
A SEARCH FOR SOME SMALL BRIER NUMBERS
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Abstract. In 1998, Eric Brier proved the existence of some numbers k such
that k · 2n is never adjacent to a prime. At that time, the smallest known
”Brier Number” was a 41-digit number. The search was extended to find the
smallest Brier number. Today, the smallest known number of this form is the
27-digit number k = 878503122374924101526292469.

1. Definitions

Definition 1.1. A Sierpiński number is a positive integer k such that k · 2n + 1
is not prime for any integer n.
Definition 1.2. A Riesel number is a positive integer k such that k · 2n − 1 is
not prime for any integer n.
Definition 1.3. A Brier number is both a Sierpiński number and a Riesel num-
ber.

2. A constructive approach

Let S = {p1, p2, ..., ps} a set of prime numbers and P =
∏

1≤i≤s pi. Let ei the
order of 2 modulo pi (see [1, Definition 22]) and eS = lcm(e1, e2, ..., es).
Definition 2.1. If one of the primes of the set S divides k · 2n + 1 for any number
n, and if for every prime pi of S there is at least one ni such that no other prime
of S divides k · 2ni + 1, then S is called a covering set for the Sierpiński number
k (idem for Riesel numbers). eS is called the order of S.

Note that it is enough to verify the conditions for any number 0 ≤ n < eS . Note
also that a covering set may generate different Sierpiński numbers. To compute
them, we should generate all possible sets of solutions {a1, a2, ..., as} such that
k ≡ ai (mod pi) and determine k with Chinese Remainder Theorem.
Theorem 2.2. If S is a covering set for a Sierpiński number, then it is a covering
set for a Riesel number and vice versa.

Proof. We can choose kR = 2P − kS . �

Definition 2.3. Let S1 be a covering set and S2 another covering set such that
S1

⋂

S2 = ∅ or {3}. S2 is called the complement of S1.
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Theorem 2.4. If S2 is a complement of S1, then S1
⋃

S2 generates some Brier
numbers.

Proof. The prime 3 can be used in both sets, eliminating even values of n in one
case and odd values in the other one. �

3. A systematic search for covering sets

We search for all covering sets for a Sierpiński number with a fixed eS . The order
of 2 modulo pi are some divisors of eS then the covering sets are some subsets of
the list of prime factors of 2eS − 1. A necessary condition is

∑

i ei ≥ 1, but it is not
sufficient.

To test completely a subset, we create an array of eS cells. For each prime pi

and for each 0 ≤ oi < ei, we fill the cells of the array at position oi + j · ei. If the
array is totally filled, and if for each pi there exists a cell which has been filled only
once, then the subset of primes is a covering set and we can compute k with the
relations k ≡ ai ≡ −1/2oi (mod pi).

We can generate all covering sets by applying this method, but the number of
operations grows very fast with eS . So another method was used to find some small
Brier numbers initially.

4. A search for the ”best” covering set

For a covering set S, the different sets of solutions {ai} can be considered as
some random numbers modulo pi. Thus the values of k are some random numbers
modulo P . Then to find some small values of k, we search for some covering sets
with P being small.
Definition 4.1. The best covering set of order eS is the covering set for which P
is minimal.

To find some small Brier numbers, we can search for the best complements. We
start the search with a covering set S1. If we find its best complement S2, we
have a good chance to find the smallest Brier number that can be generated by S1

and any of its complements. We iterate the process by searching for S3, the best
complement of S2, and stop when Si+2 = Si.

Table 1. Some covering sets and their ”good” complement

Set e Prime list P size compl.
(digits)

S1 24 3 7 5 17 13 241 7 S2

S2 420 3 31 127 11 43 151 41 337 29 113 331
71 122921 5419 61 1321 281 86171 1429
14449 29191 106681 152041

65 -

S3 64 3 5 17 257 65537 641 6700417 20 S4

S4 144 3 7 73 13 19 241 37 109 97 673 17 S5

S5 120 3 5 31 17 11 151 41 331 61681 61 18 S6

S6 144 3 7 73 13 257 19 241 37 109 97 16 S5

S7 160 3 5 31 17 11 257 41 65537 61681 414721 25 S4

The search for the best complement is often unpractical because its size is too
large. Then a program was written to find quickly a ”good” complement: for a fixed
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eS , the prime factors of 2eS − 1 are sorted in ascending order size and in ascending
size if the orders have the same size. Rather than searching for each 0 ≤ oi < ei,
we select the oi for which the number of filled free cells is the larger one and only
search with this value. Surprisingly, this simple algorithm is very efficient: for all
eS for which all covering sets are known, the algorithm finds the best one (to be
verified with recent results).

Some results, found using this method, are shown in Table 1. If the order of the
first set is too small then the second set contains several primes and the resulting
Brier number is not small.

No pair of sets better than S5 and S6 was discovered. The smallest Brier number
generated by these sets is 878503122374924101526292469.

5. A return to the systematic search

The orders of the sets found during the partial search were small enough to
attempt the discovery of a smaller Brier number with an exhaustive search. All
covering sets of Sierpiński numbers having eS < 180 were generated and many
others for some fixed s (see Table 2).

All complementary sets were paired and arranged in ascending P , where P is the
product of the prime numbers of both sets. The smallest Brier numbers associated
to the first pairs of the list were computed (see Table 3 for the top of them) But
none of them was smallest than the previously found 27-digit Brier number. It is
unlikely that a smaller Brier number will be found with two complementary sets.

Is it possible to find a smaller Brier number for which no complementary sets
exist? A program was written to search for some Brier numbers directly, by filling
two arrays of eS cells. With this program, it was proved that no Brier number
exists for eS < 180. The possible candidates for eS < 288 are 180, 240, 252 and
264. Some Brier numbers exist for eS = 288: for example, the covering sets {3,
7, 5, 17, 73, 13, 257, 19, 241, 65537, 37, 109, 97, 673, 433, 38737, 193, 577, 1153,
6337} can be used. But the size of the Brier numbers found in this way is really
larger than the numbers found by using two complementary sets.
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Table 2. Count of covering sets

eS n Set
24 1 3 7 5 17 13 241
36 4
48 15
60 23
64 1 3 5 17 257 65537 641 6700417
72 93
80 1 3 5 31 17 11 257 41 61681 4278255361
84 8
96 71

108 24
112 1 3 5 127 17 43 257 29 113 15790321 5153 54410972897
120 698
128 2
140 1 3 5 31 127 11 43 41 29 113 71 122921 281 86171 7416361 47392381
144 3376
160 28
168 1475
180 ?
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Table 3. Brier numbers generated by some covering sets having
a small P

e1 = 120 3 5 31 17 11 151 41 331 61681 61
e2 = 144 3 7 73 13 257 19 241 37 109 97
k 878503122374924101526292469 (27/34)
e1 = 120 3 5 31 17 11 151 41 331 61681 61
e2 = 144 3 7 73 13 19 241 37 109 97 673
k 3872639446526560168555701047 (28/34)
e1 = 120 3 5 31 17 11 151 41 61681 61 1321
e2 = 144 3 7 73 13 257 19 241 37 109 97
k 6752111260707276586600527347 (28/34)
e1 = 120 3 5 31 17 11 151 41 331 61681 61
e2 = 144 3 7 73 13 257 19 241 37 109 673
k 2573455513910801216010607729 (28/35)
e1 = 120 3 5 31 17 11 41 331 61681 61 1321
e2 = 144 3 7 73 13 257 19 241 37 109 97
k 11252264900274601966567368371 (29/35)
e1 = 120 3 5 31 17 11 151 41 61681 61 1321
e2 = 144 3 7 73 13 19 241 37 109 97 673
k 2668934159979395835274330907 (28/35)
e1 = 120 3 5 31 17 11 151 41 331 61681 1321
e2 = 144 3 7 73 13 257 19 241 37 109 97
k 27456735936026361614526507061 (29/35)
e1 = 120 3 5 31 17 11 41 331 61681 61 1321
e2 = 144 3 7 73 13 19 241 37 109 97 673
k 16985143930825825363784428577 (29/35)
e1 = 120 3 5 31 17 11 151 41 61681 61 1321
e2 = 144 3 7 73 13 257 19 241 37 109 673
k 1723525455942005335396308929 (28/35)
e1 = 120 3 5 31 17 11 151 41 331 61681 1321
e2 = 144 3 7 73 13 19 241 37 109 97 673
k 71304118104020595224410968529 (29/36)
e1 = 120 3 5 31 17 11 41 331 61681 61 1321
e2 = 144 3 7 73 13 257 19 241 37 109 673
k 19387161879696990635166458771 (29/36)
e1 = 64 3 5 17 257 65537 641 6700417
e2 = 144 3 7 73 13 19 241 37 109 97 673
k 623506356601958507977841221247 (30/36)
e1 = 120 3 5 31 17 11 151 41 331 61681 1321
e2 = 144 3 7 73 13 257 19 241 37 109 673
k 5005425549902954169655052777 (28/36)
e1 = 120 3 5 31 17 11 151 41 331 61681 61
e2 = 144 3 7 73 13 257 19 241 37 97 433 577
k 713331160941223303050450522407 (30/37)


