Palindromic Merlon Primes (or PMP's for short) are numbers that
are (probable) primes, palindromic in base 10, and consisting of one central digit
(hereby named as a merlon_digit) surrounded by two symmetrical crennelations
with same digits different from the central merlon_digit and finally bordered left
and right by that same central merlon_digit. E.g.
3223223 31111111111111111311111111111111113 |
From these examples you will understand the naming of these kind of palindromic primes Visualising merlons
In case one should discover more sources I will be most happy
to add them to the list. Just let me know.
( n = 2 * w + 3 )
PMP (Palindromic Merlon Primes) reference files (under construction) | |||
1(2)w1(2)w1 = 2*(10n–1)/9 – 10n-1 – 10(n-1)/2 – 1 | |||
1(4)w1(4)w1 = 4*(10n–1)/9 – 3*10n-1 – 3*10(n-1)/2 – 3 | |||
1(5)w1(5)w1 = 5*(10n–1)/9 – 4*10n-1 – 4*10(n-1)/2 – 4 | |||
1(7)w1(7)w1 = 7*(10n–1)/9 – 6*10n-1 – 6*10(n-1)/2 – 6 | |||
1(8)w1(8)w1 = 8*(10n–1)/9 – 7*10n-1 – 7*10(n-1)/2 – 7 | |||
3(1)w3(1)w3 = 3*(10n–1)/9 + 2*10n-1 + 2*10(n-1)/2 + 2 | |||
3(2)w3(2)w3 = 2*(10n–1)/9 + 10n-1 + 10(n-1)/2 + 1 | |||
3(4)w3(4)w3 = 4*(10n–1)/9 – 10n-1 – 10(n-1)/2 – 1 | |||
3(5)w3(5)w3 = 5*(10n–1)/9 – 2*10n-1 – 2*10(n-1)/2 – 2 | |||
3(7)w3(7)w3 = 7*(10n–1)/9 – 4*10n-1 – 4*10(n-1)/2 – 4 |
The reference table for Palindromic Merlon Primes | |||||
This collection is complete for probable primes up to 50000 digits and for proven primes up to ???? digits. | PDG = Patrick De Geest | ||||
PMP | Formula blue exp = # of digits | Who | When | Status | Output Logs |
¬ | | ||||
---|---|---|---|---|---|
1(2)21(2)21 | 2*(10{7}–1)/9 – 106 – 103 – 1 | PDG | Nov 12 2011 | PRIME | View |
1(2)41(2)41 | 2*(10{11}–1)/9 – 1010 – 105 – 1 | PDG | Nov 12 2011 | PRIME | View |
1(2)111(2)111 | 2*(1025–1)/9 – 1024 – 1012 – 1 | PDG | Nov 12 2011 | PRIME | View |
1(2)23921(2)23921 | 2*(10{4787}–1)/9 – 104786 – 102393 – 1 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
1(2)188141(2)188141 | 2*(1037631–1)/9 – 1037630 – 1018815 – 1 | PDG | Sep 27 2022 | PROBABLE PRIME |
View |
¬ | | ||||
1(4)441(4)441 | 4*(1091–1)/9 – 3*1090 – 3*1045 – 3 | PDG | Nov 12 2011 | PRIME | View |
1(4)641(4)641 | 4*(10{131}–1)/9 – 3*10130 – 3*1065 – 3 | PDG | Nov 12 2011 | PRIME | View |
1(4)91491(4)91491 | 4*(10{18301}–1)/9 – 3*1018300 – 3*109150 – 3 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
1(4)228261(4)228261 | 4*(1045655–1)/9 – 3*1045654 – 3*1022827 – 3 | PDG | Sep 28 2022 | PROBABLE PRIME |
View |
¬ | | ||||
1(5)21(5)21 | 5*(10{7}–1)/9 – 4*106 – 4*103 – 4 | PDG | Nov 12 2011 | PRIME | View |
1(5)81(5)81 | 5*(10{19}–1)/9 – 4*1018 – 4*109 – 4 | PDG | Nov 12 2011 | PRIME | View |
1(5)321(5)321 | 5*(10{67}–1)/9 – 4*1066 – 4*1033 – 4 | PDG | Nov 12 2011 | PRIME | View |
1(5)1281(5)1281 | 5*(10259–1)/9 – 4*10258 – 4*10129 – 4 | PDG | Nov 12 2011 | PRIME | View |
1(5)4941(5)4941 | 5*(10{991}–1)/9 – 4*10990 – 4*10495 – 4 | PDG | Nov 12 2011 | PRIME | View |
1(5)42611(5)42611 | 5*(108525–1)/9 – 4*108524 – 4*104262 – 4 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
1(5)137651(5)137651 | 5*(1027533–1)/9 – 4*1027532 – 4*1013766 – 4 | PDG | Sep 28 2022 | PROBABLE PRIME |
View |
¬ | | ||||
1(7)41(7)41 | 7*(10{11}–1)/9 – 6*1010 – 6*105 – 6 | PDG | Nov 12 2011 | PRIME | View |
1(7)221(7)221 | 7*(10{47}–1)/9 – 6*1046 – 6*1023 – 6 | PDG | Nov 12 2011 | PRIME | View |
1(7)3161(7)3161 | 7*(10635–1)/9 – 6*10634 – 6*10317 – 6 | PDG | Nov 12 2011 | PRIME | View |
1(7)4421(7)4421 | 7*(10{887}–1)/9 – 6*10886 – 6*10443 – 6 | PDG | Nov 12 2011 | PRIME | View |
¬ | | ||||
1(8)11(8)11 | 8*(10{5}–1)/9 – 7*104 – 7*102 – 7 | PDG | Nov 12 2011 | PRIME | View |
1(8)21(8)21 | 8*(10{7}–1)/9 – 7*106 – 7*103 – 7 | PDG | Nov 12 2011 | PRIME | View |
1(8)1451(8)1451 | 8*(10{293}–1)/9 – 7*10292 – 7*10146 – 7 | PDG | Nov 12 2011 | PRIME | View |
1(8)2541(8)2541 | 8*(10511–1)/9 – 7*10510 – 7*10255 – 7 | PDG | Nov 12 2011 | PRIME | View |
1(8)16271(8)16271 | 8*(10{3257}–1)/9 – 7*103256 – 7*101628 – 7 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
1(8)18131(8)18131 | 8*(103629–1)/9 – 7*103628 – 7*101814 – 7 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
¬ | | ||||
3(1)163(1)163 | (1035–1)/9 + 2*1034 + 2*1017 + 2 | PDG | Nov 12 2011 | PRIME | View |
3(1)433(1)433 | (10{89}–1)/9 + 2*1088 + 2*1044 + 2 | PDG | Nov 12 2011 | PRIME | View |
3(1)863(1)863 | (10175–1)/9 + 2*10174 + 2*1087 + 2 | PDG | Nov 12 2011 | PRIME | View |
3(1)11533(1)11533 | (10{2309}–1)/9 + 2*102308 + 2*101154 + 2 | PDG | Nov 12 2011 | PRIME | View |
¬ | | ||||
3(2)13(2)13 | 2*(10{5}–1)/9 + 104 + 102 + 1 | PDG | Nov 12 2011 | PRIME | View |
3(2)23(2)23 | 2*(10{7}–1)/9 + 106 + 103 + 1 | PDG | Nov 12 2011 | PRIME | View |
3(2)53(2)53 | 2*(10{13}–1)/9 + 1012 + 106 + 1 | PDG | Nov 12 2011 | PRIME | View |
3(2)19033(2)19033 | 2*(10{3809}–1)/9 + 103808 + 101904 + 1 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
3(2)29533(2)29533 | 2*(105909–1)/9 + 105908 + 102954 + 1 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
3(2)34133(2)34133 | 2*(10{6829}–1)/9 + 106828 + 103414 + 1 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
¬ | | ||||
3(4)23(4)23 | 4*(10{7}–1)/9 – 106 – 103 – 1 | PDG | Dec 27 2012 | PRIME | View |
3(4)43(4)43 | 4*(10{11}–1)/9 – 1010 – 105 – 1 | PDG | Nov 12 2011 | PRIME | View |
3(4)73(4)73 | 4*(10{17}–1)/9 – 1016 – 108 – 1 | PDG | Nov 12 2011 | PRIME | View |
3(4)223(4)223 | 4*(10{47}–1)/9 – 1046 – 1023 – 1 | PDG | Nov 12 2011 | PRIME | View |
3(4)263(4)263 | 4*(1055–1)/9 – 1054 – 1027 – 1 | PDG | Nov 12 2011 | PRIME | View |
3(4)1823(4)1823 | 4*(10{367}–1)/9 – 10366 – 10183 – 1 | PDG | Nov 12 2011 | PRIME | View |
3(4)2053(4)2053 | 4*(10413–1)/9 – 10412 – 10206 – 1 | PDG | Nov 12 2011 | PRIME | View |
3(4)4763(4)4763 | 4*(10955–1)/9 – 10954 – 10477 – 1 | PDG | Nov 12 2011 | PRIME | View |
3(4)13193(4)13193 | 4*(102641–1)/9 – 102640 – 101320 – 1 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
3(4)127423(4)127423 | 4*(1025487–1)/9 – 1025486 – 1012743 – 1 | PDG | Oct 1 2022 | PROBABLE PRIME |
View |
3(4)172433(4)172433 | 4*(1034489–1)/9 – 1034488 – 1017244 – 1 | PDG | Oct 1 2022 | PROBABLE PRIME |
View |
¬ | | ||||
3(5)13(5)13 | 5*(10{5}–1)/9 – 2*104 – 2*102 – 2 | PDG | Nov 12 2011 | PRIME | View |
3(5)23(5)23 | 5*(10{7}–1)/9 – 2*106 – 2*103 – 2 | PDG | Nov 12 2011 | PRIME | View |
3(5)173(5)173 | 5*(10{37}–1)/9 – 2*1036 – 2*1018 – 2 | PDG | Nov 12 2011 | PRIME | View |
3(5)203(5)203 | 5*(10{43}–1)/9 – 2*1042 – 2*1021 – 2 | PDG | Nov 12 2011 | PRIME | View |
3(5)263(5)263 | 5*(1055–1)/9 – 2*1054 – 2*1027 – 2 | PDG | Nov 12 2011 | PRIME | View |
3(5)1573(5)1573 | 5*(10{317}–1)/9 – 2*10316 – 2*10158 – 2 | PDG | Nov 12 2011 | PRIME | View |
3(5)6143(5)6143 | 5*(10{1231}–1)/9 – 2*101230 – 2*10615 – 2 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
3(5)8333(5)8333 | 5*(10{1669}–1)/9 – 2*101668 – 2*10834 – 2 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
3(5)33613(5)33613 | 5*(106725–1)/9 – 2*106724 – 2*103362 – 2 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
3(5)36313(5)36313 | 5*(107265–1)/9 – 2*107264 – 2*103632 – 2 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
3(5)38443(5)38443 | 5*(10{7691}–1)/9 – 2*107690 – 2*103845 – 2 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
¬ | | ||||
3(7)23(7)23 | 7*(10{7}–1)/9 – 4*106 – 4*103 – 4 | PDG | Nov 12 2011 | PRIME | View |
3(7)43(7)43 | 7*(10{11}–1)/9 – 4*1010 – 4*105 – 4 | PDG | Nov 12 2011 | PRIME | View |
3(7)473(7)473 | 7*(10{97}–1)/9 – 4*1096 – 4*1048 – 4 | PDG | Nov 12 2011 | PRIME | View |
3(7)593(7)593 | 7*(10121–1)/9 – 4*10120 – 4*1060 – 4 | PDG | Nov 12 2011 | PRIME | View |
3(7)703(7)703 | 7*(10143–1)/9 – 4*10142 – 4*1071 – 4 | PDG | Nov 12 2011 | PRIME | View |
3(7)1223(7)1223 | 7*(10247–1)/9 – 4*10246 – 4*10123 – 4 | PDG | Nov 12 2011 | PRIME | View |
3(7)1283(7)1283 | 7*(10259–1)/9 – 4*10258 – 4*10129 – 4 | PDG | Nov 12 2011 | PRIME | View |
3(7)56443(7)56443 | 7*(1012191–1)/9 – 4*1012190 – 4*105645 – 4 | PDG | Dec 4 2011 | PROBABLE PRIME |
View |
3(7)85243(7)85243 | 7*(1017051–1)/9 – 4*1017050 – 4*108525 – 4 | PDG | Dec 4 2011 | PROBABLE PRIME |
View |
3(7)189893(7)189893 | 7*(1037981–1)/9 – 4*1037980 – 4*1018990 – 4 | PDG | Oct 3 2022 | PROBABLE PRIME |
View |
¬ | | ||||
3(8)83(8)83 | 8*(10{19}–1)/9 – 5*1018 – 5*109 – 5 | PDG | Nov 12 2011 | PRIME | View |
3(8)103(8)103 | 8*(10{23}–1)/9 – 5*1022 – 5*1011 – 5 | PDG | Nov 12 2011 | PRIME | View |
3(8)143(8)143 | 8*(10{31}–1)/9 – 5*1030 – 5*1015 – 5 | PDG | Nov 12 2011 | PRIME | View |
3(8)673(8)673 | 8*(10{137}–1)/9 – 5*10136 – 5*1068 – 5 | PDG | Nov 12 2011 | PRIME | View |
3(8)3643(8)3643 | 8*(10731–1)/9 – 5*10730 – 5*10365 – 5 | PDG | Nov 12 2011 | PRIME | View |
3(8)5783(8)5783 | 8*(101159–1)/9 – 5*101158 – 5*10579 – 5 | PDG | Nov 12 2011 | PRIME | View |
3(8)8483(8)8483 | 8*(10{1699}–1)/9 – 5*101698 – 5*10849 – 5 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
3(8)30763(8)30763 | 8*(106155–1)/9 – 5*106154 – 5*103077 – 5 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
3(8)78403(8)78403 | 8*(10{15683}–1)/9 – 5*1015682 – 5*107841 – 5 | PDG | Dec 5 2011 | PROBABLE PRIME |
View |
3(8)142063(8)142063 | 8*(1028415–1)/9 – 5*1028414 – 5*1014207 – 5 | PDG | Oct 3 2022 | PROBABLE PRIME |
View |
3(8)193993(8)193993 | 8*(1038801–1)/9 – 5*1038800 – 5*1019400 – 5 | PDG | Oct 4 2022 | PROBABLE PRIME |
View |
3(8)233963(8)233963 | 8*(1046795–1)/9 – 5*1046794 – 5*1023397 – 5 | PDG | Oct 4 2022 | PROBABLE PRIME |
View |
¬ | | ||||
7(1)557(1)557 | (10{113}–1)/9 + 6*10112 + 6*1056 + 6 | PDG | Nov 12 2011 | PRIME | View |
¬ | | ||||
7(2)17(2)17 | 2*(10{5}–1)/9 + 5*104 + 5*102 + 5 | PDG | Nov 12 2011 | PRIME | View |
7(2)47(2)47 | 2*(10{11}–1)/9 + 5*1010 + 5*105 + 5 | PDG | Nov 12 2011 | PRIME | View |
7(2)77(2)77 | 2*(10{17}–1)/9 + 5*1016 + 5*108 + 5 | PDG | Nov 12 2011 | PRIME | View |
7(2)227(2)227 | 2*(10{47}–1)/9 + 5*1046 + 5*1023 + 5 | PDG | Nov 12 2011 | PRIME | View |
7(2)297(2)297 | 2*(10{61}–1)/9 + 5*1060 + 5*1030 + 5 | PDG | Nov 12 2011 | PRIME | View |
7(2)497(2)497 | 2*(10{101}–1)/9 + 5*10100 + 5*1050 + 5 | PDG | Nov 12 2011 | PRIME | View |
7(2)737(2)737 | 2*(10{149}–1)/9 + 5*10148 + 5*1074 + 5 | PDG | Nov 12 2011 | PRIME | View |
7(2)837(2)837 | 2*(10169–1)/9 + 5*10168 + 5*1084 + 5 | PDG | Nov 12 2011 | PRIME | View |
7(2)1187(2)1187 | 2*(10{239}–1)/9 + 5*10238 + 5*10119 + 5 | PDG | Nov 12 2011 | PRIME | View |
7(2)2417(2)2417 | 2*(10485–1)/9 + 5*10484 + 5*10242 + 5 | PDG | Nov 12 2011 | PRIME | View |
¬ | | ||||
7(4)17(4)17 | 4*(10{5}–1)/9 + 3*104 + 3*102 + 3 | PDG | Nov 12 2011 | PRIME | View |
7(4)1217(4)1217 | 4*(10245–1)/9 + 3*10244 + 3*10122 + 3 | PDG | Nov 12 2011 | PRIME | View |
7(4)5207(4)5207 | 4*(101043–1)/9 + 3*101042 + 3*10521 + 3 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
7(4)12647(4)12647 | 4*(10{2531}–1)/9 + 3*102530 + 3*101265 + 3 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
7(4)17807(4)17807 | 4*(103563–1)/9 + 3*103562 + 3*101781 + 3 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
¬ | | ||||
7(5)262727(5)262727 | 5*(1052547–1)/9 + 2*1052546 + 2*1026273 + 2 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
¬ | | ||||
7(8)17(8)17 | 8*(10{5}–1)/9 – 104 – 102 – 1 | PDG | Nov 12 2011 | PRIME | View |
7(8)47(8)47 | 8*(10{11}–1)/9 – 1010 – 105 – 1 | PDG | Nov 12 2011 | PRIME | View |
7(8)1277(8)1277 | 8*(10{257}–1)/9 – 10256 – 10128 – 1 | PDG | Nov 12 2011 | PRIME | View |
7(8)3297(8)3297 | 8*(10{661}–1)/9 – 10660 – 10330 – 1 | PDG | Nov 12 2011 | PRIME | View |
7(8)8037(8)8037 | 8*(10{1609}–1)/9 – 101608 – 10804 – 1 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
7(8)18407(8)18407 | 8*(103683–1)/9 – 103682 – 101841 – 1 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
¬ | | ||||
9(1)49(1)49 | (10{11}–1)/9 + 8*1010 + 8*105 + 8 | PDG | Nov 12 2011 | PRIME | View |
9(1)79(1)79 | (10{17}–1)/9 + 8*1016 + 8*108 + 8 | PDG | Nov 12 2011 | PRIME | View |
9(1)299(1)299 | (10{61}–1)/9 + 8*1060 + 8*1030 + 8 | PDG | Nov 12 2011 | PRIME | View |
9(1)469(1)469 | (1095–1)/9 + 8*1094 + 8*1047 + 8 | PDG | Nov 12 2011 | PRIME | View |
9(1)589(1)589 | (10119–1)/9 + 8*10118 + 8*1059 + 8 | PDG | Nov 12 2011 | PRIME | View |
9(1)689(1)689 | (10{139}–1)/9 + 8*10138 + 8*1069 + 8 | PDG | Nov 12 2011 | PRIME | View |
9(1)839(1)839 | (10169–1)/9 + 8*10168 + 8*1084 + 8 | PDG | Nov 12 2011 | PRIME | View |
9(1)9559(1)9559 | (10{1913}–1)/9 + 8*101912 + 8*10956 + 8 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
9(1)11609(1)11609 | (102323–1)/9 + 8*102322 + 8*101161 + 8 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
9(1)55049(1)55049 | (10{11011}–1)/9 + 8*1011010 + 8*105505 + 8 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
9(1)62689(1)62689 | (10{12539}–1)/9 + 8*1012538 + 8*106269 + 8 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
9(1)92909(1)92909 | (10{18583}–1)/9 + 8*1018582 + 8*109291 + 8 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
9(1)217669(1)217669 | (1043535–1)/9 + 8*1043534 + 8*1021767 + 8 | PDG | Oct 6 2022 | PROBABLE PRIME |
View |
¬ | | ||||
9(2)49(2)49 | 2*(10{11}–1)/9 + 7*1010 + 7*105 + 7 | PDG | Nov 12 2011 | PRIME | View |
9(2)89(2)89 | 2*(10{19}–1)/9 + 7*1018 + 7*109 + 7 | PDG | Nov 12 2011 | PRIME | View |
9(2)269(2)269 | 2*(1055–1)/9 + 7*1054 + 7*1027 + 7 | PDG | Nov 12 2011 | PRIME | View |
9(2)2029(2)2029 | 2*(10407–1)/9 + 7*10406 + 7*10203 + 7 | PDG | Nov 12 2011 | PRIME | View |
9(2)20689(2)20689 | 2*(10{4139}–1)/9 + 7*104138 + 7*102069 + 7 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
9(2)63749(2)63749 | 2*(1012751–1)/9 + 7*1012750 + 7*106375 + 7 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
¬ | | ||||
9(4)19(4)19 | 4*(10{5}–1)/9 + 5*104 + 5*102 + 5 | PDG | Nov 12 2011 | PRIME | View |
9(4)49(4)49 | 4*(10{11}–1)/9 + 5*1010 + 5*105 + 5 | PDG | Nov 12 2011 | PRIME | View |
9(4)79(4)79 | 4*(10{17}–1)/9 + 5*1016 + 5*108 + 5 | PDG | Nov 12 2011 | PRIME | View |
9(4)209(4)209 | 4*(10{43}–1)/9 + 5*1042 + 5*1021 + 5 | PDG | Nov 12 2011 | PRIME | View |
9(4)5099(4)5099 | 4*(10{1021}–1)/9 + 5*101020 + 5*10510 + 5 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
¬ | | ||||
9(5)19(5)19 | 5*(10{5}–1)/9 + 4*104 + 4*102 + 4 | PDG | Nov 12 2011 | PRIME | View |
9(5)389(5)389 | 5*(10{79}–1)/9 + 4*1078 + 4*1039 + 4 | PDG | Nov 12 2011 | PRIME | View |
9(5)1739(5)1739 | 5*(10{349}–1)/9 + 4*10348 + 4*10174 + 4 | PDG | Nov 12 2011 | PRIME | View |
9(5)14939(5)14939 | 5*(102989–1)/9 + 4*102988 + 4*101494 + 4 | PDG | Nov 12 2011 | PROBABLE PRIME |
View |
9(5)229909(5)229919 | 5*(1045983–1)/9 + 4*1045982 + 4*1022991 + 4 | PDG | Oct 8 2022 | PROBABLE PRIME |
View |
¬ | | ||||
9(7)29(7)29 | 7*(10{7}–1)/9 + 2*106 + 2*103 + 2 | PDG | Nov 12 2011 | PRIME | View |
9(7)409(7)409 | 7*(10{83}–1)/9 + 2*1082 + 2*1041 + 2 | PDG | Nov 12 2011 | PRIME | View |
9(7)2989(7)2989 | 7*(10{599}–1)/9 + 2*10598 + 2*10299 + 2 | PDG | Nov 12 2011 | PRIME | View |
¬ | | ||||
9(8)29(8)29 | 8*(10{7}–1)/9 + 106 + 103 + 1 | PDG | Nov 12 2011 | PRIME | View |
9(8)49(8)49 | 8*(10{11}–1)/9 + 1010 + 105 + 1 | PDG | Nov 12 2011 | PRIME | View |
9(8)149(8)149 | 8*(10{31}–1)/9 + 1030 + 1015 + 1 | PDG | Nov 12 2011 | PRIME | View |
9(8)329(8)329 | 8*(10{67}–1)/9 + 1066 + 1033 + 1 | PDG | Nov 12 2011 | PRIME | View |
9(8)569(8)569 | 8*(10115–1)/9 + 10114 + 1057 + 1 | PDG | Nov 12 2011 | PRIME | View |
9(8)3829(8)3829 | 8*(10767–1)/9 + 10766 + 10383 + 1 | PDG | Nov 12 2011 | PRIME | View |
Click here to view some entries to the table about palindromes. |
All probable primes above 10000 digits are also
submitted to the PRP TOP records table maintained by Henri & Renaud Lifchitz.
See : http://www.primenumbers.net/prptop/prptop.php
[ TOP OF PAGE]