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Abstract. The Special Number Field Sieve factoring algorithm has a large number of parametric
choices, each of which can affect its run time. We give guidelines for these choices along with a
discussion of useful coding optimizations. We also give a theoretical argument which proves that
the choice of sieving region that has been used so far in successful factorizations is not optimal and
show how to obtain an improved sieve region. The improvement has yielded a 15% speed increase
in practice.
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1 Introduction and notation

In this paper all logarithms are natural unless otherwise noted. The Number Field
Sieve is the fastest known algorithm for factoring large integers and has two versions:
the General NFS and the Special NFS. The former factors arbitrary integers N in time
L(N,c) = exp((c+ o(1))((log N)'/3(loglog N)?/3)) and space L(N, c)'/?, with ¢ =
(64/ 9)1/ ?. The latter factors integers of special form such as N = hya™ + hyb™ for
small integers hy, hy in time L(N,¢) and space L(N,c)!/2, with ¢ = (32/9)"/°. See
[8] for a discussion of integers susceptible to the Special version.

Both methods have a fairly large set of parameters associated with them. GNFS has
all of the choices of SNFS, along with the additional choice of finding good polynomi-
als for the method. To eliminate that choice, since it is still an open research topic, this
paper discusses optimal parameter selection for SNFS, although methods presented
here carry over to GNFS. We assume familiarity with the algorithm, although a brief
description is given below to motivate parameter selection.

SNFS works as follows: Given (say) an integer of the form N = a™ + 1, start by
selecting d, a degree for a polynomial. We will represent NV as an instance of a degree d
polynomial f(z) with small coefficients evaluated at a point. Typically, for numbers of
a size that can be handled by current computers, d = 4,5, 6. Find the nearest multiple
wd to n of d, and re-write N as ¢;(a”)? + ¢,, perhaps by multiplying N by a small
power of a. E.g. for N = 4183+ 1, one may write N = 413(41'®)+1 =413M3+ 1 or
perhaps 412N = (41'7)% + 412 = M? + 412. Then a is a root of the polynomial mod
N. Throughout this paper, we shall denote this root mod N as M. A second, linear
polynomial with the same root is then g(z) = = — M. When N has a form such as
N = hia™ + hpb™, the root M equals a®/b° for an appropriate value of c. In this case
the linear polynomial becomes g(z) = bz — a© because (b, N) = 1. There is a ring
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homomorphism ¢ that takes a root « of f(z) to M mod N. Thus, ¢(a) = M mod N,
whence for rational integers (b, a) we have

a+bM = ¢(a + ba) mod N. (1.1)

We shall refer to the left hand (integer) side and the right hand (algebraic) side of
this congruence throughout this paper. The algorithm tries to factor both sides of this
congruence simultaneously, the left side over rational primes and the right side over
prime ideals and units of Q(«). One does this using ordinary integer arithmetic by
factoring the norms of a +bM and a + ba. Then, given a large number of such factored
congruences, one constructs a congruence of the form A> = B2 mod N, A # +B mod
N, from which GCD(A 4+ B,N) and GCD(A — B, N) split N. The details of how
A% = B2 mod N is constructed are given in numerous other papers [7, 14, 16] and will
not be repeated here, except to note that the construction depends upon finding the null
space of a very large matrix over Z/2Z. Thus far, attempts to parallelize this linear
algebra have met with some, but not strong success, and solving the matrix remains
essentially a serial problem for a very fast single computer with very large memory.
Parallel implementations [9] show poor per-processor utilization and have not scaled
well. The Number Field Sieve is therefore strongly constrained by space requirements
as well as time requirements. Asymptotically, the algorithm takes as long to solve the
matrix as it does to find the factored smooth relations. In practice, solving the matrix
for numbers that can be factored today takes only a small fraction of the total CPU
time, but since it has not yet been possible to scale a parallel solver, solving the matrix
can take a substantial fraction of the total elapsed time. For the factorization of RSA-
512 [10], sieving was accomplished in parallel in about 8 weeks, while solving the
matrix took 10 days on a single Cray. This ratio between elapsed times gets worse as
the numbers get larger as long as the parallel matrix reduction cannot be scaled. This
paper will concentrate upon minimizing the sieve time.

The algorithm proceeds as follows: Select the sizes k; and &, of two separate factor
bases F' and F. F is comprised of rational primes F' = {2,3,5,...,pg, }, and F =
{I\, I, I5, ..., I} where the I, are prime ideals of Q(c) ordered by norm. We put
P; = norm(I;) and also require that f(z) = 0 mod P; has a solution for each j.
There can be deg(f) solutions if P; splits completely in Q(c). Thus, F is the set of
smallest &, prime ideals of Q(«) corresponding to linear roots of f(x). We also include
po = Py = —1 to hold the sign.

Solve g(x) = 0 mod p; and f(z) = 0 mod P; for all primes in the two factor bases.
This may be readily accomplished by e.g., the Cantor-Zassenhaus algorithm [11]. One
then identifies fully factored relations by sieving norm(a + bM) and norm(a + ba).
In practice, one allows relations fully factored over the factor bases plus perhaps up to
three somewhat larger primes per polynomial, which will be referred to as the “large
primes”. Thus, in the two large prime case, we have for some (b, a)

norm(a +bM) = [] pi*- B1- B2 (1.2)
p;EF
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where B1, B2 are the large primes and

norm(a +ba) = [[ P} - B3- B4 (1.3)
Ij€.7:

where B3, B4 are also large primes. Any of B1, B2, B3, B4 might turn out to equal 1.
As of January 2005, there have been two published instances where three large primes
were used in (1.2). This was during the factorizations of 277341 and 28!' — 1. However,
it is not known whether the parameters used were optimal, so they are not reported
herein. We place an upper bound LP on these large primes as a parameter of the
algorithm. We sieve all pairs (b,a) over some region of the plane. The sieving is
performed by adding suitably scaled approximations of log p; and log P; at locations
(b, a) where the primes are known to divide a + bM and a + ba respectively. Factored
relations are then identified by having the accumulated logs exceed a threshold value,
which depends on (b, a). The thresholds are different for f and g. The algorithm sieves
a value of b for all a in the range [—amax, amax), then replaces b with b + 1. Updating
the starting points for the sieve requires only a single modular addition per prime as b
changes and takes almost no time at all. The sieve region is therefore a rectangle in the
right half plane. This is what has been used historically, but Section 2 shall prove that
this is not optimal. A variation of this procedure, known as the lattice sieve [18] sieves
over a region which is an affine transform of this rectangle. The transform is defined
in such a way that one of the norms is a priori divisible by some chosen moderately
large prime. This makes the norm more likely to be smooth, but it also has the effect
of increasing the corresponding norm on the other side of the congruence. One can
then vary the choice of this ‘lattice prime’. Details of the ordinary and lattice sieving
procedures may be found in [7, 14]. Once sieving has identified a factored (smooth)
relation, the actual factorization can be constructed by a second sieve which stores the
primes, rather than accumulating their scaled logs. Typically, one factors the relations
by trial division up to some small bound 7, then identifies larger primes dividing the
norms from the sieve. This is a very worthwhile implementation practice. It can more
than double the speed of the algorithm, especially for large factor bases, as opposed to
using only trial division.

If N has several known factors it might be worthwhile to factor the cofactor with
GNEFS, rather than the full value of N with SNFS. Such a choice depends on the size
of the cofactor and the relative speed of the GNFS implementation. Trial sieving ex-
periments might be necessary to make this determination. Once the degree has been
selected, the parametric choices for the algorithm are:

1. The size of the factor bases, k; and k; respectively. The norms of the largest primes
in the factor bases are denoted as pmax, and pmax, respectively. We shall frequently
assume that £ = k; = k; and pmax = Pmax, = Pmax,- We also have pmax = klogk by
the Prime Number Theorem.

2. The size and shape of the sieving region.
3. The number of and bound LP on the large primes.
4. The trial division bound 7T'.
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5. The threshold values for the sieve.
6. The choice of polynomial, although for SNFS this is very limited.
7. Partitioning of the sieve region.

8. The base for the logarithms. Since the sieving uses single byte approximations for
these, the base needs to be large enough so that 8 bits can accomodate the log of the
largest norm that will occur in the sieve region.

9. As with the Quadratic Sieve, the ‘small prime’ variation is effective at speeding
sieving. See [19] for a discussion and suggested parameters.

2 The sieving region

Let G(b,a) denote the probability that both norms are simultaneously smooth for the
point (b, a). Technically, G(b, a) is either 0 or 1. What is really meant is that G(b, a) is
the probability that randomly chosen integers near the two norms are smooth. As with
the asymptotic analysis in [14] we assume that the norms behave as random integers
with respect to their divisibility properties. We will assume for the moment that the
large prime variation is not in use. The reason for this is that without the large prime
variation we know the minimum number of smooth relations that are needed for the
algorithm to succeed. This is k1 + k> + 1. However, a particular successful factorization
given by (1.2) or (1.3) may or not be useful. In order for one to be useful, we must
find other such results with matching large primes. Large primes B; which only appear
once can never be part of a square. Work by Lenstra [15], Lambert [13], and Kovalenko
[12] shows that the number of double large prime factorizations needed is Poisson
distributed and therefore has variance equal to its mean. Practical experience has shown
that the number of two-large-prime factorizations needed is unpredictable up to perhaps
a factor of 1.5, but most of this variation comes from changing the degree d. Degree
4 seems to require fewer total successes for an as yet unexplained reason. There is
very little variation in practice when both NV and d are fixed. See Section 4 for further
discussion. For full factorizations, G (b, a) may be derived from a theorem of Canfield,
Erdos, and Pomerance [5].

Theorem 2.1. The probability that an integer y has all of its prime factors less than
z is u="t°) where u = logy/logx. This holds uniformly as v — oo and u <
(1 —¢€)logz/loglog .

A result of Bach and Peralta [1] shows that the o(1) term is quite small, even for
numbers of the size that appear as norms in SNFS. Without the large prime varia-

: —u,,—v __ log|norm(a+bM)| _
tion we may therefore take G(b,a) as u~“v~" where u = ot iogky and v =
log [norm(a+ba)|

og(aTog k) - Oraph #1 shows G(b,a) when f(z) has two real roots. The “ridges”
2 log ko)

are regions where —a/b is close to a real root of g(z). When —a/b ~ «, the norm
is smaller, thus the probability of smoothness is larger. The ridge lies along a vector
whose slope in the (b, a) plane equals the real root.
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Figure 1. Graph #1: An example of G(b, a)

Note. This shape of this graph is in close agreement with that of Figure 3.1 in [7],
which gives actual yields for G(b, a) with the two large prime variation. Asymptot-
ically, k; = ky is optimal, although one might want to make one larger in practice,
depending on circumstances. See the discussion in Section 3 for details. In the analy-
sis that follows and for Theorem 2.2 we assume that the sieve region is symmetric
about the b axis. The reasons for this assumption, as well as a suggested technique for
relaxing this assumption and creating an asymmetric sieve region, are given following
equation (2.9).

For a fixed value of b we sieve from —amnax t0 amax With each of the two factor bases.
This takes work proportional to

W =2am | Y 1/pi+ Y 1/norm(I;) Q2.1)

pi€F I;eF

which is approximately
W = 4amax 102108 Prmax 2.2)

when k; = k. Equation (2.1) represents the total number of additions made to lattice
point locations during the sieving phase. This is not, however, the total number of ma-
chine instructions. It ignores array address calculations, loop overhead, trial division,
the arithmetic involved in splitting the large primes, changing the sieve start locations,
and other overhead such as cache misses.

We now suppose that the boundary of an optimal sieve region can be given as a
function of b. This function need not be continuous, but it does need to be Riemann
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integrable for the following theorem to work. It applies whether or not the large prime
variation is used.

Theorem 2.2. Suppose the boundary of an optimal sieve region is a Riemann inte-
grable function of b. Then at that boundary, the probability of finding a successful
relation must be constant.

Proof. If we allow the sieve interval for a to vary from —Q(b) to Q(b) and allow b to
range from 1 to B, the total work is proportional to

B
4loglog pmax/ Q(b) db. (2.3)
1
We require a total of at least k; + &k, + 1 successes, which yields
B ,Q(b)
/ / G(b,a) dadb > ki + k. 2.4)
1 J-Q@®)

Note that in practice we might want to increase the RHS of (2.4) by a very small
amount to account for fundamental units of the field and the quadratic characters used
in computing the final square root. We want to minimize (2.3) subject to (2.4). Put
k = k1 = kp and form the following Lagrangian:

B
L(Q, )\, B, k) = 4loglog pmax/ Q(b) db+A
1

B Q(b)
/ / G(b,a)dadb —2k| (2.5)
1 J_ow)

where ) is a suitable Lagrange multiplier to be determined. If we perturb Q by replac-
ing it with Q + 7¢ for a suitable function &, a variational equation for Q is then

EE(Q +7ENBE)| =0 2.6)
or 7=0
whence
5 B B 1Q(b)+7€(b)
9 4108108 pre / Qb) + 7€(b) db+ A / / G(b, a) dadb — 2k
or 1 1 JQ)—re) =0
_o. Q2.7

This simplifies to

4102108 Prmax /IB £(b) db+ A /IB (G(b,Q(b)) + G(b, —Q(b))) £(b)db = 0.  (2.8)

The first variational principle [2] says that (2.8) must hold for all functions &, which in
turn requires

410g10g puax + A (G(b, Qb)) + G(b, ~Q(b))) = 0 2.9)



Optimal Parameterization of SNFS 111

forall 1 < b < B since G is strictly positive. Let Gi(b,c) = [ G(b,a)da. We
assumed throughout that the sieve region is symmetric. The reason for this is as fol-
lows. G(b,Q(b)) is very nearly equal to G(b, —Q(b)). The smoothness probability
for norm(a + bM) does not depend on a, because bM very strongly dominates. At
the boundary of much of the sieve region ¢ > b and |norm(a + ba)| is very close to
Inorm(—a + ba)|. Thus, with a symmetrical sieve region, (2.9) becomes

—2loglog pmax

G(b,Q(b)) = 3 (2.10)
Equation (2.10) shows that at the boundary Q(b), the probability of success is constant.
d

Furthermore, the boundary clearly can not be linear. The optimal sieve region is
neither a rectangle with boundary parallel to the b axis, nor an affine transform of the
rectangle. Its actual shape is shown in Graph #2.

The above argument has assumed that the optimal region is symmetric around the b-
axis. For an odd degree polynomial, one typically expects (and observes) more smooth
relations when a and b have opposite signs. The proof above can be modified so that the
sieve interval extends from (say) —Qq(b) to £, (b). However, as previously stated, for
much of the sieve region, a is much larger than b, so that Norm(a+ba) ~ Norm(a—ba).
Thus, near the sieve boundary the norms are quite close. Numerical experiments were
performed which allowed the upper and lower bound of the sieve interval for a to vary.
There was very little observable difference between allowing modestly different upper
and lower bounds than with assuming Q; = Q). If we do assume an asymmetric
region, then equation (2.10) becomes

—41oglog Pmax

A )
thus showing that a rectangle is suboptimal even when the symmetry assumption is
dropped.

We now derive two more equations. The variation in B yields the following equa-
tion.

9 L(@0 B, k) = 4loglog pra@(B) + A (G1(B, Q(B)) — G1(B,—Q(B))) = 0.

0B
(2.11)
By the Prime Number Theorem, we may take pm.x ~ klogk and the variation in k
yields
0
ok

(G(b, Qui(b)) + G(b, (b)) =

L(Q,\, B, k) = 2.12)

1 +logk
Q(b) db + A 9GM.a) yab—1) =0,
log(klog k) k:logk:/ + (/ / )

Put b = B in (2.9), replace the inequality in (2.4) with equality, and together (2.4),
(2.9), (2.11), and (2.13) are four equations in four unknowns: B, Q(B), k, and A. This
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can be reduced to three unknowns, as it is possible to derive an optimal value for %
independently as shown in Section 3. We could then solve these numerically, substitute
the resulting value for A in (2.9), and solve this for Q(b) for 1 < b < B. This exercise
would be academic, however, since in practice we allow large prime factorizations and
the right hand side of (2.4) is unknown in that case.

What is important about this derivation is that (2.10) shows that a rectangular sieve
region is not optimal regardless of whether G(b,a) is based on full factorization or
large-prime factorization. When the algebraic norm polynomial has no real root,
G(b,a) is uniformly decreasing in both b and a. Regardless of the true value of A, as b
increases monotonically, Q(b) must decrease monotonically for (2.10) to hold. When
f(z) does have a real root, the value of Q(b) that satisfies (2.9) lies sufficiently far from
a/b that the real roots make no difference. The asymptotic analysis from which L(N, c)
is derived results in a square sieve region with B = ama = L(N, ¢)'/2. Our region is
smaller by the ratio 410g10g Pmax || IB Q(b) db/L(N,c), but determining a closed form
for this ratio seems analytically intractable. The difference between our optimal region
and the square region is subsumed by the o(1) term in L(N,¢). Getting an analytic
estimate for the improvement given by the optimal sieve region would require a second
main term in the theorem of Canfield, Erdos and Pomerance, and subsequently a main
term and error term in place of the o(1) in L(N,c). Thus, the improved sieve region
does not affect the asymptotic run time, but as data in Section 7 shall show, it does
improve actual performance. Contini has done some experiments on altering the shape
of the sieve region. His empirical results [6] also show that a rectangular region is not
optimal.

As an example take N = 11'3 — 1, with f(z) = 2% — 11 and M = 11'°. We shall
use this number as a canonical example throughout this paper.

Suppose B = 500000 and Q(B) = 10°. These may not be optimal; we choose a
value merely for illustrative purposes. Solving (2.10) for A yields

—2loglog pmax
~—— == 2.1
= aB.am) &1
With loglog pmax =~ 2.6, we get A ~ —8.5 - 107 and the following graph shows an
approximation to Q(b). Choosing different values for B and Q(B) does very little to
alter the shape of this graph. We solved (2.10) for each b by binary search on Q(b).

As implemented, the optimal boundary will actually be a step-function of b. Efficient
implementations partition the sieve interval for each b into pieces that fit in cache. If
the cache size is C, then the sieve length is chosen to be h * C for some integer h. The
sieve boundary changes most rapidly near the origin. To compute the sieve boundary,
we therefore compute Q(b) more frequently near the origin and proceed as follows:

1. Select B, the largest anticipated value of b which will be sieved. This value depends
upon the size of the factor base, and the size of the large primes, as well as the size of
N. Values for B may be approximated by v Work/20 where Work may be taken from
Table 1. Q(B) is approximately 10 - B for numbers in the range of Table 1.

2. Compute X and G(B, ©(B)) using the methods of [20].
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3. Forb = 100%j, j = 1,..., 100 and using binary search on Q(b), find Q(b) to satisfy
(2.10), rounding Q(b) to the nearest multiple of C'.

4. Forb=10000+j, j = 1,...,B/10000 again find Q(b) to satisfy (2.10), rounding
appropriately.

The step sizes for how frequently Q(b) is computed may be adjusted for convenience.

25

0 0.5 1 15 2 25 3 3.5 4 45
by 10°

Figure 2. Graph #2: Qualitative behavior of Q(b)

Geometric Interpretation. Theorem 2.2 results from finding the region of smallest
area lying in the (b, a) plane such that the volume over that region and under G(b, a)
equals the number of needed relations. It is not surprising that the optimal Q(b) follows
contours of high probability on the surface. It is clearly more beneficial to sieve in a
region of higher probability. The shape of Q is exactly determined by the intersection
of a horizontal plane with G(b, a). The height of that plane is given by the right hand
side of (2.10).

In practice, when using two large primes, (b) can only be determined empirically
by trying different values of €(b) for N of fixed size. The optimal value of B is also
derived empirically by trying different values for fixed sizes of N. But the graph gives
qualitative guidelines for the shape of this region. In Section 7, one of the factorizations
used a sieve region whose general shape followed that of Graph #2. It resulted in about
a 17% reduction in sieve time over the best rectangular region. Furthermore, (2.9) can
be used as a guide for GNFS, as well as SNFS, once the GNFS polynomials have been
selected.

To compute points along () one can use the methods of Sorenson [20] for com-
puting G with two large primes. For N of a given size, B and Q(B) are derived from
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experience. It is easy to solve (2.10) for Q(b) by binary search. A high accuracy
solution is not needed.

The discussion in Section 5 suggests that for a given b, the sieve line over a should
be partitioned into pieces that fit in the L, cache of the computer (if it has one). Thus,
Q(b) is rounded to the nearest multiple of that cache size and becomes a step function.
This means that in practice the sieve region consists of a set of rectangles of decreasing
width and increasing length. For composites ~ 200 digits near b ~ 0, we select Q(b)
to be quite large; perhaps 100 times the cache size. Near the largest values of b it
decreases to about 10 times the cache size. See the data in Section 7.

Note. It takes extensive CPU time to factor numbers of the sizes given in Section 7.
Acquiring optimal values for B and Q(B) from experience will require CPU resources
not available to this author. Equation (2.10) is a recent discovery. Data on possibly
optimal values of Q(B) was not collected from earlier factorizations.

3 The size of the factor bases and L P bound

We show here that without the large prime variation, the optimal size of the factor base
may be derived independently from equations (2.9) and (2.13). The analysis will show
that the time complexity function is fairly shallow near its minimum. This means that
one can be a little bit off in choosing the size of the factor base without affecting the
run time very much. We will also show, however, that if one takes the factor base too
small (less than a specific quantity to be shown), then the run time increases faster than
exponentially. The penalty for choosing a factor base that is too big is smaller than
that for choosing one too small. Also, if the factor base is too large, it is much easier
to discard excess relations if we decide to reduce the factor base size before doing the
matrix reduction. When using the large prime variation, the optimal size is determined
empirically and actual values are suggested in Section 7.

The number of lattice points needed to be examined in the neighborhood of a typical
point P = (b, a) on average, for one success, is 1/G(b, a). We need at least 2k total, so

T(k) = 2k/G(b, a) 3.1)

represents the total work required. G(b,a) is given by u~"v~" where u = log|a +
bM|/(log(klogk)) and v = log |norm(a + bar)|/ log(k log k). Over much of the sieve
region the norms are approximately equal, so we take u = v for simplification. We
also make the approximation log(klogk) ~ logk because loglogk is quite small.
These simplifications make G(b,a) more tractable to deal with. The formal deriva-
tion of L(N,c), given in [14] takes P = (bmax, @max) as its typical point to deter-
mine the size of the norms that need to be smooth. Choice of a different point, say
Py = (bmax/4, amax/4) makes very little difference to the value of w. Indeed, for our
canonical example, choosing P gives u = 59.86/log k, whereas choosing P, gives
u = 58.48/logk. As long as the point is chosen not too close to the origin, the
value of G(b, a) does not change too much as shown by Graph #1. The optimal factor
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base size is not very sensitive to the selection of P. The graph below shows T'(k) for
u = 59.17/log(k) and 5 % 10° < k < 2 x 10% corresponding to b = 500 000 from our
canonical example.

b
i

i

Work x 1011

P
,—/—//_,—

[ o
m
.J_/_F'_'_'_'_.

4 5
Factor Base Size x 107

Figure 3. Graph #3: Optimization of Factor Base Size

Graph #4 also shows T'(k), but in a region close to the optimum: ko — 107 < k <
kopt + 107.

As can be seen, the penalty for choosing a factor base that is too small becomes much
larger than the penalty for choosing one too big as soon as one drifts ‘reasonably’ far
from the optimum. We quantify this next.

Let C' = log(norm(amax + bmaxM)). Since we assume that u ~ v, we have
T(k) = k(C/log k)C/1ek) — Ly (k). (3.2)

We have limy_,;; T(k) = oo, thus confirming that 7'(k) must at some point grow
faster than exponentially as k decreases below the minimum. Also limy_.o. (k) = 1,
so T'(k) is asymptotic to k. Thus, the penalty for a factor base that is too big grows
linearly with k.

We can determine the exact optimal point and exactly where T'(k) starts to grow
rapidly with the aid of the Lambert W function, W(c) = z, such that ¢ = ze?®. Put
y = C/log k and differentiate T'(y) logarithmically to get

T'(y) = T(y) (;ZC +2+2log y) =T(y)s(y). (3.3)

We set this equal to zero and replace 2 logy with log C' — log(C/y?). This gives
— C/y* +2 —log(C/y*) +log C = 0. (3.4)
Put z = C'/y? and exponentiate, giving

Ce? = ze*. 3.5
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Figure 4. Graph #4: Optimization of Factor Base Size; near the minimum

We have z = (log k)?/C and thus the optimal value of % is
kopt = eV EW(Ce), (3.6)

For the canonical example we obtain kop = 13 660 000 from (3.6). To show the effect
of selecting a different point in computing C, we have kg, = 10480 000 with b taken to
be 100 000 instead of 500 000. We now consider the rate of growth of T'(k) as k moves
to the left of its optimum. Note that s(y) is an increasing function of y as y increases.
Therefore we have T"(y) > T'(y) provided that s(y) > 1. Note that y increases as k
decreases. We can solve s(y) > 1 using the technique from equations (3.4) and (3.6).
This means that 7'(k) grows faster than exponentially as k decreases provided that

k< eVEW(Ce), (3.7)

Inequality (3.7) shows how small we can force the factor base without starting to incur
a large penalty. It has been suggested that one way to alleviate the space difficulties
with NES is to use much smaller faster bases, but “sieve longer”. These results show
that the amount of additional work rapidly becomes prohibitive. This is also seen in
the comparison of the factorization of 10" + 1 and 267 4 1 in Section 7.

Instances exist where k; = k, is not desired. Consider N = 31! + 1. This
has the algebraic factor 31° + 1 leaving N = 31190 — 3175 4 3150 — 31% 1 =

M* — M3 + M? — M + 1. For a typical lattice point (say) (10°,10%), the norm of
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a + bM is approximately 10%b while the norm of the algebraic polynomial is near
10%. Thus, the linear norm is much larger than the algebraic norm and it makes sense
to use a larger rational factor base in instances such as this.

As LP increases, so does the yield rate per lattice point, but so also does the num-
ber of needed factorizations. Further, once smooth relations have been identified and
the primes in the factor base divided out, we are left with a cofactor. This must first
be tested for primality, then if not prime, factored with a method such as SQUFOF or
Pollard Rho. The author’s original implementation found SQUFOF, followed by Pol-
lard Rho if SQUFOF fails, to be quite effective. However, a more recent revision of
the code shows that using a well tuned version of QS without a large prime variation
is even faster than SQUFOF. Section Section 7 gives data on the actual improvement
obtained with QS. However, as L P increases, so does the amount of time dealing with
the cofactors relative to the sieve time. Further, a large fraction of the cofactors will be
discarded. Either they will be prime, or they will split into the product of a relatively
small prime times a prime bigger than LP. These are referred to as ‘false hits’. If LP
is too big, then too much time is spent processing and discarding them. Furthermore,
the existence of false hits influences the computation of the sieve threshold, discussed
in Section 5. For very small numbers if two large primes are used for both sides of the
congruence it has been observed that the time splitting the cofactors totally dominates
the computation. The table in Section 7 gives guidelines, derived from experience both
for the number of large primes and for the value of LP.

The value of LP and number of primes also influence the size and density of the
matrix to be solved, although not in any way that has a discernable pattern. The size
of the matrix is not very predictable as a function of large prime parameters except
to say in a general way that the size increases as LP and the number of large primes
increases. The size of the Galois group of f also influences the size and density of the
matrix. SNFS tends to run slightly faster when there are more ‘small’ primes that split
completely in Q(«) and the frequency of such primes is determined by the reciprocal of
the order of normal closure for the Galois group. Research needs to be done to quantify
this effect. We need a function for NFS similar to the Knuth-Schroeppel function for
the Quadratic Sieve, but which takes into account the size of the Galois group. Finally,
if more than the minimum number of required relations is collected, it aids in forming
a smaller matrix. More relations gives more freedom in combining relations with large
primes and results in smaller matrices.

Note. It is possible that one might want to vary the number and size of the large
primes over the sieve region. Near the origin the norms are smaller. It is possible that
excess time is spent processing and discarding false hits in this region. One possibility
is to try reducing the number and/or size of the large primes to cut down on false
hits when the norms are known to be small. To this author’s knowledge no one has
investigated this possibility.
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4 Choice of polynomial

For SNFS, the choices of polynomial are limited. See [17] for a discussion of selection
techniques for GNFS. The table in Section 7 gives guidelines for the suggested degree
of the polynomial as a function of the size of IV, but there is sometimes more than one
choice for a given degree. We discuss this by example.

Suppose N = 4189 + 1. There are a number of choices for the polynomial:
1. 412* + 1 with M = 417
2. 2% 4+ 41 with M = 418
3. 2%+ 41 with M = 4115
4. 41%2° + 1 with M = 4117,
The last two are readily discarded. The decrease in M from 41'® to 41'5 does not
compensate for the fact that for most (b,a) pairs, the norm for the sextic is larger
than that for the quintic by more than a factor of 413. Similarly, the larger coefficient
41* more than offsets the decrease in M by the factor 41 than in using polynomial
2. The choice between polynomials 1 and 2 is fairly close and performance will be
comparable. Also note that NV has the algebraic factor 42. If we remove it we are left

with a dense degree 88 polynomial for N. Finding a small degree polynomial becomes
impossible; GNFS would have to be used.

Note that the run time of SNFS is not uniform in the size of N. Larger numbers
sometimes take less time than smaller ones. This may be seen by comparing (say)
4183 41 and 4136 + 1. With degree 5 the former uses 2° + 412 and the latter 412> + 1
and M = 41'7 in both cases. However, the coefficient 41% on the first polynomial
is larger than the coefficient 41 on the second. Numbers of the form z°*=2 4+ 1 will
generally run slightly slower than 2°**! + 1 even though the latter is larger.

We show here a technique for numbers of the form 2% 4 y'1% or 2!3% 4413 that al-
lows us to take advantage of the algebraic factor, yet still use a polynomial of moderate
degree. Put N = z!'F + ¢!"* Then y~!"*"N = (x/y)""* + 1 yielding the polynomial
2! + 1 with root z = 2* /y* mod N. This is a reciprocal polynomial. Thus, there is a

%;%;). This polynomial is 2° — 2% — 423 4322 4+ 32— 1.
For degree 13, the polynomial becomes 2° — 2% — 52* + 423 + 622 — 3z — 1. They both
have root (x/y)* + (y/x)* mod N. Thus, the norm on the linear polynomial becomes
(zy)*a + (z** + y**)b for point (b, a).

This last example gives us an instance where two numbers of the same size take
different amounts of time. Consider N; = 102! +-3!2 and N, = 10'?! 49121 Using the
technique above yields linear norms of 30''a + (10%2 +322)b and 90'!'a + (10%2 +-9%2)b
respectively. For small b the coefficient on a is so much larger in the second case that
the linear norm is larger over much of the sieve region, resulting in a longer run time
even though both numbers have 122 digits. This happens because N; is closer to a
perfect power than NV;.

quintic that takes z +1/z to %

See also [7] for additional instances and examples of when specially tailored poly-
nomials might be used.



Optimal Parameterization of SNFS 119

5 Coding considerations

Some simple optimizations can be applied to the code which will give noticeable speed
improvements.

1. To avoid L, cache misses while sieving, it is very worthwhile to partition the interval
[—Q(b), Q(b)] into pieces. The reason for this is that if each piece fits in cache, one can
avoid cache misses while sieving. The speed at which the siever operates is primarily
determined by the ability to update an address, retrieve the contents of that address, add
a value to it, then put the result back. This process is much quicker if the memory being
accessed is L, cache-resident. The optimal size of the pieces will be implementation
and platform dependent. It can also be beneficial to make the sieve loop code small
enough to fit in the L; cache so that no cache misses are incurred when fetching sieve
instructions. This, however, is highly architecture dependent.

2. When a relation is found it is necessary to check that GCD(b,a) = 1. If not, the
same relation will have been found earlier at (b/GC'D(a,b),a/GCD(a,b)). Therefore
when b is even, we only need to add values to odd a. Thus, one can start sieving at an
odd value of a and double the stride length for each prime. If the sieve start point is
even, simply take a single stride before doubling the stride. This simple trick can save
20 — 25% of the total sieve time. One could do a similar trick for odd multiples of b
divisible by 3, but this author did not find it worthwhile. The theoretical savings is only
1/18th of the total run-time if implemented with no overhead.

3. Once a smooth relation has been identified, its actual factorization must be con-
structed. One can do this by trial division, combined perhaps with Pollard Rho, but
it is better in practice to do by resieving. Construct a compact bitmap which contains
the locations of the smooth relations, then sieve again. Except now, instead of adding
log p;, store p; itself. The resieving is done with all primes greater than some bound
T'. Primes up to 7" are identified by trial division. Primes that are stored by the resieve
process are also checked to see if they divide the norm more than once. This author
found that the selection of 7" had very little impact on run time. Anything in the range
1000 to 25 000 worked well. The tradeoffs in selecting 7" depend upon the cache size
and the amount of memory needed to store the primes while resieving. The smaller
the value of 7', the more memory is needed. Sieving with the very smallest primes is
actually slightly slower than trial division with them since there are not very many of
them and sieve time for each is proportional to 1/p. This author’s code takes so little
time to actually store the p; that the actual storage mechanism was not important. The
p; were stored in a simple list.

4. Once factor base primes have been pulled from a norm, one should test any cofactor
for primality before applying SQUFOF, Pollard Rho, or QS to pull apart the large
primes. It is worthwhile to write a custom prime testing procedure optimized for 64-bit
integers, as opposed to using a general multi-precision prime tester. The same applies
to the SQUFOF, Pollard Rho, or QS routines.

5. One identifies smooth relations after sieving by checking that the accumulated log-
arithms are close to log(norm(a + bM)) on the integer side and log(norm(a + ba))
on the algebraic side. Since large prime factors are allowed, these thresholds must
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be adjusted by subtracting off log(L P?). The integer side threshold can be computed
once per b value since it changes very little as a varies, but the norms of the algebraic
side can vary considerably, especially near the origin. It is worthwhile to recompute
this threshold fairly frequently since it changes with (d — 1) log a. This author found
it worthwhile to recompute every 200 to 300 a values and that optimizing a routine
for doing this computation was productive. Furthermore, since the logs of the factor
base primes are only byte approximations, it is worthwhile to allow a little “fuzziness”
in the sieve thresholds. One way to do this is to subtract log(LP**<) rather than just
log(LP?). The value of € will be dependent on the base one chooses for the logs of
the factor base primes. It is worthwhile to use as small a logarithm base as possible, to
allow as much dynamic range in a single byte as possible.

6. It is worthwhile to partition the factor bases into subsets according to the size of the
primes. The size in each subset is determined by how many hits in a partitioned piece
of the sieve is made by each prime. The sieve loops should be unrolled accordingly.

6 Space requirements

Composites requiring factor bases sizes that yield primes larger than 32 bits are still
well beyond computer range. Even composites of 240 digits only require factor bases
where the largest prime is less than 108. Thus, the assumption below that variables
only require 4 bytes of storage will remain correct for some time. A speed-efficient
implementation must store the following variables:

1. The factor bases; 4 bytes per prime ideal.
2. The roots of f(z) and g(x) modulo the factor bases; 4 bytes per root.
3. The start points for the sieve; 4 bytes per prime.

4. The ending points for each prime within a partition if the sieve is partitioned into
pieces; 4 bytes per prime.

5. Storage for the primes when factoring by resieving. Storage for this depends on
the number of expected successes in each partitioned piece of the sieve interval. This
in turn depends on the size of the number being factored since smaller numbers have
more successes.

6. Space for the sieve array. This depends on how it is partitioned.

The author’s code requires only 53 Megabytes for a factor base of 1.2 million prime
ideals for each polynomial; this is adequate for a 200-digit SNFS number. This in-
cludes storage for each ideal, along with its corresponding root. This should scale as

L(N,c) as N increases. If 2192 + 1 were done with SNFS, it should take about
3800 times as long and require about 62 times as much space, or about 3.3 Gigabytes
per sieve processor. If, owing to inadequate memory, one tries to use an out-of-core
siever in which some of the variables are written to a file then retrieved as needed, it
slows the computations down considerably. Also note that although 64-bit machines
are readily available, 32-bit machines are still prevalent, and some operating systems
will not allow users to address more than 2 Gigabytes of data in their programs.
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7 Numerical results

The author has factored hundreds of numbers from the Cunningham project [4] and
from its extensions [3]. The tables below are derived from these factorizations. Table 1
shows the raw data from actual factorizations. Table 2 gives suggested choices, as a
function of the size of the number being factored, for the algorithm parameters. These
have been found to work well on Pentium based processors. For other processors, with
different cache sizes and instruction sets, these choices may not be optimal. (M =
million, K = thousand). Some of the parameterizations were deliberately chosen to be
sub-optimal to show the effect of such choices. The Notes section below the table gives
an explanation of the columns and a discussion of which factorizations used parameters
that were optimal.

NB. The derivation of equation (2.9) is a recent result. It was applied only for 261 +1
among the results given here. It resulted in about a 17% run-time improvement over
2617 1 1 even though the latter is slightly smaller. While 2%'7 + 1 used 42> + 1, and
2619 4 1 used 2 + 2 so that the coefficient on the former is larger, the latter had a value
of M that was also exactly a factor of 2 larger. 2°'7 +1 was sieved with a.x = 20M and
B =2M. 2% + 1 had Q(b) = 50M from b = 1 to 100K, Q(b) = 30M from b = 100K
to 200K, Q(b) = 25M from b = 200K to 300K, Q(b) = 20M from b = 300K to 800K,
Q(b) = 19M from b = 800K to 1100K, Q(b) = 18M from b = 1100K to 1300K,
Q(b) = 17M from b = 1300K to 1400K, and Q(b) = 16M from b = 1400K to 1500K.
k was equal to 1M for both factorizations.

N Digits Poly LP FB Size Work Matrix Matrix Total
Size Memory Relations
4732 322 140 162> +9 50M 70K 1.42 x 108 | 427K 64M 4.06M
978 — 1 146 > — 9409 60M 70K 1.76 x 10 | 565K 142M 47M
3577 +1 150 12252° +1 | 50M 80K 3.53 x 107 | 652K 160M 4.4M
287 11 177 42 + 1 100M 250K 8.7 x 10 860K 224M 5.6M
557 41 179 252° + 1 100M 300K 1.45 x 10™ N/A N/A 5.2M
1217 41 180 144z° + 1 150M 750K 1.2 x 10™ 1.97M 488M 13.0M
(*) 400K
1087 41 181 102° + 1 100M 300K 1.25 x 107 97M 241M 6.17TM
108 41 184 >+ 10 100M 300K 1.29 x 10° | 1.06M 258M 6.33M
2017 1 185 4z’ + 1 300M 1M 2.24 x 10™ 1.9M 45TM 24.8M
2019 4 186 0 +2 300M 1M 1.86 x 10" | 2.0M 480M 23.5M
1077 + 1 191 102° + 1 100M 300K 1.52 x 107 N/A N/A 8.9M
10 +1 194 >+ 10 100M 300K 2.06 x 10 N/A N/A 9.4M
209 11 197 0 +2 500M 1.2M 3.3 x 10™ 45M 1020M 39.0M
107 — 1 197 z® — 10 300M 1.2M 1.11 x 10" | 24M 562M 22.4M
670 + 1 200 62> + 1 300M 1.2M 7.66 x 10 | 241M 604M 247M

Table 1. Actual Results
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Notes.

. LP is the large prime bound.

. Work is defined as log log pmax times the area actually sieved.
. Matrix size is given by the number of rows.

A W N =

. Total is the total number of relations that were found.

5. 2817 41 took less time by a factor of 5.6 than 10'8! 4 1 even though it is five digits
larger. This clearly shows that the parameters were not optimally chosen for 10'8! + 1;
300000 is too small for the factor base and 100M is too small for LP.

6. The numbers in the 190-200 digit range could have been done slightly faster with
slightly larger factor bases, but the need to run on machines with only 64 Mbytes of
memory constrained the largest factor base to be about 1.2 million primes per poly-
nomial. The parameters for 10'°! + 1 and 10'* + 1 were significantly sub-optimal.
10'°7 — 1 required half of the amount of sieving as 10194 + 1.

7. The factorization of 12'%7 + 1 used different values for k; and k,. A larger factor
base was used for the integer norms. This result is due to Peter Montgomery.

8. Additional results for smaller numbers may be found in 3.10 of [7].

To give an idea of the time required to sieve we give the following data for 2633 +
1. The given times are for a 3.2GHz Pentium IV with a 512Kbyte L, cache. Total
sieving time for this machine would be ~ 100 days. This is an estimate because the
actual factorization was effected using 8 machines of varying speeds and cache sizes.
The following data shows actual CPU times for just a sub-region of the entire sieve
region.
Factor base size: 1.2M for each polynomial. LP = 400M
Total time for 400000 < b < 450000: 211478 seconds = 4.229 seconds/b-value.
Q(b) = 13M for this interval
Sieving time: 165 372 seconds
Resieving time: 18 533 seconds
Time spent splitting large primes via SQUFOF: 10093 seconds
Time to scan sieve array for successes: 5297 seconds
Trial Division and testing cofactors for primality: 4423 seconds

O XNk WD =

All other operations: 7760 seconds

The main sieve takes 78.2% of the total time. Factoring the identified successes (in-
cluding resieving) takes 15.6%. Scanning the sieve array for successes takes 2.5%.
Everything else takes 3.7%.

Note. Since the above data was collected, this author has changed from using
SQUFOF to split the large primes to using QS customized for composites in the 50
to 60 bit range. The result was a factor of slightly more than 2 decrease in the time to
split the large primes. This would have saved about 5000 seconds of the total 211 000
seconds in the above data, a savings of about 2.3%.
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Size of N 80-100 100-120 120-140 140-160 160-180 180-200
k 5K-10K 10K-30K 30K-80K 80K-300K 300K-1.2M 1.2M-2M
LP 20M-30M | 30M-50M | 60M-70M | 70M-150M | 150M-300M | 300M-500M
#Large Primes (LD 2, 2, 2,2) 2,2) 2,2)
Poly deg. 3or4 4or5 5 5 Sor6 Sor6

Table 2. Suggested Parameter Choices

The next table gives guidelines for choosing the factor base, the number and size
of large primes, and the polynomial degree as a function of the size of the number
being factored. This data was drawn from the author’s experience with hundreds of
factorizations. The notation (¢, d) for the number of large primes refers to the number
on the left and right hand side of each relation respectively.
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