The first 100 Fibonacci numbers are shown in this table below.
n | F(n) | n | F(n) | n | F(n) | n | F(n) |
1 | 1 | 31 | 8110275 | 61 | 7655814421X301 | 91 | 7034384X03093XXXX0575 |
2 | 1 | 32 | 11110575 | 62 | 10243EX10286901 | 92 | E444E61X4E394E4XX1275 |
3 | 2 | 33 | 1922082X | 63 | 178997E544X5002 | 93 | 16479326852468X398182X |
4 | 3 | 34 | 2X3311X3 | 64 | 27E21796476E903 | 94 | 259022886X184198862XX3 |
5 | 5 | 35 | 47551X11 | 65 | 437EE38E9054905 | 95 | 4017E5E33340XX80624711 |
6 | 8 | 36 | 75882EE4 | 66 | 6E720E661804608 | 96 | 65X8187EX15930592875E4 |
7 | 11 | 37 | 101214X05 | 67 | E3320335X859311 | 97 | X6041273149X1E198E0105 |
8 | 19 | 38 | 176X979E9 | 68 | 162X412X00461919 | 98 | 14EE02E32E6374E76E776E9 |
9 | 2X | 39 | 2780E0802 | 69 | 256161615E0EE02X | 99 | 235E441X60E156X94867802 |
X | 47 | 3X | 432E885EE | 6X | 3E8EX28E5E560947 | 9X | 385X471190550EX4E8232EE |
E | 75 | 3E | 6XE079201 | 6E | 65314430EX65E975 | 9E | 5EE98E3031466692448XE01 |
10 | 100 | 40 | E22045800 | 70 | X50127005X000700 | X0 | 98581642019E767740E2200 |
11 | 175 | 41 | 1611102X01 | 71 | 14X326E3158660475 | X1 | 13855X572332621498581101 |
12 | 275 | 42 | 2533148601 | 72 | 233339631E6660E75 | X2 | 214E1EEE4350598050673301 |
13 | 42X | 43 | 3E4424E402 | 73 | 3816645635310142X | X3 | 35147X566682EE9529034402 |
14 | 6X3 | 44 | 6477397X03 | 74 | 5E49X1E95497623X3 | X4 | 56639X55XX135955796X7703 |
15 | E11 | 45 | X3EE627205 | 75 | 976446538X0863811 | X5 | 8E7858E05496592XX671EE05 |
16 | 15E4 | 46 | 14876X03008 | 76 | 136E2285122X405EE4 | X6 | 12620374642X9E68464207608 |
17 | 2505 | 47 | 2307642X211 | 77 | 2125672X4E0E069805 | X7 | 1E5989436978453E34X927511 |
18 | 3XE9 | 48 | 37931231219 | 78 | 349489E361394737E9 | X8 | 31EE90E811X724X77E2E32E19 |
19 | 6402 | 49 | 5X9X765E42X | 79 | 55EX3521E048521402 | X9 | 51595X3E7E636X26E4185X42X |
1X | X2EE | 4X | 96718890647 | 7X | 8X9303155185994EEE | XX | 83592E37914X9312734791347 |
1E | 14701 | 4E | 13550432EX75 | 7E | 12491383742122E6401 | XE | 114E6897750E2413967642E775 |
20 | 22X00 | 50 | 210021000500 | 80 | 1E3643E50939808E400 | E0 | 19853E8E3224114501XE000E00 |
21 | 37501 | 51 | 345525330375 | 81 | 31835778815XX385801 | E1 | 2E14X866X73335589865430675 |
22 | 5X301 | 52 | 555546330875 | 82 | 50E99E718X986455001 | E2 | 489X2836195746X19X54431575 |
23 | 95802 | 53 | 89XX6E66102X | 83 | 8281372X5037481X802 | E3 | 77E314X1048X803X76E986202X |
24 | 133E03 | 54 | 12343E59918X3 | 84 | 1137E16X01E13E073803 | E4 | 1049141172226072055520935X3 |
25 | 209705 | 55 | 1E13265432911 | 85 | 19640520X6E4E3892405 | E5 | 1808455E826E4875E104E935611 |
26 | 341608 | 56 | 314765E2045E4 | 86 | 2X9EE68XX8X632946008 | E6 | 285559713491X927E65X1X08EE4 |
27 | 54E111 | 57 | 505X904637305 | 87 | 4843EEXE939E26618411 | E7 | 4461X310E74135X1X7631742605 |
28 | 890719 | 58 | 81X636383E8E9 | 88 | 7723E67X808559362419 | E8 | 70E7408230132309X201354E5E9 |
29 | 121E82X | 59 | 11245068277002 | 89 | 10367E66X54648397X82X | E9 | E5592393275458XE89645092002 |
2X | 1XE0347 | 5X | 1942E40EXE68EE | 8X | 17X8EE129152X21121047 | EX | 16654645557677EE96E6586215EE |
2E | 310EE75 | 5E | 2X674478171901 | 8E | 28237X7976992X4X9E875 | EE | 25EE18828830018X9390X16E3601 |
30 | 5000300 | 60 | 47XX3888068600 | 90 | 441079904830106000900 | 100 | 4064630821X6798X6X873X115000 |
F(n) is (probable) prime for n = 3, 4, 5, 7, E, 11, 15, 1E, 25, 37, 3E, 6E, XE, E5, 25E, 2EE, 301, 315, 365, 3E5, 3E7, 1877, 2897, 314E, 547E, 5725, 8427, 12961, 15971, 189EE, 1985E, 25501, 3E43E, 50867, 632E1, 7184E, 9846E, 171E6E, 18E045, 245561, 2476X1, 251E47, 38E0X5, 4276E5, 51EE9E, 66X91E, 72E52E, 7XE381, E80915, 1105641, 11510EE, ...
If F(n) is prime and n ≠4, then n is also prime, but the converse is not true: 17 is prime, but F(17) = 2505 = 31 × 95 is not prime.
Note that dozenal (base 10) is the only base such that 100 is a Fibonacci number (since 1 cannot be a base of a numeral system). 100 is indeed F10, and 10 is the square root of 100.
A Fibonacci number can end with any digit but 6, and if a Fibonacci number ends with 0, then it must end with 00.
The period of the final digit of Fibonacci number is 20, that of the final two digits is also 20 (dozenal is the largest base such that the period of the final digit of Fibonacci number is the same as that of the final two digits of Fibonacci number, if there are no Wall-Sun-Sun primes). For n >= 2, the period of the final n digits of Fibonacci number is 2*10^(n-1). (2 followed by n-1 zeros, which is an n-digit number 200...000)
Since 175 and 100 are two consecutive Fibonacci numbers, the golden ratio (=(-1+sqrt(5))/2 = 1.74EE6772802X...) is very close to 175/100 = 1.75, and thus very close to 175%
n | F(n+1) | F(n) | F(n+1)/F(n) |
---|---|---|---|
1 | 1 | 1 | 1 |
2 | 2 | 1 | 2 |
3 | 3 | 2 | 1.6 |
4 | 5 | 3 | 1.8 |
5 | 8 | 5 | 1.72497249724972497249724X |
6 | 11 | 8 | 1.76 |
7 | 19 | 11 | 1.747474747474747474747475 |
8 | 2X | 19 | 1.75186X35186X35186X35186X |
9 | 47 | 2X | 1.74E36429X708579214E3642X |
X | 75 | 47 | 1.750275027502750275027503 |
E | 100 | 75 | 1.74EX470174EX470174EX4702 |
10 | 175 | 100 | 1.75 |
11 | 275 | 175 | 1.74EE470074EE470074EE4701 |
12 | 42X | 275 | 1.74EE74EE74EE74EE74EE7500 |
13 | 6X3 | 42X | 1.74EE6401X7E45426271E1743 |
14 | E11 | 6X3 | 1.74EE68E808906694E1083963 |
15 | 15E4 | E11 | 1.74EE670E330627E0560065XX |
16 | 2505 | 15E4 | 1.74EE67975739E04XX21X35XE |
17 | 3XE9 | 2505 | 1.74EE67638024130246264642 |
18 | 6402 | 3XE9 | 1.74EE6776X53584854X684003 |
19 | X2EE | 6402 | 1.74EE67710916859X700544XE |
1X | 14701 | X2EE | 1.74EE677334621038707X41E3 |
1E | 22X00 | 14701 | 1.74EE67725262E37E68694450 |
20 | 37501 | 22X00 | 1.74EE67729114EE13256229EX |
F(n+1)/F(n) --> (-1+sqrt(5))/2 (≈ 1.74EE6772802X46X6X1865307) if n --> infinity.
Note that the recurring dozenal of F(n+1)/F(n) terminates if and only if n is a divisor of 10.
Factors of the Fibonacci numbers:
F(10) = 100 = 102
(F(10) is exactly the square of 10, and F(10) is also the largest Fibonacci number which is square)
F(10−1) = F(E) = 75 F(10+1) = F(11) = 175
75 × 175 = 10001 = 104 + 1
(10±1 are both primes, and F(10±1) are also both primes) (104 + 1 = 10001 is a semiprime, and 104 − 1 is a member of betrothed number pair, together with 5600)
F(10−2) = F(X) = 47 = 5 × E (exactly the largest Fibonacci number which is also triangular number) F(10+2) = F(12) = 275 = 25 × 11 (exactly the largest Fibonacci number which is also generalized pentagonal number)
5 × 25 = 101 = 102 + 1 E × 11 = EE = 102 − 1
(10±2 are both semiprimes, and F(10±2) are also both semiprimes) (102 ± 1 are both semiprimes, and 5, E, 25, and 11 are all primes)