|
|
A244564
|
|
Odd integers n such that for every integer k>0, n * 2^k + 1 has a divisor in the set { 3, 5, 7, 13, 19, 73, 109 }.
|
|
3
|
|
|
934909, 1259779, 6828631, 11822359, 12151397, 15285707, 17220887, 23277113, 25912463, 32971909, 34689511, 38206517, 38257411, 45181667, 46337843, 48339497, 57410477, 63676073, 67510217, 68468753, 68708387, 69169397, 70312793, 71151293
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
For n > 144, a(n) = a(n-144) + 412729590, the first 144 values are in the table.
|
|
LINKS
|
Pierre CAMI, Table of n, a(n) for n = 1..144
|
|
FORMULA
|
For n > 144, a(n) = a(n-144) + 412729590.
|
|
CROSSREFS
|
Cf. A076336, A244073, A244561, A244562, A244563.
Sequence in context: A158125 A309109 A075008 * A104929 A205614 A198780
Adjacent sequences: A244561 A244562 A244563 * A244565 A244566 A244567
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Pierre CAMI, Jun 30 2014
|
|
STATUS
|
approved
|
|
|
|