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The Twentieth Fermât Number is Composite

By Jeff Young and Duncan A. Buell

Abstract. The twentieth Fermât number, F20 = 22     +1, has been proven composite

by machine computation.

The Fermât numbers are the numbers Fn = 22" + 1, orginally conjectured by

Fermât to be prime for all n. In fact, only for n equal to 0 through 4 are they

known to be prime, and small factors of Fg, Fn, F12, Fis, Fie, have been known for

some time. As part of a long-term test of the hardware reliability of the Cray-2

supercomputer at the Supercomputing Research Center, the authors proved that

F20 = 22 +1, which had been the smallest Fermât number of unknown character,

is composite. The test for compositeness was the standard technique of Pépin [5]:

For n > l,Fn is prime if and only if 3(F»-1)/2 = -l (modF„). This test for

compositeness does not, of course, produce factors of the number, but was the test

used for proving the compositeness of F7, Fg, Fio, Fi3, F14 [2], [3], [4], [6], [7].

The result of the computation on the Cray-2 has been verified by performing

the same computation on a Cray X-MP belonging to Cray Research. The total

computation time on the Cray-2 was about 10 CPU days; the time on the Cray X-

MP was 82 hours. Both programs ran as single-processor programs on any available

CPU of the respective machines; the ability of either computer to run in parallel

on multiple CPU's was not used. The time needed to test Fn, for n in the range

10 through 20, is just slightly more than four times the time needed to test Fn_i:

The number of multiplications doubles in incrementing n, and the time required for

each multiplication doubles, being dependent almost entirely on the length of the

operands. Our programs would thus determine the character of F22, which is now

the smallest Fermât number of unknown character, in a little more than 16 times

the time needed for our computation on i^o-

The table below summarizes what is now known about the Fermât numbers for

n less than or equal to 22. A status list for larger n appears in [1].

This computation, roughly one million squarings modulo a one million bit num-

ber, would be impossible to do even on supercomputers without fast Fourier trans-

form techniques for integer multiplication. Since one reason for performing this

computation was to verify hardware reliablity and not to minimize the execution

time, the program was written entirely in Cray Fortran and called Cray library

functions for the FFT's. The program itself was very simple and only about 200

lines long, much of which was used for checkpointing and restarting the program.

The program was called into execution every time the Cray-2 was restarted, and so
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it ran essentially without any operator or programmer intervention over a period of

nearly a month. The substantial difference in execution time on the two machines

can probably be explained in large part by the fact that the FFT routines used on

both machines were identical, but have been optimized by Cray for the X-MP.

Values of n Character of Fn

0,1,2,3,4 Prime

5,6,7,8 Composite and completely factored

9,13 One prime factor known, composite cofactor

15,16,17,18,21    One prime factor known, cofactor of unknown character

10,11 Two prime factors known, composite cofactor

19 Two prime factors known, cofactor of unknown character

12 Five prime factors known, composite cofactor

14,20 Composite, no factor known

22 Character unknown

We estimate that the total number of floating-point multiplications and divisions

was about 2.3 • 1013; this leads to an estimate of about 28 Megaflops sustained by

the Cray-2 over the 10 days of computation. While our estimate of the number of

operations is admittedly low, it is unlikely to be low by more than a factor of 2.

The 28 Megaflops should not, however, be taken as a valid benchmark of Cray-2

performance, since this computation is dominated by the FFT's and, as mentioned,

the code used for the FFT's was optimized for a different machine.

The test for compositeness produces the residue Rn of 3^F"-1^2 modulo Fn; Fn

is prime if and only if Rn is — 1. Some legitimate skepticism must be attached to

the conclusion that F20 is composite, then, since an error either in the hardware

or in the computation is almost certainly going to produce an erroneous residue

which would nonetheless lead to the expected conclusion that F20 is composite.

By producing the same residue R20 on two different machines, we feel that the

possibility of hardware error has been eliminated. As for the possiblity of the

two machines merely duplicating software or computational errors, we point out

that although the Cray-2 and the Cray X-MP ran the same Fortran code, their

respective Fortran compilers will have produced substantially different executable

modules for the somewhat different assembly languages. We feel confident, then,

that there were no subtle flaws in the programs or the compilers.

As for the possibility that we have implemented the algorithm incorrectly,

Selfridge and Hurwitz [7] published, for purposes of later verification, the values of

Rn modulo 236, 236 - 1, and 235 - 1 for n = 7,8,13, and 14. We checked, with

our programs, that we produced the same residues for these Fermât numbers (the

computation for Fi4 requires only three minutes), and list the values of R20 modulo

236, 236 - 1, and 235 - 1:

R20 = 175517362761 (mod236),

R20 = 411337412531 (mod236 - 1),

Ä20 = 161572365764 (mod235 - 1).

For the above reasons, we feel confident that our conclusion that F2o is composite

is based on a correct computation of the residue #20-
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We remark that this 10-day computation on a supercomputer may well be the

largest computation ever performed whose result is a single bit answer. Never have

so many circuits labored for so many cycles to produce so few output bits.
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