Dozenal Wiki
Advertisement

The first 100 Fibonacci numbers are shown in this table below.

n F(n) n F(n) n F(n) n F(n)
1 1 31 8110275 61 7655814421X301 91 7034384X03093XXXX0575
2 1 32 11110575 62 10243EX10286901 92 E444E61X4E394E4XX1275
3 2 33 1922082X 63 178997E544X5002 93 16479326852468X398182X
4 3 34 2X3311X3 64 27E21796476E903 94 259022886X184198862XX3
5 5 35 47551X11 65 437EE38E9054905 95 4017E5E33340XX80624711
6 8 36 75882EE4 66 6E720E661804608 96 65X8187EX15930592875E4
7 11 37 101214X05 67 E3320335X859311 97 X6041273149X1E198E0105
8 19 38 176X979E9 68 162X412X00461919 98 14EE02E32E6374E76E776E9
9 2X 39 2780E0802 69 256161615E0EE02X 99 235E441X60E156X94867802
X 47 3X 432E885EE 6X 3E8EX28E5E560947 9X 385X471190550EX4E8232EE
E 75 3E 6XE079201 6E 65314430EX65E975 9E 5EE98E3031466692448XE01
10 100 40 E22045800 70 X50127005X000700 X0 98581642019E767740E2200
11 175 41 1611102X01 71 14X326E3158660475 X1 13855X572332621498581101
12 275 42 2533148601 72 233339631E6660E75 X2 214E1EEE4350598050673301
13 42X 43 3E4424E402 73 3816645635310142X X3 35147X566682EE9529034402
14 6X3 44 6477397X03 74 5E49X1E95497623X3 X4 56639X55XX135955796X7703
15 E11 45 X3EE627205 75 976446538X0863811 X5 8E7858E05496592XX671EE05
16 15E4 46 14876X03008 76 136E2285122X405EE4 X6 12620374642X9E68464207608
17 2505 47 2307642X211 77 2125672X4E0E069805 X7 1E5989436978453E34X927511
18 3XE9 48 37931231219 78 349489E361394737E9 X8 31EE90E811X724X77E2E32E19
19 6402 49 5X9X765E42X 79 55EX3521E048521402 X9 51595X3E7E636X26E4185X42X
1X X2EE 4X 96718890647 7X 8X9303155185994EEE XX 83592E37914X9312734791347
1E 14701 4E 13550432EX75 7E 12491383742122E6401 XE 114E6897750E2413967642E775
20 22X00 50 210021000500 80 1E3643E50939808E400 E0 19853E8E3224114501XE000E00
21 37501 51 345525330375 81 31835778815XX385801 E1 2E14X866X73335589865430675
22 5X301 52 555546330875 82 50E99E718X986455001 E2 489X2836195746X19X54431575
23 95802 53 89XX6E66102X 83 8281372X5037481X802 E3 77E314X1048X803X76E986202X
24 133E03 54 12343E59918X3 84 1137E16X01E13E073803 E4 1049141172226072055520935X3
25 209705 55 1E13265432911 85 19640520X6E4E3892405 E5 1808455E826E4875E104E935611
26 341608 56 314765E2045E4 86 2X9EE68XX8X632946008 E6 285559713491X927E65X1X08EE4
27 54E111 57 505X904637305 87 4843EEXE939E26618411 E7 4461X310E74135X1X7631742605
28 890719 58 81X636383E8E9 88 7723E67X808559362419 E8 70E7408230132309X201354E5E9
29 121E82X 59 11245068277002 89 10367E66X54648397X82X E9 E5592393275458XE89645092002
2X 1XE0347 5X 1942E40EXE68EE 8X 17X8EE129152X21121047 EX 16654645557677EE96E6586215EE
2E 310EE75 5E 2X674478171901 8E 28237X7976992X4X9E875 EE 25EE18828830018X9390X16E3601
30 5000300 60 47XX3888068600 90 441079904830106000900 100 4064630821X6798X6X873X115000

F(n) is (probable) prime for n = 3, 4, 5, 7, E, 11, 15, 1E, 25, 37, 3E, 6E, XE, E5, 25E, 2EE, 301, 315, 365, 3E5, 3E7, 1877, 2897, 314E, 547E, 5725, 8427, 12961, 15971, 189EE, 1985E, 25501, 3E43E, 50867, 632E1, 7184E, 9846E, 171E6E, 18E045, 245561, 2476X1, 251E47, 38E0X5, 4276E5, 51EE9E, 66X91E, 72E52E, 7XE381, E80915, 1105641, 11510EE, ...

If F(n) is prime and n ≠ 4, then n is also prime, but the converse is not true: 17 is prime, but F(17) = 2505 = 31 × 95 is not prime.

Note that dozenal (base 10) is the only base such that 100 is a Fibonacci number (since 1 cannot be a base of a numeral system). 100 is indeed F10, and 10 is the square root of 100.

A Fibonacci number can end with any digit but 6, and if a Fibonacci number ends with 0, then it must end with 00.

The period of the final digit of Fibonacci number is 20, that of the final two digits is also 20 (dozenal is the largest base such that the period of the final digit of Fibonacci number is the same as that of the final two digits of Fibonacci number, if there are no Wall-Sun-Sun primes). For n >= 2, the period of the final n digits of Fibonacci number is 2*10^(n-1). (2 followed by n-1 zeros, which is an n-digit number 200...000)

Since 175 and 100 are two consecutive Fibonacci numbers, the golden ratio (=(-1+sqrt(5))/2 = 1.74EE6772802X...) is very close to 175/100 = 1.75, and thus very close to 175%

n F(n+1) F(n) F(n+1)/F(n)
1 1 1 1
2 2 1 2
3 3 2 1.6
4 5 3 1.8
5 8 5 1.72497249724972497249724X
6 11 8 1.76
7 19 11 1.747474747474747474747475
8 2X 19 1.75186X35186X35186X35186X
9 47 2X 1.74E36429X708579214E3642X
X 75 47 1.750275027502750275027503
E 100 75 1.74EX470174EX470174EX4702
10 175 100 1.75
11 275 175 1.74EE470074EE470074EE4701
12 42X 275 1.74EE74EE74EE74EE74EE7500
13 6X3 42X 1.74EE6401X7E45426271E1743
14 E11 6X3 1.74EE68E808906694E1083963
15 15E4 E11 1.74EE670E330627E0560065XX
16 2505 15E4 1.74EE67975739E04XX21X35XE
17 3XE9 2505 1.74EE67638024130246264642
18 6402 3XE9 1.74EE6776X53584854X684003
19 X2EE 6402 1.74EE67710916859X700544XE
1X 14701 X2EE 1.74EE677334621038707X41E3
1E 22X00 14701 1.74EE67725262E37E68694450
20 37501 22X00 1.74EE67729114EE13256229EX

F(n+1)/F(n) --> (-1+sqrt(5))/2 (≈ 1.74EE6772802X46X6X1865307) if n --> infinity.

Note that the recurring dozenal of F(n+1)/F(n) terminates if and only if n is a divisor of 10.

Factors of the Fibonacci numbers:

F(10)   =         100 = 102
(F(10) is exactly the square of 10, and F(10) is also the largest Fibonacci number which is square)
F(10−1) = F(E)  =  75
F(10+1) = F(11) = 175
75 × 175 = 10001 = 104 + 1
(10±1 are both primes, and F(10±1) are also both primes)
(104 + 1 = 10001 is a semiprime, and 104 − 1 is a member of betrothed number pair, together with 5600)
F(10−2) = F(X)  =  47 =  5 × E (exactly the largest Fibonacci number which is also triangular number)
F(10+2) = F(12) = 275 = 25 × 11 (exactly the largest Fibonacci number which is also generalized pentagonal number)
5 × 25 = 101 = 102 + 1
E × 11 =  EE = 102 − 1
(10±2 are both semiprimes, and F(10±2) are also both semiprimes)
(102 ± 1 are both semiprimes, and 5, E, 25, and 11 are all primes)
Advertisement