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Abstract. Conditional on a strong form of the Goldbach conjecture, we determine all finite connected
components of the aliquot graph containing a number less than 109, as well as those containing an amicable

pair below 1014 or one of the known perfect or sociable cycles below 1017. Along the way we develop a fast
algorithm for computing the inverse image of an even number under the sum-of-proper-divisors function.

1. Introduction

For n ∈ N, let s(n) =
∑

d|n
d6=n

d denote the sum of the proper divisors of n. Ancient Greek mathematicians

studied the forward orbits n, s(n), s(s(n)), . . . , now called aliquot sequences, and noted that they sometimes
enter cycles, such as 6, 6, . . . and 220, 284, 220, . . . . In the modern computer era, more than a billion
examples of such aliquot cycles have been found [3, 9]; most of these, like {220, 284}, have order 2, and are
termed amicable pairs. A long-standing conjecture posits that there are infinitely many aliquot cycles.

One can also ask about the inverse orbits {n} ∪ s−1({n}) ∪ s−1(s−1({n})) ∪ · · · . Although questions
concerning the inverse image s−1({n}) of a given n go back at least 1000 years [13], the idea of iterating
the inverse map appears to have been considered only recently (see [5, Theorem 5.3] and [4], for instance).
In relation to this, Garambois [7] has conducted many numerical studies, focusing in particular on isolated
cycles, i.e. cycles that are their own inverse orbits. For instance, s−1({28}) = {28}, so {28} is an isolated
cycle of order 1.

In this paper, we seek to generalize this concept. To do so, following Delahaye [4], we introduce the
aliquot graph, which packages all of the aliquot sequences together into a single directed graph. Precisely,
every natural number is a node of the graph, and for any m,n ∈ N, there is a directed edge from m to n if
and only if n = s(m). As the examples noted above demonstrate, the aliquot graph is not connected; in fact
any two distinct aliquot cycles lie in distinct connected components, so presumably the graph has infinitely
many components. In these terms, we see that Garambois’ isolated cycles are examples of finite connected
components.

Our objectives are (1) to find examples of finite connected components beyond simple cycles, and (2) to
determine a comprehensive list of all finite connected components with at least one small node. Toward the
first objective, in Section 2 we present an algorithm for computing the inverse image s−1({n}) of a given even
number n in time O(n1/2+ε); as a corollary, we obtain the estimate #s−1({n})� n1/2+ε, which improves on
a recent result of Pomerance [12, Corollary 3.6]. In Section 3.1 we apply the algorithm to all even amicable
pairs with smaller element below 1014, and to all known1 aliquot cycles of order 6= 2 with smallest element
below 1017. In this way we identify many interesting examples of finite connected components.

Concerning the second objective, note first that if p and q are distinct primes then s(pq) = p+ q + 1. As
a slight strengthening of the Goldbach conjecture, we have the following:

Hypothesis G. Every even number at least 8 is the sum of two distinct primes.

The author was partially supported by EPSRC Grant EP/K034383/1.
1The list of known cycles is likely complete up to at least 1014. However, there are many open-ended aliquot sequences

beginning with a number below that bound, so it is impossible to say for sure that the list is complete without imposing an
upper bound on the cycle length. It might even be the case that the completeness of the list is undecidable and cannot be

certified with a finite computation!
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There is ample evidence in favor of Hypothesis G: Lu [8] showed that it holds for all but at most O(x0.879)
even numbers ≤ x, and Oliveira e Silva et al. [10] ran a large distributed computation to verify it for all even
n ∈ [8, 4× 1018].2

Assuming Hypothesis G, for any odd number n ≥ 9, we have n = p + q + 1 = s(pq) for distinct odd
primes p, q. Since pq > n and is again odd, we can repeat this construction to see that the inverse orbit
{n} ∪ s−1({n}) ∪ s−1(s−1({n})) ∪ · · · is infinite; in particular, n has infinite connected component. Note
also that 1 = s(11), 3 = s(s(9)) and 7 = s(s(49)). Thus, under Hypothesis G, every odd number except
5 has infinite inverse orbit and, since s(5) = 1, every odd number has infinite connected component.3

Unconditionally, Erdős et al. [5, Theorem 5.3] showed that infinite inverse orbits exist; in fact all but a
density zero subset of the odd numbers have infinite inverse orbit, although the method of proof does not
enable one to exhibit a specific such number.

We say that a connected component of the aliquot graph is potentially infinite if it contains an odd
number. Absent a proof of Hypothesis G (including the Goldbach conjecture), we cannot prove that a given
potentially infinite connected component is actually infinite, unless it is shown to contain 1. However, we
will take Hypothesis G for granted in what follows, so our numerical results will be conditional upon it.
With this caveat, in Section 3.2 we describe a computation determining the complete list of finite connected
components of the aliquot graph that contain a number below 109.

Finally, in Section 4 we conclude with some related questions and speculations suggested by the numerics.

Notation. We shall make frequent use of the following symbols for arithmetic functions:

ω(n) =
∑
p|n

p prime

1 is the number of distinct prime factors of n,

Ω(n) =
∑
pk‖n

k is the number of prime factors of n, counted with multiplicity,

σk(n) =
∑
d|n

dk is the sum of kth powers of the divisors of n,

σ(n) = σ1(n) = s(n) + n.

Acknowledgements. This paper was inspired by the work of Jean-Luc Garambois [7], as well as posts by
David Stevens and another user, who wishes to remain anonymous, on mersenneforum.org. I thank them
for raising interesting questions. I also thank Carl Pomerance for helpful comments and for pointing out the
related results in [5] and [12].

2. An algorithm for s−1

Suppose that n ∈ N is given, and we wish to find m ∈ N satisfying s(m) = n. If n ≥ 9 is odd,
then searching through small primes p, we expect to find one quickly (polynomial time in log n) such that
q = n − 1 − p is prime, so that n = s(pq); although a proof of this seems far off, that does not prevent it
from working well in practice to find an element of s−1({n}), even for very large odd n. On the other hand,
it is conjectured that all large odd n have � n/ log2 n representations as p+ q + 1 (and this certainly holds
for at least some arbitrarily large n, by the prime number theorem and pigeonhole principle), and it follows
that no algorithm can compute all of s−1({n}) in fewer than O(n/ log n) bit operations. In light of this, and
since our application requires only even values, we assume henceforth that n is even.

Let us first consider the possibility of odd m. If n ∈ 2N and m ∈ 1 + 2N, then it is easy to see that m
must be a square. Let p be the largest prime factor of m, and write m = a2p2k, with p - a. Then we have

(2.1) n = s(m) = s(a2)p2k + σ(a2)(1 + p+ . . .+ p2k−1),

2Strictly speaking, they only verified the Goldbach conjecture, which is weaker than Hypothesis G for numbers of the form
2p for p prime. However, for every even n ∈ [6, 4× 1018], they found a Goldbach partition n = p + q with p ≤ 9781. Hence, it
suffices to verify Hypothesis G for n = 2p for all primes p ∈ [5, 9781].

3Note that 1 = s(p) for every prime p, so its connected component is trivially infinite under our definition. Some authors
prefer to exclude 1 from the aliquot graph to avoid this triviality. Fortunately, under Hypothesis G, the only difference that

this makes to our question of finite connected components is that 2 and 5 become singleton components.
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so that a2 ≤ n/(1 + . . . + p2k−1) and k ≤ 1
2 [1 + logp(n/σ(a2))]. For a = 1 and each odd a ∈ [3,

√
n/6], we

run through all k ≤ 1
2 [1 + logq(n/σ(a2))], where q is the smallest odd number ≥ 3 exceeding every prime

factor of a, perform a binary search for integral p ≥ q satisfying (2.1), and apply a primality test. (For our
implementation, which was limited to n < 264, we used a strong Fermat test to base 2, together with the
classification [6] of small strong pseudoprimes.)

Next we consider m ∈ 2N. In this case, since m/2 is a proper divisor of m, we have s(m) ≥ m/2, whence
m ≤ 2n. We write m in the form ab, where we think of a ∈ 2N as the “smooth” part of m, with only small
prime factors, and b as the rest. Then we have

(2.2) n = s(m) = σ(a)s(b) + s(a)b.

For a fixed choice of a, we view (2.2) as a linear equation constraining the pair (s(b), b). First note that if
g = gcd(σ(a), s(a)) = gcd(a, s(a)), then (2.2) has no solutions unless g | n. When g | n, we put u = σ(a)/g
and v = s(a)/g, so that (x, y) = (s(b), b) is a solution to ux + vy = n/g. Using the Euclidean algorithm,
we can determine a particular solution (x0, y0) ∈ Z2, and the general solution in positive integers is then
(x, y) = (x0 + rv, y0 − ru) for r ∈ Z ∩ (−x0

v ,
y0
u ). Our algorithm proceeds by working recursively through all

possible prime factorizations of a. For the base case of the recursion, once the number of possibilities for b
is small enough, we test all of them to see if the equality n = s(ab) is satisfied.

As described, this method is only a little more efficient than directly considering every possible even
m ≤ 2n, but fortunately there are a few ways in which we can reduce the search space. First, we can detect
the cases b = p or b = p2 for a prime p by solving (2.2), which gives a linear or quadratic equation for p, and
applying a primality test. Second, in the typical case when b has no small prime factors, we can narrow the
range for s(b) using the following estimate:

Lemma 2.1. Let b > 1 be an integer with smallest prime factor p. Then s(b) ∈ [b/p, bΩ(b)/p].

Proof. Since b/p is a proper divisor of b, we have s(b) ≥ b/p, directly from the definition. For the upper

bound, let
∏ω(b)
i=1 p

ei
i be the prime factorization of b, consider the set

S =

ω(b)⋃
i=1

{pi, p2
i , . . . , p

ei
i },

and write S = {q1, . . . , qΩ(b)}, with q1 < · · · < qΩ(b) in increasing order. Next set b0 = 1 and bj =
lcm(q1, . . . , qj) for j = 1, . . . ,Ω(b). Then

σ−1(b) =

Ω(b)∏
j=1

σ−1(bj)

σ−1(bj−1)
.

Consider j ∈ {1, . . . ,Ω(b)}, and suppose that qj = pki . Then bj = pibj−1 and

σ−1(bj)

σ−1(bj−1)
=

σ−1(pki )

σ−1(pk−1
i )

= 1 +
1

pi + . . .+ pki
≤ 1 +

1

qj
.

Since q1 = p and the qj are strictly increasing, we thus have

σ−1(b) ≤
Ω(b)∏
j=1

(
1 +

1

qj

)
≤

Ω(b)∏
j=1

(
1 +

1

p+ j − 1

)
= 1 +

Ω(b)

p
.

Hence
s(b)

b
= σ−1(b)− 1 ≤ Ω(b)

p
.

�

Although we do not know p in advance, we will know a lower bound for it in the course of the recursion.
Supposing that p ≥ p1 and that we have already checked the cases b = 1, b = p and b = p2, we have

(2.3) b ≥ b1 := p1p
′
1 and s(b) ≥ s1 := 1 + p1 + p′1,

3



where p′1 denotes the smallest prime exceeding p1. Thus, defining

(2.4) b2 =
n− σ(a)s1

s(a)
, k =

⌊
log b2
log p1

⌋
and s2 =

kn

kσ(a) + p1s(a)
,

we have
s(b)(σ(a) + s(a)p1/k) ≤ σ(a)s(b) + s(a)b = n,

so that b ∈ [b1, b2] and s(b) ∈ [s1, s2]. We stop the recursion and test every value of b once the number of
(x, y) ∈ [s1, s2]× [b1, b2] satisfying ux+ vy = n/g falls below p1.

Third, the solutions with b = pq for distinct primes p and q can also be determined without searching,
since in this case we have

(vp+ u)(vq + u) = v2pq + uv(p+ q) + u2 = v(n/g − u) + u2 = (au+ nv)/g.

Thus, factoring (au+nv)/g and testing all of its divisors ≡ u (mod v) will reveal p and q. Since (au+nv)/g
is potentially quite large, this test is more expensive than that for b = p or p2, so we use it only when p1 is
large enough to guarantee that b is a product of two primes.

Our procedure is described in more detailed pseudocode in Algorithm 2.1. We turn now to the running
time analysis. First, by either using a sieve to amortize the factorization of a or working recursively through
the possible factorizations, we see that it takes at most Oε(n

1/2+ε) bit operations to find all odd m with
s(m) = n. For even m, note that each prime p1 considered before the recursion is stopped satisfies

p1 ≤ #{r ∈ Z : x0 + rv ∈ [s1, s2] and y0 − ru ∈ [b1, b2]} ≤ s2

v
+ 1,

and together with (2.4) this implies the bound p1 ≤
√
gn log3 n

s(a) . To simplify the analysis, we consider a

modified version of the algorithm in which we omit the checks for b = p, b = p2 and b = pq, and stop the
recursion once p1 >

√
n/a. (These simplifications make the algorithm slightly less efficient, but one can see

that they increase the running time by a factor of Oε(n
ε) at most.)

Suppose that the recursive procedure is called with input a, and let p denote the largest prime factor of a,
with pk ‖ a. Then either p = 2 or the criterion for stopping the recursion was not satisfied when considering
a/pk, so that p ≤

√
n/(a/pk). We may assume that n ≥ 4, so in either case, writing f(a) = a/pk−1, we have

f(a) ≤
√
n. Note that f(a) is again an even integer with largest prime factor p. Thus,

#{a ∈ 2N : a ≤ 2n, f(a) ≤
√
n} =

∑
t∈2N
t≤
√
n

#{a ∈ 2N : a ≤ 2n, f(a) = t}

≤
∑
t∈2N
t≤
√
n

(
1 + log2

(
2n
t

))
≤ 1

2

√
n log2(2n),

and this gives an upper bound for the number of times that the recursive procedure is called.
Next, let p1 denote the smallest prime exceeding both

√
n/a and every prime factor of a. Then by (2.4),

the values of b that we consider in the base case of the recursion for a satisfy

s(b) <
kn

p1s(a)
≤
n logp1 n

p1s(a)
≤ n log3 n

(
√
n/a)(a/2)

= 2
√
n log3 n.

Moreover, s(b) is determined modulo v = s(a)/g, so the number of possibilities to consider is at most

1 +
2
√
n log3 n

s(a)/g
≤ 1 +

4g
√
n log3 n

a
.

Summing over all g | n and a satisfying gcd(s(a), σ(a)) = g, we see that the total number of candidate values
for b is bounded by∑

g|n

∑
a∈2N∩[2,2n]
f(a)≤

√
n

gcd(a,σ(a))=g

(
1 +

4g
√
n log3 n

a

)
≤

∑
a∈2N∩[2,2n]
f(a)≤

√
n

1 +
∑
g|n

∑
a≤2n
g|a

4
√
n log3 n

a/g

� σ0(n)
√
n log2 n�ε n

1/2+ε.
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Algorithm 2.1 Procedure to compute s−1({n}) for n ∈ 2N
function s inverse(n)

Input: n ∈ 2N
Output: list of m ∈ N such that s(m) = n

initialize the output list
for each a ∈ {1} ∪ [3,

√
n/6] ∩ (1 + 2N) do

compute s(a2) and the smallest odd number q ≥ 3 exceeding every prime factor of a
for each k ∈ N such that q2k−1 ≤ n/σ(a2) do

solve (2.1) for p
if p is a prime ≥ q then append a2p2k to the output list end if

end for
end for
for each k ∈ N such that 2k < n do

call s inverse even recursion(2k)
end for
return the output list

end function

procedure s inverse even recursion(a)
Input: a ∈ 2N
Ensure: appends to the output list all m = ab such that s(m) = n, b > 1 and the smallest prime factor of
b exceeds the largest prime factor of a

compute g = gcd(s(a), σ(a)), and return if g - n
check for solutions to (2.2) with b = p and b = p2, and append them to the output list
compute u = σ(a)/g, v = s(a)/g, and (x0, y0) such that ux0 + vy0 = n/g
for primes p1 exceeding the largest prime factor of a, in increasing order, do

compute the intervals [s1, s2] and [b1, b2] defined in (2.3)–(2.4)
if #{r ∈ Z : x0 + rv ∈ [s1, s2] and y0 − ru ∈ [b1, b2]} < p1 then

for each such r do
compute b = y0 − ru and s(b)
if every prime factor of b is at least p1 and s(b) = x0 + rv then

append ab to the output list
end if

end for
return

end if
if s(ap3

1) > n then

factor N = (au+ nv)/g and find all of its divisors d <
√
N satisfying d ≡ u (mod v)

for each such d do
compute p = (d− u)/v and q = (N/d− u)/v
if p and q are primes ≥ p1 then append apq to the output list end if

end for
return

end if
for each k ∈ N such that s(apk1) ≤ n do

if s(apk1) < n then
call s inverse even recursion(apk1)

else if k ≥ 3 then
append apk1 to the output list

end if
end for

end for
end procedure

5



The largest prime factor of a and the value of s(a) can be carried along as extra state information during
the recursion, so no work is required to factor a. On the other hand, we can expect the b values that arise
to occur sparsely throughout (0, n), and we need to factor them in order to compute s(b). In practice, one
can use a generic factoring algorithm with good average-case performance. To get a provable estimate for
the running time, it suffices to record all of the candidate pairs (a, b) in a list and apply Bernstein’s batch
factorization algorithm [1] to the b values. Since there are Oε(n

1/2+ε) pairs and each b is bounded by n, the
total time to factor all of them is still Oε(n

1/2+ε).
Thus, we have shown the following.

Theorem 2.2. The algorithm described in this section computes s−1({n}) for a given n ∈ 2N in time at
most Oε(n

1/2+ε).

Corollary 2.3. For n ∈ 2N, #s−1({n})�ε n
1/2+ε.

3. Numerical results

3.1. Examples of finite connected components. For any given n ∈ N, the forward orbit of n under
s either terminates with 1, grows without bound, or enters a cycle. In the first two cases, n must have
infinite connected component. Hence, to find finite connected components, it suffices to consider only those
n contained in a cycle, and compute their inverse orbits. For each even amicable pair with smaller element
below 1014, as well as the known perfect or sociable cycles with smallest element below 1017, we started with
the smallest n in the cycle and iteratively computed s−1({n}), s−1(s−1({n})), . . . until reaching either the
empty set or a set containing an odd number. In the former case, n has finite connected component, and our
computation determines it entirely; in the latter case, assuming Hypothesis G, the connected component is
infinite.

It is also conceivable that there are n for which neither case occurs, and the procedure does not terminate.
However, for any n, the elements of s−1({n}) ∩ 2N are bounded by 2n, so chains of even numbers in the
inverse orbit of n grow at most exponentially in the iteration count. Moreover, for any m of the form p+ 1
for prime p, we have m = s(p2). We see no reason why numbers of this form should not occur among the
elements of the inverse orbit of n with the same frequency as for random numbers of the same size. Thus,
provided that the kth iterate of s−1 applied to {n} is non-empty, we expect it to contain an odd number
with probability � 1/k. Since the harmonic series diverges, we therefore expect to reach an odd number
eventually, as long as the inverse orbit is infinite. This was borne out by our numerics, as every connected
component that we considered was found to be either finite or potentially infinite.4

Of the 24003 even amicable pairs that we considered, 7438 pairs were found to belong to a finite connected
component, and of those, 2394 were isolated cycles. The average size of the components was 37968/7438 ≈
5.1, and the largest was of size 58, corresponding to the amicable pair {29215166389256, 31021462090744};
it is shown in Figure 3.1.

For even aliquot cycles of size other than 2, only 75 are known with smallest element below 1017. We
found 12 belonging to a finite connected component, of which three are isolated cycles (including the perfect
numbers 28 and 137438691328); they are shown in Figure 3.2.

3.2. Finite connected components containing a small node. Towards our second objective, we found,
conditional on Hypothesis G, the complete list of finite connected components of the aliquot graph containing
a number ≤ 109. As it turns out, there are 101 such components, compared to 453 known cycles of even
numbers in that range. They are comprised of 462 nodes, 88 of which exceed 109. The 14 examples containing
a number below 107 are shown in Figure 3.3.

Our computation proceeded as follows. First, beginning with each even number n ≤ 109, we used
PARI/GP [14] to compute the forward orbit n, s(n), . . . , until arriving at a number m = sk(n) satisfying
one of the following conditions:

(1) m is odd;

4However, in the case of the amicable pair {48569114359984, 49074636040016}, the numbers exceeded the 64-bit limit of our

implementation without reaching an odd number. We wrote a special-purpose routine to continue the search in this case, looking
for m of the form ap with a < 2× 1010 and p prime, and fortunately that sufficed to prove that s25(184719837071713545732) =

49074636040016.
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Figure 3.1. The largest finite connected component containing an amicable pair with
smaller element below 1014

(2) m− 1 is prime;
(3) m = sj(n) for some j < k;
(4) m ≥ 1050.

In the first two cases, n is connected to an odd number (m in case (1), (m−1)2 in case (2)), so its connected
component is potentially infinite. In the third case, the forward orbit enters a cycle. We determined the
minimum number in each cycle and collated the cycles discovered for all n ≤ 109. It turned out that they
were all among the cycles considered in Section 3.1, so we could readily classify each connected component as
either finite or potentially infinite. That left 1053 numbers in the indeterminate case (4), to which we applied
the algorithm from Section 2 to search for odd numbers in the inverse orbit of n, then of s(n), s(s(n)), . . . ,
until reaching a value of sk(n) in excess of 248. With this method we succeeded in finding an odd number
for all but nine values of n, whose forward orbits merged into just four distinct aliquot sequences. Finally,
we resolved these by continuing the forward orbits with a larger cutoff of 1070.

For each n with potentially infinite connected component, we recorded, as a certificate, an odd number
m ∈ N and indices j, k ≥ 0 such that sk(n) = sj(m). The interested reader may find these at [2], along with
the data pertaining to the finite connected components.

7



Figure 3.2. The finite connected components containing a known cycle of order 6= 2 with
a node ≤ 1017

4. Related questions

Recall that a number n ∈ N is called non-aliquot (or untouchable) if s−1({n}) = ∅. Pollack and Pomerance
[11] have conjectured that the non-aliquot numbers have asymptotic density

lim
y→∞

∑
a∈2N
a≤y

a−1e−a/s(a)∑
a∈N
a≤y

a−1
≈ 17%

in the natural numbers, and this is supported by the available numerical evidence. Their analysis relies
heavily on some heuristics for the typical behavior of s over the natural numbers. The heuristics do not
apply to amicable numbers, which are atypical in this respect (e.g., for any amicable number a, the sequence
a, s(a), s(s(a)) is not monotonic, which is a rare event among all natural numbers). Nevertheless, one can
ask whether the amicable pairs that form isolated cycles have a density within the set of all amicable pairs
(ordered by smaller element, say). Empirically almost all aliquot cycles have order 2, so this density, if
it exists, should agree with that of the isolated cycles among all cycles. Table 4.1 shows the frequency of

8



Figure 3.3. All finite connected components containing a node ≤ 107

Table 4.1. Frequency of isolated cycles and cycles with finite connected component

number of cycles with number that number with finite
x smallest element ≤ x are isolated connected component

1010 1462 98 (6.70%) 249 (17.03%)
1011 3385 214 (6.32%) 613 (18.11%)
1012 7692 471 (6.12%) 1445 (18.79%)
1013 17583 1052 (5.98%) 3309 (18.82%)
1014 39457 2397 (6.07%) 7448 (18.88%)

isolated cycles among all known cycles in various ranges up to 1014. Based on this limited evidence, we
speculate that the limiting density does exist and is approximately 6%.

Similarly, one might ask whether there are infinitely many finite connected components, and whether the
cycles with finite connected component have a density among all cycles. Table 4.1 also shows data relevant to
these questions. Again we speculate that the answer to both is yes, with the limiting density approximately
19%.

Finally, we found finite connected components of every size ≤ 41. Table 4.2 shows the ones of record size
when ordered by smallest element. It seems plausible that every positive integer is the cardinality of a finite
connected component; in particular, we conjecture that there are arbitrarily large finite components.
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