Skip to content

xayahrainie4793/minimal-elements-of-the-prime-numbers

main
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Go to file
Code

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
Jan 13, 2023
Sep 14, 2022
Sep 14, 2022
Nov 19, 2022
Nov 5, 2022
Jan 13, 2023
Dec 1, 2022
Jan 5, 2023
Nov 19, 2022
Dec 21, 2022
Sep 5, 2022
Dec 3, 2022
Jan 13, 2023
Dec 26, 2022
Dec 6, 2022
x19
Aug 17, 2022

A Prime Game:

Write down a multidigit prime number (i.e. a prime number > 10), and I can always strike out 0 or more digits to get a prime in this list:

{11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 227, 251, 257, 277, 281, 349, 409, 449, 499, 521, 557, 577, 587, 727, 757, 787, 821, 827, 857, 877, 881, 887, 991, 2087, 2221, 5051, 5081, 5501, 5581, 5801, 5851, 6469, 6949, 8501, 9001, 9049, 9221, 9551, 9649, 9851, 9949, 20021, 20201, 50207, 60649, 80051, 666649, 946669, 5200007, 22000001, 60000049, 66000049, 66600049, 80555551, 555555555551, 5000000000000000000000000000027}

e.g.

  • Write down the prime 149 → I can delete the digit 4, to get the prime 19
  • Write down the prime 439 → I can delete the digit 9, to get the prime 43
  • Write down the prime 857 → I can delete zero digits, to get the prime 857
  • Write down the prime 2081 → I can delete the digit 0, to get the prime 281
  • Write down the largest known double Mersenne prime 170141183460469231731687303715884105727 (2127−1) → I can delete all digits except the third-leftmost 1 and the second-rightmost 3, to get the prime 13
  • Write down the largest known Fermat prime 65537 → I can delete the 6 and the 3, to get the prime 557 (also I can choose to delete the 6 and two 5's, to get the prime 37) (also I can choose to delete two 5's and the 3, to get the prime 67) (also I can choose to delete the 6, one 5, and the 7, to get the prime 53)
  • Write down the famous repunit prime 1111111111111111111 (with 19 1's) → I can delete 17 1's, to get the prime 11
  • Write down the prime 1000000000000000000000000000000000000000000000000000000000007 (which is the next prime after 1060) → I can delete all 0's, to get the prime 17
  • Write down the prime 95801 → I can delete the 9, to get the prime 5801
  • Write down the prime 946969 → I can delete the first 9 and two 6's, to get the prime 499
  • Write down the prime 90000000581 → I can delete five 0's, the 5, and the 8, to get the prime 9001
  • Write down the prime 8555555555555555555551 → I can delete the 8 and nine 5's, to get the prime 555555555551

Now we extend this prime game to bases other than 10.

The minimal elements (https://en.wikipedia.org/wiki/Minimal_element) (https://mathworld.wolfram.com/MaximalElement.html for maximal element, the dual of minimal element, unfortunely there is no article "minimal element" in mathworld, a minimal element of a set (https://en.wikipedia.org/wiki/Set_(mathematics), https://mathworld.wolfram.com/Set.html) under a partial ordering binary relation (https://en.wikipedia.org/wiki/Binary_relation, https://mathworld.wolfram.com/BinaryRelation.html) is a maximal element of the same set under its converse relation (https://en.wikipedia.org/wiki/Converse_relation), a converse relation of a partial ordering relation must also be a partial ordering relation) of the prime numbers (https://en.wikipedia.org/wiki/Prime_number, https://primes.utm.edu/glossary/xpage/Prime.html, https://www.rieselprime.de/ziki/Prime, https://mathworld.wolfram.com/PrimeNumber.html) which are > b written in the positional numeral system (https://en.wikipedia.org/wiki/Positional_numeral_system) with radix (https://en.wikipedia.org/wiki/Radix, https://primes.utm.edu/glossary/xpage/Radix.html, https://www.rieselprime.de/ziki/Base, https://mathworld.wolfram.com/Radix.html) b, as digit (https://en.wikipedia.org/wiki/Numerical_digit, https://www.rieselprime.de/ziki/Digit, https://mathworld.wolfram.com/Digit.html) strings (https://en.wikipedia.org/wiki/String_(computer_science), https://mathworld.wolfram.com/String.html) under the subsequence (https://en.wikipedia.org/wiki/Subsequence, https://mathworld.wolfram.com/Subsequence.html) ordering (https://en.wikipedia.org/wiki/Partially_ordered_set, https://mathworld.wolfram.com/PartialOrder.html), for 2 ≤ b ≤ 36 (I stop at base 36 since this base is a maximum base for which it is possible to write the numbers with the symbols 0, 1, ..., 9 and A, B, ..., Z, references: http://www.tonymarston.net/php-mysql/converter.html, https://www.dcode.fr/base-36-cipher, http://www.urticator.net/essay/5/567.html, http://www.urticator.net/essay/6/624.html, https://docs.python.org/3/library/functions.html#int, https://reference.wolfram.com/language/ref/BaseForm.html, https://baseconvert.com/, https://www.calculand.com/unit-converter/zahlen.php?og=Base+2-36&ug=1, also see https://primes.utm.edu/notes/words.html for the English words which are prime numbers when viewed as a number base 36), using A−Z to represent digit values 10 to 35.

By the theorem that there are no infinite (https://en.wikipedia.org/wiki/Infinite_set, https://primes.utm.edu/glossary/xpage/Infinite.html, https://mathworld.wolfram.com/InfiniteSet.html) antichains (https://en.wikipedia.org/wiki/Antichain, https://mathworld.wolfram.com/Antichain.html) (i.e. a subset of a partially ordered set such that any two distinct elements in the subset are incomparable (https://en.wikipedia.org/wiki/Comparability, https://mathworld.wolfram.com/ComparableElements.html)) for the subsequence ordering (i.e. the set of the minimal elements of any set under the subsequence ordering must be finite, even if this set is infinite, such as the set of the "prime numbers > b" strings in base b (for a given base b ≥ 2), for the proofs for that there are infinitely many primes, see https://en.wikipedia.org/wiki/Euclid%27s_theorem, https://mathworld.wolfram.com/EuclidsTheorems.html, https://primes.utm.edu/notes/proofs/infinite/, https://primes.utm.edu/notes/proofs/infinite/euclids.html, https://primes.utm.edu/notes/proofs/infinite/topproof.html, https://primes.utm.edu/notes/proofs/infinite/goldbach.html, https://primes.utm.edu/notes/proofs/infinite/kummers.html, https://primes.utm.edu/notes/proofs/infinite/Saidak.html), there must be only finitely such minimal elements in every base b.

Addition (https://en.wikipedia.org/wiki/Addition, https://www.rieselprime.de/ziki/Addition, https://mathworld.wolfram.com/Addition.html) and multiplication (https://en.wikipedia.org/wiki/Multiplication, https://www.rieselprime.de/ziki/Multiplication, https://mathworld.wolfram.com/Multiplication.html) are the basic operations of arithmetic (https://en.wikipedia.org/wiki/Arithmetic, https://www.rieselprime.de/ziki/Arithmetic, https://mathworld.wolfram.com/Arithmetic.html) (which is also the basics of mathematics (https://en.wikipedia.org/wiki/Mathematics, https://www.rieselprime.de/ziki/Mathematics, https://mathworld.wolfram.com/Mathematics.html)). In the addition operation, the identity element (https://en.wikipedia.org/wiki/Identity_element, https://mathworld.wolfram.com/IdentityElement.html) is 0, and all natural numbers > 0 can be written as the sum of many 1’s, and the number 1 cannot be broken up; in the multiplication operation, the identity element is 1, and all natural numbers > 1 can be written as the product of many prime numbers, and the prime numbers cannot be broken up. Also, prime numbers are central in number theory (https://en.wikipedia.org/wiki/Number_theory, https://www.rieselprime.de/ziki/Number_theory, https://mathworld.wolfram.com/NumberTheory.html) because of the fundamental theorem of arithmetic (https://en.wikipedia.org/wiki/Fundamental_theorem_of_arithmetic, https://primes.utm.edu/glossary/xpage/FundamentalTheorem.html, https://mathworld.wolfram.com/FundamentalTheoremofArithmetic.html): every natural number greater than 1 is either a prime itself or can be factorized (https://en.wikipedia.org/wiki/Integer_factorization, https://www.rieselprime.de/ziki/Factorization, https://mathworld.wolfram.com/PrimeFactorization.html) as a product of primes that is unique up to (https://en.wikipedia.org/wiki/Up_to) their order. Also, primes are the natural numbers n > 1 such that if n divides (https://en.wikipedia.org/wiki/Divides, https://primes.utm.edu/glossary/xpage/Divides.html, https://mathworld.wolfram.com/Divides.html) x×y (x and y are natural numbers), then n divides either x or y (or both). Also, prime numbers are the numbers n such that the ring (https://en.wikipedia.org/wiki/Ring_(mathematics), https://mathworld.wolfram.com/Ring.html) of integers modulo n (https://en.wikipedia.org/wiki/Integers_modulo_n, https://mathworld.wolfram.com/Mod.html) (i.e. the ring Zn) is a field (https://en.wikipedia.org/wiki/Field_(mathematics), https://mathworld.wolfram.com/Field.html) (also is an integral domain (https://en.wikipedia.org/wiki/Integral_domain, https://mathworld.wolfram.com/IntegralDomain.html), also is a division ring (https://en.wikipedia.org/wiki/Division_ring), also has no zero divisors (https://en.wikipedia.org/wiki/Zero_divisor, https://mathworld.wolfram.com/ZeroDivisor.html) other than 0 (for the special case that n = 1, it is the zero ring (https://en.wikipedia.org/wiki/Zero_ring, https://mathworld.wolfram.com/TrivialRing.html))). Besides, "the set of the minimal elements of the base b representations of the prime numbers > b under the subsequence ordering" to "the set of the prime numbers (except b itself) digit strings with length > 1 in base b" to "the partially ordered binary relation by subsequence" is "the set of the prime numbers" to "the set of the integers > 1" to "the partially ordered binary relation by divisibility" (and indeed, the "> 1" in "the prime numbers (except b itself) digit strings with length > 1 in base b" can be corresponded to the "> 1" in "the integers > 1") (for the reason why b itself is excluded (when b is prime, if b is composite, then there is no difference to include the b itself or not), see the sections below and https://mersenneforum.org/showpost.php?p=531632&postcount=7, the main reason is that b is the only prime ending with 0), thus the problem in this article is very important and beautiful.

subsequence ordering divisibility ordering
the "prime numbers > b" digit strings in base b the integers > 1
the set of the prime numbers (except b itself) digit strings with length > 1 in base b" to "the partially ordered binary relation by subsequence (which is exactly the target of this project) the set of the prime numbers
no common subsequence with length > 1 coprime (no common divisor > 1) (https://en.wikipedia.org/wiki/Coprime_integers, https://primes.utm.edu/glossary/xpage/RelativelyPrime.html, https://www.rieselprime.de/ziki/Coprime, https://mathworld.wolfram.com/RelativelyPrime.html)
proper subsequence with length > 1 proper factor (https://en.wikipedia.org/wiki/Proper_factor, https://mathworld.wolfram.com/ProperFactor.html, https://mathworld.wolfram.com/ProperDivisor.html) > 1
longest common subsequence (https://en.wikipedia.org/wiki/Longest_common_subsequence_problem) greatest common divisor (https://en.wikipedia.org/wiki/Greatest_common_divisor, https://mathworld.wolfram.com/GreatestCommonDivisor.html)
shortest common supersequence (https://en.wikipedia.org/wiki/Shortest_common_supersequence_problem) least common multiple (https://en.wikipedia.org/wiki/Least_common_multiple, https://mathworld.wolfram.com/LeastCommonMultiple.html)
pairwise incomparable strings (no string is a subsequence of another string) pairwise incomparable numbers (no number divides another number)

This problem is an extension of the original minimal prime problem (https://cs.uwaterloo.ca/~cbright/reports/mepn.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_17.pdf), https://cs.uwaterloo.ca/~shallit/Papers/br10.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_18.pdf), https://cs.uwaterloo.ca/~cbright/talks/minimal-slides.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_19.pdf), https://doi.org/10.1080/10586458.2015.1064048 (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_20.pdf), https://scholar.colorado.edu/downloads/hh63sw661 (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_16.pdf), https://github.com/curtisbright/mepn-data, https://github.com/curtisbright/mepn, https://github.com/RaymondDevillers/primes) to cover Conjectures ‘R Us Sierpinski/Riesel conjectures base b (http://www.noprimeleftbehind.net/crus/, http://www.noprimeleftbehind.net/crus/Sierp-conjectures.htm, http://www.noprimeleftbehind.net/crus/Sierp-conjectures-powers2.htm, http://www.noprimeleftbehind.net/crus/Riesel-conjectures.htm, http://www.noprimeleftbehind.net/crus/Riesel-conjectures-powers2.htm, http://www.noprimeleftbehind.net/crus/Sierp-conjecture-reserves.htm, http://www.noprimeleftbehind.net/crus/Riesel-conjecture-reserves.htm, https://www.utm.edu/staff/caldwell/preprints/2to100.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_3.pdf)) with k-values < b, i.e. finding the smallest prime of the form k×bn+1 and k×bn−1 (or proving that such prime does not exist) for all k < b (also to cover dual (http://www.kurims.kyoto-u.ac.jp/EMIS/journals/INTEGERS/papers/i61/i61.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_1.pdf), https://www.rechenkraft.net/wiki/Five_or_Bust, https://oeis.org/A076336/a076336c.html, http://www.mit.edu/~kenta/three/prime/dual-sierpinski/ezgxggdm/dualsierp-excerpt.txt, http://mit.edu/kenta/www/three/prime/dual-sierpinski/ezgxggdm/dualsierp.txt.gz, https://mersenneforum.org/showthread.php?t=10761, https://mersenneforum.org/showthread.php?t=6545) Sierpinski/Riesel conjectures base b with k-values < b, i.e. finding the smallest prime of the form bn+k and bnk (which are the dual forms of k×bn+1 and k×bn−1, respectively) (or proving that such prime does not exist) for all k < b) (also to cover finding the smallest prime of some classic forms (or proving that such prime does not exist), such as bn+2, bn−2, bn+(b−1), bn−(b−1), 2×bn+1, 2×bn−1, (b−1)×bn+1, (b−1)×bn−1, with n ≥ 1, for the same base b (of course, for some bases b the original minimal prime base b problem already covers finding the smallest prime of these forms, e.g. the original minimal prime base b problem covers finding the smallest prime of the form (b−1)×bn+1 if and only if b−1 is not prime, and the original minimal prime base b problem covers finding the smallest prime of the form (b−1)×bn−1 if and only if neither b−1 nor b−2 is prime, but I want the problem covers finding the smallest prime of these forms for all bases b)). The original minimal prime base b problem does not cover Conjectures ‘R Us Sierpinski/Riesel conjectures base b with conjectured k (http://www.noprimeleftbehind.net/crus/tab/CRUS_tab.htm, http://www.noprimeleftbehind.net/crus/vstats/all_ck_sierpinski.txt, http://www.noprimeleftbehind.net/crus/vstats/all_ck_riesel.txt) < b, since in Riesel side, the prime is not minimal prime in original definition if either k−1 or b−1 (or both) is prime, and in Sierpinski side, the prime is not minimal prime in original definition if k is prime (e.g. 25×3034205−1 is not minimal prime in base 30 in original definition, since it is OT34205 in base 30, and T (= 29 in decimal) is prime, but it is minimal prime in base 30 if only primes > base are counted), but this extended version of minimal prime base b problem does. (There is someone else who also exclude the single-digit primes, but his research is about substring (https://en.wikipedia.org/wiki/Substring) instead of subsequence, see https://www.mersenneforum.org/showpost.php?p=235383&postcount=42, subsequences can contain consecutive elements which were not consecutive in the original sequence, a subsequence which consists of a consecutive run of elements from the original sequence, such as 234 from 123456, is a substring, substring is a refinement of the subsequence, subsequence is a generalization of substring, substring must be subsequence, but subsequence may not be substring, 514 is a subsequence of 352148, but not a substring of 352148, see the list below of the comparation of "subsequence" and "substring")

subsequence substring
https://oeis.org/A071062 https://oeis.org/A033274
https://oeis.org/A130448 https://oeis.org/A238334
https://oeis.org/A039995 https://oeis.org/A039997
https://oeis.org/A039994 https://oeis.org/A039996
https://oeis.org/A094535 https://oeis.org/A093301
https://oeis.org/A350508 https://oeis.org/A038103
https://oeis.org/A354113 https://oeis.org/A354114
longest common subsequence problem (https://en.wikipedia.org/wiki/Longest_common_subsequence_problem) longest common substring problem (https://en.wikipedia.org/wiki/Longest_common_substring_problem)

However, including the base (b) itself results in automatic elimination of all possible extension numbers with "0 after 1" from the set (when the base is prime, if the base is composite, then there is no difference to include the base (b) itself or not), which is quite restrictive (since when the base is prime, then the base (b) itself is the only prime ending with 0, i.e. having trailing zero (https://en.wikipedia.org/wiki/Trailing_zero), since in any base, all numbers ending with 0 (i.e. having trailing zero) are divisible by the base (b), thus cannot be prime unless it is equal the base (b), i.e. "10" in base b, note that the numbers cannot have leading zero (https://en.wikipedia.org/wiki/Leading_zero), since typically this is not the way we write numbers (in any base), thus for all primes in our sets (i.e. all primes > base (b)), all zero digits must be "between" other digits). (for the reference of this, see https://mersenneforum.org/showpost.php?p=531632&postcount=7)

Besides, this problem is better than the original minimal prime problem since this problem is regardless whether 1 is considered as prime or not, i.e. no matter 1 is considered as prime or not prime (https://primes.utm.edu/notes/faq/one.html, https://primefan.tripod.com/Prime1ProCon.html, https://cs.uwaterloo.ca/journals/JIS/VOL15/Caldwell2/cald6.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_24.pdf), http://www.numericana.com/answer/numbers.htm#one), the sets in this problem are the same, while the sets in the original minimal prime problem are different, e.g. in base 10, if 1 is considered as prime, then the set in the original minimal prime problem is {1, 2, 3, 5, 7, 89, 409, 449, 499, 6469, 6949, 9049, 9649, 9949, 60649, 666649, 946669, 60000049, 66000049, 66600049}, while if 1 is not considered as prime, then the set in the original minimal prime problem is {2, 3, 5, 7, 11, 19, 41, 61, 89, 409, 449, 499, 881, 991, 6469, 6949, 9001, 9049, 9649, 9949, 60649, 666649, 946669, 60000049, 66000049, 66600049}, however, in base 10, the set in this problem is always {11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 227, 251, 257, 277, 281, 349, 409, 449, 499, 521, 557, 577, 587, 727, 757, 787, 821, 827, 857, 877, 881, 887, 991, 2087, 2221, 5051, 5081, 5501, 5581, 5801, 5851, 6469, 6949, 8501, 9001, 9049, 9221, 9551, 9649, 9851, 9949, 20021, 20201, 50207, 60649, 80051, 666649, 946669, 5200007, 22000001, 60000049, 66000049, 66600049, 80555551, 555555555551, 5000000000000000000000000000027}, no matter 1 is considered as prime or not prime.

The third reason for excluding the single-digit primes is that they are trivial like that Conjectures ‘R Us Sierpinski/Riesel conjectures base b requires exponent n ≥ 1 for these primes (see https://mersenneforum.org/showpost.php?p=447679&postcount=27), n = 0 is not acceptable to avoid the trivial primes (e.g. 2×bn+1, 4×bn+1, 6×bn+1, 10×bn+1, 12×bn+1, 16×bn+1, 3×bn−1, 4×bn−1, 6×bn−1, 8×bn−1, 12×bn−1, 14×bn−1, ... cannot be quickly eliminated with n = 0, or the conjectures become much more easy and uninteresting), for the same reason, this minimal prime puzzle requires ≥ b (i.e. ≥ 2 digits) for these primes, single-digit primes are not acceptable to avoid the trivial primes (e.g. families containing digit 2, 3, 5, 7, B, D, H, J, N, T, V, ... cannot be quickly eliminated with the single-digit prime, or the conjectures become much more easy and uninteresting).

The fourth reason for excluding the primes ≤ b is that starting with b+1 makes the formula of the number of possible (first digit,last digit) combo of a minimal prime in base b more simple and smooth number (https://en.wikipedia.org/wiki/Smooth_number, https://mathworld.wolfram.com/SmoothNumber.html), it is (b−1)×eulerphi(b) (https://oeis.org/A062955), where eulerphi is Euler's totient function (https://en.wikipedia.org/wiki/Euler%27s_totient_function, https://primes.utm.edu/glossary/xpage/EulersPhi.html, https://mathworld.wolfram.com/TotientFunction.html, https://oeis.org/A000010), since b−1 is the number of possible first digit (except 0, all digits can be first digit), and eulerphi(b) is the number of possible last digit (only digits coprime to b can be last digit), by rule of product, there are (b−1)×eulerphi(b) possible (first digit,last digit) combo, and if start with b, then when b is prime, there is an additional possible (first digit,last digit) combo: (1,0), and hence the formula will be (b−1)×eulerphi(b)+1 if b is prime, or (b−1)×eulerphi(b) if b is composite (the fully formula will be (b−1)×eulerphi(b)+isprime(b) or (b−1)×eulerphi(b)+floor((beulerphi(b)) / (b−1))), which is more complex, and if start with 1 (i.e. the original minimal prime problem), the formula is much more complex.

This problem covers finding the smallest prime of these forms in the same base b (or proving that such prime does not exist): (while the original minimal prime problem does not cover some of these forms for some bases (or all bases) b)

family smallest allowed n OEIS sequences for the smallest n such that this form is prime references
(bn−1)/(b−1) 2 https://oeis.org/A084740
https://oeis.org/A084738 (corresponding primes)
https://oeis.org/A065854 (prime b)
https://oeis.org/A279068 (prime b, corresponding primes)
https://oeis.org/A128164 (n = 2 not allowed)
https://oeis.org/A285642 (n = 2 not allowed, corresponding primes)
http://www.fermatquotient.com/PrimSerien/GenRepu.txt
https://web.archive.org/web/20021111141203/http://www.users.globalnet.co.uk/~aads/primes.html
http://www.primenumbers.net/Henri/us/MersFermus.htm
https://www.ams.org/journals/mcom/1993-61-204/S0025-5718-1993-1185243-9/S0025-5718-1993-1185243-9.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_4.pdf)
bn+1 1 https://oeis.org/A228101 (log2 of n)
https://oeis.org/A079706
https://oeis.org/A084712 (corresponding primes)
https://oeis.org/A123669 (n = 1 not allowed, corresponding primes)
http://jeppesn.dk/generalized-fermat.html
http://www.noprimeleftbehind.net/crus/GFN-primes.htm
http://yves.gallot.pagesperso-orange.fr/primes/index.html
http://yves.gallot.pagesperso-orange.fr/primes/results.html
http://yves.gallot.pagesperso-orange.fr/primes/stat.html
(bn+1)/2 (for odd b) 2 http://www.fermatquotient.com/PrimSerien/GenFermOdd.txt
bn+1 1 https://oeis.org/A119624
https://oeis.org/A253178 (only bases b which have possible primes)
https://oeis.org/A098872 (b divisible by 6)
https://mersenneforum.org/showthread.php?t=6918
https://mersenneforum.org/showthread.php?t=19725 (b == 11 mod 12)
bn−1 1 https://oeis.org/A119591
https://oeis.org/A098873 (b divisible by 6)
https://mersenneforum.org/showthread.php?t=24576, https://www.mersenneforum.org/attachment.php?attachmentid=20976&d=1567314217
bn+2 1 https://oeis.org/A138066
https://oeis.org/A084713 (corresponding primes)
https://oeis.org/A138067 (n = 1 not allowed)
bn−2 2 https://oeis.org/A250200
https://oeis.org/A255707 (n = 1 allowed)
https://oeis.org/A084714 (n = 1 allowed, corresponding primes)
https://oeis.org/A292201 (prime b, n = 1 allowed)
https://www.primepuzzles.net/puzzles/puzz_887.htm (n = 1 allowed)
bn+1 1 https://oeis.org/A098877 (b divisible by 6)
bn−1 1 https://oeis.org/A098876 (b divisible by 6)
10×bn+1 1 https://oeis.org/A088782
https://oeis.org/A088622 (corresponding primes)
bn+3 1 https://www.primegrid.com/forum_thread.php?id=9538
bn/2+1 (for even b) 2 https://www.primegrid.com/forum_thread.php?id=9538
(b−1)×bn+1 1 https://oeis.org/A305531
https://oeis.org/A087139 (prime b, n replaced by n+1)
https://www.rieselprime.de/ziki/Williams_prime_MP_least
https://www.rieselprime.de/ziki/Williams_prime_MP_table
https://sites.google.com/view/williams-primes
http://www.bitman.name/math/table/477
(b−1)×bn−1 1 https://oeis.org/A122396 (prime b, n replaced by n+1) https://harvey563.tripod.com/wills.txt
https://www.rieselprime.de/ziki/Williams_prime_MM_least
https://www.rieselprime.de/ziki/Williams_prime_MM_table
https://sites.google.com/view/williams-primes
http://matwbn.icm.edu.pl/ksiazki/aa/aa39/aa3912.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_9.pdf)
https://www.ams.org/journals/mcom/2000-69-232/S0025-5718-00-01212-6/S0025-5718-00-01212-6.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_10.pdf)
http://www.bitman.name/math/table/484
bn+(b−1) 1 https://oeis.org/A076845
https://oeis.org/A076846 (corresponding primes)
https://oeis.org/A078178 (n = 1 not allowed)
https://oeis.org/A078179 (n = 1 not allowed, corresponding primes)
https://sites.google.com/view/williams-primes
bn−(b−1) 2 https://oeis.org/A113516
https://oeis.org/A343589 (corresponding primes)
https://sites.google.com/view/williams-primes
https://cs.uwaterloo.ca/journals/JIS/VOL3/mccranie.html (prime b)
http://www.bitman.name/math/table/435 (prime b)
k×bn+1 for all 2 ≤ k ≤ 12 1 https://www.rieselprime.de/ziki/Proth_prime_small_bases_least_n
https://mersenneforum.org/showthread.php?t=10354
k×bn−1 for all 2 ≤ k ≤ 12 1 https://www.rieselprime.de/ziki/Riesel_prime_small_bases_least_n
https://mersenneforum.org/showthread.php?t=10354

(below (as well as the "left b" files), family "12{3}45" means sequence {1245, 12345, 123345, 1233345, 12333345, 123333345, ...}, where the members are expressed as base b strings, like the numbers in https://stdkmd.net/nrr/aaaab.htm, https://stdkmd.net/nrr/abbbb.htm, https://stdkmd.net/nrr/aaaba.htm, https://stdkmd.net/nrr/abaaa.htm, https://stdkmd.net/nrr/abbba.htm, https://stdkmd.net/nrr/abbbc.htm, https://stdkmd.net/nrr/prime/primesize.txt, https://stdkmd.net/nrr/prime/primesize.zip, https://stdkmd.net/nrr/prime/primecount.htm, https://stdkmd.net/nrr/prime/primecount.txt, https://stdkmd.net/nrr/prime/primedifficulty.htm, https://stdkmd.net/nrr/prime/primedifficulty.txt, e.g. 1{3} (in decimal) is the numbers in https://stdkmd.net/nrr/1/13333.htm, and {1}3 (in decimal) is the numbers in https://stdkmd.net/nrr/1/11113.htm, and 1{2}3 (in decimal) is the numbers in https://stdkmd.net/nrr/1/12223.htm)

In fact, this problem covers finding the smallest prime of these form in the same base b: (where x, y, z are any digits in base b)

Proving that "the set of the minimal elements of the base b representations of the prime numbers > b under the subsequence ordering" = the set S is equivalent to:

  • Prove that all elements in S, when read as base b representation, are primes > b.
  • Prove that all proper subsequence of all elements in S, when read as base b representation, which are > b, are composite.
  • Prove that all primes > b, when written in base b, contain at least one element in S as subsequence (equivalently, prove that all strings not containing any element in S as subsequence, when read as base b representation, which are > b, are composite).

("the set of the minimal elements of the base b representations of the prime numbers > b under the subsequence ordering" = S is proved if and only if all these three problems are proved, i.e. "the set of the minimal elements of the base b representations of the prime numbers > b under the subsequence ordering" = S is a theorem if and only if all these three "conjectures" are theorems)

e.g. proving that "the set of the minimal elements of the base 10 representations of the prime numbers > 10 under the subsequence ordering" = {11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 227, 251, 257, 277, 281, 349, 409, 449, 499, 521, 557, 577, 587, 727, 757, 787, 821, 827, 857, 877, 881, 887, 991, 2087, 2221, 5051, 5081, 5501, 5581, 5801, 5851, 6469, 6949, 8501, 9001, 9049, 9221, 9551, 9649, 9851, 9949, 20021, 20201, 50207, 60649, 80051, 666649, 946669, 5200007, 22000001, 60000049, 66000049, 66600049, 80555551, 555555555551, 5000000000000000000000000000027}, is equivalent to:

  • Prove that all of 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 227, 251, 257, 277, 281, 349, 409, 449, 499, 521, 557, 577, 587, 727, 757, 787, 821, 827, 857, 877, 881, 887, 991, 2087, 2221, 5051, 5081, 5501, 5581, 5801, 5851, 6469, 6949, 8501, 9001, 9049, 9221, 9551, 9649, 9851, 9949, 20021, 20201, 50207, 60649, 80051, 666649, 946669, 5200007, 22000001, 60000049, 66000049, 66600049, 80555551, 555555555551, 5000000000000000000000000000027 are primes > 10.
  • Prove that all proper subsequence of all elements in {11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 227, 251, 257, 277, 281, 349, 409, 449, 499, 521, 557, 577, 587, 727, 757, 787, 821, 827, 857, 877, 881, 887, 991, 2087, 2221, 5051, 5081, 5501, 5581, 5801, 5851, 6469, 6949, 8501, 9001, 9049, 9221, 9551, 9649, 9851, 9949, 20021, 20201, 50207, 60649, 80051, 666649, 946669, 5200007, 22000001, 60000049, 66000049, 66600049, 80555551, 555555555551, 5000000000000000000000000000027} which are > 10 are composite.
  • Prove that all primes > 10 contain at least one element in {11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 227, 251, 257, 277, 281, 349, 409, 449, 499, 521, 557, 577, 587, 727, 757, 787, 821, 827, 857, 877, 881, 887, 991, 2087, 2221, 5051, 5081, 5501, 5581, 5801, 5851, 6469, 6949, 8501, 9001, 9049, 9221, 9551, 9649, 9851, 9949, 20021, 20201, 50207, 60649, 80051, 666649, 946669, 5200007, 22000001, 60000049, 66000049, 66600049, 80555551, 555555555551, 5000000000000000000000000000027} as subsequence (equivalently, prove that all numbers > 10 not containing any element in {11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 227, 251, 257, 277, 281, 349, 409, 449, 499, 521, 557, 577, 587, 727, 757, 787, 821, 827, 857, 877, 881, 887, 991, 2087, 2221, 5051, 5081, 5501, 5581, 5801, 5851, 6469, 6949, 8501, 9001, 9049, 9221, 9551, 9649, 9851, 9949, 20021, 20201, 50207, 60649, 80051, 666649, 946669, 5200007, 22000001, 60000049, 66000049, 66600049, 80555551, 555555555551, 5000000000000000000000000000027} as subsequence are composite, since they are contraposition (https://en.wikipedia.org/wiki/Contraposition), PQ and ¬Q ⟶ ¬P are logically equivalent (https://en.wikipedia.org/wiki/Logical_equivalence)).

(since for base b = 10, all these three problems are proved, i.e. all they are theorems, thus, "the set of the minimal elements of the base 10 representations of the prime numbers > 10 under the subsequence ordering" = {11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 227, 251, 257, 277, 281, 349, 409, 449, 499, 521, 557, 577, 587, 727, 757, 787, 821, 827, 857, 877, 881, 887, 991, 2087, 2221, 5051, 5081, 5501, 5581, 5801, 5851, 6469, 6949, 8501, 9001, 9049, 9221, 9551, 9649, 9851, 9949, 20021, 20201, 50207, 60649, 80051, 666649, 946669, 5200007, 22000001, 60000049, 66000049, 66600049, 80555551, 555555555551, 5000000000000000000000000000027} is also proved, i.e. "the set of the minimal elements of the base 10 representations of the prime numbers > 10 under the subsequence ordering" = {11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 227, 251, 257, 277, 281, 349, 409, 449, 499, 521, 557, 577, 587, 727, 757, 787, 821, 827, 857, 877, 881, 887, 991, 2087, 2221, 5051, 5081, 5501, 5581, 5801, 5851, 6469, 6949, 8501, 9001, 9049, 9221, 9551, 9649, 9851, 9949, 20021, 20201, 50207, 60649, 80051, 666649, 946669, 5200007, 22000001, 60000049, 66000049, 66600049, 80555551, 555555555551, 5000000000000000000000000000027} is also a theorem)

To solve this problem (i.e. to compute (https://en.wikipedia.org/wiki/Computing) the set of the minimal elements of the base b representations of the prime numbers > b under the subsequence ordering), we need to determine whether a given family contains a prime. In practice, if family x{Y}z (where x and z are strings (may be empty) of digits in base b, Y is a set of digits in base b) could not be ruled out as only containing composites and Y contains two or more digits, then a relatively small prime > b could always be found in this family. Intuitively, this is because there are a large number of small strings in such a family, and at least one is likely to be prime (e.g. there are 2n−2 strings of length n in the family 1{3,7}9, and there are over a thousand strings of length 12 in the family 1{3,7}9, thus it is very impossible that these numbers are all composite). In the case Y contains only one digit, this family is of the form x{y}z, and there is only a single string of each length > (the length of x + the length of z), and it is not known if the following decision problem (https://en.wikipedia.org/wiki/Decision_problem, https://mathworld.wolfram.com/DecisionProblem.html) is recursively solvable:

Problem: Given strings x, z, a digit y, and a base b, does there exist a prime number whose base-b expansion is of the form xynz for some n ≥ 0? (If we say "yes", then we should find such a prime (the smallest such prime may be very large, e.g. > 1025000, and if so, then we should use primality testing programs such as PFGW or LLR to find it, and before using these programs, we should use sieving programs such as srsieve (or sr1/2/5sieve) to remove the numbers either having small prime factors or having algebraic factors) and prove its primality (and if we want to solve the problem in this article, we should check whether this prime is the smallest such prime or not, i.e. prove all smaller numbers of the form xynz with n ≥ 0 are composite, usually by trial division or Fermat primality test), and if we say "no", then we should prove that such prime does not exist, may by covering congruence, algebraic factorization, or combine of them)

An algorithm to solve this problem, for example, would allow us to decide if there are any additional Fermat primes (https://en.wikipedia.org/wiki/Fermat_number, https://primes.utm.edu/glossary/xpage/FermatNumber.html, https://www.rieselprime.de/ziki/Fermat_number, https://mathworld.wolfram.com/FermatNumber.html, https://mathworld.wolfram.com/FermatPrime.html) (of the form 22n+1) other than the known ones (corresponding to n = 0, 1, 2, 3, 4). To see this, take b = 2, x = 1, y = 0, and z = 0161. Since if 2n+1 is prime then n must be a power of two, a prime of the form x{y}z in base b must be a new Fermat prime. Besides, it would allow us to decide if there are infinitely many Mersenne primes (https://en.wikipedia.org/wiki/Mersenne_prime, https://primes.utm.edu/glossary/xpage/MersenneNumber.html, https://primes.utm.edu/glossary/xpage/Mersennes.html, https://www.rieselprime.de/ziki/Mersenne_number, https://www.rieselprime.de/ziki/Mersenne_prime, https://mathworld.wolfram.com/MersenneNumber.html, https://mathworld.wolfram.com/MersennePrime.html) (of the form 2p−1 with prime p). To see this, take b = 2, x = 𝜆 (the empty string (https://en.wikipedia.org/wiki/Empty_string)), y = 1, and z = 1n+1, where n is the exponent of the Mersenne prime which we want to know whether it is the largest Mersenne prime or not. Since if 2n−1 is prime then n must be a prime, a prime of the form x{y}z in base b must be a new Mersenne prime.

(for the references of Fermat primes and Mersenne primes, see http://www.prothsearch.com/fermat.html and https://www.mersenne.org/primes/, respectively)

Some x{y}z (where x and z are strings (may be empty) of digits in base b, y is a digit in base b) families can be proven to contain no primes > b, by covering congruence (http://irvinemclean.com/maths/siercvr.htm, http://web.archive.org/web/20060925100410/http://www.glasgowg43.freeserve.co.uk/siernums.htm, https://web.archive.org/web/20061116164533/http://www.glasgowg43.freeserve.co.uk/brier2.htm, https://sites.google.com/site/robertgerbicz/coveringsets, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/coveringsets, http://www.iakovlev.org/zip/riesel2.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_8.pdf), https://www.ams.org/journals/mcom/1975-29-129/S0025-5718-1975-0376583-0/S0025-5718-1975-0376583-0.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_27.pdf), https://www.ams.org/journals/mcom/1983-40-161/S0025-5718-1983-0679453-8/S0025-5718-1983-0679453-8.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_40.pdf), http://yves.gallot.pagesperso-orange.fr/papers/smallbrier.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_48.pdf), https://cs.uwaterloo.ca/journals/JIS/VOL16/Ismailescu/ismailescu3.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_51.pdf), https://arxiv.org/pdf/2209.10646.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_52.pdf), https://cs.uwaterloo.ca/journals/JIS/VOL18/Baczkowski/bacz2.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_61.pdf), https://arxiv.org/pdf/1110.4671.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_62.pdf), http://www.primepuzzles.net/problems/prob_029.htm, http://www.primepuzzles.net/problems/prob_036.htm, http://www.primepuzzles.net/problems/prob_049.htm, https://www.rieselprime.de/Related/LiskovetsGallot.htm, https://www.rieselprime.de/Related/RieselTwinSG.htm, https://stdkmd.net/nrr/coveringset.htm, https://stdkmd.net/nrr/9/91113.htm#prime_period, https://stdkmd.net/nrr/9/94449.htm#prime_period, https://stdkmd.net/nrr/9/95559.htm#prime_period, https://oeis.org/A244561, https://oeis.org/A244562, https://oeis.org/A244563, https://oeis.org/A244564, https://oeis.org/A244070, https://oeis.org/A244071, https://oeis.org/A244072, https://oeis.org/A244073, https://en.wikipedia.org/wiki/Covering_set, https://www.rieselprime.de/ziki/Covering_set, https://mathworld.wolfram.com/SierpinskisCompositeNumberTheorem.html) (i.e. finding a finite set (https://en.wikipedia.org/wiki/Finite_set, https://mathworld.wolfram.com/FiniteSet.html) S of primes p such that all numbers in a given family are divisible (https://en.wikipedia.org/wiki/Divides, https://primes.utm.edu/glossary/xpage/Divides.html, https://mathworld.wolfram.com/Divides.html) by some element of S (this is equivalent to finding a positive integer N such that all numbers in a given family are not coprime (https://en.wikipedia.org/wiki/Coprime_integers, https://primes.utm.edu/glossary/xpage/RelativelyPrime.html, https://www.rieselprime.de/ziki/Coprime, https://mathworld.wolfram.com/RelativelyPrime.html) to N, e.g. all numbers in the family 2{5} in base 11 are not coprime to 6, gcd((5×11n−1)/2, 6) can only be 2 or 3, and cannot be 1)), algebraic factorization (https://en.wikipedia.org/w/index.php?title=Factorization&oldid=790838198#Recognizable_patterns, https://mathworld.wolfram.com/PolynomialFactorization.html, https://stdkmd.net/nrr/repunit/repunitnote.htm, https://stdkmd.net/nrr/1/10004.htm#about_algebraic, https://stdkmd.net/nrr/1/10008.htm#about_algebraic, https://stdkmd.net/nrr/1/13333.htm#about_algebraic, https://stdkmd.net/nrr/4/40001.htm#about_algebraic, https://stdkmd.net/nrr/5/53333.htm#about_algebraic, https://stdkmd.net/nrr/5/54444.htm#about_algebraic, https://stdkmd.net/nrr/5/55552.htm#about_algebraic, https://stdkmd.net/nrr/7/79999.htm#about_algebraic, https://stdkmd.net/nrr/8/83333.htm#about_algebraic, https://stdkmd.net/nrr/8/88889.htm#about_algebraic, https://stdkmd.net/nrr/8/89999.htm#about_algebraic, https://stdkmd.net/nrr/9/99991.htm#about_algebraic, https://stdkmd.net/nrr/9/99992.htm#about_algebraic, https://brnikat.com/nums/cullen_woodall/algebraic.txt, https://www.numberempire.com/factoringcalculator.php (e.g. for the family 3{8} in base 9, type "4*9^n-1", and it will tell you that this form can be factored to (2×3n−1) × (2×3n+1))) (which includes difference-of-two-squares factorization (https://en.wikipedia.org/wiki/Difference_of_two_squares) and sum/difference-of-two-nth-powers factorization with odd n > 1 (https://en.wikipedia.org/wiki/Binomial_number, https://mathworld.wolfram.com/BinomialNumber.html) and Aurifeuillean factorization (https://en.wikipedia.org/wiki/Aurifeuillean_factorization, https://www.rieselprime.de/ziki/Aurifeuillian_factor, https://mathworld.wolfram.com/AurifeuilleanFactorization.html, http://myfactorcollection.mooo.com:8090/source/cyclo.cpp, http://myfactorcollection.mooo.com:8090/LCD_2_199, http://myfactorcollection.mooo.com:8090/LCD_2_998, https://stdkmd.net/nrr/repunit/repunitnote.htm#aurifeuillean, https://www.unshlump.com/hcn/aurif.html) of x4+4y4), or combine of them (https://mersenneforum.org/showthread.php?t=11143, https://mersenneforum.org/showthread.php?t=10279, https://www.fq.math.ca/Scanned/33-3/izotov.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_46.pdf), https://doi.org/10.1016/j.jnt.2008.02.004 (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_47.pdf)), e.g. (only list the families which all numbers do not contain "prime > b" subsequence) (see post https://mersenneforum.org/showpost.php?p=594923&postcount=231 for the factor pattern for some of these families) (for the case of covering congruence, we can show that the corresponding numbers are > all elements in the sets if the corresponding numbers are > b, thus these factorizations are nontrivial; and for the case of algebraic factorization, we can show that both factors are > 1 if the corresponding numbers are > b, thus these factorizations are nontrivial; for the case of combine of them, we can show that for the part of covering congruence, the corresponding numbers are > all elements in the sets if the corresponding numbers are > b, and for the part of algebraic factorization, both factors are > 1 if the corresponding numbers are > b, thus these factorizations are nontrivial)

(You can see the factorization (https://en.wikipedia.org/wiki/Integer_factorization, https://www.rieselprime.de/ziki/Factorization, https://mathworld.wolfram.com/PrimeFactorization.html) of the numbers in these families in factordb (http://factordb.com/), you have to convert them to algebraic ((a×bn+c)/gcd(a+c,b−1)) form, and you will find that all numbers in these families have status (http://factordb.com/status.html, http://factordb.com/distribution.php) either "FF" or "CF", and no numbers in these families have status (http://factordb.com/status.html, http://factordb.com/distribution.php) "C" (i.e. in http://factordb.com/listtype.php?t=3), e.g. for the family 3{0}95 in base 13, its algebraic ((a×bn+c)/gcd(a+c,b−1)) form is 3×13n+2+122, and in factordb you will find that all numbers in this family are divisible by some element of {5,7,17}, see http://factordb.com/index.php?query=3*13%5E%28n%2B2%29%2B122&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show; for the family {7}D in base 21, its algebraic ((a×bn+c)/gcd(a+c,b−1)) form is (7×21n+1+113)/20, and in factordb you will find that all numbers in this family are divisible by some element of {2,13,17}, see http://factordb.com/index.php?query=%287*21%5E%28n%2B1%29%2B113%29%2F20&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show (note: for this family n = 0 is not allowed, since we only consider the numbers > base); for the family 30{F}A0F in base 16, its algebraic ((a×bn+c)/gcd(a+c,b−1)) form is 49×16n+3−1521, and in factordb you will find that no numbers in this family have a prime factor with decimal length > ((the decimal length of the number + 1)/2), and all numbers in this family have two nearly equal (prime or composite) factors, see http://factordb.com/index.php?query=49*16%5E%28n%2B3%29-1521&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show; for the family 5{1} in base 25, its algebraic ((a×bn+c)/gcd(a+c,b−1)) form is (121×25n−1)/24, and in factordb you will find that no numbers in this family have a prime factor with decimal length > ((the decimal length of the number + 1)/2), and all numbers in this family have two nearly equal (prime or composite) factors, see http://factordb.com/index.php?query=%28121*25%5En-1%29%2F24&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show (note: for this family n = 0 is not allowed, since we only consider the numbers > base); for the family {D}5 in base 14, its algebraic ((a×bn+c)/gcd(a+c,b−1)) form is 14n+1−9, and in factordb you will find that all numbers with even n in this family are divisible by 5, and you will find that no numbers with odd n in this family have a prime factor with decimal length > ((the decimal length of the number + 1)/2), and all numbers with odd n in this family have two nearly equal (prime or composite) factors, see http://factordb.com/index.php?query=14%5E%28n%2B1%29-9&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show (note: for this family n = 0 is not allowed, since we only consider the numbers > base); for the family 7{9} in base 17, its algebraic ((a×bn+c)/gcd(a+c,b−1)) form is (121×17n−9)/16, and in factordb you will find that all numbers with odd n in this family are divisible by 2, and you will find that no numbers with even n in this family have a prime factor with decimal length > ((the decimal length of the number + 1)/2), and all numbers with even n in this family have two nearly equal (prime or composite) factors, see http://factordb.com/index.php?query=%28121*17%5En-9%29%2F16&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show (note: for this family n = 0 is not allowed, since we only consider the numbers > base). In contrast, you can see the factorization of the numbers in unsolved families in base b (which are listed in the "left b" file) in factordb, you will find some numbers in these families which have neither small prime factors (say < 1016) nor two nearly equal (prime or composite) factors, also you will find some numbers in these families which have no known proper factor (https://en.wikipedia.org/wiki/Proper_factor, https://mathworld.wolfram.com/ProperFactor.html, https://mathworld.wolfram.com/ProperDivisor.html) > 1 (i.e. you will find some numbers in these families with status (http://factordb.com/status.html, http://factordb.com/distribution.php) "C" (instead of "CF" or "FF") (i.e. in http://factordb.com/listtype.php?t=3) in factordb (http://factordb.com/)), and they have positive Nash weight (https://www.rieselprime.de/ziki/Nash_weight, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/allnash) (or difficulty (https://stdkmd.net/nrr/prime/primedifficulty.htm, https://stdkmd.net/nrr/prime/primedifficulty.txt)), and they have prime candidates, we can use the sense of http://www.iakovlev.org/zip/riesel2.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_8.pdf), https://stdkmd.net/nrr/1/10003.htm#prime_period, https://stdkmd.net/nrr/3/30001.htm#prime_period, https://stdkmd.net/nrr/1/13333.htm#prime_period, https://stdkmd.net/nrr/3/33331.htm#prime_period, https://stdkmd.net/nrr/1/11113.htm#prime_period, https://stdkmd.net/nrr/3/31111.htm#prime_period, https://mersenneforum.org/showpost.php?p=138737&postcount=24, https://mersenneforum.org/showpost.php?p=153508&postcount=147, to show this)

(for the examples of non-simple families, see https://stdkmd.net/nrr/prime/primecount3.htm and https://stdkmd.net/nrr/prime/primecount3.txt (only base 10 families), non-simple families usually have small primes if they cannot be ruled out as only containing composites by covering congruence, see the section above)

(for the factorization of the numbers in these families, the special number field sieve (https://en.wikipedia.org/wiki/Special_number_field_sieve, https://www.rieselprime.de/ziki/Special_number_field_sieve, https://mathworld.wolfram.com/NumberFieldSieve.html) or the general number field sieve (https://en.wikipedia.org/wiki/General_number_field_sieve, https://www.rieselprime.de/ziki/General_number_field_sieve, https://mathworld.wolfram.com/NumberFieldSieve.html) may be used, they have SNFS polynomials (https://www.rieselprime.de/ziki/SNFS_polynomial_selection), just like factorization of the numbers in https://stdkmd.net/nrr/aaaab.htm and https://stdkmd.net/nrr/abbbb.htm and https://stdkmd.net/nrr/aaaba.htm and https://stdkmd.net/nrr/abaaa.htm and https://stdkmd.net/nrr/abbba.htm and https://stdkmd.net/nrr/abbbc.htm and http://mklasson.com/factors/index.php and https://cs.stanford.edu/people/rpropper/math/factors/3n-2.txt, see https://stdkmd.net/nrr/records.htm and https://stdkmd.net/nrr/wanted.htm)

b family algebraic ((a×bn+c)/d) form of this family (n is the number of digits in the "{}", also the lower bound of n to make the numbers > b)
(note: d divides gcd(a+c,b−1), but d need not be gcd(a+c,b−1), d = gcd(a+c,b−1) if and only if the numbers in the family are not divisible by some prime factor of b−1, i.e. the numbers in the family are coprime to b−1)
why this family contain no primes > b factorization of the numbers in this family (n is the number of digits in the "{}", start with the smallest n making the number > b)
10 2{0}1 2×10n+1+1 (n ≥ 0) always divisible by 3 http://factordb.com/index.php?query=2*10%5E%28n%2B1%29%2B1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
10 2{0}7 2×10n+1+7 (n ≥ 0) always divisible by 3
(in fact, always divisible by 9)
http://factordb.com/index.php?query=2*10%5E%28n%2B1%29%2B7&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
10 5{0}1 5×10n+1+1 (n ≥ 0) always divisible by 3 http://factordb.com/index.php?query=5*10%5E%28n%2B1%29%2B1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
10 5{0}7 5×10n+1+7 (n ≥ 0) always divisible by 3 http://factordb.com/index.php?query=5*10%5E%28n%2B1%29%2B7&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
10 8{0}1 8×10n+1+1 (n ≥ 0) always divisible by 3
(in fact, always divisible by 9)
http://factordb.com/index.php?query=8*10%5E%28n%2B1%29%2B1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
10 8{0}7 8×10n+1+7 (n ≥ 0) always divisible by 3 http://factordb.com/index.php?query=8*10%5E%28n%2B1%29%2B7&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
10 28{0}7 28×10n+1+7 (n ≥ 0) always divisible by 7 http://factordb.com/index.php?query=28*10%5E%28n%2B1%29%2B7&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
10 4{6}9 (14×10n+1+7)/3 (n ≥ 0) always divisible by 7 http://factordb.com/index.php?query=%2814*10%5E%28n%2B1%29%2B7%29%2F3&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
10 families ending with 0, 2, 4, 6, or 8 always divisible by 2
10 families ending with 0 or 5 always divisible by 5
10 {0,3,6,9} always divisible by 3
(non-simple family)
10 {0,7} always divisible by 7
(non-simple family)
any base (b) families ending with digits d which are not coprime to b always divisible by gcd(d,b)
any base (b) families whose digits all have a common factor d > 1 always divisible by d
3 1{0}1 3n+1+1 (n ≥ 0) always divisible by 2 http://factordb.com/index.php?query=3%5E%28n%2B1%29%2B1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
4 2{0}1 2×4n+1+1 (n ≥ 0) always divisible by 3 http://factordb.com/index.php?query=2*4%5E%28n%2B1%29%2B1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
5 1{0}1 5n+1+1 (n ≥ 0) always divisible by 2 http://factordb.com/index.php?query=5%5E%28n%2B1%29%2B1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
5 1{0}3 5n+1+3 (n ≥ 0) always divisible by 2
(in fact, always divisible by 4)
http://factordb.com/index.php?query=5%5E%28n%2B1%29%2B3&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
5 3{0}1 3×5n+1+1 (n ≥ 0) always divisible by 2
(in fact, always divisible by 4)
http://factordb.com/index.php?query=3*5%5E%28n%2B1%29%2B1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
5 11{0}3 6×5n+1+3 (n ≥ 0) always divisible by 3 http://factordb.com/index.php?query=6*5%5E%28n%2B1%29%2B3&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
5 3{0}11 3×5n+2+6 (n ≥ 0) always divisible by 3 http://factordb.com/index.php?query=3*5%5E%28n%2B2%29%2B6&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
6 4{0}1 4×6n+1+1 (n ≥ 0) always divisible by 5 http://factordb.com/index.php?query=4*6%5E%28n%2B1%29%2B1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
7 1{0}1 always divisible by 2
7 1{0}3 always divisible by 2
7 1{0}5 always divisible by 2
(in fact, always divisible by 6)
7 3{0}1 always divisible by 2
7 3{0}5 always divisible by 2
7 5{0}1 always divisible by 2
(in fact, always divisible by 6)
7 5{0}3 always divisible by 2
7 1{0}2 always divisible by 3
7 2{0}1 always divisible by 3
7 4{0}5 always divisible by 3
7 5{0}4 always divisible by 3
7 1{0}1{0}1 always divisible by 3
(non-simple family)
7 1{0}3{0}5 always divisible by 3
(non-simple family)
7 1{0}5{0}3 always divisible by 3
(non-simple family)
7 3{0}1{0}5 always divisible by 3
(non-simple family)
7 3{0}5{0}1 always divisible by 3
(non-simple family)
7 5{0}1{0}3 always divisible by 3
(non-simple family)
7 5{0}3{0}1 always divisible by 3
(non-simple family)
7 1{0}1{0}1{0}1 always divisible by 2
(non-simple family)
7 1{0}1{0}2 always divisible by 2
(non-simple family)
7 1{0}2{0}1 always divisible by 2
(non-simple family)
7 2{0}1{0}1 always divisible by 2
(non-simple family)
7 4{0}5{0}5 always divisible by 2
(non-simple family)
7 5{0}4{0}5 always divisible by 2
(non-simple family)
7 5{0}5{0}4 always divisible by 2
(non-simple family)
8 2{0}5 always divisible by 7
8 4{0}3 always divisible by 7
8 6{0}1 always divisible by 7
8 44{0}3 always divisible by 3
8 6{0}11 always divisible by 3
9 {7}62 always divisible by 7
9 2{7}5 always divisible by 23
9 5{7}2 always divisible by 47
11 2{5}3 always divisible by 5
(in fact, always divisible by 25)
11 3{5}2 always divisible by 5
(in fact, always divisible by 35)
11 3{7}4 always divisible by 37
11 4{7}3 always divisible by 47
12 A{0}21 always divisible by 5
13 C{A}5 always divisible by 7
14 40{4}9 always divisible by 61
15 9{6}8 always divisible by 11
16 2{C}3 always divisible by 7
21 B0{H}6H always divisible by 4637
28 4{O}9 always divisible by 11
28 D{6}R always divisible by 17
28 N{6}R always divisible by 11
9 {1}5 (9n+1+31)/8 (n ≥ 1) always divisible by some element of {2,5}
divisible by 2 if n is odd, divisible by 5 if n is even
http://factordb.com/index.php?query=%289%5E%28n%2B1%29%2B31%29%2F8&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
9 {1}61 (9n+2+359)/8 (n ≥ 0) always divisible by some element of {2,5}
divisible by 2 if n is odd, divisible by 5 if n is even
http://factordb.com/index.php?query=%289%5E%28n%2B2%29%2B359%29%2F8&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
9 2{7} (23×9n−7)/8 (n ≥ 1) always divisible by some element of {2,5}
divisible by 2 if n is even, divisible by 5 if n is odd
http://factordb.com/index.php?query=%2823*9%5En-7%29%2F8&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
9 {3}5 (3×9n+1+13)/8 (n ≥ 1) always divisible by some element of {2,5}
divisible by 2 if n is odd, divisible by 5 if n is even
http://factordb.com/index.php?query=%283*9%5E%28n%2B1%29%2B13%29%2F8&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
9 {3}8 (3×9n+1+37)/8 (n ≥ 1) always divisible by some element of {2,5}
divisible by 2 if n is even, divisible by 5 if n is odd
http://factordb.com/index.php?query=%283*9%5E%28n%2B1%29%2B37%29%2F8&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
9 {3}05 (3×9n+2−203)/8 (n ≥ 1) always divisible by some element of {2,5}
divisible by 2 if n is odd, divisible by 5 if n is even
http://factordb.com/index.php?query=%283*9%5E%28n%2B2%29-203%29%2F8&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
9 5{1} (41×9n−1)/8 (n ≥ 1) always divisible by some element of {2,5}
divisible by 2 if n is odd, divisible by 5 if n is even
http://factordb.com/index.php?query=%2841*9%5En-1%29%2F8&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
9 5{7} (47×9n−7)/8 (n ≥ 1) always divisible by some element of {2,5}
divisible by 2 if n is odd, divisible by 5 if n is even
http://factordb.com/index.php?query=%2847*9%5En-7%29%2F8&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
9 6{1} (49×9n−1)/8 (n ≥ 1) always divisible by some element of {2,5}
divisible by 2 if n is even, divisible by 5 if n is odd
http://factordb.com/index.php?query=%2849*9%5En-1%29%2F8&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
9 {7}2 (7×9n+1−47)/8 (n ≥ 1) always divisible by some element of {2,5}
divisible by 2 if n is even, divisible by 5 if n is odd
http://factordb.com/index.php?query=%287*9%5E%28n%2B1%29-47%29%2F8&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
9 {7}5 (7×9n+1−23)/8 (n ≥ 1) always divisible by some element of {2,5}
divisible by 2 if n is odd, divisible by 5 if n is even
http://factordb.com/index.php?query=%287*9%5E%28n%2B1%29-23%29%2F8&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
9 {7}05 (3×9n+2−527)/8 (n ≥ 1) always divisible by some element of {2,5}
divisible by 2 if n is odd, divisible by 5 if n is even
http://factordb.com/index.php?query=%287*9%5E%28n%2B2%29-527%29%2F8&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
9 {1}6{1} always divisible by some element of {2,5}
(non-simple family)
divisible by 2 if the length is odd, divisible by 5 if the length is even
9 {7}2{7} always divisible by some element of {2,5}
(non-simple family)
divisible by 2 if the length is odd, divisible by 5 if the length is even
9 5{0}{7} always divisible by some element of {2,5}
(non-simple family)
divisible by 2 if the number of 7's is odd, divisible by 5 if the number of 7's is even
9 {3}{0}5 always divisible by some element of {2,5}
(non-simple family)
divisible by 2 if the number of 3's is odd, divisible by 5 if the number of 3's is even
9 {7}{0}5 always divisible by some element of {2,5}
(non-simple family)
divisible by 2 if the number of 7's is odd, divisible by 5 if the number of 7's is even
11 2{5} (5×11n−1)/2 (n ≥ 1) always divisible by some element of {2,3}
divisible by 2 if n is even, divisible by 3 if n is odd
http://factordb.com/index.php?query=%285*11%5En-1%29%2F2&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
11 3{5} (7×11n−1)/2 (n ≥ 1) always divisible by some element of {2,3}
divisible by 2 if n is odd, divisible by 3 if n is even
http://factordb.com/index.php?query=%287*11%5En-1%29%2F2&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
11 3{7} (37×11n−7)/10 (n ≥ 1) always divisible by some element of {2,3}
divisible by 2 if n is odd, divisible by 3 if n is even
http://factordb.com/index.php?query=%2837*11%5En-7%29%2F10&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
11 4{7} (47×11n−7)/10 (n ≥ 1) always divisible by some element of {2,3}
divisible by 2 if n is even, divisible by 3 if n is odd
http://factordb.com/index.php?query=%2847*11%5En-7%29%2F10&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
11 8{5} (17×11n−1)/2 (n ≥ 1) always divisible by some element of {2,3}
divisible by 2 if n is even, divisible by 3 if n is odd
http://factordb.com/index.php?query=%2817*11%5En-1%29%2F2&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
11 9{5} (19×11n−1)/2 (n ≥ 1) always divisible by some element of {2,3}
divisible by 2 if n is odd, divisible by 3 if n is even
http://factordb.com/index.php?query=%2819*11%5En-1%29%2F2&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
11 9{7} (97×11n−7)/10 (n ≥ 1) always divisible by some element of {2,3}
divisible by 2 if n is odd, divisible by 3 if n is even
http://factordb.com/index.php?query=%2897*11%5En-7%29%2F10&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
11 A{7} (107×11n−7)/10 (n ≥ 1) always divisible by some element of {2,3}
divisible by 2 if n is even, divisible by 3 if n is odd
http://factordb.com/index.php?query=%28107*11%5En-7%29%2F10&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
11 {5}2 (11n+1−7)/2 (n ≥ 1) always divisible by some element of {2,3}
divisible by 2 if n is even, divisible by 3 if n is odd
http://factordb.com/index.php?query=%2811%5E%28n%2B1%29-7%29%2F2&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
11 {5}3 (11n+1−5)/2 (n ≥ 1) always divisible by some element of {2,3}
divisible by 2 if n is odd, divisible by 3 if n is even
http://factordb.com/index.php?query=%2811%5E%28n%2B1%29-5%29%2F2&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
11 {7}3 (7×11n+1−47)/10 (n ≥ 1) always divisible by some element of {2,3}
divisible by 2 if n is odd, divisible by 3 if n is even
http://factordb.com/index.php?query=%287*11%5E%28n%2B1%29-47%29%2F10&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
11 {7}4 (7×11n+1−37)/10 (n ≥ 1) always divisible by some element of {2,3}
divisible by 2 if n is even, divisible by 3 if n is odd
http://factordb.com/index.php?query=%287*11%5E%28n%2B1%29-37%29%2F10&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
11 {5}8 always divisible by some element of {2,3}
divisible by 2 if the length is odd, divisible by 3 if the length is even
11 {5}9 always divisible by some element of {2,3}
divisible by 2 if the length is even, divisible by 3 if the length is odd
11 {7}9 always divisible by some element of {2,3}
divisible by 2 if the length is even, divisible by 3 if the length is odd
11 {7}A always divisible by some element of {2,3}
divisible by 2 if the length is odd, divisible by 3 if the length is even
11 3{0}{5} always divisible by some element of {2,3}
(non-simple family)
divisible by 2 if the number of 5's is odd, divisible by 3 if the number of 5's is even
11 {5}{0}3 always divisible by some element of {2,3}
(non-simple family)
divisible by 2 if the number of 5's is odd, divisible by 3 if the number of 5's is even
14 4{0}1 always divisible by some element of {3,5}
divisible by 3 if the length is even, divisible by 5 if the length is odd
14 B{0}1 always divisible by some element of {3,5}
divisible by 3 if the length is odd, divisible by 5 if the length is even
14 3{D} always divisible by some element of {3,5}
divisible by 3 if the length is odd, divisible by 5 if the length is even
14 A{D} always divisible by some element of {3,5}
divisible by 3 if the length is even, divisible by 5 if the length is odd
14 1{0}B always divisible by some element of {3,5}
divisible by 3 if the length is odd, divisible by 5 if the length is even
14 {D}3 always divisible by some element of {3,5}
divisible by 3 if the length is odd, divisible by 5 if the length is even
14 {4}9 always divisible by some element of {3,5}
divisible by 3 if the length is odd, divisible by 5 if the length is even
14 {8}5 always divisible by some element of {3,5}
divisible by 3 if the length is even, divisible by 5 if the length is odd
20 8{0}1 always divisible by some element of {3,7}
divisible by 3 if the length is odd, divisible by 7 if the length is even
20 D{0}1 always divisible by some element of {3,7}
divisible by 3 if the length is even, divisible by 7 if the length is odd
20 7{J} always divisible by some element of {3,7}
divisible by 3 if the length is even, divisible by 7 if the length is odd
20 C{J} always divisible by some element of {3,7}
divisible by 3 if the length is odd, divisible by 7 if the length is even
20 1{0}D always divisible by some element of {3,7}
divisible by 3 if the length is even, divisible by 7 if the length is odd
20 {J}7 always divisible by some element of {3,7}
divisible by 3 if the length is even, divisible by 7 if the length is odd
25 D{1} always divisible by some element of {2,13}
divisible by 2 if the length is even, divisible by 13 if the length is odd
25 E{1} always divisible by some element of {2,13}
divisible by 2 if the length is odd, divisible by 13 if the length is even
25 1E{1} always divisible by some element of {2,13}
divisible by 2 if the length is odd, divisible by 13 if the length is even
25 1F{1} always divisible by some element of {2,13}
divisible by 2 if the length is even, divisible by 13 if the length is odd
32 A{0}1 always divisible by some element of {3,11}
divisible by 3 if the length is even, divisible by 11 if the length is odd
32 N{0}1 always divisible by some element of {3,11}
divisible by 3 if the length is odd, divisible by 11 if the length is even
32 9{V} always divisible by some element of {3,11}
divisible by 3 if the length is odd, divisible by 11 if the length is even
32 M{V} always divisible by some element of {3,11}
divisible by 3 if the length is even, divisible by 11 if the length is odd
32 1{0}N always divisible by some element of {3,11}
divisible by 3 if the length is odd, divisible by 11 if the length is even
32 {V}9 always divisible by some element of {3,11}
divisible by 3 if the length is odd, divisible by 11 if the length is even
34 6{0}1 always divisible by some element of {5,7}
divisible by 5 if the length is even, divisible by 7 if the length is odd
34 5{X} always divisible by some element of {5,7}
divisible by 5 if the length is odd, divisible by 7 if the length is even
34 S{X} always divisible by some element of {5,7}
divisible by 5 if the length is even, divisible by 7 if the length is odd
34 {X}5 always divisible by some element of {5,7}
divisible by 5 if the length is odd, divisible by 7 if the length is even
8 6{4}7 always divisible by some element of {3,5,13}
divisible by 3 if the length is odd, divisible by 5 if the length is == 2 mod 4, divisible by 13 if the length is == 0 mod 4
(special example, as the numbers with length ≥ 222 in this family contain "prime > b" subsequence, this prime is 42207)
13 3{0}95 always divisible by some element of {5,7,17}
divisible by 7 if the length is even, divisible by 5 if the length is == 1 mod 4, divisible by 17 if the length is == 3 mod 4
13 95{0}3 always divisible by some element of {5,7,17}
divisible by 7 if the length is odd, divisible by 5 if the length is == 2 mod 4, divisible by 17 if the length is == 0 mod 4
16 {4}D always divisible by some element of {3,7,13}
divisible by 3 if the length is == 0 mod 3, divisible by 7 if the length is == 2 mod 3, divisible by 13 if the length is == 1 mod 3
16 {8}F always divisible by some element of {3,7,13}
divisible by 3 if the length is == 1 mod 3, divisible by 7 if the length is == 0 mod 3, divisible by 13 if the length is == 2 mod 3
17 7F{0}D always divisible by some element of {3,5,29}
divisible by 3 if the length is even, divisible by 5 if the length is == 1 mod 4, divisible by 29 if the length is == 3 mod 4
17 D{0}7F always divisible by some element of {3,5,29}
divisible by 3 if the length is odd, divisible by 5 if the length is == 2 mod 4, divisible by 29 if the length is == 0 mod 4
21 {7}D always divisible by some element of {2,13,17}
divisible by 2 if the length is even, divisible by 13 if the length is == 1 mod 4, divisible by 17 if the length is == 3 mod 4
23 7L{0}1 always divisible by some element of {3,5,53}
divisible by 3 if the length is even, divisible by 5 if the length is == 1 mod 4, divisible by 53 if the length is == 3 mod 4
23 1{0}7L always divisible by some element of {3,5,53}
divisible by 3 if the length is odd, divisible by 5 if the length is == 2 mod 4, divisible by 53 if the length is == 0 mod 4
23 {D}GA always divisible by some element of {2,5,7,37,79}
divisible by 2 if the length is even, divisible by 5 if the length is == 3 mod 4, divisible by 7 if the length is == 2 mod 3, divisible by 37 if the length is == 9 mod 12, divisible by 79 if the length is == 1 mod 3
23 L{5}L always divisible by some element of {2,5,7,13,37}
divisible by 2 if the length is even, divisible by 5 if the length is == 3 mod 4, divisible by 7 if the length is == 2 mod 3, divisible by 13 if the length is == 3 mod 6, divisible by 37 if the length is == 1 mod 12
27 JP{0}1 always divisible by some element of {5,7,73}
divisible by 7 if the length is even, divisible by 5 if the length is == 1 mod 4, divisible by 73 if the length is == 3 mod 4
27 1{0}JP always divisible by some element of {5,7,73}
divisible by 7 if the length is odd, divisible by 5 if the length is == 2 mod 4, divisible by 73 if the length is == 0 mod 4
27 J{0}2 always divisible by some element of {5,7,73}
divisible by 7 if the length is odd, divisible by 5 if the length is == 2 mod 4, divisible by 73 if the length is == 0 mod 4
29 {2}{5} always divisible by some element of {2,3,5}
(non-simple family)
divisible by 2 if the number of 5's is even, divisible by 3 if the number of 2's and the number of 5's are both even or both odd, divisible by 5 if the number of 2's is even
30 A{0}9J always divisible by some element of {7,13,19,31}
divisible by 7 if the length is == 0 mod 3, divisible by 13 if the length is == 1 mod 6, divisible by 19 if the length is == 2 mod 3, divisible by 31 if the length is even
31 O{5} always divisible by some element of {2,3,7,19}
divisible by 2 if the length is odd, divisible by 3 if the length is == 1 mod 3, divisible by 7 if the length is 2 mod 6, divisible by 19 if the length is == 0 mod 6
32 8{0}V always divisible by some element of {3,5,41}
divisible by 3 if the length is odd, divisible by 5 if the length is == 0 mod 4, divisible by 41 if the length is == 2 mod 4
32 {G}L always divisible by some element of {3,5,41}
divisible by 3 if the length is odd, divisible by 5 if the length is == 0 mod 4, divisible by 41 if the length is == 2 mod 4
9 {1} difference-of-squares factorization
(9n−1)/8 = (3n−1) × (3n+1) / 8
8 1{0}1 sum-of-cubes factorization
8n+1 = (2n+1) × (4n−2n+1)
9 3{1} difference-of-squares factorization
(25×9n−1)/8 = (5×3n−1) × (5×3n+1) / 8
9 3{8} difference-of-squares factorization
4×9n−1 = (2×3n−1) × (2×3n+1)
9 {8}5 difference-of-squares factorization
9n−4 = (3n−2) × (3n+2)
9 3{8}35 difference-of-squares factorization
4×9n−49 = (2×3n−7) × (2×3n+7)
16 8{F} difference-of-squares factorization
9×16n−1 = (3×4n−1) × (3×4n+1)
16 {F}7 difference-of-squares factorization
16n−9 = (4n−3) × (4n+3)
16 {4}1 difference-of-squares factorization
(4×16n−49)/15 = (2×4n−7) × (2×4n+7) / 15
16 B{4}1 difference-of-squares factorization
(169×16n−49)/15 = (13×4n−7) × (13×4n+7) / 15
16 1{5} difference-of-squares factorization
(4×16n−1)/3 = (2×4n−1) × (2×4n+1) / 3
16 8{5} difference-of-squares factorization
(25×16n−1)/3 = (5×4n−1) × (5×4n+1) / 3
16 10{5} difference-of-squares factorization
(49×16n−1)/3 = (7×4n−1) × (7×4n+1) / 3
16 A1{5} difference-of-squares factorization
(484×16n−1)/3 = (22×4n−1) × (22×4n+1) / 3
16 7{3} difference-of-squares factorization
(36×16n−1)/5 = (6×4n−1) × (6×4n+1) / 5
16 3{F}AF difference-of-squares factorization
4×16n−81 = (2×4n−9) × (2×4n+9)
16 30{F}AF difference-of-squares factorization
49×16n−81 = (7×4n−9) × (7×4n+9)
16 3{F}A0F difference-of-squares factorization
4×16n−1521 = (2×4n−39) × (2×4n+39)
16 30{F}A0F difference-of-squares factorization
49×16n−1521 = (7×4n−39) × (7×4n+39)
16 {3}23 difference-of-squares factorization
(16n−81)/5 = (4n−9) × (4n+9) / 5
(in fact, difference-of-4th-powers factorization)
(16n−81)/5 = (2n−3) × (2n+3) × (4n+9) / 5
16 {5}45 difference-of-squares factorization
(16n−49)/3 = (4n−7) × (4n+7) / 3
16 {C}B difference-of-squares factorization
(4×16n−9)/5 = (2×4n−3) × (2×4n+3) / 5
16 {C}D Aurifeuillian factorization of x4+4×y4
(4×16n+1)/5 = (2×4n−2×2n+1) × (2×4n+2×2n+1) / 5
16 {C}DD Aurifeuillian factorization of x4+4×y4
(4×16n+81)/5 = (2×4n−6×2n+9) × (2×4n+6×2n+9) / 5
25 {1} difference-of-squares factorization
(25n−1)/24 = (5n−1) × (5n+1) / 24
25 2{1} difference-of-squares factorization
(49×25n−1)/24 = (7×5n−1) × (7×5n+1) / 24
25 5{1} difference-of-squares factorization
(121×25n−1)/24 = (11×5n−1) × (11×5n+1) / 24
25 7{1} difference-of-squares factorization
(169×25n−1)/24 = (13×5n−1) × (13×5n+1) / 24
25 C{1} difference-of-squares factorization
(289×25n−1)/24 = (17×5n−1) × (17×5n+1) / 24
25 F{1} difference-of-squares factorization
(361×25n−1)/24 = (19×5n−1) × (19×5n+1) / 24
25 M{1} difference-of-squares factorization
(529×25n−1)/24 = (23×5n−1) × (23×5n+1) / 24
25 27{1} difference-of-squares factorization
(1369×25n−1)/24 = (37×5n−1) × (37×5n+1) / 24
25 7C{1} difference-of-squares factorization
(4489×25n−1)/24 = (67×5n−1) × (67×5n+1) / 24
25 D5{1} difference-of-squares factorization
(7921×25n−1)/24 = (89×5n−1) × (89×5n+1) / 24
25 1{3} difference-of-squares factorization
(9×25n−1)/8 = (3×5n−1) × (3×5n+1) / 8
25 1{8} difference-of-squares factorization
(4×25n−1)/3 = (2×5n−1) × (2×5n+1) / 3
25 5{8} difference-of-squares factorization
(16×25n−1)/3 = (4×5n−1) × (4×5n+1) / 3
25 A{3} difference-of-squares factorization
(81×25n−1)/8 = (9×5n−1) × (9×5n+1) / 8
25 L{8} difference-of-squares factorization
(64×25n−1)/3 = (8×5n−1) × (8×5n+1) / 3
25 {3}2 difference-of-squares factorization
(25n−9)/8 = (5n−3) × (5n+3) / 8
25 {8}3 difference-of-squares factorization
(25n−16)/3 = (5n−4) × (5n+4) / 3
25 {8}7 difference-of-squares factorization
(25n−4)/3 = (5n−2) × (5n+2) / 3
25 {3}2I difference-of-squares factorization
(25n−81)/8 = (5n−9) × (5n+9) / 8
25 {8}5I difference-of-squares factorization
(25n−196)/3 = (5n−14) × (5n+14) / 3
25 {8}7C difference-of-squares factorization
(25n−64)/3 = (5n−8) × (5n+8) / 3
27 8{0}1 sum-of-cubes factorization
8×27n+1 = (2×3n+1) × (4×9n−2×3n+1)
27 1{0}8 sum-of-cubes factorization
27n+8 = (3n+2) × (9n−2×3n+4)
27 {D}E sum-of-cubes factorization
(27n+1)/2 = (3n+1) × (9n−3n+1) / 2
27 7{Q} difference-of-cubes factorization
8×27n−1 = (2×3n−1) × (4×9n+2×3n+1)
27 {Q}J difference-of-cubes factorization
27n−8 = (3n−2) × (9n+2×3n+4)
27 9{G} difference-of-cubes factorization
(125×27n−8)/13 = (5×3n−2) × (25×9n+10×3n+4) / 13
32 1{0}1 sum-of-5th-powers factorization
32n+1 = (2n+1) × (16n−8n+4n−2n+1)
32 {1} difference-of-5th-powers factorization
(32n−1)/31 = (2n−1) × (16n+8n+4n+2n+1) / 31
36 3{7} difference-of-squares factorization
(16×36n−1)/5 = (4×6n−1) × (4×6n+1) / 5
36 3{Z} difference-of-squares factorization
4×36n−1 = (2×6n−1) × (2×6n+1)
36 8{Z} difference-of-squares factorization
9×36n−1 = (3×6n−1) × (3×6n+1)
36 O{Z} difference-of-squares factorization
25×36n−1 = (5×6n−1) × (5×6n+1)
36 {Z}B difference-of-squares factorization
36n−25 = (6n−5) × (6n+5)
36 8{Z}B difference-of-squares factorization
9×36n−25 = (3×6n−5) × (3×6n+5)
36 F{Z}B difference-of-squares factorization
16×36n−25 = (4×6n−5) × (4×6n+5)
36 {Z}RZ difference-of-squares factorization
36n−289 = (6n−17) × (6n+17)
36 F{Z}RZ difference-of-squares factorization
16×36n−289 = (4×6n−17) × (4×6n+17)
36 O{Z}RZ difference-of-squares factorization
25×36n−289 = (5×6n−17) × (5×6n+17)
36 O{5} difference-of-squares factorization
(169×36n−1)/7 = (13×6n−1) × (13×6n+1) / 7
36 O{7} difference-of-squares factorization
(121×36n−1)/5 = (11×6n−1) × (11×6n+1) / 5
36 {9}1 difference-of-squares factorization
(9×36n−289)/35 = (3×6n−17) × (3×6n+17) / 35
36 T{9}1 difference-of-squares factorization
(1024×36n−289)/35 = (32×6n−17) × (32×6n+17) / 35
36 {G}D difference-of-squares factorization
(16×36n−121)/35 = (4×6n−11) × (4×6n+11) / 35
36 {G}8D difference-of-squares factorization
(16×36n−10201)/35 = (4×6n−101) × (4×6n+101) / 35
36 R{G}D difference-of-squares factorization
(961×36n−121)/35 = (31×6n−11) × (31×6n+11) / 35
36 3{G}8D difference-of-squares factorization
(121×36n−10201)/35 = (11×6n−101) × (11×6n+101) / 35
36 R{G}8D difference-of-squares factorization
(961×36n−10201)/35 = (31×6n−101) × (31×6n+101) / 35
36 {K}H difference-of-squares factorization
(4×36n−25)/7 = (2×6n−5) × (2×6n+5) / 7
36 {K}IH difference-of-squares factorization
(4×36n−529)/7 = (2×6n−23) × (2×6n+23) / 7
36 B{K}H difference-of-squares factorization
(81×36n−25)/7 = (9×6n−5) × (9×6n+5) / 7
36 3{K}IH difference-of-squares factorization
(25×36n−529)/7 = (5×6n−23) × (5×6n+23) / 7
36 B{K}IH difference-of-squares factorization
(81×36n−529)/7 = (9×6n−23) × (9×6n+23) / 7
36 {S}J difference-of-squares factorization
(4×36n−49)/5 = (2×6n−7) × (2×6n+7) / 5
36 {S}IJ difference-of-squares factorization
(4×36n−1849)/5 = (2×6n−43) × (2×6n+43) / 5
36 1{S}J difference-of-squares factorization
(9×36n−49)/5 = (3×6n−7) × (3×6n+7) / 5
36 C{S}J difference-of-squares factorization
(64×36n−49)/5 = (8×6n−7) × (8×6n+7) / 5
36 X{S}J difference-of-squares factorization
(169×36n−49)/5 = (13×6n−7) × (13×6n+7) / 5
36 1{S}GJ difference-of-squares factorization
(9×36n−2209)/5 = (3×6n−47) × (3×6n+47) / 5
36 9{S}GJ difference-of-squares factorization
(49×36n−2209)/5 = (7×6n−47) × (7×6n+47) / 5
36 C{S}GJ difference-of-squares factorization
(64×36n−2209)/5 = (8×6n−47) × (8×6n+47) / 5
36 X{S}GJ difference-of-squares factorization
(169×36n−2209)/5 = (13×6n−47) × (13×6n+47) / 5
36 1{S}IJ difference-of-squares factorization
(9×36n−1849)/5 = (3×6n−43) × (3×6n+43) / 5
36 9{S}IJ difference-of-squares factorization
(49×36n−1849)/5 = (7×6n−43) × (7×6n+43) / 5
14 8{D} combine of factor 5 and difference-of-squares factorization
even length is divisible by 5, odd length has factorization 9×14n−1 = (3×14n−1) × (3×14n+1)
12 {B}9B combine of factor 13 and difference-of-squares factorization
odd length is divisible by 13, even length has factorization 12n−25 = (12n−5) × (12n+5)
14 {D}5 combine of factor 5 and difference-of-squares factorization
odd length is divisible by 5, even length has factorization 14n−9 = (14n−3) × (14n+3)
17 1{9} combine of factor 2 and difference-of-squares factorization
even length is divisible by 2, odd length has factorization (25×17n−9)/16 = (5×17n−3) × (5×17n+3) / 16
17 7{9} combine of factor 2 and difference-of-squares factorization
even length is divisible by 2, odd length has factorization (121×17n−9)/16 = (11×17n−3) × (11×17n+3) / 16
17 {9}2 combine of factor 2 and difference-of-squares factorization
odd length is divisible by 2, even length has factorization (9×17n−121)/16 = (3×17n−11) × (3×17n+11) / 16
17 {9}8 combine of factor 2 and difference-of-squares factorization
odd length is divisible by 2, even length has factorization (9×17n−25)/16 = (3×17n−5) × (3×17n+5) / 16
19 1{6} combine of factor 5 and difference-of-squares factorization
even length is divisible by 5, odd length has factorization (4×19n−1)/3 = (2×19n−1) × (2×19n+1) / 3
19 {6}5 combine of factor 5 and difference-of-squares factorization
odd length is divisible by 5, even length has factorization (19n−4)/3 = (19n−2) × (19n+2) / 3
19 7{2} combine of factor 5 and difference-of-squares factorization
even length is divisible by 5, odd length has factorization (64×19n−1)/9 = (8×19n−1) × (8×19n+1) / 9
19 89{6} combine of factor 5 and difference-of-squares factorization
even length is divisible by 5, odd length has factorization (484×19n−1)/3 = (22×19n−1) × (22×19n+1) / 3
24 3{N} combine of factor 5 and difference-of-squares factorization
even length is divisible by 5, odd length has factorization 4×24n−1 = (2×24n−1) × (2×24n+1)
24 5{N} combine of factor 5 and difference-of-squares factorization
odd length is divisible by 5, even length has factorization 6×24n+1−1 = (12×24n−1) × (12×24n+1)
24 8{N} combine of factor 5 and difference-of-squares factorization
even length is divisible by 5, odd length has factorization 9×24n−1 = (3×24n−1) × (3×24n+1)
24 {6}1 combine of factor 5 and difference-of-squares factorization
even length is divisible by 5, odd length has factorization (6×24n+1−121)/23 = (12×24n−11) × (12×24n+11) / 23
24 {N}LN combine of factor 5 and difference-of-squares factorization
odd length is divisible by 5, even length has factorization 24n−49 = (24n−7) × (24n+7)
33 F{W} combine of factor 17 and difference-of-squares factorization
even length is divisible by 17, odd length has factorization 16×33n−1 = (4×33n−1) × (4×33n+1)
33 {W}H combine of factor 17 and difference-of-squares factorization
odd length is divisible by 17, even length has factorization 33n−16 = (33n−4) × (33n+4)
33 3{P} combine of factor 2 and difference-of-squares factorization
even length is divisible by 2, odd length has factorization (121×33n−25)/32 = (11×33n−5) × (11×33n+5) / 32
33 D{P} combine of factor 2 and difference-of-squares factorization
even length is divisible by 2, odd length has factorization (441×33n−25)/32 = (21×33n−5) × (21×33n+5) / 32
33 {9}4 combine of factor 2 and difference-of-squares factorization
even length is divisible by 2, odd length has factorization (9×33n−169)/32 = (3×33n−13) × (3×33n+13) / 32
34 1{B} combine of factor 5 and difference-of-squares factorization
even length is divisible by 5, odd length has factorization (4×34n−1)/3 = (2×34n−1) × (2×34n+1) / 3
34 8{X} combine of factor 5 and difference-of-squares factorization
even length is divisible by 5, odd length has factorization 9×34n−1 = (3×34n−1) × (3×34n+1)
34 {X}P combine of factor 5 and difference-of-squares factorization
odd length is divisible by 5, even length has factorization 34n−9 = (34n−3) × (34n+3)

Also families which contain only one very small prime > b:

b family why this family contains only one prime > b
27 2{0}J always divisible by some element of {5,7,73}
but 2J is prime, and 2J is the only prime > b in this family
divisible by 7 if the length is odd, divisible by 5 if the length is == 0 mod 4, divisible by 73 if the length is == 2 mod 4
4 {1} difference-of-squares factorization
but 11 is prime, and 11 is the only prime > b in this family
(4n−1)/3 = (2n−1) × (2n+1) / 3
8 {1} difference-of-cubes factorization
but 111 is prime, and 111 is the only prime > b in this family
(8n−1)/7 = (2n−1) × (4n+2n+1) / 7
16 {1} difference-of-squares factorization
but 11 is prime, and 11 is the only prime > b in this family
(16n−1)/15 = (4n−1) × (4n+1) / 15
27 {1} difference-of-cubes factorization
but 111 is prime, and 111 is the only prime > b in this family
(27n−1)/26 = (3n−1) × (9n+3n+1) / 26
27 {G}7 difference-of-cubes factorization
but G7 is prime, and G7 is the only prime > b in this family
(8×27n−125)/13 = (2×3n−5) × (4×9n+10×3n+25) / 13
36 {1} difference-of-squares factorization
but 11 is prime, and 11 is the only prime > b in this family
(36n−1)/35 = (6n−1) × (6n+1) / 35

Some x{y}z (where x and z are strings (may be empty) of digits in base b, y is a digit in base b) families could not be proven to contain no primes > b (by covering congruence, algebraic factorization, or combine of them) but no primes > b could be found in the family, even after searching through numbers with over 100000 digits. In such a case, the only way to proceed is to test the primality of larger and larger numbers of such form and hope a prime is eventually discovered.

Many x{y}z (where x and z are strings (may be empty) of digits in base b, y is a digit in base b) families contain no small primes > b even though they do contain very large primes. e.g. the smallest prime in base 13 family 9{5} is 95197420 (http://www.primenumbers.net/prptop/searchform.php?form=%28113*13%5E197420-5%29%2F12&action=Search, http://factordb.com/index.php?id=1100000003943359311), its algebraic form is (113×13197420−5)/12, when written in decimal it contains 219916 digits; and the smallest prime in base 16 family {3}AF is 3116137AF (http://www.primenumbers.net/prptop/searchform.php?form=%2816%5E116139%2B619%29%2F5&action=Search, http://factordb.com/index.php?id=1100000003851731988), its algebraic form is (16116139+619)/5, when written in decimal it contains 139845 digits; and the smallest prime in base 23 family 9{E} is 9E800873 (http://www.primenumbers.net/prptop/searchform.php?form=%28106*23%5E800873-7%29%2F11&action=Search, http://factordb.com/index.php?id=1100000000782858648), its algebraic form is (106×23800873−7)/11, when written in decimal it contains 1090573 digits; and the smallest prime in base 25 family 71JD{0}1 is 71JD04585491 (http://primes.utm.edu/primes/page.php?id=111834, http://factordb.com/index.php?id=1100000002341496334), its algebraic form is 110488×25458550+1, when written in decimal it contains 641031 digits (this number can be proven prime by N−1 test (https://primes.utm.edu/prove/prove3_1.html, http://factordb.com/nmoverview.php?method=1), since N−1 is trivially fully factored); and the smallest prime in base 32 family NU{0}1 is NU06618631 (https://primes.utm.edu/primes/page.php?id=134216, http://factordb.com/index.php?id=1100000003813355148), its algebraic form is 766×32661864+1, when written in decimal it contains 996208 digits (this number can be proven prime by N−1 test (https://primes.utm.edu/prove/prove3_1.html, http://factordb.com/nmoverview.php?method=1), since N−1 is trivially fully factored); and the smallest prime in base 36 family {P}SZ is P81993SZ (http://www.primenumbers.net/prptop/searchform.php?form=%285*36%5E81995%2B821%29%2F7&action=Search, http://factordb.com/index.php?id=1100000002394962083), its algebraic form is (5×3681995+821)/7, when written in decimal it contains 127609 digits. (technically, probable (https://en.wikipedia.org/wiki/Probabilistic_algorithm) primality tests (https://primes.utm.edu/prove/prove2.html) were used to show these for the numbers which cannot be proven prime by N−1 test (https://primes.utm.edu/prove/prove3_1.html, http://factordb.com/nmoverview.php?method=1) or N+1 test (https://primes.utm.edu/prove/prove3_2.html, http://factordb.com/nmoverview.php?method=2), i.e. for the ordinary primes (https://primes.utm.edu/glossary/xpage/OrdinaryPrime.html) (which have a very small chance of making an error (https://primes.utm.edu/notes/prp_prob.html, https://www.ams.org/journals/mcom/1989-53-188/S0025-5718-1989-0982368-4/S0025-5718-1989-0982368-4.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_22.pdf))) because all known primality tests (https://en.wikipedia.org/wiki/Primality_test, https://www.rieselprime.de/ziki/Primality_test, https://mathworld.wolfram.com/PrimalityTest.html, https://primes.utm.edu/prove/prove3.html, https://primes.utm.edu/prove/prove4.html) run far too slowly (longer than the life expectancy of human (https://en.wikipedia.org/wiki/Life_expectancy) for numbers > 10100000, and longer than the age of the universe (https://en.wikipedia.org/wiki/Age_of_the_universe) for numbers > 10500000, even if we can do 109 bitwise operations (https://en.wikipedia.org/wiki/Bitwise_operation) per second (https://en.wikipedia.org/wiki/Second) to run on these numbers) to run on numbers of these sizes unless either N−1 (https://primes.utm.edu/prove/prove3_1.html, http://factordb.com/nmoverview.php?method=1) or N+1 (https://primes.utm.edu/prove/prove3_2.html, http://factordb.com/nmoverview.php?method=2) (or both) (unfortunely, none of Wikipedia, Prime Wiki, Mathworld has article for N−1 primality test or N+1 primality test, but a similar article for Pocklington primality test: https://en.wikipedia.org/wiki/Pocklington_primality_test, https://www.rieselprime.de/ziki/Pocklington%27s_theorem, https://mathworld.wolfram.com/PocklingtonsTheorem.html, also see the article for the cyclotomy primality test: https://primes.utm.edu/glossary/xpage/Cyclotomy.html) can be ≥ 1/3 factored (https://en.wikipedia.org/wiki/Integer_factorization, https://www.rieselprime.de/ziki/Factorization, https://mathworld.wolfram.com/PrimeFactorization.html) or can be ≥ 1/4 factored and the number is not very large (say not > 10100000), or Nn−1 can be ≥ 1/3 factored for a small n. If either N−1 or N+1 (or both) can be ≥ 1/2 factored, then we can use the Pocklington N−1 primality test (https://primes.utm.edu/prove/prove3_1.html, https://en.wikipedia.org/wiki/Pocklington_primality_test, https://www.rieselprime.de/ziki/Pocklington%27s_theorem, https://mathworld.wolfram.com/PocklingtonsTheorem.html, https://stdkmd.net/nrr/pock/, http://factordb.com/nmoverview.php?method=1) (the N−1 case) or the Morrison N+1 primality test (https://primes.utm.edu/prove/prove3_2.html, http://factordb.com/nmoverview.php?method=2) (the N+1 case); if either N−1 or N+1 (or both) can be ≥ 1/3 factored, then we can use the Brillhart-Lehmer-Selfridge primality test (https://www.ams.org/journals/mcom/1975-29-130/S0025-5718-1975-0384673-1/S0025-5718-1975-0384673-1.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_23.pdf), https://en.wikipedia.org/wiki/Pocklington_primality_test#Extensions_and_variants); if either N−1 or N+1 (or both) can be ≥ 1/4 factored but neither can be ≥ 1/3 factored, then we need to use CHG (https://mersenneforum.org/attachment.php?attachmentid=21133&d=1571237465, https://primes.utm.edu/bios/page.php?id=797, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/CHG) to prove its primality (see https://mersenneforum.org/showpost.php?p=528149&postcount=3 and https://mersenneforum.org/showpost.php?p=603181&postcount=438), however, unlike Brillhart-Lehmer-Selfridge primality test for the numbers N such that N−1 or N+1 (or both) can be ≥ 1/3 factored can run for arbitrarily large numbers N (thus, there are no unproven probable primes N such that N−1 or N+1 (or both) can be ≥ 1/3 factored), CHG for the numbers N such that either N−1 or N+1 (or both) can be ≥ 1/4 factored but neither can be ≥ 1/3 factored cannot run for very large N (say > 10100000), for the examples of the numbers which are proven prime by CHG, see https://primes.utm.edu/primes/page.php?id=126454, https://primes.utm.edu/primes/page.php?id=131964, https://primes.utm.edu/primes/page.php?id=123456, https://primes.utm.edu/primes/page.php?id=130933, https://stdkmd.net/nrr/cert/1/ (search for "CHG"), https://stdkmd.net/nrr/cert/2/ (search for "CHG"), https://stdkmd.net/nrr/cert/3/ (search for "CHG"), https://stdkmd.net/nrr/cert/4/ (search for "CHG"), https://stdkmd.net/nrr/cert/5/ (search for "CHG"), https://stdkmd.net/nrr/cert/6/ (search for "CHG"), https://stdkmd.net/nrr/cert/7/ (search for "CHG"), https://stdkmd.net/nrr/cert/8/ (search for "CHG"), https://stdkmd.net/nrr/cert/9/ (search for "CHG"), however, factordb (http://factordb.com/) lacks the ability to verify CHG proofs, see https://mersenneforum.org/showpost.php?p=608362&postcount=165; if neither N−1 nor N+1 can be ≥ 1/4 factored but Nn−1 can be ≥ 1/3 factored for a small n, then we can use the cyclotomy primality test (https://primes.utm.edu/glossary/xpage/Cyclotomy.html, https://primes.utm.edu/prove/prove3_3.html, http://factordb.com/nmoverview.php?method=3))

The numbers in x{y}z (where x and z are strings (may be empty) of digits in base b, y is a digit in base b) families are of the form (a×bn+c)/gcd(a+c,b−1) for some fixed a, b, c such that a ≥ 1, b ≥ 2 (b is the base), c ≠ 0, gcd(a,c) = 1, gcd(b,c) = 1. Except in the special case c = ±1 and gcd(a+c,b−1) = 1, when n is large the known primality tests (https://en.wikipedia.org/wiki/Primality_test, https://www.rieselprime.de/ziki/Primality_test, https://mathworld.wolfram.com/PrimalityTest.html, https://primes.utm.edu/prove/prove3.html, https://primes.utm.edu/prove/prove4.html) for such a number are too inefficient to run. In this case one must resort to a probable (https://en.wikipedia.org/wiki/Probabilistic_algorithm) primality test (https://primes.utm.edu/prove/prove2.html) such as a Miller–Rabin primality test (https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test, https://primes.utm.edu/glossary/xpage/MillersTest.html, https://www.rieselprime.de/ziki/Miller-Rabin_pseudoprimality_test, https://mathworld.wolfram.com/Rabin-MillerStrongPseudoprimeTest.html, http://www.javascripter.net/math/primes/millerrabinprimalitytest.htm) or a Baillie–PSW primality test (https://en.wikipedia.org/wiki/Baillie%E2%80%93PSW_primality_test, https://mathworld.wolfram.com/Baillie-PSWPrimalityTest.html), unless a divisor of the number can be found. Since we are testing many numbers in an exponential sequence, it is possible to use a sieving process (https://www.rieselprime.de/ziki/Sieving, https://www.rieselprime.de/ziki/Sieving_a_range_of_sequences, https://mathworld.wolfram.com/Sieve.html) to find divisors rather than using trial division (https://en.wikipedia.org/wiki/Trial_division, https://primes.utm.edu/glossary/xpage/TrialDivision.html, https://www.rieselprime.de/ziki/Trial_factoring, https://mathworld.wolfram.com/TrialDivision.html).

To do this, we made use of Geoffrey Reynolds' SRSIEVE software (https://www.bc-team.org/app.php/dlext/?cat=3, http://web.archive.org/web/20160922072340/https://sites.google.com/site/geoffreywalterreynolds/programs/, http://www.rieselprime.de/dl/CRUS_pack.zip, https://primes.utm.edu/bios/page.php?id=905, https://www.rieselprime.de/ziki/Srsieve, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/srsieve_1.1.4, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/sr1sieve_1.4.6, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/sr2sieve_2.0.0, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/srbsieve). This program uses the baby-step giant-step algorithm to find all primes p which divide a×bn+c where p and n lie in a specified range (also, this program was updated so that it also removes the n such that a×bn+c has algebraic factors (e.g. difference-of-two-squares factorization (https://en.wikipedia.org/wiki/Difference_of_two_squares) and sum/difference-of-two-nth-powers factorization with odd n > 1 (https://en.wikipedia.org/wiki/Binomial_number, https://mathworld.wolfram.com/BinomialNumber.html) and Aurifeuillean factorization (https://en.wikipedia.org/wiki/Aurifeuillean_factorization, https://www.rieselprime.de/ziki/Aurifeuillian_factor, https://mathworld.wolfram.com/AurifeuilleanFactorization.html, http://myfactorcollection.mooo.com:8090/source/cyclo.cpp, http://myfactorcollection.mooo.com:8090/LCD_2_199, http://myfactorcollection.mooo.com:8090/LCD_2_998) of x4+4y4), see https://mersenneforum.org/showpost.php?p=452132&postcount=66 and https://mersenneforum.org/showthread.php?t=21916 and https://github.com/xayahrainie4793/prime-programs-cached-copy/blob/main/srsieve_1.1.4/algebraic.c (note: for the sequence (a×bn+c)/gcd(a+c,b−1), the case of "Mersenne number" in https://github.com/xayahrainie4793/prime-programs-cached-copy/blob/main/srsieve_1.1.4/algebraic.c is the case which a is rational power of b, c = −1 and the case which a is rational power of b, c = 1, gcd(a+c,b−1) ≥ 3, and the case of "GFN" in https://github.com/xayahrainie4793/prime-programs-cached-copy/blob/main/srsieve_1.1.4/algebraic.c is the case which a is rational power of b, c = 1, gcd(a+c,b−1) is either 1 or 2)). Since this program cannot handle the general case (a×bn+c)/gcd(a+c,b−1) when gcd(a+c,b−1) > 1 we only used it to sieve the sequence a×bn+c for primes p not dividing gcd(a+c,b−1), and initialized the list of candidates to not include n for which there is some prime p dividing gcd(a+c,b−1) for which p dividing (a×bn+c)/gcd(a+c,b−1). The program had to be modified slightly to remove a check which would prevent it from running in the case when a, b, and c were all odd (since then 2 divides a×bn+c, but 2 may not divide (a×bn+c)/gcd(a+c,b−1)) (see https://github.com/curtisbright/mepn-data/commit/1b55b353f46c707bbe52897573914128b3303960).

Once the numbers with small divisors had been removed, it remained to test the remaining numbers using a probable primality test. For this we used the software LLR by Jean Penné (http://jpenne.free.fr/index2.html, https://primes.utm.edu/bios/page.php?id=431, https://www.rieselprime.de/ziki/LLR, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/llr403win64, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/llr403linux64) or PFGW (https://sourceforge.net/projects/openpfgw/, https://primes.utm.edu/bios/page.php?id=175, https://www.rieselprime.de/ziki/PFGW, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/pfgw_win_4.0.3). Although undocumented, it is possible to run these two programs on numbers of the form (a×bn+c)/gcd(a+c,b−1) when gcd(a+c,b−1) > 1, so this program required no modifications. A script was also written which allowed one to run srsieve while LLR or PFGW was testing the remaining candidates, so that when a divisor was found by srsieve on a number which had not yet been tested by LLR or PFGW it would be removed from the list of candidates.

For the primes < 1025000 for the solved or near-solved bases (bases b with ≤ 10 unsolved families, i.e. bases b = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22, 24, 26, 28, 30, 36), we employed PRIMO by Marcel Martin (http://www.ellipsa.eu/public/primo/primo.html, http://www.rieselprime.de/dl/Primo309.zip, https://primes.utm.edu/bios/page.php?id=46, https://www.rieselprime.de/ziki/Primo, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/primo-433-lx64, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/Primo309), an elliptic curve primality proving (https://primes.utm.edu/prove/prove4_2.html, https://en.wikipedia.org/wiki/Elliptic_curve_primality, https://primes.utm.edu/glossary/xpage/ECPP.html, https://mathworld.wolfram.com/EllipticCurvePrimalityProving.html, https://primes.utm.edu/top20/page.php?id=27) implementation, to compute primality certificates (https://en.wikipedia.org/wiki/Primality_certificate, https://primes.utm.edu/glossary/xpage/Certificate.html, https://mathworld.wolfram.com/PrimalityCertificate.html, http://www.lix.polytechnique.fr/Labo/Francois.Morain/Primes/myprimes.html, https://stdkmd.net/nrr/cert/, http://factordb.com/certoverview.php) for the candidates for minimal prime base b which are > 10299 and neither N−1 nor N+1 can be ≥ 1/3 factored (need CHG proof if either N−1 or N+1 (or both) can be ≥ 1/4 factored but neither can be ≥ 1/3 factored, but factordb (http://factordb.com/) lacks the ability to verify CHG proofs, see https://mersenneforum.org/showpost.php?p=608362&postcount=165).

We have completely solved this problem for bases b = 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 18, 20, 24 (i.e. we have found all minimal primes in these bases and proved that they are all such primes and proved that they are definitely primes (https://en.wikipedia.org/wiki/Provable_prime, http://factordb.com/listtype.php?t=4) (i.e. not merely probable primes)) (thus, currently we can complete the classification of the minimal primes in these bases, and the "minimal prime problem" for these bases are theorems (https://en.wikipedia.org/wiki/Theorem, https://mathworld.wolfram.com/Theorem.html, https://primes.utm.edu/notes/proofs/)), also we have completely solved this problem for bases b = 11, 16, 22, 30 if we allow probable primes (https://en.wikipedia.org/wiki/Probable_prime, https://primes.utm.edu/glossary/xpage/PRP.html, https://www.rieselprime.de/ziki/Probable_prime, https://mathworld.wolfram.com/ProbablePrime.html, http://factordb.com/listtype.php?t=1) > 1025000 in place of proven primes, besides, we have completely solved this problem for bases b = 13, 17, 19, 21, 23, 25, 26, 27, 28, 32, 34, 36 (if we allow strong probable primes in place of proven primes) except the families x{y}z (where x and z are strings (may be empty) of digits in base b, y is a digit in base b) listed in the "left b" files (see the condensed table below for the searching limit of these families) (thus, currently the "minimal prime problem" for these bases are still unsolved problems (https://en.wikipedia.org/wiki/Open_problem, https://en.wikipedia.org/wiki/List_of_unsolved_problems_in_mathematics, https://primes.utm.edu/glossary/xpage/OpenQuestion.html, https://mathworld.wolfram.com/UnsolvedProblems.html, https://primes.utm.edu/notes/conjectures/)).

We are unable to determine if the families x{y}z (where x and z are strings (may be empty) of digits in base b, y is a digit in base b) listed in the "left b" files (see the condensed table below for the searching limit of these families) contain a prime (only count the numbers > b) or not (even if we allow strong probable primes), i.e. these families have no known prime (or strong probable prime) members > b, nor can they be ruled out as only containing composites (only count the numbers > b) (by covering congruence, algebraic factorization, or combine of them), i.e. whether these families contain a prime or a strong probable prime (only count the numbers > b) are open problems (https://en.wikipedia.org/wiki/Open_problem, https://en.wikipedia.org/wiki/List_of_unsolved_problems_in_mathematics, https://primes.utm.edu/glossary/xpage/OpenQuestion.html, https://mathworld.wolfram.com/UnsolvedProblems.html, https://primes.utm.edu/notes/conjectures/), and all of these families are expected to contain a prime > b (in fact, expected to contain infinitely many primes), since there is a heuristic argument (https://en.wikipedia.org/wiki/Heuristic_argument, https://primes.utm.edu/glossary/xpage/Heuristic.html, https://mathworld.wolfram.com/Heuristic.html) that all families which cannot be ruled out as only containing composites or only containing finitely many primes (by covering congruence, algebraic factorization, or combine of them) contain infinitely many primes (references: https://primes.utm.edu/mersenne/heuristic.html, https://primes.utm.edu/notes/faq/NextMersenne.html, https://web.archive.org/web/20100628035147/http://www.math.niu.edu/~rusin/known-math/98/exp_primes), since by the prime number theorem (https://en.wikipedia.org/wiki/Prime_number_theorem, https://primes.utm.edu/glossary/xpage/PrimeNumberThm.html, https://mathworld.wolfram.com/PrimeNumberTheorem.html, https://primes.utm.edu/howmany.html, https://oeis.org/wiki/User:Charles_R_Greathouse_IV/Tables_of_special_primes) the chance (https://en.wikipedia.org/wiki/Probability, https://mathworld.wolfram.com/Probability.html) that a random (https://en.wikipedia.org/wiki/Random_number, https://mathworld.wolfram.com/RandomNumber.html) n-digit base b number is prime is approximately (https://en.wikipedia.org/wiki/Asymptotic_analysis, https://primes.utm.edu/glossary/xpage/AsymptoticallyEqual.html, https://mathworld.wolfram.com/Asymptotic.html) 1/n (more accurately, the chance is approximately 1/(n×ln(b)), where ln is the natural logarithm (https://en.wikipedia.org/wiki/Natural_logarithm, https://primes.utm.edu/glossary/xpage/Log.html, https://mathworld.wolfram.com/NaturalLogarithm.html)). If one conjectures the numbers x{y}z behave similarly you would expect 1/1 + 1/2 + 1/3 + 1/4 + ... = ∞ (https://en.wikipedia.org/wiki/Harmonic_series_(mathematics), https://mathworld.wolfram.com/HarmonicSeries.html) primes of the form x{y}z (of course, this does not always happen, since some x{y}z families can be ruled out as only containing composites (only count the numbers > b) (by covering congruence, algebraic factorization, or combine of them), and every family has its own Nash weight (https://www.rieselprime.de/ziki/Nash_weight, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/allnash) (or difficulty (https://stdkmd.net/nrr/prime/primedifficulty.htm, https://stdkmd.net/nrr/prime/primedifficulty.txt)), families which can be proven to only contain composites or only contain finitely many primes (by covering congruence, algebraic factorization, or combine of them) have Nash weight (or difficulty) 0, and families which cannot be proven to only contain composites or only contain finitely many primes (by covering congruence, algebraic factorization, or combine of them) have positive Nash weight (or difficulty), but it is at least a reasonable conjecture in the absence of evidence to the contrary).

There are also unproven probable primes (however, in this project our results assume that they are in fact primes, since they are > 1025000 and the probability that they are in fact composite is < 10−2000, see https://primes.utm.edu/notes/prp_prob.html and https://www.ams.org/journals/mcom/1989-53-188/S0025-5718-1989-0982368-4/S0025-5718-1989-0982368-4.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_22.pdf)), the unproven probable primes for bases b = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22, 24, 26, 28, 30, 36 (the solved or near-solved bases, i.e. the bases b with ≤ 10 unsolved families) are (together with the factorization of the numbers in their corresponding families): (you can click the "show" in the factordb page to see these unproven probable primes written in base 10 and base b (for base b, change the "10" in "Digits (Base 10)" box to "b", support bases 2 ≤ b ≤ 36), also you can click the "N−1" or the "N+1" (open the "Primality proving" box) to see the factorization of N−1 and N+1)

(for the factorization of the numbers in these families, the special number field sieve (https://en.wikipedia.org/wiki/Special_number_field_sieve, https://www.rieselprime.de/ziki/Special_number_field_sieve, https://mathworld.wolfram.com/NumberFieldSieve.html) or the general number field sieve (https://en.wikipedia.org/wiki/General_number_field_sieve, https://www.rieselprime.de/ziki/General_number_field_sieve, https://mathworld.wolfram.com/NumberFieldSieve.html) may be used, they have SNFS polynomials (https://www.rieselprime.de/ziki/SNFS_polynomial_selection), just like factorization of the numbers in https://stdkmd.net/nrr/aaaab.htm and https://stdkmd.net/nrr/abbbb.htm and https://stdkmd.net/nrr/aaaba.htm and https://stdkmd.net/nrr/abaaa.htm and https://stdkmd.net/nrr/abbba.htm and https://stdkmd.net/nrr/abbbc.htm and http://mklasson.com/factors/index.php and https://cs.stanford.edu/people/rpropper/math/factors/3n-2.txt, see https://stdkmd.net/nrr/records.htm and https://stdkmd.net/nrr/wanted.htm)

b index of this minimal prime in base b (assuming the primality of all probable primes in base b) base-b form of this unproven probable prime algebraic ((a×bn+c)/gcd(a+c,b−1)) form of this unproven probable prime factordb entry of this unproven probable prime Primo input file of this unproven probable prime factorization of the numbers in corresponding family (n is the number of digits in the "{}", start with the smallest n making the number > b)
11 1068 5762668 (57×1162668−7)/10 http://factordb.com/index.php?id=1100000003573679860 http://factordb.com/cert.php?id=1100000003573679860&inputfile http://factordb.com/index.php?query=%2857*11%5En-7%29%2F10&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3194 C523755C (149×1323756+79)/12 http://factordb.com/index.php?id=1100000003590647776 http://factordb.com/cert.php?id=1100000003590647776&inputfile http://factordb.com/index.php?query=%28149*13%5E%28n%2B1%29%2B79%29%2F12&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3195 8032017111 8×1332020+183 http://factordb.com/index.php?id=1100000000490878060 http://factordb.com/cert.php?id=1100000000490878060&inputfile http://factordb.com/index.php?query=8*13%5E%28n%2B3%29%2B183&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3196 95197420 (113×13197420−5)/12 http://factordb.com/index.php?id=1100000003943359311 (no Primo input file, since this unproven probable prime is too large (> 10149999) to be PRP-tested in factordb, and factordb does not have Primo input file for numbers with status (http://factordb.com/status.html, http://factordb.com/distribution.php) "U" (i.e. in http://factordb.com/listtype.php?t=2), factordb only has Primo input file for numbers with status "PRP" (i.e. in http://factordb.com/listtype.php?t=1)) http://factordb.com/index.php?query=%28113*13%5En-5%29%2F12&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 2345 DB32234 (206×1632234−11)/15 http://factordb.com/index.php?id=1100000002383583629 http://factordb.com/cert.php?id=1100000002383583629&inputfile http://factordb.com/index.php?query=%28206*16%5En-11%29%2F15&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 2346 472785DD (4×1672787+2291)/15 http://factordb.com/index.php?id=1100000003615909841 http://factordb.com/cert.php?id=1100000003615909841&inputfile http://factordb.com/index.php?query=%284*16%5E%28n%2B2%29%2B2291%29%2F15&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 2347 3116137AF (16116139+619)/5 http://factordb.com/index.php?id=1100000003851731988 http://factordb.com/cert.php?id=1100000003851731988&inputfile http://factordb.com/index.php?query=%2816%5E%28n%2B2%29%2B619%29%2F5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
22 8003 BK220015 (251×2222002−335)/21 http://factordb.com/index.php?id=1100000003594696838 http://factordb.com/cert.php?id=1100000003594696838&inputfile http://factordb.com/index.php?query=%28251*22%5E%28n%2B1%29-335%29%2F21&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25250 5193916F (2619393+179)/5 http://factordb.com/index.php?id=1100000003850151202 http://factordb.com/cert.php?id=1100000003850151202&inputfile http://factordb.com/index.php?query=%2826%5E%28n%2B2%29%2B179%29%2F5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25251 720279OL (7×2620281+11393)/25 http://factordb.com/index.php?id=1100000003892628605 http://factordb.com/cert.php?id=1100000003892628605&inputfile http://factordb.com/index.php?query=%287*26%5E%28n%2B2%29%2B11393%29%2F25&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25252 LD0209757 559×2620976+7 http://factordb.com/index.php?id=1100000003892628658 http://factordb.com/cert.php?id=1100000003892628658&inputfile http://factordb.com/index.php?query=559*26%5E%28n%2B1%29%2B7&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 25253 6K233005 (34×2623301−79)/5 http://factordb.com/index.php?id=1100000003892628745 http://factordb.com/cert.php?id=1100000003892628745&inputfile http://factordb.com/index.php?query=%2834*26%5E%28n%2B1%29-79%29%2F5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 25526 N624051LR (209×2824053+3967)/9 http://factordb.com/index.php?id=1100000003879667576 http://factordb.com/cert.php?id=1100000003879667576&inputfile http://factordb.com/index.php?query=%28209*28%5E%28n%2B2%29%2B3967%29%2F9&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 25527 5OA31238F (4438×2831239+125)/27 http://factordb.com/index.php?id=1100000003880455200 http://factordb.com/cert.php?id=1100000003880455200&inputfile http://factordb.com/index.php?query=%284438*28%5E%28n%2B1%29%2B125%29%2F27&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 25528 O4O945359 (6092×2894536−143)/9 http://factordb.com/index.php?id=1100000000808118231 http://factordb.com/cert.php?id=1100000000808118231&inputfile http://factordb.com/index.php?query=%286092*28%5E%28n%2B1%29-143%29%2F9&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
30 2618 I024608D 18×3024609+13 http://factordb.com/index.php?id=1100000003593967511 http://factordb.com/cert.php?id=1100000003593967511&inputfile http://factordb.com/index.php?query=18*30%5E%28n%2B1%29%2B13&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35284 7K26567Z (53×3626568+101)/7 http://factordb.com/index.php?id=1100000003896952461 http://factordb.com/cert.php?id=1100000003896952461&inputfile http://factordb.com/index.php?query=%2853*36%5E%28n%2B1%29%2B101%29%2F7&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35285 S0750078H 28×3675009+305 http://factordb.com/index.php?id=1100000004020085177 http://factordb.com/cert.php?id=1100000004020085177&inputfile http://factordb.com/index.php?query=28*36%5E%28n%2B2%29%2B305&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 35286 P81993SZ (5×3681995+821)/7 http://factordb.com/index.php?id=1100000002394962083 http://factordb.com/cert.php?id=1100000002394962083&inputfile http://factordb.com/index.php?query=%285*36%5E%28n%2B2%29%2B821%29%2F7&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show

All these numbers are strong probable primes (https://en.wikipedia.org/wiki/Strong_pseudoprime, https://primes.utm.edu/glossary/xpage/StrongPRP.html, https://mathworld.wolfram.com/StrongPseudoprime.html) to bases 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61 (see https://oeis.org/A014233), and strong Lucas probable primes (https://en.wikipedia.org/wiki/Lucas_pseudoprime#Strong_Lucas_pseudoprimes, https://mathworld.wolfram.com/StrongLucasPseudoprime.html) with parameters (P, Q) defined by Selfridge's Method A (see https://oeis.org/A217255), and trial factored to 1016 (thus, all these numbers are Baillie–PSW probable primes.

The unsolved families for bases b = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22, 24, 26, 28, 30, 36 (the solved or near-solved bases, i.e. the bases b with ≤ 10 unsolved families) and the factorization of the numbers in these families:

(for the factorization of the numbers in these families, the special number field sieve (https://en.wikipedia.org/wiki/Special_number_field_sieve, https://www.rieselprime.de/ziki/Special_number_field_sieve, https://mathworld.wolfram.com/NumberFieldSieve.html) or the general number field sieve (https://en.wikipedia.org/wiki/General_number_field_sieve, https://www.rieselprime.de/ziki/General_number_field_sieve, https://mathworld.wolfram.com/NumberFieldSieve.html) may be used, they have SNFS polynomials (https://www.rieselprime.de/ziki/SNFS_polynomial_selection), just like factorization of the numbers in https://stdkmd.net/nrr/aaaab.htm and https://stdkmd.net/nrr/abbbb.htm and https://stdkmd.net/nrr/aaaba.htm and https://stdkmd.net/nrr/abaaa.htm and https://stdkmd.net/nrr/abbba.htm and https://stdkmd.net/nrr/abbbc.htm and http://mklasson.com/factors/index.php and https://cs.stanford.edu/people/rpropper/math/factors/3n-2.txt, see https://stdkmd.net/nrr/records.htm and https://stdkmd.net/nrr/wanted.htm)

b base-b form of the unsolved family algebraic ((a×bn+c)/gcd(a+c,b−1)) form of the unsolved family current searching limit of length of this family factorization of the numbers in this family (n is the number of digits in the "{}", start with the smallest n making the number > b)
13 A{3}A (41×13n+1+27)/4 358000 http://factordb.com/index.php?query=%2841*13%5E%28n%2B1%29%2B27%29%2F4&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 85{M}B (5347×26n+1−297)/25 100000 http://factordb.com/index.php?query=%285347*26%5E%28n%2B1%29-297%29%2F25&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 {A}6F (2×26n+2−497)/5 100000 http://factordb.com/index.php?query=%282*26%5E%28n%2B2%29-497%29%2F5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 {H}MH (17×26n+2+3233)/25 100000 http://factordb.com/index.php?query=%2817*26%5E%28n%2B2%29%2B3233%29%2F25&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
26 {I}GL (18×26n+2−1243)/25 100000 http://factordb.com/index.php?query=%2818*26%5E%28n%2B2%29-1243%29%2F25&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
28 O{A}F (658×28n+1+125)/27 543203 http://factordb.com/index.php?query=(658*28^(n%2B1)%2B125)/27&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 B{0}EUV 11×36n+3+19255 100000 http://factordb.com/index.php?query=11*36%5E%28n%2B3%29%2B19255&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 HM{0}N 634×36n+1+23 100000 http://factordb.com/index.php?query=634*36%5E%28n%2B1%29%2B23&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 N{0}YYN 23×36n+3+45311 100000 http://factordb.com/index.php?query=23*36%5E%28n%2B3%29%2B45311&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
36 O{L}Z (123×36n+1+67)/5 100000 http://factordb.com/index.php?query=%28123*36%5E%28n%2B1%29%2B67%29%2F5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show

The large proven primes (> 10299) for bases b = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 22, 24, 26, 28, 30, 36 (the solved or near-solved bases, i.e. the bases b with ≤ 10 unsolved families) and their primality certificates (https://en.wikipedia.org/wiki/Primality_certificate, https://primes.utm.edu/glossary/xpage/Certificate.html, https://mathworld.wolfram.com/PrimalityCertificate.html, http://www.lix.polytechnique.fr/Labo/Francois.Morain/Primes/myprimes.html, https://stdkmd.net/nrr/cert/, http://factordb.com/certoverview.php) and the factorization of the numbers in their corresponding families: (you can click the "show" in the factordb page to see these primes written in base 10 and base b (for base b, change the "10" in "Digits (Base 10)" box to "b", support bases 2 ≤ b ≤ 36), also you can click the "N−1" or the "N+1" (open the "Primality proving" box) to see the factorization of N−1 and N+1)

(for the factorization of the numbers in these families, the special number field sieve (https://en.wikipedia.org/wiki/Special_number_field_sieve, https://www.rieselprime.de/ziki/Special_number_field_sieve, https://mathworld.wolfram.com/NumberFieldSieve.html) or the general number field sieve (https://en.wikipedia.org/wiki/General_number_field_sieve, https://www.rieselprime.de/ziki/General_number_field_sieve, https://mathworld.wolfram.com/NumberFieldSieve.html) may be used, they have SNFS polynomials (https://www.rieselprime.de/ziki/SNFS_polynomial_selection), just like factorization of the numbers in https://stdkmd.net/nrr/aaaab.htm and https://stdkmd.net/nrr/abbbb.htm and https://stdkmd.net/nrr/aaaba.htm and https://stdkmd.net/nrr/abaaa.htm and https://stdkmd.net/nrr/abbba.htm and https://stdkmd.net/nrr/abbbc.htm and http://mklasson.com/factors/index.php and https://cs.stanford.edu/people/rpropper/math/factors/3n-2.txt, see https://stdkmd.net/nrr/records.htm and https://stdkmd.net/nrr/wanted.htm)

b index of this minimal prime in base b base-b form of this minimal prime algebraic ((a×bn+c)/gcd(a+c,b−1)) form of this minimal prime factordb entry of this minimal prime primality certificate for this minimal prime factorization of the numbers in corresponding family (n is the number of digits in the "{}", start with the smallest n making the number > b)
9 149 763292 (31×9330−19)/4 http://factordb.com/index.php?id=1100000002359003642 http://factordb.com/cert.php?id=1100000002359003642 http://factordb.com/index.php?query=%2831*9%5E%28n%2B1%29-19%29%2F4&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
9 150 2768607 (23×9688−511)/8 http://factordb.com/index.php?id=1100000002495467486 http://factordb.com/cert.php?id=1100000002495467486 http://factordb.com/index.php?query=%2823*9%5E%28n%2B2%29-511%29%2F8&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
9 151 30115811 3×91160+10 http://factordb.com/index.php?id=1100000002376318423 http://factordb.com/cert.php?id=1100000002376318423 http://factordb.com/index.php?query=3*9%5E%28n%2B2%29%2B10&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
11 1065 A71358 11715−58 http://factordb.com/index.php?id=1100000003576826487 http://factordb.com/cert.php?id=1100000003576826487 http://factordb.com/index.php?query=11%5E%28n%2B2%29-58&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
11 1066 775944 (7×11761−367)/10 http://factordb.com/index.php?id=1100000002505568840 http://factordb.com/cert.php?id=1100000002505568840 http://factordb.com/index.php?query=%287*11%5E%28n%2B2%29-367%29%2F10&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
11 1067 5571011 (607×111011−7)/10 http://factordb.com/index.php?id=1100000002361376522 http://factordb.com/cert.php?id=1100000002361376522 http://factordb.com/index.php?query=%28607*11%5En-7%29%2F10&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3165 5027044 5×13272+56 http://factordb.com/index.php?id=1100000002632397005 http://factordb.com/cert.php?id=1100000002632397005 http://factordb.com/index.php?query=5*13%5E%28n%2B2%29%2B56&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3166 9271095 (3×13274−6103)/4 http://factordb.com/index.php?id=1100000003590431654 http://factordb.com/cert.php?id=1100000003590431654 http://factordb.com/index.php?query=%283*13%5E%28n%2B3%29-6103%29%2F4&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3167 102867771 13290+16654 http://factordb.com/index.php?id=1100000003590431633 http://factordb.com/cert.php?id=1100000003590431633 http://factordb.com/index.php?query=13%5E%28n%2B4%29%2B16654&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3168 93081 (3×13309−35)/4 http://factordb.com/index.php?id=1100000000840126705 proven prime by N−1 test (https://primes.utm.edu/prove/prove3_1.html, http://factordb.com/nmoverview.php?method=1), since N−1 is 39/4×(13308−1), thus factor N−1 is equivalent to factor 13308−1, and for the factorization of 13308−1, see http://myfactorcollection.mooo.com:8090/cgi-bin/showSingleEntry?Base=13&Exp=308&c0=-&EN= http://factordb.com/index.php?query=%283*13%5E%28n%2B1%29-35%29%2F4&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3169 B341C4 (11×13343+61)/12 http://factordb.com/index.php?id=1100000003590431618 http://factordb.com/cert.php?id=1100000003590431618 http://factordb.com/index.php?query=%2811*13%5E%28n%2B2%29%2B61%29%2F12&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3170 8B343 (107×13343−11)/12 http://factordb.com/index.php?query=%28107*13%5En-11%29%2F12&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3171 710371111 92×13374+183 http://factordb.com/index.php?id=1100000003590431609 http://factordb.com/cert.php?id=1100000003590431609 http://factordb.com/index.php?query=92*13%5E%28n%2B3%29%2B183&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3172 753757 (89×13376+19)/12 http://factordb.com/index.php?id=1100000003590431596 http://factordb.com/cert.php?id=1100000003590431596 http://factordb.com/index.php?query=%2889*13%5E%28n%2B1%29%2B19%29%2F12&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3173 9B03919 128×13392+9 http://factordb.com/index.php?id=1100000002632396790 http://factordb.com/cert.php?id=1100000002632396790 http://factordb.com/index.php?query=128*13%5E%28n%2B1%29%2B9&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3174 7B0B397 (15923×13397−11)/12 http://factordb.com/index.php?id=1100000003590431574 http://factordb.com/cert.php?id=1100000003590431574 http://factordb.com/index.php?query=%2815923*13%5En-11%29%2F12&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3175 1041493 13416+120 http://factordb.com/index.php?id=1100000002523249240 http://factordb.com/cert.php?id=1100000002523249240 http://factordb.com/index.php?query=13%5E%28n%2B2%29%2B120&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3176 810104151 17746×13416+1 http://factordb.com/index.php?id=1100000003590431555 proven prime by N−1 test (https://primes.utm.edu/prove/prove3_1.html, http://factordb.com/nmoverview.php?method=1), since N−1 is trivially fully factored http://factordb.com/index.php?query=17746*13%5E%28n%2B1%29%2B1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3177 81104351 1366×13436+1 http://factordb.com/index.php?id=1100000002373259109 proven prime by N−1 test (https://primes.utm.edu/prove/prove3_1.html, http://factordb.com/nmoverview.php?method=1), since N−1 is trivially fully factored http://factordb.com/index.php?query=1366*13%5E%28n%2B1%29%2B1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3178 B7486 (139×13486−7)/12 http://factordb.com/index.php?id=1100000002321015892 http://factordb.com/cert.php?id=1100000002321015892 http://factordb.com/index.php?query=%28139*13%5En-7%29%2F12&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3179 B563C (11×13564+1)/12 http://factordb.com/index.php?id=1100000000000217927 proven prime by N−1 test (https://primes.utm.edu/prove/prove3_1.html, http://factordb.com/nmoverview.php?method=1), since N−1 is 11/12×(13564−1), thus factor N−1 is equivalent to factor 13564−1, and for the factorization of 13564−1, see http://myfactorcollection.mooo.com:8090/cgi-bin/showSingleEntry?Base=13&Exp=564&c0=-&EN= http://factordb.com/index.php?query=%2811*13%5E%28n%2B1%29%2B1%29%2F12&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3180 1B576 (23×13576−11)/12 http://factordb.com/index.php?id=1100000002321021456 proven prime by N−1 test (https://primes.utm.edu/prove/prove3_1.html, http://factordb.com/nmoverview.php?method=1), since N−1 is 23/12×(13576−1), thus factor N−1 is equivalent to factor 13576−1, and for the factorization of 13576−1, see http://myfactorcollection.mooo.com:8090/cgi-bin/showSingleEntry?Base=13&Exp=576&c0=-&EN= http://factordb.com/index.php?query=%2823*13%5En-11%29%2F12&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3181 8069387 8×13695+111 http://factordb.com/index.php?id=1100000002615636527 http://factordb.com/cert.php?id=1100000002615636527 http://factordb.com/index.php?query=8*13%5E%28n%2B2%29%2B111&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3182 CC5713 (2021×13713−5)/12 http://factordb.com/index.php?id=1100000002615627353 http://factordb.com/cert.php?id=1100000002615627353 http://factordb.com/index.php?query=%282021*13%5En-5%29%2F12&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3183 B83474 (11×13836−719)/12 http://factordb.com/index.php?id=1100000003590430871 http://factordb.com/cert.php?id=1100000003590430871 http://factordb.com/index.php?query=%2811*13%5E%28n%2B2%29-719%29%2F12&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3184 9968B (3×13969+5)/4 http://factordb.com/index.php?id=1100000000258566244 http://factordb.com/cert.php?id=1100000000258566244 http://factordb.com/index.php?query=%283*13%5E%28n%2B1%29%2B5%29%2F4&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3185 101295181 131298+274 http://factordb.com/index.php?id=1100000002615445013 http://factordb.com/cert.php?id=1100000002615445013 http://factordb.com/index.php?query=13%5E%28n%2B3%29%2B274&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3186 913625 (3×131363−19)/4 http://factordb.com/index.php?id=1100000002321017776 http://factordb.com/cert.php?id=1100000002321017776 http://factordb.com/index.php?query=%283*13%5E%28n%2B1%29-19%29%2F4&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3187 715041 (7×131505−79)/12 http://factordb.com/index.php?id=1100000002320890755 http://factordb.com/cert.php?id=1100000002320890755 http://factordb.com/index.php?query=%287*13%5E%28n%2B1%29-79%29%2F12&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3188 93015511 120×131552+1 http://factordb.com/index.php?id=1100000000765961452 proven prime by N−1 test (https://primes.utm.edu/prove/prove3_1.html, http://factordb.com/nmoverview.php?method=1), since N−1 is trivially fully factored http://factordb.com/index.php?query=120*13%5E%28n%2B1%29%2B1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3189 72022972 93×132298+2 http://factordb.com/index.php?id=1100000002632396910 http://factordb.com/cert.php?id=1100000002632396910 http://factordb.com/index.php?query=93*13%5E%28n%2B1%29%2B2&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3190 1770270317 267×132705+20 http://factordb.com/index.php?id=1100000003590430825 http://factordb.com/cert.php?id=1100000003590430825 http://factordb.com/index.php?query=267*13%5E%28n%2B2%29%2B20&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3191 39062661 48×136267+1 http://factordb.com/index.php?id=1100000000765961441 proven prime by N−1 test (https://primes.utm.edu/prove/prove3_1.html, http://factordb.com/nmoverview.php?method=1), since N−1 is trivially fully factored http://factordb.com/index.php?query=48*13%5E%28n%2B1%29%2B1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3192 B06540BBA 11×136543+2012 http://factordb.com/index.php?id=1100000002616382906 http://factordb.com/cert.php?id=1100000002616382906 http://factordb.com/index.php?query=11*13%5E%28n%2B3%29%2B2012&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
13 3193 C1063192 1310633−50 http://factordb.com/index.php?id=1100000003590493750 http://factordb.com/cert.php?id=1100000003590493750 http://factordb.com/index.php?query=13%5E%28n%2B2%29-50&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
14 649 34D708 47×14708−1 http://factordb.com/index.php?id=1100000001540144903 proven prime by N+1 test (https://primes.utm.edu/prove/prove3_2.html, http://factordb.com/nmoverview.php?method=2), since N+1 is trivially fully factored http://factordb.com/index.php?query=47*14%5En-1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
14 650 4D19698 5×1419698−1 http://factordb.com/index.php?id=1100000000884560233 proven prime by N+1 test (https://primes.utm.edu/prove/prove3_2.html, http://factordb.com/nmoverview.php?method=2), since N+1 is trivially fully factored http://factordb.com/index.php?query=5*14%5En-1&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 2328 8802467 136×16247+7 http://factordb.com/index.php?id=1100000002468140199 proven prime by N−1 test (https://primes.utm.edu/prove/prove3_1.html, http://factordb.com/nmoverview.php?method=1), N−1 is 23×3×7×13×25703261×(289-digit prime) http://factordb.com/index.php?query=136*16%5E%28n%2B1%29%2B7&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 2329 D4263D (199×16264+131)/15 http://factordb.com/index.php?id=1100000002468170238 http://factordb.com/cert.php?id=1100000002468170238 http://factordb.com/index.php?query=%28199*16%5E%28n%2B1%29%2B131%29%2F15&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 2330 E02614DD 14×16264+1245 http://factordb.com/index.php?id=1100000003588388352 http://factordb.com/cert.php?id=1100000003588388352 http://factordb.com/index.php?query=14*16%5E%28n%2B3%29%2B1245&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 2331 8C0290ED 140×16292+237 http://factordb.com/index.php?id=1100000003588388307 http://factordb.com/cert.php?id=1100000003588388307 http://factordb.com/index.php?query=140*16%5E%28n%2B2%29%2B237&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 2332 DA3055 (41×16306−17)/3 http://factordb.com/index.php?id=1100000003588388284 http://factordb.com/cert.php?id=1100000003588388284 http://factordb.com/index.php?query=%2841*16%5E%28n%2B1%29-17%29%2F3&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 2333 CE80422D 3304×16423+13 http://factordb.com/index.php?id=1100000003588388257 http://factordb.com/cert.php?id=1100000003588388257 http://factordb.com/index.php?query=3304*16%5E%28n%2B1%29%2B13&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 2334 5F5446F 6×16546−145 http://factordb.com/index.php?id=1100000002604723967 http://factordb.com/cert.php?id=1100000002604723967 http://factordb.com/index.php?query=6*16%5E%28n%2B2%29-145&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 2335 88F545 137×16545−1 http://factordb.com/index.php?id=1100000000413679658 proven prime by N+1 test (https://primes.utm.edu/prove/prove3_2.html, http://factordb.com/nmoverview.php?method=2), since N+1 is trivially fully factored http://factordb.com/index.php?query=137*16%5En-1&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 2336 BE0792BB 190×16794+187 http://factordb.com/index.php?id=1100000003588387938 http://factordb.com/cert.php?id=1100000003588387938 http://factordb.com/index.php?query=190*16%5E%28n%2B2%29%2B187&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 2337 D91052 (68×161052−3)/5 http://factordb.com/index.php?id=1100000002321036020 http://factordb.com/cert.php?id=1100000002321036020 http://factordb.com/index.php?query=%2868*16%5En-3%29%2F5&use=n&n=1&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 2338 FAF106245 251×161064−187 http://factordb.com/index.php?id=1100000003588387610 http://factordb.com/cert.php?id=1100000003588387610 http://factordb.com/index.php?query=251*16%5E%28n%2B2%29-187&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 2339 F81517F (233×161518+97)/15 http://factordb.com/index.php?id=1100000000633744824 http://factordb.com/cert.php?id=1100000000633744824 http://factordb.com/index.php?query=%28233*16%5E%28n%2B1%29%2B97%29%2F15&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 2340 201713321 2×161716+801 http://factordb.com/index.php?id=1100000003588386735 http://factordb.com/cert.php?id=1100000003588386735 http://factordb.com/index.php?query=2*16%5E%28n%2B3%29%2B801&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 2341 300F1960AF 769×161962−81 http://factordb.com/index.php?id=1100000003588368750 http://factordb.com/cert.php?id=1100000003588368750 http://factordb.com/index.php?query=769*16%5E%28n%2B2%29-81&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 2342 90354291 9×163544+145 http://factordb.com/index.php?id=1100000000633424191 http://factordb.com/cert.php?id=1100000000633424191 http://factordb.com/index.php?query=9*16%5E%28n%2B2%29%2B145&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 2343 5BC3700D (459×163701+1)/5 http://factordb.com/index.php?id=1100000000993764322 http://factordb.com/cert.php?id=1100000000993764322 http://factordb.com/index.php?query=%28459*16%5E%28n%2B1%29%2B1%29%2F5&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
16 2344 D0B17804 (3131×1617804−11)/15 http://factordb.com/index.php?id=1100000003589278511 http://factordb.com/cert.php?id=1100000003589278511 http://factordb.com/index.php?query=%283131*16%5En-11%29%2F15&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
18 547 80298B 8×18299+11 http://factordb.com/index.php?id=1100000002355574745 http://factordb.com/cert.php?id=1100000002355574745 http://factordb.com/index.php?query=8*18%5E%28n%2B1%29%2B11&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
18 548 H766FH 18768−37 http://factordb.com/index.php?id=1100000003590430490 http://factordb.com/cert.php?id=1100000003590430490 http://factordb.com/index.php?query=18%5E%28n%2B2%29-37&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
18 549 C06268C5 12×186270+221 http://factordb.com/index.php?id=1100000003590442437 http://factordb.com/cert.php?id=1100000003590442437 http://factordb.com/index.php?query=12*18%5E%28n%2B2%29%2B221&use=n&n=0&VP=on&VC=on&EV=on&OD=on&PR=on&FF=on&PRP=on&CF=on&U=on&C=on&perpage=200&format=1&sent=Show
20 3301 H247A0H (17×20250−59677)/19 http://factordb.com/index.php?id=1100000003590502619 http://factordb.com/cert.php?id=1100000003590502619
20 3302 7249A7 (7×20251+1133)/19 http://factordb.com/index.php?id=1100000003590502602 http://factordb.com/cert.php?id=1100000003590502602
20 3303 J7270 (368×20270−7)/19 http://factordb.com/index.php?id=1100000002325395462 http://factordb.com/cert.php?id=1100000002325395462
20 3304 J330CCC7 20334−58953 http://factordb.com/index.php?id=1100000003590502572 http://factordb.com/cert.php?id=1100000003590502572
20 3305 40387404B 4×20391+32091 http://factordb.com/index.php?id=1100000003590502563 http://factordb.com/cert.php?id=1100000003590502563
20 3306 EC04297 292×20430+7 http://factordb.com/index.php?id=1100000002633348702 http://factordb.com/cert.php?id=1100000002633348702
20 3307 G44799 (16×20449−2809)/19 http://factordb.com/index.php?id=1100000000840126753 http://factordb.com/cert.php?id=1100000000840126753
20 3308 3A5273 (67×20528−143)/19 http://factordb.com/index.php?id=1100000003590502531 http://factordb.com/cert.php?id=1100000003590502531
20 3309 E566C7 (14×20568−907)/19 http://factordb.com/index.php?id=1100000003590502516 http://factordb.com/cert.php?id=1100000003590502516
20 3310 JCJ629 393×20629−1 http://factordb.com/index.php?id=1100000001559454258 proven prime by N+1 test (https://primes.utm.edu/prove/prove3_2.html, http://factordb.com/nmoverview.php?method=2), since N+1 is trivially fully factored
20 3311 J65505J 20658−7881 http://factordb.com/index.php?id=1100000003590502490 http://factordb.com/cert.php?id=1100000003590502490
20 3312 501163AJ 5×201165+219 http://factordb.com/index.php?id=1100000003590502412 http://factordb.com/cert.php?id=1100000003590502412
20 3313 CD2449 (241×202449−13)/19 http://factordb.com/index.php?id=1100000002325393915 http://factordb.com/cert.php?id=1100000002325393915
20 3314 G06269D 16×206270+13 http://factordb.com/index.php?id=1100000003590539457 http://factordb.com/cert.php?id=1100000003590539457
22 7984 I7G0254H 8882×22255+17 http://factordb.com/index.php?id=1100000003591372788 http://factordb.com/cert.php?id=1100000003591372788
22 7985 D02555EEF 13×22259+60339 http://factordb.com/index.php?id=1100000003591371932 http://factordb.com/cert.php?id=1100000003591371932
22 7986 IK322F (398×22323−125)/21 http://factordb.com/index.php?id=1100000000840384145 http://factordb.com/cert.php?id=1100000000840384145
22 7987 C0340G9 12×22342+361 http://factordb.com/index.php?id=1100000000840384159 http://factordb.com/cert.php?id=1100000000840384159
22 7988 77E348K7 (485×22350+373)/3 http://factordb.com/index.php?id=1100000003591369779 http://factordb.com/cert.php?id=1100000003591369779
22 7989 J379KJ (19×22381+443)/21 http://factordb.com/index.php?id=1100000003591369027 http://factordb.com/cert.php?id=1100000003591369027
22 7990 J388EJ (19×22390−2329)/21 http://factordb.com/index.php?id=1100000003591367729 http://factordb.com/cert.php?id=1100000003591367729
22 7991 DJ400 (292×22400−19)/21 http://factordb.com/index.php?id=1100000002325880110 http://factordb.com/cert.php?id=1100000002325880110
22 7992 E404K7 (2×22406+373)/3 http://factordb.com/index.php?id=1100000003591366298 http://factordb.com/cert.php?id=1100000003591366298
22 7993 66F453B3 (971×22455−705)/7 http://factordb.com/index.php?id=1100000003591365809 http://factordb.com/cert.php?id=1100000003591365809
22 7994 L0454B63 21×22457+5459 http://factordb.com/index.php?id=1100000003591365331 http://factordb.com/cert.php?id=1100000003591365331
22 7995 L483G3 22485−129 http://factordb.com/index.php?id=1100000003591364730 http://factordb.com/cert.php?id=1100000003591364730
22 7996 E60496L 314×22497+21 http://factordb.com/index.php?id=1100000000632703239 http://factordb.com/cert.php?id=1100000000632703239
22 7997 I626AF (6×22628−1259)/7 http://factordb.com/index.php?id=1100000000632724334 http://factordb.com/cert.php?id=1100000000632724334
22 7998 K0760EC1 20×22763+7041 http://factordb.com/index.php?id=1100000000632724415 http://factordb.com/cert.php?id=1100000000632724415
22 7999 J0767IGGJ 19×22771+199779 http://factordb.com/index.php?id=1100000003591362567 http://factordb.com/cert.php?id=1100000003591362567
22 8000 7959K7 (22961+857)/3 http://factordb.com/index.php?id=1100000003591361817 http://factordb.com/cert.php?id=1100000003591361817
22 8001 L2385KE7 222388−653 http://factordb.com/index.php?id=1100000003591360774 http://factordb.com/cert.php?id=1100000003591360774
22 8002 738152L (223817−289)/3 http://factordb.com/index.php?id=1100000003591359839 http://factordb.com/cert.php?id=1100000003591359839
24 3400 I0241I5 18×24243+437 http://factordb.com/index.php?id=1100000002633360037 http://factordb.com/cert.php?id=1100000002633360037
24 3401 D0259KKD 13×24262+12013 http://factordb.com/index.php?id=1100000003593270725 http://factordb.com/cert.php?id=1100000003593270725
24 3402 C7298 (283×24298−7)/23 http://factordb.com/index.php?id=1100000002326181235 http://factordb.com/cert.php?id=1100000002326181235
24 3403 203137 2×24314+7 http://factordb.com/index.php?id=1100000002355610241 http://factordb.com/cert.php?id=1100000002355610241
24 3404 BC0331B 276×24332+11 http://factordb.com/index.php?id=1100000002633359842 http://factordb.com/cert.php?id=1100000002633359842
24 3405 N2644LLN 242647−1201 http://factordb.com/index.php?id=1100000003593270089 http://factordb.com/cert.php?id=1100000003593270089
24 3406 D2698LD (13×242700+4403)/23 http://factordb.com/index.php?id=1100000003593269876 http://factordb.com/cert.php?id=1100000003593269876
24 3407 A029518ID 10×242954+5053 http://factordb.com/index.php?id=1100000003593269654 http://factordb.com/cert.php?id=1100000003593269654
24 3408 88N5951 201×245951−1 http://factordb.com/index.php?id=1100000003593275880 proven prime by N+1 test (https://primes.utm.edu/prove/prove3_2.html, http://factordb.com/nmoverview.php?method=2), since N+1 is trivially fully factored
24 3409 N00N8129LN 13249×248131−49 http://factordb.com/index.php?id=1100000003593391606 http://factordb.com/cert.php?id=1100000003593391606
26 25174 OL0214M9 645×26216+581 http://factordb.com/index.php?id=1100000000840631576 proven prime by N−1 test (https://primes.utm.edu/prove/prove3_1.html, http://factordb.com/nmoverview.php?method=1), N−1 is 22×52×7×223×42849349×(296-digit prime)
26 25175 1A219P (7×26220+73)/5 http://factordb.com/index.php?id=1100000000840631595 http://factordb.com/cert.php?id=1100000000840631595
26 25176 A223DP (2×26225+463)/5 http://factordb.com/index.php?id=1100000003850155262 http://factordb.com/cert.php?id=1100000003850155262
26 25177 6J225 (169×26225−19)/25 http://factordb.com/index.php?id=1100000002328050895 http://factordb.com/cert.php?id=1100000002328050895
26 25178 O2285 (24×26229−499)/5 http://factordb.com/index.php?id=1100000002328059255 http://factordb.com/cert.php?id=1100000002328059255
26 25179 K0230K0IP 20×26234+352013 http://factordb.com/index.php?id=1100000000840631669 http://factordb.com/cert.php?id=1100000000840631669
26 25180 B0236OB 11×26238+635 http://factordb.com/index.php?id=1100000002634136234 http://factordb.com/cert.php?id=1100000002634136234
28 25485 JN206 (536×28206−23)/27 proven prime by N−1 test (https://primes.utm.edu/prove/prove3_1.html, http://factordb.com/nmoverview.php?method=1), N−1 is 2×1061×1171×74311×(289-digit prime)
28 25486 3211M9 (28213+4841)/9 http://factordb.com/index.php?id=1100000003850161936 http://factordb.com/cert.php?id=1100000003850161936
28 25487 HD0213D 489×28214+13 http://factordb.com/index.php?id=1100000003850161937 http://factordb.com/cert.php?id=1100000003850161937
28 25488 64O2179 (1556×28218−143)/9 http://factordb.com/index.php?id=1100000000840840215 http://factordb.com/cert.php?id=1100000000840840215
28 25489 G0217A0N 16×28220+7863 http://factordb.com/index.php?id=1100000003850161938 http://factordb.com/cert.php?id=1100000003850161938
28 25490 55OA226F (110278×28227+125)/27 http://factordb.com/index.php?id=1100000003850161939 http://factordb.com/cert.php?id=1100000003850161939
28 25491 L0229Q3 21×28231+731 http://factordb.com/cert.php?id=1100000003850161940
28 25492 B02317ID 11×28234+6005 http://factordb.com/cert.php?id=1100000003850161941
28 25493 PM233B (697×28234−319)/27 http://factordb.com/cert.php?id=1100000003850161942
28 25494 K0238OF 20×28240+687 http://factordb.com/cert.php?id=1100000000840840142
28 25495 I262E3 (2×28264−383)/3 http://factordb.com/cert.php?id=1100000003850161943
28 25496 C5A273F (9217×28274+125)/27 http://factordb.com/cert.php?id=1100000003850161944
28 25497 J0276IMB 19×28279+14739 http://factordb.com/cert.php?id=1100000003850161945
28 25498 F0282QAP 15×28285+20689 http://factordb.com/cert.php?id=1100000000840840006
28 25499 M0296KKN 22×28299+16263 http://factordb.com/cert.php?id=1100000003850161946
28 25500 C31043 (4×28312−2101)/9 http://factordb.com/cert.php?id=1100000003850161947
28 25501 RN319 (752×28319−23)/27 http://factordb.com/cert.php?id=1100000002611723967
28 25502 CA320F (334×28321+125)/27 http://factordb.com/cert.php?id=1100000000840839995
28 25503 D6326LR (119×28328+3967)/9 http://factordb.com/cert.php?id=1100000003850161948
28 25504 B350AB (11×28352−767)/27 http://factordb.com/cert.php?id=1100000003850161949
28 25505 GA0355N 458×28356+23 http://factordb.com/cert.php?id=1100000003850161950
28 25506 A0356P7P 10×28359+19821 http://factordb.com/cert.php?id=1100000003850161951
28 25507 J363H (19×28364−73)/27 http://factordb.com/cert.php?id=1100000002611724460
28 25508 4B381 (119×28381−11)/27 http://factordb.com/cert.php?id=1100000002611724588
28 25509 EB04051 403×28406+1 proven prime by N−1 test (https://primes.utm.edu/prove/prove3_1.html), since N−1 is trivially fully factored
28 25510 AN461 (293×28461−23)/27 http://factordb.com/cert.php?id=1100000002611724556
28 25511 4O61409 (44×28616−6191)/9 http://factordb.com/cert.php?id=1100000000840839989
28 25512 2D641 (67×28641−13)/27 http://factordb.com/cert.php?id=1100000002611725341
28 25513 70748M5 7×28750+621 http://factordb.com/cert.php?id=1100000003850161956
28 25514 4A0804B 122×28805+11 http://factordb.com/cert.php?id=1100000003850161957
28 25515 LK925F (587×28926−155)/27 http://factordb.com/cert.php?id=1100000000840839978
28 25516 J01071AC5 19×281074+8181 http://factordb.com/cert.php?id=1100000003850161959
28 25517 J01252J5 19×281254+537 http://factordb.com/cert.php?id=1100000003850161963
28 25518 513046F (5×281306+1021)/27 http://factordb.com/cert.php?id=1100000003850161964
28 25519 51332P8P (5×281335+426163)/27 http://factordb.com/cert.php?id=1100000003850161965
28 25520 5I1370F (17×281371−11)/3 http://factordb.com/cert.php?id=1100000003850161972
28 25521 A14236F (10×281425−2899)/27 http://factordb.com/cert.php?id=1100000000840839947
28 25522 G01899AN 16×281901+303 http://factordb.com/cert.php?id=1100000003850161973
28 25523 537468P (5×283748+2803)/27 http://factordb.com/cert.php?id=1100000003850161974
28 25524 QO423969 (242×284241−4679)/9 http://factordb.com/cert.php?id=1100000000840839934
28 25525 D0526777D 13×285270+5697 http://factordb.com/cert.php?id=1100000003850151420
30 2613 AN206 (313×30206−23)/29 http://factordb.com/cert.php?id=1100000002327651073
30 2614 M241QB (22×30243+3139)/29 http://factordb.com/cert.php?id=1100000003593408295
30 2615 M0547SS7 22×30550+26047 http://factordb.com/cert.php?id=1100000003593407988
30 2616 C010221 12×301023+1 proven prime by N−1 test (https://primes.utm.edu/prove/prove3_1.html, http://factordb.com/nmoverview.php?method=1), since N−1 is trivially fully factored
30 2617 54882J (5×304883+401)/29 http://factordb.com/cert.php?id=1100000002327649423
30 2619 OT34205 25×3034205−1 proven prime by N+1 test (https://primes.utm.edu/prove/prove3_2.html, http://factordb.com/nmoverview.php?method=2), since N+1 is trivially fully factored

Condensed table for bases 2 ≤ b ≤ 36: (the bases b = 11, 13, 16, 17, 19, 21~23, 25~36 data assumes the primality of the probable primes) (This data assumes that a number > 1025000 which has passed the Miller–Rabin primality tests to all prime bases p < 64 and has passed the Baillie–PSW primality test and has trial factored to 1016 is in fact prime, since in some cases (e.g. b = 11) a candidate for minimal prime base b is too large to be proven prime rigorously)

b number of minimal primes base b base-b form of the top 10 known minimal prime base b (write "dn" if there are 5 or more (n) consecutive same digits d) length of the top 10 known minimal prime base b algebraic ((a×bn+c)/gcd(a+c,b−1)) form of the top 10 known minimal prime base b number of unsolved families in base b searching limit of length for the unsolved families in base b (if there are different searching limits for the unsolved families in base b, choose the lowest searching limit)
2 1 11 2 3 0
3 3 111
21
12
3
2
2
13
7
5
0
4 5 221
31
23
13
11
3
2
2
2
2
41
13
11
7
5
0
5 22 109313
300031
44441
33331
33001
30301
14444
10103
3101
414
96
6
5
5
5
5
5
5
4
3
595+8
9391
3121
2341
2251
1951
1249
653
401
109
0
6 11 40041
4441
4401
51
45
35
31
25
21
15
5
4
4
2
2
2
2
2
2
2
5209
1033
1009
31
29
23
19
17
13
11
0
7 71 3161
51071
3601
1100021
531101
351101
300053
150001
100121
40054
17
10
8
7
6
6
6
6
6
5
(717−5)/2
36×78+1
(78−47)/2
134471
91631
62819
50459
28813
16871
9643
0
8 75 42207
51325
7121
7777461
7471
481
55025
5550525
5500525
4577
221
15
13
11
9
9
8
7
7
7
(4×8221+17)/7
(5×815−173)/7
813−7
(28669×87−25)/7
(53×88−25)/7
(4×89−25)/7
(5×88−2413)/7
1495381
1474901
(4×87+185)/7
0
9 151 30115811
2768607
763292
56136
102557
302051
819335
7271507
511361
1012507
1161
689
331
38
28
23
22
19
16
15
3×91160+10
(23×9688−511)/8
(31×9330−19)/4
(409×936−1)/8
927+52
3×922+46
922−454
(527×917−511)/8
(41×915+359)/8
914+412
0
10 77 502827
5111
80551
66600049
66000049
60549
22051
5200007
946669
666649
31
12
8
8
8
8
8
7
6
6
5×1030+27
(5×1012−41)/9
(725×106−41)/9
66600049
66000049
6×107+49
22×106+1
5200007
946669
666649
0
11 1068 5762668
5571011
775944
A71358
8522005
507206
51612A
5012657
1012551
326122
62669
1013
761
715
223
208
163
129
128
124
(57×1162668−7)/10
(607×111011−7)/10
(7×11761−367)/10
11715−58
(17×11222−111)/2
(557×11206−7)/10
(11163−57)/2
5×11128+62
11127+56
(178×11122−3)/5
0
12 106 403977
B0279B
B699B
AA051
B00099B
AAA0001
BBBAA1
A00065
44AAA1
BBBB1
42
30
9
8
7
7
6
6
6
5
4×1241+91
11×1229+119
129−313
130×126+1
32847239
32555521
2985817
2488397
1097113
248821
0
13 3196~3197 95197420
8032017111
C523755C
C1063192
B06540BBA
39062661
1770270317
72022972
93015511
715041
197421
32021
23757
10633
6544
6269
2708
2300
1554
1505
(113×13197420−5)/12
8×1332020+183
(149×1323756+79)/12
1310633−50
11×136543+2012
48×136267+1
267×132705+20
93×132298+2
120×131552+1
(7×131505−79)/12
1 358000
14 650 4D19698
34D708
8D14185
886B
408349
8C793
1879B
6B772B
46309
A593
19699
710
144
87
86
81
81
80
65
60
5×1419698−1
47×14708−1
9×14143−79
(8×1487+31)/13
4×1485+65
(116×1480−129)/13
(21×1480+31)/13
(89×1479−1649)/13
(4×1465−667)/13
(10×1460−101)/13
0
15 1284 715597
E145397
9610408
773CE
759CCE
503317
EB31
6330261
705024B
B70241
157
148
107
75
62
36
32
30
28
27
(15157+59)/2
15148−2558
(66×15106−619)/7
(1575+163)/2
(1562+2413)/2
5×1535+22
(207×1531−11)/14
1398×1527+1
1580×1525+11
172×1525+1
0
16 2347 3116137AF
472785DD
DB32234
D0B17804
5BC3700D
90354291
300F1960AF
201713321
F81517F
FAF106245
116139
72787
32235
17806
3703
3545
1965
1717
1519
1066
(16116139+619)/5
(4×1672787+2291)/15
(206×1632234−11)/15
(3131×1617804−11)/15
(459×163701+1)/5
9×163544+145
769×161962−81
2×161716+801
(233×161518+97)/15
251×161064−187
0
17 10409~10427 B671032E
570513101
E9B44732
D0GD37096
G732072F
15024325D
34716074
B3013077D
9D0103985
1090191F
67105
51313
44734
37099
32074
24328
16076
13080
10401
9022
(11×1767105−2411)/16
92×1751311+1
(3963×1744732−11)/16
(60381×1737096−13)/16
(263×1732073+121)/16
22×1724326+13
(887×1716074−7)/16
190×1713078+13
166×1710399+5
179021+32
18 100000
18 549 C06268C5
H766FH
80298B
C0116F5
HD93
GG0301
CF305
B196B
CCF145
714G7
6271
768
300
119
94
33
32
21
17
16
12×186270+221
18768−37
8×18299+11
12×18118+275
(302×1893−13)/17
304×1831+1
(219×1831−185)/17
(11×1821−1541)/17
(3891×1815−185)/17
(7×1816+2747)/17
0
19 31412~31435 H862916
D90730469
4F0498476
2482247
2458867A
9042994G
DB36272
333531088
B26588FG
10227907717
86292
73049
49850
48225
45888
42996
36273
31091
26590
22795
(17×1986292−215)/18
256×1973047+9
91×1949848+6
(1948225+44)/9
(1945888+926)/9
9×1942995+16
(245×1936272−11)/18
(20579×1931088−5)/18
(11×1926590+1447)/18
1922794+50566
23 100000
20 3314 G06269D
CD2449
501163AJ
J65505J
JCJ629
E566C7
3A5273
G44799
EC04297
40387404B
6271
2450
1166
658
631
568
529
449
432
392
16×206270+13
(241×202449−13)/19
5×201165+219
20658−7881
393×20629−1
(14×20568−907)/19
(67×20528−143)/19
(16×20449−2809)/19
292×20430+7
4×20391+32091
0
21 13382~13394 40473339G
B9045019E5
HD37414
BD35027B
9903323999H
530606FEK
4329236B
J233046J
9211260D
5D0198481
47336
45023
37415
35029
33244
30609
29238
23306
21128
19851
4×2147335+205
240×2145021+299
(353×2137414−13)/20
(233×2135028−53)/20
198×2133242+4175
(2130609+18455)/4
(83×2129237+157)/20
(19×2123306−5479)/20
(9×2121128−3709)/20
118×2119849+1
12 50000
22 8003 BK220015
738152L
L2385KE7
7959K7
J0767IGGJ
K0760EC1
I626AF
E60496L
L483G3
L0454B63
22003
3817
2388
961
772
764
628
499
485
458
(251×2222002−335)/21
(223817−289)/3
222388−653
(22961+857)/3
19×22771+199779
20×22763+7041
(6×22628−1259)/7
314×22497+21
22485−129
21×22457+5459
0
23 65168~65268 9479687
H3899429
L35I36858
L35884D5
L9735333
3D34854G
BF034431D
HHLH032823H
555331954
J31543A4
47969
38996
36861
35889
35335
34856
34434
32828
31957
31545
(9×2347969−53)/22
(17×2338996−7783)/22
(123022×2336858−9)/11
(21×2335889−8×235−13)/22
(10831×2335333−7)/22
(79×2334855+53)/22
268×2334432+13
216332×2332824+17
(60833×2331954−3)/22
(19×2331545−4903)/22
100 50000
24 3409 N00N8129LN
88N5951
A029518ID
D2698LD
N2644LLN
BC0331B
203137
C7298
D0259KKD
I0241I5
8134
5953
2955
2700
2647
334
315
299
263
244
13249×248131−49
201×245951−1
10×242954+5053
(13×242700+4403)/23
242647−1201
276×24332+11
2×24314+7
(283×24298−7)/23
13×24262+12013
18×24243+437
0
25 133625~133724 5J46728
JD1046037D07
4F42783OO
D41667G
GHN040444H
537981A8
DH0H35773
5034151HHBB
H32683FH
M2131741
46729
46043
42786
41668
40448
37983
35776
34156
32685
31743
(139×2546728−19)/24
12201×2546040+8132
(37×2542785+1867)/8
(13×2541668+59)/24
10448×2540445+17
(5×2537983+3067)/24
(205217×2535773−17)/24
5×2534155+276536
(17×2532685−1217)/24
(13249×2531741−1)/24
99 50000
26 25255~25259 M0611862BB
J044303KCB
6K233005
LD0209757
720279OL
5193916F
9GDK15920P
M8772P
K04364I5
J4222P
61190
44307
23302
20978
20281
19393
15924
8773
4367
4223
22×2661189+1649
19×2644306+13843
(34×2623301−79)/5
559×2620976+7
(7×2620281+11393)/25
(2619393+179)/5
(32569×2615921+21)/5
(22×268773+53)/25
20×264366+473
(19×264223+131)/25
4 100000
27 102848~102896 ME496409G
PH0478901
QF47165AF5
J040791PD
51039164I07
NGN036329N
153F358315
L35564GLG
PN033401J
BF275148
49643
47893
47169
40794
39169
36333
35835
35567
33404
27516
(293×2749642−1736)/13
692×2747891+1
(691×2747168−95045)/26
19×2740793+688
136×2739167+13129
17222×2736330+23
(22557×2735832−275)/26
(21×2735567−94921)/26
698×2733402+19
(301×2727515−197)/26
48 50000
28 25528~25529 O4O945359
5OA31238F
N624051LR
D0526777D
QO423969
537468P
G01899AN
A14236F
5I1370F
51332P8P
94538
31241
24054
5271
4242
3748
1902
1425
1372
1335
(6092×2894536−143)/9
(4438×2831239+125)/27
(209×2824053+3967)/9
13×285270+5697
(242×284241−4679)/9
(5×283748+2803)/27
16×281901+303
(10×281425−2899)/27
(17×281371−11)/3
(5×281335+426163)/27
1 543202
29
30 2619 OT34205
I024608D
54882J
C010221
M0547SS7
M241QB
AN206
50164B
J153QJ
J94QQJ
34206
24610
4883
1024
551
243
207
166
155
97
25×3034205−1
18×3024609+13
(5×304883+401)/29
12×301023+1
22×30550+26047
(22×30243+3139)/29
(313×30206−23)/29
5×30165+11
(19×30155+6071)/29
(19×3097+188771)/29
0
31
32 168832~169017 V09018867D
T018762F
DM18004L
F17783H
V1775333
A17650I5
8017186MJ
V6171079
V16755O3
C016737AAA9
18871
18764
18006
17784
17755
17652
17189
17109
16757
16742
31753×3218868+13
29×3218763+15
(425×3218005−53)/31
(15×3217784+47)/31
3217755−925
(10×3217652+7771)/31
8×3217188+723
(967×3217108+87)/31
3216757−253
12×3216741+338249
185 20000
33 279960~280095 F193556UW
F19078A3K
BU18934RP
WWC18599H
L18247BO7
R17333CA
MF1690135
CT167940H
T916566U4
70165547V
19358
19081
18937
18602
18250
17335
16904
16797
16569
16557
(15×3319358−297263)/32
(15×3319081−186767)/32
(191×3318936−1679)/16
(8707×3318600+37)/8
(21×3318250−345781)/32
(27×3317335−16411)/32
(719×3316903−13007)/32
(413×3316796−31037)/32
(937×3316568+22007)/32
7×3316556+262
135 20000
34 184772~184833 UKN49845
I469468FF
M45310UIF
QG44663L
W043669MKN
NA0417331
K038239J4J
F34013X5
K032901E1
K732021
49847
46949
45313
44665
43673
41736
38243
34015
32904
32022
(34343×3449845−23)/33
(6×3446949−128321)/11
(2×3445313+27313)/3
(874×3444664+149)/33
32×3443672+26135
792×3441734+1
20×3438242+22119
(5×3434015+6617)/11
20×3432903+477
(667×3432021−7)/33
61 50000
35
36 35286~35290 P81993SZ
S0750078H
7K26567Z
J10117LJ
VL07258J
EO06177V
FZ57773P
T0946181
RY4562H
OZ3932AZ
81995
75010
26569
10119
7261
6180
5780
4621
4564
3935
(5×3681995+821)/7
28×3675009+305
(53×3626568+101)/7
(19×3610119+2501)/35
1137×367259+19
528×366178+31
16×365779−1163
(36549×364619−289)/35
(979×364563−629)/35
25×363934−901
4 100000

Links for top (probable) primes:

Other researches for the digits of the primes:

Left-truncatable primes (https://en.wikipedia.org/wiki/Truncatable_prime, https://primes.utm.edu/glossary/xpage/LeftTruncatablePrime.html, https://mathworld.wolfram.com/TruncatablePrime.html), i.e. every nonempty suffix is prime:

  1. http://primerecords.dk/left-truncatable.txt (base 10)
  2. http://chesswanks.com/num/LTPs/ (bases 3 to 120)
  3. https://www.ams.org/journals/mcom/1977-31-137/S0025-5718-1977-0427213-2/S0025-5718-1977-0427213-2.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_28.pdf) (bases 3 to 11)
  4. https://oeis.org/A103443 (largest left-truncatable prime in base b)
  5. https://oeis.org/A103463 (length of the largest left-truncatable prime in base b)
  6. https://oeis.org/A076623 (number of left-truncatable primes in base b)

Right-truncatable primes (https://en.wikipedia.org/wiki/Truncatable_prime, https://primes.utm.edu/glossary/xpage/RightTruncatablePrime.html, https://mathworld.wolfram.com/TruncatablePrime.html), i.e. every nonempty prefix is prime:

  1. http://primerecords.dk/right-truncatable.txt (base 10)
  2. http://fatphil.org/maths/rtp/rtp.html (bases 3 to 90)
  3. https://www.ams.org/journals/mcom/1977-31-137/S0025-5718-1977-0427213-2/S0025-5718-1977-0427213-2.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_28.pdf) (bases 3 to 15)
  4. https://oeis.org/A023107 (largest right-truncatable prime in base b)
  5. https://oeis.org/A103483 (length of the largest right-truncatable prime in base b)
  6. https://oeis.org/A076586 (number of right-truncatable primes in base b)

Other researches for the minimal elements of other subsets of positive integers written in the positional numeral system with radix b, as digit strings with subsequence ordering:

Primes == 1 mod 4:

  1. https://www.primepuzzles.net/puzzles/puzz_178.htm
  2. https://oeis.org/A111055

Primes == 3 mod 4:

  1. https://www.primepuzzles.net/puzzles/puzz_178.htm
  2. https://oeis.org/A111056

Palindromic primes:

  1. https://www.primepuzzles.net/puzzles/puzz_178.htm
  2. https://oeis.org/A114835

Composites:

  1. https://oeis.org/A071070

Squares:

  1. http://recursed.blogspot.com/2006/12/prime-game.html
  2. https://oeis.org/A130448

Powers of 2:

  1. https://oeis.org/A071071/a071071.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_13.pdf)
  2. https://oeis.org/A071071

Multiples of 3:

  1. https://oeis.org/A071073

Multiples of 4:

  1. https://oeis.org/A071072

Other sets:

  1. https://arxiv.org/pdf/1607.01548.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_14.pdf) (sums of three squares, quadratic residues mod 6, quadratic residues mod 7, range of Euler’s totient function, range of "Euler’s totient function + 3", range of Dedekind psi function, perfect numbers)
  2. https://nntdm.net/papers/nntdm-25/NNTDM-25-1-036-047.pdf (cached copy at https://github.com/xayahrainie4793/pdf-files-cached-copy/blob/main/pdf_15.pdf) (range of "Euler’s totient function + n", for 0 ≤ n ≤ 5)

Tools about this research: (in fact, you can also use Wolfram Alpha (https://www.wolframalpha.com/) or online Magma calculator (http://magma.maths.usyd.edu.au/calc/) or Pari/GP (https://pari.math.u-bordeaux.fr/) or Wolfram Mathematica (https://www.wolfram.com/mathematica/) or Maple (https://www.maplesoft.com/))

Prime checkers:

  1. https://primes.utm.edu/curios/includes/primetest.php
  2. https://www.numberempire.com/primenumbers.php
  3. http://www.numbertheory.org/php/lucas.html
  4. http://www.javascripter.net/faq/numberisprime.htm
  5. http://www.javascripter.net/math/primes/millerrabinprimalitytest.htm
  6. http://www.javascripter.net/math/calculators/100digitbigintcalculator.htm (just type x and click "prime?")
  7. https://www.bigprimes.net/primalitytest
  8. https://www.archimedes-lab.org/primOmatic.html
  9. http://www.sonic.net/~undoc/java/PrimeCalc.html
  10. http://www.proftnj.com/calcprem.htm (in French) (use the box "Rechercher si un nombre est premier" and click "Rechercher")
  11. https://primes.utm.edu/nthprime/ (calculate the nth prime)
  12. http://factordb.com/nextprime.php (calculate the next (probable) prime above N)

Integer factorizers:

  1. https://www.numberempire.com/numberfactorizer.php
  2. https://www.alpertron.com.ar/ECM.HTM
  3. http://www.javascripter.net/math/calculators/primefactorscalculator.htm
  4. https://betaprojects.com/calculators/prime_factors.html
  5. https://www.emathhelp.net/calculators/pre-algebra/prime-factorization-calculator/
  6. http://www.numbertheory.org/php/factor.html
  7. https://primefan.tripod.com/Factorer.html
  8. https://www.calculatorsoup.com/calculators/math/prime-factors.php
  9. https://www.calculator.net/prime-factorization-calculator.html
  10. http://www.se16.info/js/factor.htm
  11. http://math.fau.edu/Richman/mla/factor-f.htm
  12. http://www.rsok.com/~jrm/factor.html
  13. http://www.brennen.net/primes/FactorApplet.html (need run with Java)
  14. https://web.archive.org/web/20161004191531/http://britton.disted.camosun.bc.ca/jbprimefactor.htm
  15. http://wims.unice.fr/~wims/en_tool~algebra~factor.en.html
  16. http://www.analyzemath.com/Calculators_3/prime_factors.html
  17. http://www.proftnj.com/calcprem.htm (in French) (use the box "Factoriser un nombre" and click "Factoriser")

Base converters:

  1. https://baseconvert.com/
  2. https://www.calculand.com/unit-converter/zahlen.php
  3. https://www.dcode.fr/base-n-convert
  4. https://www.cut-the-knot.org/Curriculum/Algorithms/BaseConversion.shtml
  5. http://www.tonymarston.net/php-mysql/converter.php
  6. http://math.fau.edu/Richman/mla/convert.htm
  7. https://web.archive.org/web/20190629223750/http://thedevtoolkit.com/tools/base_conversion
  8. http://www.kwuntung.net/hkunit/base/base.php (in Chinese)
  9. https://linesegment.web.fc2.com/application/math/numbers/RadixConversion.html (in Japanese)

Expression generators:

  1. https://stdkmd.net/nrr/exprgen.htm (only support base 10 forms)
  2. https://www.numberempire.com/simplifyexpression.php (e.g. for the form 5{7} in base 11, type "5*11^n+7*(11^n-1)/10")

Lists of small primes:

  1. https://primes.utm.edu/lists/small/1000.txt
  2. https://primes.utm.edu/lists/small/10000.txt
  3. https://primes.utm.edu/lists/small/100000.txt
  4. https://primes.utm.edu/lists/small/millions/
  5. https://oeis.org/A000040/a000040.txt
  6. https://oeis.org/A000040/b000040_1.txt
  7. https://oeis.org/A000040/a000040_1B.7z
  8. https://metanumbers.com/prime-numbers
  9. https://www.calculatorsoup.com/calculators/math/prime-numbers.php
  10. https://www2.cs.arizona.edu/icon/oddsends/primes.htm
  11. https://cdn1.byjus.com/wp-content/uploads/2021/10/Prime-Numbers-from-1-to-1000.png
  12. http://noe-education.org/D11102.php (in French)
  13. https://web.archive.org/web/20060513054350/http://www.walter-fendt.de/m14i/primes_i.htm (in Italian)
  14. https://primefan.tripod.com/500Primes1.html
  15. https://www.gutenberg.org/files/65/65.txt
  16. http://www.primos.mat.br/indexen.html
  17. https://www.walter-fendt.de/html5/men/primenumbers_en.htm
  18. http://www.rsok.com/~jrm/printprimes.html
  19. http://www.numbertheory.org/php/prime_generator.html
  20. https://jocelyn.quizz.chat/np/cache/index.html (in French)
  21. http://www.sosmath.com/tables/prime/prime.html
  22. https://www.bigprimes.net/archive/prime
  23. https://web.archive.org/web/20201130071856/http://www.mathematical.com/primelist1to100kk.html
  24. https://web.archive.org/web/20191118082053/http://www.tsm-resources.com/alists/prim.html
  25. https://web.archive.org/web/20090917191047/http://planetmath.org/encyclopedia/FirstThousandPositivePrimeNumbers.html
  26. https://faculty.lynchburg.edu/~nicely/gaps/gaplist.html (the longest list ever calculated, with all primes < 264 (but unlikely other lists here, the primes are not all stored), see https://primes.utm.edu/notes/faq/LongestList.html)
  27. https://en.wikipedia.org/wiki/List_of_prime_numbers#The_first_1000_prime_numbers

Lists of factorizations of small integers:

  1. http://primefan.tripod.com/500factored.html
  2. http://www.sosmath.com/tables/factor/factor.html
  3. http://www.datapointed.net/visualizations/math/factorization/animated-diagrams/
  4. https://oeis.org/A027750/a027750.txt (all (prime or composite or unit) factors of N)
  5. http://factorzone.tripod.com/factors.htm (all (prime or composite or unit) factors of N)
  6. http://functions.wolfram.com/NumberTheoryFunctions/Divisors/03/02 (all (prime or composite or unit) factors of N)
  7. https://en.wikipedia.org/wiki/Table_of_prime_factors
  8. https://en.wikipedia.org/wiki/Table_of_divisors (all (prime or composite or unit) factors of N)

Lists of small integers in various bases:

  1. https://en.wikipedia.org/wiki/Table_of_bases

Also, programs related to this research: (some of these programs can also be downloaded in http://www.fermatsearch.org/download.php or https://www.mersenne.org/download/freeware.php)

Primality (or probable primality) testing (https://en.wikipedia.org/wiki/Primality_test, https://www.rieselprime.de/ziki/Primality_test, https://mathworld.wolfram.com/PrimalityTest.html, https://primes.utm.edu/prove/index.html) programs (https://www.rieselprime.de/ziki/Primality_testing_program):

  1. LLR (http://jpenne.free.fr/index2.html, https://primes.utm.edu/bios/page.php?id=431, https://www.rieselprime.de/ziki/LLR, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/llr403win64, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/llr403linux64)
  2. PFGW (https://sourceforge.net/projects/openpfgw/, https://primes.utm.edu/bios/page.php?id=175, https://www.rieselprime.de/ziki/PFGW, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/pfgw_win_4.0.3)
  3. PRIMO (http://www.ellipsa.eu/public/primo/primo.html, http://www.rieselprime.de/dl/Primo309.zip, https://primes.utm.edu/bios/page.php?id=46, https://www.rieselprime.de/ziki/Primo, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/primo-433-lx64, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/Primo309)
  4. CHG (https://mersenneforum.org/attachment.php?attachmentid=21133&d=1571237465, https://primes.utm.edu/bios/page.php?id=797, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/CHG)

Sieving (https://www.rieselprime.de/ziki/Sieving, https://www.rieselprime.de/ziki/Sieving_a_range_of_sequences, https://mathworld.wolfram.com/Sieve.html) programs (https://www.rieselprime.de/ziki/Sieving_program):

  1. SRSIEVE (https://www.bc-team.org/app.php/dlext/?cat=3, http://web.archive.org/web/20160922072340/https://sites.google.com/site/geoffreywalterreynolds/programs/, http://www.rieselprime.de/dl/CRUS_pack.zip, https://primes.utm.edu/bios/page.php?id=905, https://www.rieselprime.de/ziki/Srsieve, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/srsieve_1.1.4, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/sr1sieve_1.4.6, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/sr2sieve_2.0.0, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/srbsieve)
  2. MTSIEVE (https://sourceforge.net/projects/mtsieve/, https://primes.utm.edu/bios/page.php?id=449, https://www.rieselprime.de/ziki/Mtsieve, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/mtsieve_2.3.3)

Integer factoring (https://en.wikipedia.org/wiki/Integer_factorization, https://www.rieselprime.de/ziki/Factorization, https://mathworld.wolfram.com/PrimeFactorization.html) programs (https://www.rieselprime.de/ziki/Factoring_program):

  1. GMP-ECM (https://web.archive.org/web/20210803045418/https://gforge.inria.fr/projects/ecm, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/ecm704dev-svn2990-win64, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/ecm704dev-svn2990-linux64, https://www.rieselprime.de/ziki/GMP-ECM)
  2. MSIEVE (https://sourceforge.net/projects/msieve, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/msieve153_win64)
  3. GGNFS (http://sourceforge.net/projects/ggnfs, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/GGNFS)
  4. CADO-NFS (https://web.archive.org/web/20210506173015/http://cado-nfs.gforge.inria.fr/index.html, https://www.rieselprime.de/ziki/CADO-NFS, https://github.com/xayahrainie4793/prime-programs-cached-copy/tree/main/cado-nfs-2.3.0)

For the files in this page:

  • File "kernel b": Data for all known minimal primes in base b, expressed as base b strings
  • File "left b": x{y}z (where x and z are strings (may be empty) of digits in base b, y is a digit in base b) families in base b such that we were unable to determine if they contain a prime > b or not (i.e. x{y}z (where x and z are strings (may be empty) of digits in base b, y is a digit in base b) families in base b such that no prime member > b could be found, nor could the family be ruled out as only containing composites (only count the numbers > b)), these families are sorted by "the length n number in these families, from the smallest number to the largest number, this n is large enough such that n replaced to any larger number does not affect the sorting" (e.g. for base 17, we sort with B{0}B3 -> B{0}DB -> {B}2BE -> {B}2E -> {B}E9 -> {B}EE, since in this case 7 digits is enough, B0000B3 < B0000DB < BBBB2BE < BBBBB2E < BBBBBE9 < BBBBBEE, if the 7 replaced to any larger number, this result of the sorting will not change)

See my article about this research: https://docs.google.com/document/d/e/2PACX-1vQct6Hx-IkJd5-iIuDuOKkKdw2teGmmHW-P75MPaxqBXB37u0odFBml5rx0PoLa0odTyuW67N_vn96J/pub