise as the lengths of the rows in the

periodic table of elements in chemistry.)

We will now explain these observations. Sup-

pose k is a positive integer and that both p

and q = 2kp + 1 are odd primes. Let g be a

primitive root modulo q.
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If p ≡ 1 mod 4 or k is even (so q ≡ 1 mod 4),

then by the Law of Quadratic Reciprocity
(

p

q

)

=

(

q

p

)

=

(

2kp + 1

p

)

=

(

1

p

)

= +1,

so p is a quadratic residue modulo q. In this

case g2s ≡ p mod q for some s. Now by Euler’s

criterion for power residues, (2kp+1) | (pp−1)

if and only if p is a (2k)-ic residue of 2kp + 1,

that is, if and only if (2k) | (2s). It is natural to

assume that k | s with probability 1/k because

k is fixed and s is a random integer.

If p ≡ 3 mod 4 and k is odd (so q ≡ 3 mod 4),

then
(

p

q

)

= −

(

q

p

)

= −

(

2kp + 1

p

)

= −

(

1

p

)

= −1,

so p is a quadratic nonresidue modulo q. Now

g2s+1 ≡ p mod q for some s. Reasoning as

before, (2kp + 1) | (pp − 1) if and only if (2k) |

(2s+1), which is impossible. Therefore q does

not divide Np.
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Thus, if we fix k and let p run over all primes,

then the probability that q = 2kp+1 divides Np

is 1/k when k is even and 1/(2k) when k is odd

because, when k is odd only those p ≡ 1 mod 4

(that is, half of the primes p) offer a chance

for q to divide Np.

In fact, when k = 1 and p ≡ 1 mod 4, q al-

ways divides Np. This theorem must have been

known long ago, but we could not find it in the

literature.

Theorem 2. If p is odd and q = 2p+1 is prime,

then q divides Np if and only if p ≡ 1 mod 4.

Proof. We have just seen that q does not di-

vide Np when p ≡ 3 mod 4. If p ≡ 1 mod 4,

then p is a quadratic residue modulo q, as was

mentioned above, so pp = p(q−1)/2 ≡ +1 mod q

by Euler’s criterion. Finally, q is too large to

divide p − 1, so q divides Np.
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We now explain the anomalies, beginning with

k = 2.

Theorem 3. If q = 4p + 1 is prime, then q

divides Np.

This result was an ancient problem posed and

solved more than 100 years ago. Here is a

modern proof.

Proof. Since q ≡ 1 mod 4, there exists an in-

teger i with i2 ≡ −1 mod q. Then

(1 + i)4 ≡ (2i)2 ≡ −4 ≡
1

p
mod q.

Hence

pp ≡

(

1

p

)−p

≡ (1+i)−4p ≡ (1+i)1−q ≡ 1 mod q

by Fermat’s theorem. Thus, q divides pp − 1.

But q = 4p + 1 is too large to divide p − 1, so

q divides Np.
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Lemma. Suppose q ≡ 1 mod 4 is prime. If `

divides (q − 1)/4, then ` is a QR modulo q.

Proof. The hypothesis implies gcd(q, `) = 1.

In particular ` 6= 0. Factor

` = ±`1 . . . `k (1)

where each `j is prime.

The hypotheses that q is prime and q ≡ 1 mod

4 imply that ±1 are QR modulo q.

We claim each `j is a QR modulo q, so their

product (1) (or its negation) is also a QR.

If `j = 2, then `j is even and q ≡ 1 mod 8.

Since q is prime, 2 is a QR modulo q.

If instead `j is odd, then we can use LQR:
(

`j

q

)

=

(

q

`j

)

=

(

1

`j

)

= +1,

which completes the proof.
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Theorem 4. Let p be an odd positive integer

and m be a positive integer. If q = 4m2p + 1

is prime, then q divides pm2p − 1.

Proof. As in the proof of the previous theorem,

q ≡ 1 mod 4, so we have i with i2 ≡ −1 mod q

and (1 + i)4 ≡ −4 mod q. By the lemma, m is

a quadratic residue modulo q, so

−4m2 ≡ (1 + i)4m2 mod q

is a fourth power modulo q, say r4 ≡ −4m2 mod

q. Then

pm2p =

(

q − 1

4m2

)(q−1)/4

≡ ((−4m2)−1)(q−1)/4 = r1−q ≡ 1 mod q,

which proves the theorem.

Of course, Theorem 3 is the case m = 1 of

Theorem 4.
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We now apply Theorem 4. As before, let g be

a primitive root modulo q and let

a = g(q−1)/m2
mod q. Then aj, 0 ≤ j < m2,

are all the solutions to xm2
≡ 1 mod q. Let

b = pp mod q. By the theorem, bm2
≡ 1 mod q,

so b ≡ aj mod q for some 0 ≤ j < m2. It is

natural to assume that j = 0, that is, q | Np,

happens with probability 1/m2.

In the case m = 2, that is, k = 8, we can do

even better.

Theorem 5 If q = 16p + 1 is prime, then q

divides p2p − 1.

Proof. As in the proof of the previous

theorem, we have i with i2 ≡ −1 mod q and

(1 + i)4 ≡ −4 mod q. Therefore,

(1 + i)8 ≡ 16 ≡ −1/p mod q and so

p2p ≡ (1 + i)−16p ≡ (1 + i)1−q ≡ 1 mod q,

which proves the theorem.
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Thus, a prime q = 2kp + 1 divides

(pp − 1)(pp + 1) when k = 8. Assuming that

q has equal chance to divide either factor, the

probability that q divides pp − 1 is 1/2.

So far, we have explained all the behavior seen

in the table. Further experiments with q =

2m2p+1 lead us to the following result, which

generalizes Theorems 4 and 5.

Theorem 6. Suppose p, m, t are positive in-

tegers, with t a power of 2 and t > 1. Let

k = (2m)t/2 and q = 2kp + 1 = (2m)tp + 1. If

q is prime, then (a) p is a (2t)-th power modulo

q, and (b) pkp/t ≡ 1 mod q.

Proof. To prove part (a), note that since

q ≡ 1 mod 2t, the cyclic multiplicative group

(Z/qZ)∗ of order q − 1 has an element ω of or-

der 2t. Then ω2t−1
≡ −1 mod q so i = ω2t−2

satisfies i2 ≡ −1 mod q.

17



Now mt = (q − 1)/p2t−1, so m is a quadratic

residue modulo q by the lemma. We will show

that p−1 ≡ (1− q)/p = −(2m)t mod q is a (2t)-

th power modulo q.

If t = 2, then −(2m)t ≡ (2im)2 = (1+i)4m2 mod

q is a fourth power modulo q.

If t > 2, then t ≥ 4 because t is a power of 2.

Then (q − 1)/4 = 2mp((2m)t−1/4) is divisible

by 2m, Hence 2m is a quadratic residue modulo

q by the lemma. Therefore, (2m)t is a (2t)-

th power modulo q. Finally, −1 is a (2t−1)-th

power modulo q because 2t−1 divides (q−1)/2.

Hence −1 is a (2t)-th power modulo q because

2t ≤ 2t−1 when t ≥ 4.

For part (b), apply part (a) and choose r with

r2t ≡ p mod q. Observe that 2t divides 2t which

divides q − 1 = 2kp. Hence,

1 ≡ rq−1 ≡ (r2t)2kp/2t ≡ pkp/t mod q.

This completes the proof.
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When t = 2, the theorem is just Theorem 4.

When t = 4, Theorem 6 says that if q =

(2m)4 + 1 = 16m4 + 1 is prime, then q di-

vides p2m4p − 1. Theorem 5 is the case m = 1

of this statement.

When t = 8, Theorem 6 says that if q =

(2m)8 + 1 = 256m8 + 1 is prime, then q di-

vides p16m8p−1. The first case, m = 1, of this

statement is for k = 128, which is beyond the

end of the table.

We now apply Theorem 6. As above, let g be a

primitive root modulo q and let a = g(q−1)t/k mod

q. Then aj, 0 ≤ j < k/t, are all the solutions

to xk/t ≡ 1 mod q. Let b = pp mod q. By the

theorem, bk/t ≡ 1 mod q, so b ≡ aj mod q for

some 0 ≤ j < k/t. It is natural to assume that

j = 0, that is, q | Np, happens with probability

1/(k/t) = t/k.
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When k is an odd positive integer, define c(k) =

1/2. When k is an even positive integer, de-

fine c(k) to be the largest power of 2, call it

t, for which there exists an integer m so that

k = (2m)t/2. Note that c(k) = 1 if k is even

and not of the form 2m2. Also, c(k) ≥ 2 when-

ever k = 2n2 because if k = (2m)t/2 with t ≥ 2,

then k = 2n2 with n = 2(t−2)/2mt/2. Note that

c(k) =











1/2 if k is odd,

1 if k is even and k 6= 2m2,

O(log k) if k = 2m2 for some m.

Hence the average value of c(k) is 3/4 because

the numbers 2m2 are rare.

We have given heuristic arguments which con-

clude that, for fixed k, when p and q = 2kp+1

are both prime, the probability that q divides

Np is c(k)/k. Empirical evidence in the table

supports this conclusion. We have explained

all the behavior shown in the table. We tested

many other values of k and found no further

anomalies beyond those listed above.
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Summary

We have given heuristic arguments which con-

clude that, for fixed k, when p and q = 2kp+1

are both prime, the probability that q divides

Np is c(k)/k.

Here c(k) is defined as follows:

When k is an odd positive integer, let c(k) =

1/2.

When k is an even positive integer, let c(k) be

the largest power of 2, call it t, for which there

exists an integer m so that k = (2m)t/2.

We have

c(k) =











1/2 if k is odd,

1 if k is even and k 6= 2m2,

O(log k) if k = 2m2 for some m.

The average value of c(k) is 3/4 because the

numbers 2m2 are rare.

21



Is the conjecture about the Bell numbers’

period true? Does it always equal Np?

According to the Bateman-Horn conjecture,

for each positive integer k the number of p ≤ x

for which both p and 2kp + 1 are prime is

asymptotically

2C2f(2k)
x

(log x) log(2kx)
,

where

C2 =
∏

q odd prime

(

1 − (q − 1)−2
)

,

f(n) =
∏

q|n
q odd prime

q − 1

q − 2
.

Thus, by the Prime Number Theorem, if p is

known to be prime and k is a positive integer,

then the probability that 2kp + 1 is prime is

2C2f(2k)/ log(2kp).
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Now we apply the earlier results. If p is prime

and k is a positive integer, then the proba-

bility that 2kp + 1 is prime and divides Np is

(2C2f(2k)/ log(2kp)) × (c(k)/k). For a fixed

prime p and real numbers A < B, let Fp(A, B)

denote the expected number of prime factors

of Np between A and B. Then

Fp(A, B) ≈
∑

k
A<2kp+1≤B

2C2f(2k)c(k)

k log(2kp)
.
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The anomalous values of c(k) occur when k

is twice a square, and these numbers are rare.

The denominator k log(2kp) changes slowly with

k. If B − A is large, so that there are many k

in the sum, then we may ignore the anoma-

lies and replace c(k) by its average value 3/4.

This change makes little difference in the sum.

Thus,

Fp(A, B) ≈
∑

k
A<2kp+1≤B

3C2f(2k)

2k log(2kp)
.

We may replace C2f(2k) by 1 and find

Fp(A, B) ≈
∑

k
A<2kp+1≤B

3

2k log(2kp)
≈

≈
3

2
log

(

logB

logA

)

.
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We can now estimate the expected value of

the number dp of distinct prime factors of Np.

(Question: Is Np always square free?) The

expected value of dp is

Fp (2p, Np) ≈
3

2
log

(

logp Np

logp(2p)

)

≈
3

2
log p.
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Now we are ready to compute the probability

that the conjecture holds for a prime p. If the

conjecture fails for p, then there is a prime

factor q of Np such that the period of the Bell

numbers modulo p divides N = Np/q. The

period will divide N if and only if B(N + i) ≡

B(i) mod p for all i in 0 ≤ i ≤ p − 1.

Assume that the numbers B(N + i) mod p for

0 ≤ i ≤ p−1 are independent random variables

uniformly distributed in the interval [0, p − 1].

Then the probability that the period divides N

is p−p because, for each i, there is one chance

in p that B(N + i) will have the needed value

B(i) mod p. The probability that the period

does not divide N is 1 − p−p.
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Assume also that the probabilities that the pe-

riod divides N = Np/q for different prime divi-

sors q of Np are independent. Then the prob-

ability that the minimum period is Np is

(1 − p−p)dp,

where dp is the number of distinct prime factors

of Np. Using our estimate for dp, we find that

this probability is

(1 − p−p)3(log p)/2 ≈ 1 −
3 log p

2pp

by the Binomial Theorem. This shows that the

heuristic probability that the minimum period

of the Bell numbers modulo p is Np is exceed-

ingly close to 1 when p is large.
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Finally, we compute the expected number of

primes p > x for which the conjecture fails.

When x > 2, this number is

∑

p>x

3 log p

2pp
<
∑

p>x

p1−x ≤
∫ ∞

x
t1−x dt =

x2−x

x − 2
.

By Theorem 1, the conjecture holds for all

primes p < 126. Taking x = 126, the expected

number of primes for which the conjecture fails

is < 126−124/124 < 10−262. Thus, the

heuristic argument predicts that the

conjecture is almost certainly true.
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