mersenneforum.org  

Go Back   mersenneforum.org > Extra Stuff > Blogorrhea > sweety439

Reply
 
Thread Tools
Old 2020-11-03, 09:06   #1
 
sweety439's Avatar
 
"99(4^34019)99 palind"
Nov 2016
(P^81993)SZ base 36

25×5×23 Posts
Default Type of primes in various bases

1. Permutable prime

1.1. Largest permutable prime in base n (repunit primes excluded) written in base 10 for 3<=n<=36: (since no such primes exist for base 2) (conjectured)

7, 53, 3121, 211, 1999, 3803, 6469, 991, 161047, 19793, 16477, 24907, 683437, 3547, 67853, 80273, 94109, 72421, 148639, 182537, 228953, 9967, 358069, 17467, 99929, 21943, 369319, 26981, 23580569, 1048571, 1037657, 1012369, 1271117, 1367687

1.2. Largest permutable prime in base n (repunit primes excluded) written in base n for 3<=n<=36: (since no such primes exist for base 2) (conjectured)

21, 311, 44441, 551, 5554, 7333, 8777, 991, AAAA7, B555, 7666, 9111, D7777, DDB, DDD6, DDDB, DDD2, 9111, G111, H333, IIIB, H77, MMMJ, PLL, 5222, RRJ, F444, TTB, PGGGG, VVVR, SSS5, PPPJ, TMMM, TBBB

1.3. Length of largest permutable prime in base n (repunit primes excluded) for 3<=n<=36: (since no such primes exist for base 2) (conjectured)

2, 3, 5, 3, 4, 4, 4, 3, 5, 4, 4, 4, 5, 3, 4, 4, 4, 4, 4, 4, 4, 3, 4, 3, 4, 3, 4, 3, 5, 4, 4, 4, 4, 4

1.4. Number of permutable primes in base n (repunit primes excluded) for 2<=n<=36: (conjectured)

0, 3, 7, 13, 8, 27, 16, 30, 21, 69, 21, 70, 31, 50, 38, 46, 42, 93, 50, 83, 58, 106, 37, 139, 69, 89, 70, 176, 56, 187, 80, 111, 147, 201, 102

2. Left-truncatable prime

2.1. Largest left-truncatable prime in base n written in base 10 for 3<=n<=36: (since no such primes exist for base 2)

23, 4091, 7817, 4836525320399, 817337, 14005650767869, 1676456897, 357686312646216567629137, 2276005673, 13092430647736190817303130065827539, 812751503, 615419590422100474355767356763, 34068645705927662447286191, 1088303707153521644968345559987, 13563641583101, 571933398724668544269594979167602382822769202133808087, 546207129080421139, 1073289911449776273800623217566610940096241078373, 391461911766647707547123429659688417, 33389741556593821170176571348673618833349516314271, 116516557991412919458949, 10594160686143126162708955915379656211582267119948391137176997290182218433, 8211352191239976819943978913, 12399758424125504545829668298375903748028704243943878467, 10681632250257028944950166363832301357693, 720639908748666454129676051084863753107043032053999738835994276213, 4300289072819254369986567661, ?, 645157007060845985903112107793191, 1131569863270120248974817136287838489359936416046975582122661310411, 924039815258046855588818237912726885772934968646554431, 982498935397824993800810311994840611581693708091339679644860318739434026149, 448739985000415097566502155600731235704288431019152509, ?

2.2. Largest left-truncatable prime in base n written in base n for 3<=n<=36: (since no such primes exist for base 2)

212, 333323, 222232, 14141511414451435, 6642623, 313636165537775, 4284484465, 357686312646216567629137, A68822827, 471A34A164259BA16B324AB8A32B7817, CC4C8C65, D967CCD63388522619883A7D23, 6C6C2CE2CEEEA4826E642B, DBC7FBA24FE6AEC462ABF63B3, 6C66CC4CC83, AF93E41A586HE75A7HHAAB7HE12FG79992GA7741B3D, CIEG86GCEA2C6H, FC777G3CG1FIDI9I31IE5FFB379C7A3F6EFID, G8AGG2GCA8CAK4K68GEA4G2K22H, FFHALC8JFB9JKA2AH9FAB4I9L5I9L3GF8D5L5, IMMGM6C6IMCI66A4H, HMJEJFA3A71DID9MFMNFE3D3KJHA61KH92IFCA3LB8GF444FBB7AH, ME6OM6OECGCC24C6EG6D, L2K853AC9IC628859L93F7FLAM7L25EN3C3PC27, O2AKK6EKG844KAIA4MACK6C2ECAB, 5C9126C3PN6IRP5FPBMKA5LGBMO387R5IJLO54OFBFJL85, KCG66AGSCKEIASMCKKJ, ?, UUAUIKUC4UI6OCECI642SD, LFLHKUDGSP39SAAPAD9I9OLIOUOH6GV68OR8UMJ6LRUB, 6ISWQOIMIWC8OKQAIMKUQ24KO86WK2ASCEC5, U9WSWU4T672RCMFESU6B6FG99UNABPFOU2LIIUGTX1KABJBPV, E8KUSUKKQEQWEWCMIEOY46Q8888QOSAAYOJ, ?

2.3. Length of largest left-truncatable prime in base n for 3<=n<=36: (since no such primes exist for base 2)

3, 6, 6, 17, 7, 15, 10, 24, 9, 32, 8, 26, 22, 25, 11, 43, 14, 37, 27, 37, 17, 53, 20, 39, 28, 46, 19, (about 82 in theory), 22, 44, 36, 49, 35, (about 76 in theory)

2.4. Number of left-truncatable primes in base n for 2<=n<=36:

0, 3, 16, 15, 454, 22, 446, 108, 4260, 75, 170053, 100, 34393, 9357, 27982, 362, 14979714, 685, 3062899, 59131, 1599447, 1372, 1052029701, 10484, 7028048, 98336, 69058060, 3926, (about 16844070429770 in theory), 11314, 35007483, 2527304, 240423316, 607905, (about 1631331033450 in theory)

3. Right-truncatable prime

3.1. Largest right-truncatable prime in base n written in base 10 for 3<=n<=36: (since no such primes exist for base 2)

71, 191, 2437, 108863, 6841, 4497359, 1355840309, 73939133, 6774006887, 18704078369, 122311273757, 6525460043032393259, 927920056668659, 16778492037124607, 4928397730238375565449, 5228233855704101657, 3013357583408354653, 1437849529085279949589, 101721177350595997080671, 185720479816277907890970001, 158208158913013692383, 192747244030905257036482742599289, 11360039924980123824119977, 522764314648992960422987767, 106521223483392113109841556843, 467437774672035454997088263971, 18980691336146397055451904000521, 206971354022501468249535515240921, 403878995374635723531460715056361, 9813093725765026702961210138094949, 10174889780995609522983172669668593, 18085876810004448001794542893991790487, 9520817609816167868579578513867491007, 8723727825272063982605771015871962141

3.2. Largest right-truncatable prime in base n written in base n for 3<=n<=36: (since no such primes exist for base 2)

2122, 2333, 34222, 2155555, 25642, 21117717, 3444224222, 73939133, 29668286AA, 375BB5B515, B6C2CA8A8A, 2DD35B9D399395B3D, 72424E42EEE8E, 3B9BF319BD51FF, 5G4CEE8EC688CAC86G, DH17HB7BBD75BDB, 3EC8GI8GICIEG8C, 23HBH9D19HH9JDDJ9, 3824A4GGA4AG82KKA8, 5H975FFLLJF3HL3F33F3, DEK6ICCE8EE2K26, 3B5J511H5NJNN55B7JDBNN7H, JCMIIIEIIOIC4EIGO2, HJ1FHN97JF9P7PFFJ19, 2DMMKQEMAM4884QMAEAG2, 5953R9JHJ5PFF3R3H3D9N, 3K6QOO6682O4AG4GG6Q82C, JNHJ77DDNT7THDD177HD7B, JC642UIS2S8GOQUSKMII2A, 7HT59VF3PDRRJ7PD3371RB5, 3WEK8QAGQW8GW4E4KWGEAA2, 35X5FPF5R7XBXD9LRB1BRXXVT, T6CGG4G68I4MC26GCOYYCWCC, DZJZJPDDP7J55ZNPPZ71PD7H

3.3. Length of largest right-truncatable prime in base n for 3<=n<=36: (since no such primes exist for base 2)

4, 4, 5, 7, 5, 8, 10, 8, 10, 10, 10, 17, 13, 14, 18, 15, 15, 17, 18, 20, 15, 24, 18, 19, 21, 21, 22, 22, 22, 23, 23, 25, 24, 24

3.4. Number of right-truncatable primes in base n for 2<=n<=36:

0, 4, 7, 14, 36, 19, 68, 68, 83, 89, 179, 176, 439, 373, 414, 473, 839, 1010, 1577, 2271, 2848, 1762, 3376, 5913, 6795, 6352, 10319, 5866, 14639, 13303, 19439, 29982, 38956, 39323, 58857

4. Minimal prime

4.1. Largest minimal prime in base n written in base 10 for 2<=n<=36:

3, 13, 5, 3121, 5209, 2801, 76695841, 811, 66600049, 29156193474041220857161146715104735751776055777, 388177921, 13^32020*8+183, 105424857819287798806418819113233738918727566030978473259776662287591943095417282958456246916612161, 436635814641280043127962407363407208906111673434962498607709751248805460292422544779495998033626489944124062146459306989397233, 16^3544*9+145, >=(73*17^111333-9)/16, 249069897374447078426903207266791381270529, >=(904*19^110984-1)/3, (20^449*16-2809)/19, >=(51*21^479149-1243)/4, 22^763*20+7041, (23^800873*106-7)/11, 973767003942195520947294504280890002680537875404412883659428819153939518991719953852457999342229586282557076411687300474817686178175693329, >=(37*25^136966+63)/4, >=(22*26^8773+53)/25, >=10*27^109005+697, >=(6092*28^94536-143)/9, >=24*29^174239+13361, 30^1023*12+1, >=(5727*31^29787-7)/10, >=(898*32^9749-309)/31, >=(21*33^9961+7723)/32, 1048*34^9375+27, (13456*35^9597-9)/17, (5*36^81995+821)/7

4.2. Largest minimal prime in base n written in base n for 2<=n<=36:

11, 111, 11, 44441, 40041, 11111, 444444441, 1101, 66600049, 444444444444444444444444444444444444444444441, AA000001, 8(0^32017)111, 40000000000000000000000000000000000000000000000000000000000000000000000000000000000049, 96666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666608, 9(0^3542)91, >=4(9^111333), GG0000000000000000000000000000001, >=FG(6^110984), (G^447)99, >=C(F^479147)0K, K(0^760)EC1, 9(E^800873), M666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666661, >=9(6^136965)M, >=(M^8772)P, >=A(0^109003)PM, >=O4(O^94535)9, >=O(0^174236)FPL, C(0^1022)1, >=IE(L^29787), >=S(U^9748)L, >=(L^9959)SW, >=US(0^9374)R, >=ML(I^9597), >=(P^81993)SZ

4.3. Length of largest minimal prime in base n for 2<=n<=36:

2, 3, 2, 5, 5, 5, 9, 4, 8, 45, 8, 32021, 86, 107, 3545, >=111334, 33, >=110986, 449, >=479150, 764, 800874, 100, >=136967, >=8773, >=109006, >=94538, >=174240, 1024, >=29789, >=9750, >=9961, >=9377, >=9599, >=81995

4.4. Number of minimal primes in base n for 2<=n<=36:

2, 3, 3, 8, 7, 9, 15, 12, 26, 152, 17, 228, 240, 100, 483, 1279~1280, 50, 3462~3463, 651, 2600~2601, 1242, 6021, 306, 17597~17609, 5662~5664, 17210~17215, 5783~5784, 57283~57297, 220, 79187~79204, 45205~45283, 57676~57709, 56457~56490, 182378~182393, 6296~6297

Last fiddled with by sweety439 on 2021-08-02 at 04:02
sweety439 is offline   Reply With Quote
Old 2020-11-03, 09:26   #2
 
sweety439's Avatar
 
"99(4^34019)99 palind"
Nov 2016
(P^81993)SZ base 36

71408 Posts
Default

5. Repunit prime [it is conjectured that there are infinitely many repunit primes in base n, if n is not perfect power]

5.1. Smallest repunit prime in base n written in base 10 for 2<=n<=36: (0 if no such primes exist)

3, 13, 5, 31, 7, 2801, 73, 0, 11, 50544702849929377, 13, 30941, 211, 241, 17, 307, 19, 109912203092239643840221, 421, 463, 23, 292561, 601, 0, 321272407, 757, 29, 732541, 31, 917087137, 0, 1123, 2458736461986831391, (35^313-1)/34, 37

5.2. Smallest repunit prime in base n written in base n for 2<=n<=36: (0 if no such primes exist)

11, 111, 11, 111, 11, 11111, 111, 0, 11, 11111111111111111, 11, 11111, 111, 111, 11, 111, 11, 1111111111111111111, 111, 111, 11, 11111, 111, 0, 1111111, 111, 11, 11111, 11, 1111111, 0, 111, 1111111111111, 1313, 11

5.3. Length of smallest repunit prime in base n written in base n for 2<=n<=36: (0 if no such primes exist)

2, 3, 2, 3, 2, 5, 3, 0, 2, 17, 2, 5, 3, 3, 2, 3, 2, 19, 3, 3, 2, 5, 3, 0, 7, 3, 2, 5, 2, 7, 0, 3, 13, 313, 2

6. Weakly prime [it is conjectured that there are infinitely many weakly primes in base n for all n>=2]

6.1. Smallest weakly prime in base n written in base 10 for 2<=n<=36:

127, 2, 373, 83, 28151, 223, 6211, 2789, 294001, 3347, 20837899, 4751, 6588721, 484439, 862789, 10513, 2078920243, 10909, 169402249, 2823167, 267895961, 68543, 1016960933671, 181141, 121660507, 6139219, 11646280537, 488651, >2*10^12, 356479, ?, 399946711, ?, 22549349, ?

6.2. Smallest weakly prime in base n written in base n for 2<=n<=36:

1111111, 2, 11311, 313, 334155, 436, 14103, 3738, 294001, 2573, 6B8AB77, 2216, C371CD, 9880E, D2A45, 2267, 3723DE91, 1B43, 2CIF5C9, EAHFB, 27LD613, 5ED3, 95HCJA8C7, BEKG, A65P47, BEOBD, O4JHPIH, K111, >31DEFO26K, BTTA, ?, A783HA, ?, F0WM4, ?

6.3. Length of smallest weakly prime in base n written in base n for 2<=n<=36:

7, 1, 5, 3, 6, 3, 5, 4, 6, 4, 7, 4, 6, 5, 5, 4, 8, 4, 7, 5, 7, 4, 9, 4, 6, 5, 7, 4, >=9, 4, ?, 6, ?, 5, ?

7. Two-sided prime

7.1. Largest two-sided prime in base n written in base 10 for 3<=n<=36: (since no such primes exist for base 2)

23, 11, 67, 839, 37, 1867, 173, 739397, 79, 105691, 379, 37573, 647, 3389, 631, 202715129, 211, 155863, 1283, 787817, 439, 109893629, 577, 4195880189, 1811, 14474071, 379, 21335388527, 2203, 1043557, 2939, 42741029, 2767, 50764713107

7.2. Largest two-sided prime in base n written in base n for 3<=n<=36: (since no such primes exist for base 2)

212, 23, 232, 3515, 52, 3513, 212, 739397, 72, 511B7, 232, D99B, 2D2, D3D, 232, 5H511HB, B2, J9D3, 2J2, 37LFJ, J2, DJ5BD5, N2, DF3LL97, 2D2, NF9N3, D2, T7TTH7H, 292, VR35, 2N2, VXF73, 292, NBJZZBN

7.3. Length of largest two-sided prime in base n for 3<=n<=36: (since no such primes exist for base 2)

3, 2, 3, 4, 2, 4, 3, 6, 2, 5, 3, 4, 3, 3, 3, 7, 2, 4, 3, 5, 2, 6, 2, 7, 3, 5, 2, 7, 3, 4, 3, 5, 3, 7

7.4. Number of two-sided primes in base n for 3<=n<=36:

0, 2, 3, 5, 9, 7, 22, 8, 15, 6, 35, 11, 37, 17, 22, 12, 69, 12, 68, 18, 44, 13, 145, 16, 47, 20, 77, 13, 291, 15, 89, 27, 74, 20, 241

8. Circular prime (data only available for bases <=12)

8.1. Largest circular prime in base n (repunit primes excluded) written in base 10 for 3<=n<=12: (since no such primes exist for base 2) (conjectured)

7, 1013, 3121, 211, 13143449029, 16244441, 4717103, 999331, 378470237117827, 2894561

8.2. Largest circular prime in base n (repunit primes excluded) written in base n for 3<=n<=12: (since no such primes exist for base 2) (conjectured)

21, 33311, 44441, 551, 643464321244, 75757331, 8778575, 999331, AA657365177398, B77115

8.3. Length of largest circular prime in base n (repunit primes excluded) for 3<=n<=12: (since no such primes exist for base 2) (conjectured)

2, 5, 5, 3, 12, 8, 7, 6, 14, 6

8.4. Number of circular primes in base n (repunit primes excluded) for 2<=n<=12: (conjectured)

0, 3, 10, 24, 5, 141, 42, 50, 54, ?, 37

Last fiddled with by sweety439 on 2021-08-02 at 04:04
sweety439 is offline   Reply With Quote
Old 2020-11-03, 09:29   #3
 
sweety439's Avatar
 
"99(4^34019)99 palind"
Nov 2016
(P^81993)SZ base 36

1110011000002 Posts
Default

9. Full-reptend prime [it is conjectured that there are infinitely many full-reptend primes in base n, if n is not square]

Base//Full-reptend primes

2: 3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83, 101, 107, 131, 139, 149, 163, 173, 179, 181, 197, 211, 227, 269, 293, 317, 347, 349, 373, 379, 389, 419, 421, 443, 461, 467, 491, 509, 523, 541, 547, 557, 563, 587, 613, 619, 653, 659, 661, 677, 701, 709, 757, 773, 787, 797, 821, 827, 829, 853, 859, 877, 883, 907, 941, 947, 1019, 1061, 1091, 1109, 1117, 1123, 1171, 1187, 1213, 1229, 1237, 1259, 1277, 1283, 1291, 1301, 1307, 1373, 1381, 1427, 1451, 1453, 1483, 1493, 1499, 1523, 1531, 1549, 1571, 1619, 1621, 1637, 1667, 1669, 1693, 1733, 1741, 1747, 1787, 1861, 1867, 1877, 1901, 1907, 1931, 1949, 1973, 1979, 1987, 1997, 2027, 2029, 2053, 2069, 2083, 2099, 2131, 2141, 2213, 2221, 2237, 2243, 2267, 2269, 2293, 2309, 2333, 2339, 2357, 2371, 2389, 2437, 2459, 2467, 2477, 2531, 2539, 2549, 2557, 2579, 2621, 2659, 2677, 2683, 2693, 2699, 2707, 2741, 2789, 2797, 2803, 2819, 2837, 2843, 2851, 2861, 2909, 2939, 2957, 2963, 3011, 3019, 3037, 3067, 3083, 3187, 3203, 3253, 3299, 3307, 3323, 3347, 3371, 3413, 3461, 3467, 3469, 3491, 3499, 3517, 3533, 3539, 3547, 3557, 3571, 3581, 3613, 3637, 3643, 3659, 3677, 3691, 3701, 3709, 3733, 3779, 3797, 3803, 3851, 3853, 3877, 3907, 3917, 3923, 3931, 3947, 3989, 4003, 4013, 4019, 4021, 4091, 4093, ...
3: 2, 5, 7, 17, 19, 29, 31, 43, 53, 79, 89, 101, 113, 127, 137, 139, 149, 163, 173, 197, 199, 211, 223, 233, 257, 269, 281, 283, 293, 317, 331, 353, 379, 389, 401, 449, 461, 463, 487, 509, 521, 557, 569, 571, 593, 607, 617, 631, 641, 653, 677, 691, 701, 739, 751, 773, 797, 809, 811, 821, 823, 857, 859, 881, 907, 929, 941, 953, 977, 1013, 1039, 1049, 1061, 1063, 1087, 1097, 1109, 1123, 1193, 1217, 1229, 1231, 1277, 1279, 1291, 1301, 1327, 1361, 1373, 1409, 1423, 1433, 1447, 1459, 1481, 1483, 1493, 1553, 1567, 1579, 1601, 1613, 1627, 1637, 1663, 1697, 1699, 1709, 1721, 1723, 1733, 1747, 1831, 1889, 1901, 1913, 1949, 1951, 1973, 1987, 1997, 1999, 2011, 2069, 2081, 2083, 2129, 2141, 2143, 2153, 2213, 2237, 2239, 2273, 2309, 2311, 2333, 2347, 2357, 2371, 2381, 2393, 2417, 2467, 2477, 2503, 2539, 2549, 2609, 2633, 2647, 2657, 2659, 2683, 2693, 2707, 2719, 2729, 2731, 2741, 2753, 2767, 2777, 2789, 2801, 2837, 2861, 2897, 2909, 2957, 2969, 3041, 3089, 3137, 3163, 3209, 3257, 3259, 3271, 3307, 3329, 3331, 3389, 3391, 3413, 3449, 3461, 3463, 3533, 3547, 3557, 3559, 3571, 3581, 3583, 3593, 3617, 3643, 3677, 3701, 3727, 3761, 3797, 3821, 3823, 3833, 3917, 3919, 3929, 3931, 3943, 3989, 4001, 4003, 4013, 4027, 4049, 4073, ...
4: (none)
5: 2, 3, 7, 17, 23, 37, 43, 47, 53, 73, 83, 97, 103, 107, 113, 137, 157, 167, 173, 193, 197, 223, 227, 233, 257, 263, 277, 283, 293, 307, 317, 347, 353, 373, 383, 397, 433, 443, 463, 467, 503, 523, 547, 557, 563, 577, 587, 593, 607, 613, 617, 647, 653, 673, 677, 683, 727, 743, 757, 773, 787, 797, 857, 863, 877, 887, 907, 937, 947, 953, 967, 977, 983, 1013, 1033, 1093, 1097, 1103, 1153, 1163, 1187, 1193, 1213, 1217, 1223, 1237, 1277, 1283, 1307, 1327, 1367, 1373, 1427, 1433, 1483, 1487, 1493, 1523, 1543, 1553, 1567, 1583, 1607, 1613, 1637, 1663, 1667, 1693, 1697, 1733, 1747, 1777, 1787, 1823, 1847, 1877, 1907, 1913, 1933, 1987, 1993, 1997, 2003, 2017, 2027, 2053, 2063, 2083, 2087, 2113, 2143, 2153, 2203, 2207, 2213, 2237, 2243, 2267, 2273, 2293, 2297, 2333, 2347, 2357, 2377, 2383, 2393, 2417, 2423, 2437, 2447, 2467, 2473, 2477, 2503, 2543, 2557, 2617, 2633, 2647, 2657, 2663, 2677, 2683, 2687, 2693, 2713, 2753, 2767, 2777, 2797, 2833, 2837, 2843, 2887, 2897, 2903, 2917, 2927, 2957, 2963, 3023, 3037, 3067, 3083, 3163, 3167, 3187, 3203, 3217, 3253, 3307, 3323, 3343, 3347, 3373, 3407, 3413, 3433, 3463, 3467, 3517, 3527, 3533, 3547, 3557, 3583, 3593, 3607, 3613, 3617, 3623, 3643, 3673, 3677, 3697, 3767, 3793, 3797, 3803, 3833, 3847, 3863, 3907, 3917, 3923, 3943, 3947, 4003, 4007, 4013, 4027, 4057, 4073, 4093, ...
6: 11, 13, 17, 41, 59, 61, 79, 83, 89, 103, 107, 109, 113, 127, 131, 137, 151, 157, 179, 199, 223, 227, 229, 233, 251, 257, 271, 277, 347, 367, 373, 397, 401, 419, 443, 449, 467, 487, 491, 521, 563, 569, 587, 593, 613, 641, 659, 661, 683, 709, 733, 757, 761, 809, 823, 827, 829, 853, 857, 881, 929, 947, 953, 967, 971, 977, 991, 1019, 1039, 1049, 1063, 1069, 1091, 1097, 1117, 1163, 1187, 1193, 1213, 1217, 1237, 1259, 1279, 1283, 1289, 1303, 1307, 1327, 1361, 1381, 1409, 1423, 1427, 1429, 1433, 1451, 1471, 1481, 1499, 1523, 1543, 1549, 1553, 1567, 1601, 1619, 1621, 1663, 1667, 1669, 1759, 1789, 1811, 1831, 1861, 1879, 1889, 1907, 1913, 1979, 1999, 2027, 2029, 2053, 2081, 2099, 2129, 2143, 2153, 2221, 2243, 2267, 2269, 2273, 2293, 2297, 2389, 2393, 2411, 2417, 2437, 2441, 2459, 2503, 2531, 2551, 2557, 2579, 2609, 2633, 2657, 2699, 2729, 2749, 2767, 2777, 2791, 2797, 2801, 2819, 2843, 2887, 2897, 2917, 2939, 2963, 2969, 3011, 3041, 3061, 3079, 3083, 3089, 3109, 3137, 3203, 3209, 3229, 3251, 3253, 3257, 3271, 3299, 3301, 3319, 3323, 3329, 3347, 3371, 3391, 3449, 3463, 3467, 3469, 3491, 3517, 3539, 3583, 3593, 3617, 3659, 3709, 3733, 3761, 3779, 3803, 3823, 3833, 3847, 3853, 3929, 3943, 3947, 3967, 4001, 4019, 4049, 4073, 4091, 4093, ...
7: 2, 5, 11, 13, 17, 23, 41, 61, 67, 71, 79, 89, 97, 101, 107, 127, 151, 163, 173, 179, 211, 229, 239, 241, 257, 263, 269, 293, 347, 349, 359, 379, 397, 431, 433, 443, 461, 491, 499, 509, 521, 547, 577, 593, 599, 601, 631, 659, 677, 683, 733, 739, 743, 761, 773, 797, 823, 827, 857, 863, 907, 919, 929, 937, 941, 967, 991, 997, 1013, 1019, 1049, 1051, 1069, 1097, 1103, 1109, 1163, 1181, 1187, 1193, 1217, 1237, 1249, 1277, 1283, 1301, 1303, 1361, 1367, 1433, 1439, 1451, 1471, 1523, 1553, 1601, 1607, 1609, 1613, 1619, 1637, 1667, 1669, 1693, 1697, 1721, 1747, 1753, 1759, 1787, 1831, 1889, 1949, 1973, 1993, 2003, 2011, 2027, 2039, 2083, 2087, 2089, 2111, 2141, 2143, 2179, 2207, 2251, 2273, 2281, 2309, 2339, 2341, 2357, 2393, 2447, 2459, 2477, 2503, 2531, 2543, 2591, 2593, 2609, 2621, 2647, 2671, 2677, 2693, 2699, 2711, 2729, 2731, 2777, 2789, 2843, 2851, 2879, 2897, 2917, 2957, 2963, 3041, 3119, 3121, 3169, 3181, 3203, 3209, 3253, 3271, 3299, 3343, 3371, 3449, 3457, 3467, 3511, 3517, 3533, 3539, 3541, 3571, 3607, 3617, 3623, 3673, 3701, 3719, 3739, 3767, 3769, 3793, 3797, 3803, 3821, 3853, 3931, 3943, 3989, 4019, 4049, 4073, 4093, ...
8: 3, 5, 11, 29, 53, 59, 83, 101, 107, 131, 149, 173, 179, 197, 227, 269, 293, 317, 347, 389, 419, 443, 461, 467, 491, 509, 557, 563, 587, 653, 659, 677, 701, 773, 797, 821, 827, 941, 947, 1019, 1061, 1091, 1109, 1187, 1229, 1259, 1277, 1283, 1301, 1307, 1373, 1427, 1451, 1493, 1499, 1523, 1571, 1619, 1637, 1667, 1733, 1787, 1877, 1901, 1907, 1931, 1949, 1973, 1979, 1997, 2027, 2069, 2099, 2141, 2213, 2237, 2243, 2267, 2309, 2333, 2339, 2357, 2459, 2477, 2531, 2549, 2579, 2621, 2693, 2699, 2741, 2789, 2819, 2837, 2843, 2861, 2909, 2939, 2957, 2963, 3011, 3083, 3203, 3299, 3323, 3347, 3371, 3413, 3461, 3467, 3491, 3533, 3539, 3557, 3581, 3659, 3677, 3701, 3779, 3797, 3803, 3851, 3917, 3923, 3947, 3989, 4013, 4019, 4091, ...
9: 2 (no others)
10: 7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, 223, 229, 233, 257, 263, 269, 313, 337, 367, 379, 383, 389, 419, 433, 461, 487, 491, 499, 503, 509, 541, 571, 577, 593, 619, 647, 659, 701, 709, 727, 743, 811, 821, 823, 857, 863, 887, 937, 941, 953, 971, 977, 983, 1019, 1021, 1033, 1051, 1063, 1069, 1087, 1091, 1097, 1103, 1109, 1153, 1171, 1181, 1193, 1217, 1223, 1229, 1259, 1291, 1297, 1301, 1303, 1327, 1367, 1381, 1429, 1433, 1447, 1487, 1531, 1543, 1549, 1553, 1567, 1571, 1579, 1583, 1607, 1619, 1621, 1663, 1697, 1709, 1741, 1777, 1783, 1789, 1811, 1823, 1847, 1861, 1873, 1913, 1949, 1979, 2017, 2029, 2063, 2069, 2099, 2113, 2137, 2141, 2143, 2153, 2179, 2207, 2221, 2251, 2269, 2273, 2297, 2309, 2339, 2341, 2371, 2383, 2389, 2411, 2417, 2423, 2447, 2459, 2473, 2539, 2543, 2549, 2579, 2593, 2617, 2621, 2633, 2657, 2663, 2687, 2699, 2713, 2731, 2741, 2753, 2767, 2777, 2789, 2819, 2833, 2851, 2861, 2887, 2897, 2903, 2909, 2927, 2939, 2971, 3011, 3019, 3023, 3137, 3167, 3221, 3251, 3257, 3259, 3299, 3301, 3313, 3331, 3343, 3371, 3389, 3407, 3433, 3461, 3463, 3469, 3527, 3539, 3571, 3581, 3593, 3607, 3617, 3623, 3659, 3673, 3701, 3709, 3727, 3767, 3779, 3821, 3833, 3847, 3863, 3943, 3967, 3989, 4007, 4019, 4051, 4057, 4073, 4091, ...
11: 2, 3, 13, 17, 23, 29, 31, 41, 47, 59, 67, 71, 73, 101, 103, 109, 149, 163, 173, 179, 197, 223, 233, 251, 277, 281, 293, 331, 367, 373, 383, 419, 443, 461, 463, 467, 487, 499, 557, 569, 587, 593, 599, 601, 613, 619, 643, 647, 673, 677, 683, 701, 719, 761, 769, 809, 821, 839, 853, 857, 863, 883, 937, 941, 947, 953, 971, 983, 991, 997, 1009, 1033, 1039, 1069, 1097, 1103, 1129, 1201, 1217, 1229, 1249, 1259, 1289, 1307, 1361, 1367, 1381, 1423, 1429, 1439, 1483, 1493, 1499, 1511, 1523, 1553, 1567, 1571, 1597, 1601, 1607, 1613, 1657, 1669, 1699, 1733, 1783, 1787, 1801, 1831, 1861, 1877, 1879, 1889, 1907, 1913, 1949, 1951, 1997, 2011, 2027, 2039, 2083, 2089, 2099, 2129, 2141, 2153, 2203, 2213, 2221, 2267, 2273, 2309, 2311, 2347, 2389, 2393, 2399, 2417, 2423, 2441, 2447, 2477, 2579, 2593, 2609, 2657, 2663, 2687, 2699, 2711, 2713, 2731, 2801, 2803, 2819, 2837, 2843, 2857, 2917, 2927, 2963, 2969, 2971, 3019, 3023, 3049, 3067, 3083, 3109, 3137, 3181, 3191, 3209, 3229, 3253, 3313, 3329, 3347, 3359, 3371, 3373, 3391, 3449, 3491, 3499, 3517, 3533, 3547, 3581, 3593, 3623, 3673, 3727, 3761, 3767, 3769, 3797, 3851, 3889, 3929, 3947, 3989, 4007, 4019, 4021, 4027, 4079, ...
12: 5, 7, 17, 31, 41, 43, 53, 67, 101, 103, 113, 127, 137, 139, 149, 151, 163, 173, 197, 223, 257, 269, 281, 283, 293, 317, 353, 367, 379, 389, 401, 449, 461, 509, 523, 547, 557, 569, 571, 593, 607, 617, 619, 631, 641, 653, 691, 701, 739, 751, 761, 773, 787, 797, 809, 821, 857, 881, 929, 953, 967, 977, 991, 1013, 1049, 1051, 1061, 1087, 1097, 1109, 1123, 1171, 1181, 1193, 1217, 1229, 1289, 1291, 1303, 1327, 1361, 1373, 1409, 1423, 1433, 1447, 1459, 1481, 1483, 1493, 1531, 1543, 1553, 1579, 1613, 1627, 1637, 1697, 1699, 1709, 1721, 1723, 1733, 1747, 1759, 1783, 1831, 1867, 1877, 1879, 1889, 1901, 1913, 1949, 1973, 1997, 1999, 2011, 2069, 2131, 2143, 2153, 2213, 2237, 2239, 2273, 2297, 2309, 2333, 2347, 2357, 2371, 2381, 2393, 2417, 2441, 2477, 2539, 2549, 2609, 2621, 2657, 2693, 2707, 2719, 2731, 2753, 2767, 2777, 2789, 2791, 2801, 2803, 2837, 2851, 2861, 2897, 2909, 2957, 2969, 3019, 3041, 3079, 3089, 3163, 3187, 3209, 3257, 3259, 3271, 3319, 3329, 3331, 3389, 3391, 3413, 3449, 3461, 3463, 3511, 3533, 3547, 3557, 3559, 3581, 3593, 3617, 3677, 3701, 3727, 3739, 3761, 3797, 3821, 3833, 3847, 3917, 3919, 3929, 3931, 3943, 3967, 3989, 4003, 4013, 4027, 4051, 4073, ...
13: 2, 5, 11, 19, 31, 37, 41, 47, 59, 67, 71, 73, 83, 89, 97, 109, 137, 149, 151, 167, 197, 227, 239, 241, 281, 293, 307, 317, 349, 353, 359, 379, 383, 397, 401, 431, 449, 457, 479, 487, 509, 541, 557, 577, 587, 593, 613, 617, 631, 643, 683, 691, 733, 743, 769, 773, 787, 811, 821, 827, 839, 863, 877, 929, 941, 947, 967, 977, 983, 1019, 1033, 1051, 1087, 1097, 1103, 1129, 1163, 1181, 1217, 1229, 1259, 1279, 1289, 1307, 1319, 1321, 1367, 1373, 1399, 1409, 1423, 1451, 1487, 1493, 1523, 1553, 1579, 1597, 1607, 1619, 1669, 1697, 1709, 1721, 1747, 1783, 1787, 1801, 1867, 1877, 1879, 1913, 1931, 1987, 1997, 2039, 2069, 2087, 2099, 2111, 2113, 2143, 2153, 2179, 2221, 2243, 2267, 2269, 2273, 2293, 2309, 2333, 2351, 2371, 2377, 2381, 2399, 2423, 2459, 2477, 2503, 2543, 2579, 2593, 2621, 2633, 2647, 2663, 2693, 2699, 2719, 2741, 2749, 2767, 2777, 2789, 2801, 2819, 2879, 2897, 2917, 2927, 2953, 2957, 2969, 2971, 3023, 3037, 3049, 3061, 3079, 3083, 3089, 3109, 3167, 3187, 3203, 3209, 3313, 3323, 3343, 3347, 3359, 3373, 3391, 3413, 3463, 3469, 3517, 3547, 3557, 3581, 3583, 3593, 3607, 3659, 3671, 3673, 3677, 3733, 3803, 3833, 3853, 3863, 3881, 3911, 3919, 3931, 3947, 3967, 3989, 4019, ...
14: 3, 17, 19, 23, 29, 53, 59, 73, 83, 89, 97, 109, 127, 131, 149, 151, 227, 239, 241, 251, 257, 263, 277, 283, 307, 313, 317, 353, 359, 373, 389, 419, 421, 431, 433, 467, 487, 521, 541, 557, 563, 587, 593, 599, 601, 613, 631, 643, 653, 701, 709, 743, 751, 757, 761, 769, 787, 821, 823, 857, 859, 863, 877, 881, 919, 929, 1031, 1049, 1087, 1091, 1093, 1097, 1103, 1117, 1123, 1153, 1193, 1213, 1217, 1229, 1249, 1259, 1291, 1303, 1307, 1361, 1367, 1373, 1427, 1433, 1439, 1453, 1471, 1489, 1493, 1531, 1549, 1553, 1571, 1583, 1601, 1607, 1627, 1663, 1697, 1699, 1709, 1721, 1733, 1753, 1789, 1831, 1867, 1871, 1877, 1889, 1901, 1907, 1931, 1933, 1979, 1993, 1997, 2039, 2053, 2069, 2087, 2089, 2099, 2111, 2113, 2131, 2143, 2203, 2207, 2237, 2243, 2267, 2269, 2273, 2281, 2371, 2393, 2411, 2423, 2437, 2441, 2447, 2543, 2549, 2579, 2593, 2609, 2617, 2659, 2671, 2741, 2777, 2797, 2819, 2837, 2879, 2897, 2909, 2927, 2939, 3001, 3041, 3061, 3083, 3109, 3119, 3169, 3209, 3221, 3229, 3271, 3301, 3307, 3323, 3331, 3343, 3413, 3433, 3449, 3457, 3491, 3499, 3511, 3547, 3557, 3581, 3607, 3613, 3617, 3623, 3637, 3643, 3659, 3677, 3719, 3733, 3767, 3779, 3847, 3917, 3923, 3943, 3947, 4003, 4013, 4049, 4073, 4091, ...
15: 2, 13, 19, 23, 29, 37, 41, 47, 73, 83, 89, 97, 101, 107, 139, 149, 151, 157, 167, 193, 199, 227, 263, 269, 271, 281, 313, 337, 347, 373, 379, 383, 389, 401, 433, 439, 449, 457, 461, 467, 499, 503, 509, 521, 563, 569, 577, 587, 613, 619, 631, 641, 647, 683, 691, 701, 733, 743, 751, 757, 809, 821, 827, 863, 881, 887, 919, 929, 947, 983, 1039, 1049, 1061, 1093, 1103, 1109, 1153, 1181, 1187, 1223, 1229, 1279, 1283, 1289, 1291, 1297, 1301, 1307, 1367, 1399, 1409, 1427, 1459, 1471, 1481, 1487, 1523, 1583, 1657, 1667, 1699, 1709, 1753, 1787, 1823, 1847, 1873, 1879, 1889, 1901, 1907, 1933, 1949, 1951, 1999, 2003, 2017, 2027, 2063, 2069, 2087, 2131, 2137, 2141, 2179, 2207, 2239, 2243, 2251, 2267, 2293, 2309, 2381, 2423, 2437, 2441, 2447, 2543, 2549, 2557, 2593, 2609, 2617, 2663, 2671, 2677, 2687, 2713, 2719, 2731, 2741, 2789, 2791, 2797, 2843, 2861, 2903, 2909, 2917, 2953, 2963, 2969, 3019, 3023, 3041, 3083, 3089, 3167, 3203, 3209, 3217, 3221, 3253, 3271, 3313, 3319, 3323, 3329, 3347, 3373, 3407, 3449, 3457, 3461, 3467, 3517, 3527, 3581, 3613, 3623, 3631, 3637, 3673, 3701, 3739, 3761, 3767, 3803, 3821, 3863, 3881, 3919, 3923, 3929, 3931, 3947, 3989, 4001, 4007, 4049, 4051, 4057, 4093, ...
16: (none)
17: 2, 3, 5, 7, 11, 23, 31, 37, 41, 61, 97, 107, 113, 131, 139, 167, 173, 193, 197, 211, 227, 233, 269, 277, 283, 311, 313, 317, 347, 367, 379, 401, 419, 431, 439, 449, 479, 487, 499, 503, 521, 547, 571, 607, 617, 641, 643, 653, 673, 677, 683, 691, 709, 719, 743, 751, 787, 809, 821, 823, 827, 839, 853, 857, 881, 887, 907, 911, 929, 941, 983, 997, 1009, 1013, 1049, 1051, 1091, 1117, 1129, 1151, 1153, 1163, 1187, 1193, 1201, 1217, 1229, 1297, 1319, 1367, 1433, 1439, 1451, 1493, 1499, 1523, 1553, 1567, 1601, 1609, 1621, 1627, 1637, 1669, 1693, 1697, 1723, 1847, 1877, 1901, 1907, 1931, 1949, 1979, 1999, 2011, 2029, 2063, 2069, 2081, 2111, 2113, 2153, 2207, 2213, 2251, 2267, 2273, 2309, 2339, 2357, 2383, 2411, 2417, 2441, 2459, 2477, 2521, 2539, 2543, 2557, 2579, 2621, 2647, 2657, 2659, 2663, 2693, 2713, 2749, 2777, 2819, 2879, 2887, 2897, 2917, 2953, 2963, 2969, 2999, 3019, 3023, 3037, 3083, 3089, 3121, 3167, 3169, 3191, 3203, 3253, 3257, 3259, 3301, 3359, 3371, 3373, 3389, 3407, 3457, 3461, 3491, 3529, 3533, 3539, 3581, 3593, 3677, 3701, 3733, 3767, 3769, 3779, 3797, 3803, 3847, 3881, 3907, 3917, 3947, 3967, 3989, 4001, 4007, 4019, 4049, 4051, 4057, 4073, ...
18: 5, 11, 29, 37, 43, 53, 59, 61, 67, 83, 101, 107, 109, 139, 149, 157, 163, 173, 179, 181, 197, 227, 251, 269, 277, 283, 293, 317, 347, 349, 379, 389, 397, 419, 421, 461, 467, 491, 509, 523, 541, 547, 557, 563, 571, 587, 613, 619, 653, 659, 661, 677, 683, 691, 701, 733, 739, 757, 773, 787, 797, 811, 821, 827, 853, 859, 877, 941, 947, 971, 1013, 1019, 1051, 1069, 1091, 1109, 1117, 1123, 1163, 1171, 1181, 1187, 1229, 1277, 1283, 1301, 1307, 1453, 1459, 1483, 1493, 1499, 1523, 1549, 1571, 1579, 1613, 1619, 1621, 1627, 1637, 1669, 1693, 1699, 1709, 1723, 1733, 1741, 1747, 1787, 1789, 1811, 1861, 1867, 1877, 1901, 1907, 1931, 1949, 1973, 1979, 1997, 2003, 2011, 2027, 2029, 2069, 2099, 2131, 2141, 2213, 2221, 2237, 2243, 2267, 2269, 2309, 2333, 2339, 2347, 2357, 2381, 2389, 2411, 2459, 2477, 2539, 2549, 2579, 2621, 2677, 2693, 2699, 2707, 2731, 2741, 2749, 2789, 2803, 2819, 2837, 2843, 2851, 2861, 2909, 2917, 2939, 2957, 2963, 3019, 3061, 3067, 3083, 3109, 3163, 3187, 3203, 3229, 3253, 3259, 3299, 3323, 3331, 3347, 3371, 3389, 3413, 3461, 3467, 3491, 3499, 3517, 3533, 3539, 3541, 3547, 3557, 3571, 3581, 3613, 3637, 3659, 3677, 3733, 3739, 3779, 3803, 3821, 3851, 3853, 3877, 3907, 3923, 3931, 3947, 3989, 4003, 4013, 4021, 4027, 4051, 4093, ...
19: 2, 7, 11, 13, 23, 29, 37, 41, 43, 47, 53, 83, 89, 113, 139, 163, 173, 191, 193, 239, 251, 257, 263, 269, 281, 293, 311, 317, 337, 347, 359, 367, 401, 419, 433, 443, 449, 463, 467, 479, 491, 499, 503, 509, 521, 569, 571, 587, 601, 619, 631, 641, 643, 647, 673, 677, 719, 727, 739, 773, 797, 829, 857, 877, 883, 919, 941, 947, 953, 967, 977, 1093, 1097, 1103, 1153, 1163, 1187, 1193, 1223, 1229, 1237, 1249, 1259, 1321, 1361, 1381, 1409, 1423, 1433, 1451, 1481, 1487, 1499, 1543, 1549, 1553, 1559, 1583, 1607, 1619, 1637, 1693, 1709, 1741, 1777, 1783, 1787, 1789, 1801, 1847, 1861, 1871, 1877, 1879, 1889, 1907, 1913, 1933, 1987, 1997, 1999, 2011, 2017, 2029, 2039, 2063, 2081, 2099, 2141, 2237, 2243, 2267, 2269, 2273, 2287, 2309, 2333, 2377, 2399, 2411, 2521, 2543, 2549, 2551, 2591, 2617, 2671, 2689, 2693, 2699, 2707, 2729, 2749, 2777, 2789, 2801, 2819, 2833, 2851, 2909, 2917, 2927, 2953, 2957, 2971, 2999, 3011, 3079, 3083, 3109, 3137, 3163, 3169, 3203, 3221, 3229, 3257, 3301, 3323, 3373, 3391, 3407, 3413, 3449, 3461, 3467, 3529, 3533, 3539, 3593, 3607, 3613, 3637, 3659, 3671, 3677, 3691, 3701, 3761, 3767, 3779, 3793, 3821, 3823, 3847, 3853, 3863, 3889, 3911, 3917, 3923, 3929, 3989, 4007, 4021, 4049, 4091, 4093, ...
20: 3, 13, 17, 23, 37, 43, 47, 53, 67, 73, 83, 103, 107, 113, 137, 157, 163, 167, 173, 223, 227, 233, 257, 263, 277, 283, 293, 313, 317, 337, 347, 353, 367, 383, 397, 433, 443, 463, 467, 487, 503, 547, 557, 563, 587, 593, 607, 613, 647, 653, 673, 677, 683, 727, 743, 773, 797, 823, 853, 857, 863, 887, 907, 953, 977, 983, 1013, 1063, 1087, 1093, 1097, 1103, 1117, 1123, 1163, 1187, 1193, 1213, 1217, 1223, 1237, 1277, 1283, 1297, 1303, 1307, 1327, 1367, 1373, 1427, 1433, 1447, 1483, 1487, 1493, 1523, 1553, 1607, 1613, 1637, 1667, 1697, 1733, 1747, 1777, 1787, 1823, 1847, 1867, 1877, 1907, 1913, 1933, 1973, 1987, 1993, 1997, 2003, 2017, 2027, 2053, 2063, 2087, 2113, 2137, 2143, 2153, 2203, 2207, 2213, 2243, 2267, 2273, 2297, 2333, 2347, 2357, 2377, 2383, 2393, 2417, 2423, 2447, 2467, 2477, 2503, 2543, 2593, 2647, 2657, 2663, 2677, 2683, 2687, 2693, 2707, 2753, 2767, 2777, 2803, 2833, 2837, 2843, 2897, 2903, 2917, 2927, 2957, 2963, 3023, 3037, 3083, 3137, 3163, 3167, 3187, 3203, 3217, 3253, 3257, 3313, 3323, 3343, 3347, 3373, 3413, 3463, 3467, 3527, 3533, 3557, 3583, 3593, 3607, 3613, 3617, 3623, 3637, 3677, 3697, 3727, 3733, 3767, 3793, 3797, 3803, 3833, 3853, 3863, 3877, 3917, 3923, 3943, 3947, 3967, 4007, 4013, 4027, 4057, 4073, ...
21: 2, 19, 23, 29, 31, 53, 71, 97, 103, 107, 113, 137, 139, 149, 157, 179, 181, 191, 197, 223, 233, 239, 263, 271, 281, 307, 313, 317, 347, 359, 389, 397, 401, 409, 431, 443, 449, 491, 523, 557, 569, 577, 607, 619, 643, 653, 659, 683, 701, 727, 733, 743, 769, 787, 809, 811, 821, 827, 829, 863, 911, 937, 947, 977, 997, 1019, 1031, 1061, 1063, 1103, 1123, 1153, 1163, 1187, 1229, 1237, 1249, 1279, 1283, 1289, 1321, 1367, 1399, 1439, 1447, 1459, 1483, 1489, 1493, 1499, 1523, 1609, 1619, 1627, 1657, 1667, 1669, 1699, 1709, 1733, 1741, 1753, 1777, 1787, 1861, 1867, 1877, 1879, 1913, 1993, 1997, 2027, 2039, 2081, 2087, 2111, 2129, 2153, 2203, 2207, 2213, 2237, 2239, 2287, 2297, 2333, 2339, 2341, 2381, 2417, 2423, 2447, 2459, 2539, 2543, 2549, 2591, 2593, 2633, 2657, 2659, 2699, 2707, 2741, 2749, 2753, 2801, 2803, 2833, 2837, 2843, 2879, 2887, 2909, 2953, 2963, 2969, 3037, 3079, 3089, 3119, 3137, 3163, 3203, 3221, 3253, 3257, 3299, 3307, 3329, 3347, 3413, 3457, 3463, 3467, 3517, 3539, 3547, 3559, 3581, 3583, 3593, 3623, 3631, 3643, 3677, 3709, 3719, 3727, 3767, 3803, 3833, 3851, 3853, 3917, 3919, 3929, 3967, 4001, 4013, 4019, 4021, 4051, 4093, ...
22: 5, 17, 19, 31, 37, 41, 47, 53, 71, 83, 107, 131, 139, 191, 193, 199, 211, 223, 227, 233, 269, 281, 283, 307, 311, 317, 337, 347, 367, 383, 389, 397, 409, 421, 487, 491, 509, 523, 547, 563, 569, 593, 599, 601, 647, 653, 659, 709, 719, 739, 761, 773, 787, 797, 809, 823, 827, 829, 839, 857, 863, 953, 983, 991, 1009, 1019, 1021, 1033, 1039, 1051, 1061, 1087, 1091, 1097, 1103, 1109, 1129, 1163, 1187, 1201, 1217, 1237, 1277, 1279, 1283, 1289, 1297, 1301, 1303, 1361, 1367, 1373, 1423, 1427, 1439, 1451, 1453, 1459, 1481, 1511, 1531, 1543, 1549, 1553, 1567, 1607, 1619, 1637, 1657, 1667, 1709, 1741, 1777, 1811, 1831, 1889, 1901, 1913, 1931, 1973, 1979, 1993, 2029, 2039, 2069, 2089, 2129, 2153, 2237, 2243, 2273, 2293, 2333, 2339, 2357, 2371, 2381, 2393, 2399, 2411, 2417, 2441, 2447, 2459, 2521, 2609, 2617, 2621, 2657, 2659, 2663, 2677, 2683, 2687, 2693, 2713, 2797, 2801, 2857, 2887, 2909, 2927, 2939, 2957, 2969, 3011, 3023, 3037, 3049, 3061, 3137, 3163, 3203, 3221, 3251, 3299, 3329, 3359, 3361, 3389, 3391, 3413, 3449, 3467, 3469, 3539, 3593, 3623, 3643, 3659, 3673, 3677, 3701, 3719, 3727, 3733, 3739, 3761, 3767, 3779, 3803, 3821, 3853, 3889, 3907, 3917, 3919, 3923, 3929, 4001, 4003, 4007, 4013, 4079, 4091, ...
23: 2, 3, 5, 17, 47, 59, 89, 97, 113, 127, 131, 137, 149, 167, 179, 181, 223, 229, 281, 293, 307, 311, 337, 347, 389, 401, 421, 433, 439, 443, 457, 487, 491, 499, 521, 547, 557, 569, 587, 599, 607, 617, 641, 647, 661, 677, 683, 709, 719, 733, 739, 769, 773, 797, 811, 823, 863, 881, 883, 887, 947, 953, 977, 991, 1033, 1049, 1051, 1069, 1109, 1151, 1163, 1193, 1213, 1217, 1223, 1229, 1231, 1283, 1291, 1319, 1321, 1327, 1427, 1433, 1439, 1451, 1493, 1499, 1511, 1543, 1559, 1567, 1601, 1619, 1693, 1709, 1721, 1783, 1787, 1823, 1861, 1867, 1871, 1877, 1879, 1949, 1979, 1987, 1993, 1997, 2027, 2029, 2063, 2069, 2081, 2099, 2111, 2113, 2137, 2153, 2161, 2203, 2213, 2239, 2243, 2267, 2273, 2297, 2333, 2339, 2357, 2371, 2389, 2423, 2437, 2447, 2467, 2521, 2539, 2543, 2549, 2579, 2609, 2621, 2633, 2647, 2663, 2671, 2699, 2707, 2713, 2729, 2777, 2797, 2819, 2857, 2879, 2897, 2909, 2939, 2999, 3001, 3019, 3041, 3083, 3089, 3163, 3167, 3181, 3187, 3203, 3217, 3251, 3253, 3257, 3259, 3307, 3329, 3343, 3359, 3449, 3461, 3463, 3469, 3491, 3499, 3517, 3527, 3533, 3593, 3623, 3659, 3677, 3701, 3719, 3733, 3739, 3767, 3769, 3803, 3833, 3847, 3881, 3911, 3917, 3923, 3929, 3989, 4001, 4003, 4013, 4021, 4079, 4093, ...
24: 7, 11, 13, 17, 31, 37, 41, 59, 83, 89, 107, 109, 113, 137, 157, 179, 181, 223, 227, 229, 233, 251, 257, 277, 281, 347, 353, 373, 397, 401, 419, 421, 443, 463, 467, 487, 491, 541, 563, 569, 587, 593, 607, 617, 641, 683, 709, 733, 751, 761, 809, 823, 829, 857, 877, 881, 929, 947, 953, 971, 977, 1019, 1039, 1049, 1063, 1069, 1087, 1091, 1097, 1163, 1187, 1193, 1213, 1217, 1231, 1237, 1259, 1279, 1283, 1289, 1307, 1327, 1361, 1409, 1423, 1427, 1429, 1433, 1447, 1453, 1471, 1499, 1523, 1553, 1567, 1571, 1601, 1619, 1663, 1667, 1693, 1697, 1721, 1741, 1787, 1789, 1811, 1889, 1907, 1913, 1931, 1951, 1979, 1999, 2003, 2027, 2053, 2099, 2129, 2143, 2153, 2239, 2243, 2267, 2273, 2293, 2297, 2311, 2339, 2393, 2411, 2417, 2437, 2441, 2459, 2503, 2551, 2557, 2579, 2609, 2633, 2647, 2657, 2677, 2699, 2719, 2729, 2749, 2753, 2767, 2777, 2791, 2797, 2819, 2843, 2887, 2897, 2917, 2939, 2963, 2969, 3037, 3041, 3061, 3083, 3089, 3137, 3203, 3209, 3229, 3251, 3257, 3271, 3299, 3301, 3323, 3329, 3347, 3371, 3449, 3463, 3467, 3469, 3491, 3539, 3541, 3559, 3583, 3593, 3617, 3637, 3659, 3709, 3727, 3761, 3779, 3803, 3823, 3833, 3851, 3877, 3919, 3923, 3929, 3943, 3947, 4001, 4019, 4021, 4049, 4073, ...
25: 2 (no others)
26: 3, 7, 29, 41, 43, 47, 53, 61, 73, 89, 97, 101, 107, 131, 137, 139, 157, 167, 173, 179, 193, 239, 251, 269, 271, 281, 283, 347, 353, 359, 373, 383, 389, 409, 419, 443, 449, 457, 463, 467, 479, 491, 563, 593, 617, 631, 653, 659, 701, 743, 761, 797, 829, 839, 863, 883, 929, 977, 983, 997, 1009, 1013, 1033, 1069, 1091, 1093, 1097, 1103, 1109, 1117, 1129, 1151, 1171, 1187, 1201, 1213, 1217, 1277, 1279, 1283, 1289, 1301, 1319, 1367, 1381, 1399, 1409, 1423, 1427, 1453, 1459, 1483, 1487, 1489, 1553, 1601, 1607, 1613, 1637, 1667, 1693, 1697, 1699, 1733, 1741, 1811, 1879, 1907, 1913, 1949, 1973, 1979, 2003, 2011, 2017, 2027, 2039, 2083, 2087, 2111, 2113, 2131, 2137, 2141, 2143, 2153, 2237, 2273, 2351, 2357, 2399, 2423, 2467, 2503, 2531, 2539, 2543, 2549, 2593, 2633, 2657, 2663, 2677, 2711, 2767, 2777, 2837, 2843, 2861, 2879, 2897, 2909, 2927, 2939, 2953, 2963, 3001, 3019, 3023, 3049, 3079, 3089, 3163, 3167, 3191, 3209, 3217, 3251, 3257, 3259, 3301, 3331, 3343, 3359, 3371, 3389, 3391, 3461, 3463, 3467, 3529, 3533, 3539, 3593, 3607, 3613, 3697, 3779, 3797, 3821, 3833, 3851, 3863, 3881, 3911, 3917, 3919, 3923, 4003, 4013, 4021, 4049, 4091, ...
27: 2, 5, 17, 29, 53, 89, 101, 113, 137, 149, 173, 197, 233, 257, 269, 281, 293, 317, 353, 389, 401, 449, 461, 509, 521, 557, 569, 593, 617, 641, 653, 677, 701, 773, 797, 809, 821, 857, 881, 929, 941, 953, 977, 1013, 1049, 1061, 1097, 1109, 1193, 1217, 1229, 1277, 1301, 1361, 1373, 1409, 1433, 1481, 1493, 1553, 1601, 1613, 1637, 1697, 1709, 1721, 1733, 1889, 1901, 1913, 1949, 1973, 1997, 2069, 2081, 2129, 2141, 2153, 2213, 2237, 2273, 2309, 2333, 2357, 2381, 2393, 2417, 2477, 2549, 2609, 2633, 2657, 2693, 2729, 2741, 2753, 2777, 2789, 2801, 2837, 2861, 2897, 2909, 2957, 2969, 3041, 3089, 3137, 3209, 3257, 3329, 3389, 3413, 3449, 3461, 3533, 3557, 3581, 3593, 3617, 3677, 3701, 3761, 3797, 3821, 3833, 3917, 3929, 3989, 4001, 4013, 4049, 4073, ...
28: 5, 11, 13, 17, 23, 41, 43, 67, 71, 73, 79, 89, 101, 107, 173, 179, 181, 191, 229, 257, 263, 269, 293, 313, 331, 347, 353, 359, 379, 397, 409, 431, 433, 443, 461, 463, 487, 491, 499, 509, 521, 571, 577, 593, 599, 659, 661, 677, 683, 733, 739, 743, 751, 769, 773, 797, 827, 829, 853, 857, 863, 881, 883, 907, 919, 929, 937, 941, 947, 967, 991, 997, 1013, 1019, 1031, 1049, 1069, 1087, 1097, 1103, 1109, 1153, 1163, 1181, 1187, 1193, 1217, 1277, 1283, 1301, 1321, 1367, 1433, 1439, 1489, 1499, 1523, 1553, 1583, 1601, 1607, 1609, 1613, 1619, 1637, 1663, 1667, 1669, 1693, 1697, 1741, 1753, 1759, 1787, 1871, 1889, 1949, 1973, 2003, 2011, 2027, 2029, 2039, 2089, 2111, 2113, 2141, 2143, 2161, 2179, 2207, 2251, 2273, 2309, 2311, 2357, 2393, 2423, 2441, 2447, 2459, 2477, 2503, 2531, 2543, 2591, 2609, 2617, 2621, 2671, 2683, 2693, 2699, 2711, 2729, 2731, 2777, 2789, 2843, 2861, 2879, 2897, 2917, 2927, 2957, 2963, 3011, 3019, 3037, 3041, 3067, 3119, 3181, 3187, 3203, 3209, 3271, 3299, 3319, 3343, 3347, 3371, 3433, 3449, 3457, 3461, 3467, 3533, 3539, 3541, 3607, 3617, 3623, 3673, 3701, 3709, 3769, 3793, 3797, 3803, 3821, 3847, 3851, 3877, 3907, 3943, 3989, 4019, 4049, 4073, ...
29: 2, 3, 11, 17, 19, 41, 43, 47, 73, 79, 89, 97, 101, 113, 127, 131, 137, 163, 191, 211, 229, 251, 263, 269, 293, 307, 311, 317, 331, 337, 359, 389, 409, 433, 443, 449, 461, 467, 479, 491, 503, 563, 569, 599, 601, 607, 653, 659, 677, 739, 743, 751, 769, 773, 797, 809, 827, 839, 853, 859, 887, 907, 911, 947, 971, 983, 997, 1013, 1033, 1063, 1087, 1091, 1117, 1123, 1129, 1163, 1181, 1187, 1201, 1229, 1237, 1249, 1279, 1291, 1297, 1303, 1307, 1319, 1361, 1373, 1409, 1429, 1433, 1439, 1447, 1453, 1471, 1481, 1487, 1489, 1493, 1511, 1523, 1549, 1583, 1597, 1607, 1609, 1613, 1667, 1693, 1697, 1709, 1721, 1723, 1759, 1777, 1787, 1867, 1877, 1931, 1933, 1951, 1999, 2003, 2011, 2027, 2069, 2099, 2129, 2143, 2207, 2243, 2251, 2273, 2293, 2309, 2339, 2347, 2351, 2357, 2381, 2393, 2399, 2417, 2447, 2467, 2473, 2477, 2531, 2579, 2591, 2593, 2657, 2671, 2689, 2699, 2707, 2711, 2741, 2753, 2767, 2801, 2803, 2857, 2861, 2879, 2897, 2903, 2917, 2939, 2999, 3001, 3089, 3169, 3209, 3217, 3221, 3251, 3323, 3343, 3347, 3433, 3449, 3463, 3469, 3491, 3499, 3511, 3517, 3527, 3557, 3581, 3593, 3617, 3623, 3637, 3671, 3673, 3691, 3701, 3727, 3733, 3739, 3767, 3797, 3889, 3917, 3923, 3929, 3947, 4013, 4019, 4049, 4079, 4091, ...
30: 11, 23, 41, 43, 47, 59, 61, 79, 89, 109, 131, 151, 167, 173, 179, 193, 197, 199, 251, 263, 281, 293, 307, 317, 349, 383, 419, 421, 433, 439, 449, 457, 491, 503, 521, 523, 541, 557, 569, 577, 641, 647, 653, 659, 673, 677, 743, 751, 761, 773, 787, 797, 809, 829, 863, 881, 887, 907, 919, 929, 937, 971, 983, 1013, 1019, 1021, 1033, 1039, 1049, 1069, 1091, 1103, 1223, 1231, 1361, 1367, 1373, 1399, 1409, 1429, 1451, 1471, 1481, 1483, 1487, 1493, 1499, 1549, 1571, 1583, 1601, 1607, 1613, 1619, 1627, 1637, 1657, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1811, 1823, 1831, 1847, 1861, 1867, 1873, 1877, 1889, 1931, 1973, 1979, 1987, 1993, 1997, 1999, 2017, 2029, 2063, 2081, 2087, 2099, 2129, 2137, 2203, 2207, 2213, 2237, 2269, 2311, 2333, 2339, 2341, 2347, 2357, 2377, 2389, 2411, 2423, 2441, 2447, 2459, 2467, 2473, 2477, 2531, 2543, 2551, 2579, 2593, 2609, 2617, 2663, 2683, 2687, 2693, 2699, 2713, 2729, 2749, 2801, 2803, 2819, 2837, 2857, 2903, 2927, 2939, 2953, 2957, 2969, 3023, 3041, 3061, 3079, 3089, 3163, 3167, 3181, 3209, 3229, 3251, 3271, 3299, 3313, 3329, 3407, 3413, 3433, 3449, 3457, 3491, 3511, 3527, 3533, 3539, 3547, 3557, 3559, 3623, 3659, 3677, 3697, 3709, 3761, 3767, 3779, 3793, 3797, 3863, 3881, 3907, 3917, 3919, 3929, 4001, 4003, 4007, 4013, 4019, 4021, 4049, 4057, ...
31: 2, 7, 17, 29, 47, 53, 59, 61, 67, 71, 73, 89, 107, 131, 137, 197, 227, 229, 241, 269, 277, 283, 307, 311, 313, 337, 353, 359, 379, 389, 401, 419, 431, 433, 439, 443, 449, 457, 461, 467, 479, 503, 509, 557, 563, 569, 599, 607, 673, 677, 683, 709, 727, 751, 757, 761, 773, 797, 809, 811, 821, 839, 881, 887, 907, 919, 929, 941, 971, 1009, 1013, 1021, 1039, 1049, 1051, 1063, 1087, 1097, 1103, 1109, 1151, 1153, 1163, 1181, 1187, 1193, 1201, 1223, 1259, 1277, 1279, 1297, 1303, 1307, 1327, 1399, 1423, 1427, 1451, 1453, 1459, 1481, 1523, 1549, 1553, 1559, 1583, 1619, 1669, 1697, 1787, 1801, 1823, 1831, 1847, 1867, 1877, 1879, 1907, 1913, 1931, 1949, 1997, 2003, 2069, 2087, 2089, 2137, 2161, 2203, 2213, 2239, 2267, 2269, 2293, 2297, 2309, 2339, 2377, 2393, 2417, 2423, 2441, 2459, 2467, 2473, 2539, 2543, 2551, 2557, 2591, 2617, 2621, 2633, 2657, 2663, 2671, 2693, 2699, 2707, 2711, 2741, 2749, 2767, 2789, 2801, 2887, 2903, 2909, 2939, 2957, 2963, 2969, 3023, 3037, 3041, 3079, 3083, 3119, 3121, 3137, 3167, 3203, 3253, 3271, 3313, 3319, 3329, 3331, 3361, 3407, 3413, 3433, 3491, 3511, 3529, 3533, 3539, 3557, 3559, 3583, 3613, 3617, 3631, 3659, 3673, 3691, 3701, 3733, 3739, 3767, 3779, 3793, 3797, 3823, 3863, 3881, 3907, 3911, 3917, 3929, 3931, 3947, 3989, 4003, 4007, 4019, 4021, 4027, 4057, 4073, 4079, ...
32: 3, 5, 13, 19, 29, 37, 53, 59, 67, 83, 107, 139, 149, 163, 173, 179, 197, 227, 269, 293, 317, 347, 349, 373, 379, 389, 419, 443, 467, 509, 523, 547, 557, 563, 587, 613, 619, 653, 659, 677, 709, 757, 773, 787, 797, 827, 829, 853, 859, 877, 883, 907, 947, 1019, 1109, 1117, 1123, 1187, 1213, 1229, 1237, 1259, 1277, 1283, 1307, 1373, 1427, 1453, 1483, 1493, 1499, 1523, 1549, 1619, 1637, 1667, 1669, 1693, 1733, 1747, 1787, 1867, 1877, 1907, 1949, 1973, 1979, 1987, 1997, 2027, 2029, 2053, 2069, 2083, 2099, 2213, 2237, 2243, 2267, 2269, 2293, 2309, 2333, 2339, 2357, 2389, 2437, 2459, 2467, 2477, 2539, 2549, 2557, 2579, 2659, 2677, 2683, 2693, 2699, 2707, 2789, 2797, 2803, 2819, 2837, 2843, 2909, 2939, 2957, 2963, 3019, 3037, 3067, 3083, 3187, 3203, 3253, 3299, 3307, 3323, 3347, 3413, 3467, 3469, 3499, 3517, 3533, 3539, 3547, 3557, 3613, 3637, 3643, 3659, 3677, 3709, 3733, 3779, 3797, 3803, 3853, 3877, 3907, 3917, 3923, 3947, 3989, 4003, 4013, 4019, 4093, ...
33: 2, 5, 7, 13, 19, 23, 43, 47, 53, 59, 71, 73, 89, 113, 137, 179, 191, 251, 257, 269, 311, 317, 337, 349, 353, 383, 389, 409, 419, 439, 443, 449, 457, 467, 509, 547, 571, 587, 599, 601, 613, 617, 641, 647, 653, 683, 719, 733, 739, 773, 787, 797, 811, 839, 853, 863, 877, 911, 919, 929, 937, 971, 977, 983, 997, 1009, 1013, 1049, 1051, 1061, 1063, 1069, 1103, 1109, 1129, 1181, 1193, 1201, 1231, 1249, 1259, 1297, 1301, 1307, 1327, 1367, 1373, 1409, 1429, 1433, 1439, 1459, 1471, 1511, 1523, 1531, 1571, 1579, 1597, 1607, 1627, 1637, 1663, 1669, 1693, 1697, 1709, 1721, 1759, 1777, 1787, 1789, 1801, 1861, 1867, 1901, 1907, 1973, 1993, 1999, 2003, 2027, 2039, 2053, 2069, 2099, 2131, 2221, 2237, 2239, 2287, 2297, 2333, 2357, 2381, 2389, 2399, 2437, 2447, 2503, 2551, 2579, 2621, 2633, 2659, 2683, 2687, 2693, 2713, 2719, 2729, 2749, 2753, 2767, 2777, 2819, 2833, 2843, 2851, 2861, 2897, 2909, 2927, 2957, 2963, 3023, 3041, 3049, 3079, 3083, 3089, 3109, 3181, 3191, 3221, 3229, 3253, 3257, 3323, 3343, 3347, 3359, 3371, 3373, 3413, 3491, 3511, 3517, 3541, 3557, 3559, 3583, 3607, 3617, 3623, 3637, 3643, 3673, 3677, 3709, 3719, 3767, 3833, 3851, 3889, 3907, 3917, 3947, 3967, 4003, 4007, 4013, 4019, 4049, 4073, 4079, ...
34: 19, 23, 31, 41, 43, 53, 59, 67, 73, 79, 83, 101, 113, 149, 157, 167, 179, 193, 199, 233, 241, 251, 293, 311, 313, 337, 349, 367, 373, 389, 401, 431, 439, 449, 461, 467, 479, 491, 503, 509, 523, 557, 563, 587, 601, 613, 617, 641, 659, 661, 673, 701, 719, 733, 739, 743, 773, 797, 809, 839, 857, 881, 883, 887, 911, 929, 971, 983, 991, 1009, 1019, 1021, 1031, 1049, 1109, 1151, 1153, 1181, 1193, 1201, 1217, 1231, 1237, 1259, 1277, 1283, 1289, 1301, 1303, 1307, 1319, 1367, 1373, 1423, 1427, 1433, 1439, 1453, 1489, 1549, 1553, 1559, 1567, 1579, 1597, 1609, 1613, 1619, 1663, 1667, 1697, 1709, 1733, 1787, 1789, 1811, 1861, 1873, 1973, 1987, 1997, 1999, 2027, 2063, 2081, 2083, 2099, 2111, 2137, 2141, 2153, 2207, 2239, 2243, 2269, 2273, 2281, 2293, 2333, 2347, 2371, 2383, 2417, 2441, 2467, 2521, 2543, 2549, 2591, 2657, 2663, 2689, 2707, 2713, 2741, 2777, 2789, 2791, 2797, 2803, 2837, 2843, 2879, 2887, 2897, 2909, 2927, 2939, 2953, 2957, 2969, 2971, 2999, 3023, 3049, 3061, 3089, 3121, 3163, 3167, 3169, 3187, 3221, 3229, 3251, 3271, 3299, 3307, 3323, 3329, 3331, 3347, 3359, 3361, 3407, 3413, 3457, 3467, 3469, 3517, 3557, 3559, 3571, 3593, 3637, 3659, 3769, 3821, 3877, 3881, 3923, 4001, 4003, 4007, 4013, 4021, 4027, 4049, 4057, 4073, 4093, ...
35: 2, 3, 11, 37, 41, 47, 53, 61, 71, 79, 83, 89, 101, 103, 137, 151, 167, 179, 191, 197, 211, 223, 227, 229, 233, 239, 241, 269, 283, 317, 331, 359, 373, 379, 383, 409, 431, 457, 461, 467, 499, 503, 509, 521, 557, 563, 571, 587, 599, 601, 607, 617, 643, 647, 653, 659, 661, 673, 727, 739, 751, 757, 787, 829, 877, 881, 887, 911, 929, 941, 953, 977, 983, 1019, 1021, 1031, 1033, 1049, 1063, 1109, 1117, 1171, 1223, 1297, 1301, 1307, 1321, 1361, 1373, 1427, 1439, 1451, 1453, 1487, 1489, 1493, 1499, 1543, 1579, 1601, 1609, 1619, 1627, 1669, 1721, 1733, 1741, 1759, 1783, 1823, 1831, 1847, 1867, 1871, 1877, 1889, 1907, 1913, 1949, 1987, 1997, 1999, 2011, 2017, 2029, 2039, 2053, 2063, 2111, 2141, 2153, 2161, 2203, 2237, 2243, 2267, 2287, 2297, 2309, 2333, 2339, 2341, 2383, 2417, 2437, 2459, 2467, 2473, 2531, 2591, 2609, 2621, 2633, 2657, 2663, 2671, 2687, 2699, 2707, 2711, 2713, 2729, 2753, 2789, 2797, 2803, 2837, 2851, 2861, 2879, 2887, 2903, 3019, 3023, 3041, 3083, 3119, 3121, 3137, 3163, 3167, 3169, 3209, 3217, 3257, 3259, 3299, 3307, 3313, 3323, 3371, 3407, 3413, 3449, 3463, 3511, 3527, 3539, 3541, 3547, 3557, 3583, 3593, 3643, 3677, 3697, 3701, 3719, 3727, 3821, 3833, 3851, 3863, 3881, 3917, 3923, 3947, 3967, 3989, 4003, 4007, 4013, 4019, 4021, 4049, ...
36: (none)

10. Unique prime [it is conjectured that there are infinitely many unique primes in base n for all n>=2]

Base//Period length of unique primes

2 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 26, 27, 30, 31, 32, 33, 34, 38, 40, 42, 46, 49, 54, 56, 61, 62, 65, 69, 77, 78, 80, 85, 86, 89, 90, 93, 98, 107, 120, 122, 126, 127, 129, 133, 145, 147, 150, 158, 165, 170, 174, 184, 192, 195, 202, 208, 234, 254, 261, 280, 296, 312, 322, 334, 342, 345, 366, 374, 382, 398, 410, 414, 425, 447, 471, 507, 521, 550, 567, 579, 590, 600, 602, 607, 626, 690, 694, 712, 745, 795, 816, 889, 897, 909, 954, 990, 1106, 1192, 1224, 1230, 1279, 1384, 1386, 1402, 1464, 1512, 1554, 1562, 1600, 1670, 1683, 1727, 1781, 1834, 1904, 1990, 1992, 2008, 2037, 2203, 2281, 2298, 2353, 2406, 2456, 2499, 2536, 2838, 3006, 3074, 3217, 3415, 3418, 3481, 3766, 3817, 3927, ...
3 1, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 20, 21, 24, 26, 32, 33, 36, 40, 46, 60, 63, 64, 70, 71, 72, 86, 103, 108, 128, 130, 132, 143, 145, 154, 161, 236, 255, 261, 276, 279, 287, 304, 364, 430, 464, 513, 528, 541, 562, 665, 672, 680, 707, 718, 747, 760, 782, 828, 875, 892, 974, 984, 987, 1037, 1058, 1070, 1073, 1080, 1091, 1154, 1248, 1367, 1426, 1440, 1462, 1524, 1598, 1623, 1627, 1863, 1985, 2132, 2188, 2196, 2340, 2460, 2508, 2626, 2640, 2739, 2856, 3092, 3158, 3262, 3315, 3326, 3482, 3638, 3982, 4018, 4036, ...
4 1, 2, 3, 4, 6, 8, 10, 12, 16, 20, 28, 40, 60, 92, 96, 104, 140, 148, 156, 300, 356, 408, 596, 612, 692, 732, 756, 800, 952, 996, 1004, 1228, 1268, 2240, 2532, 3060, 3796, 3824, 3944, ...
5 1, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13, 18, 24, 28, 47, 48, 49, 56, 57, 88, 90, 92, 108, 110, 116, 120, 127, 134, 141, 149, 161, 171, 181, 198, 202, 206, 236, 248, 288, 357, 384, 420, 458, 500, 530, 536, 619, 620, 694, 798, 897, 929, 981, 992, 1064, 1134, 1230, 1670, 1807, 2094, 2162, 2369, 2516, 2649, 2988, 3407, 3888, ...
6 1, 2, 3, 4, 5, 6, 7, 8, 18, 21, 22, 24, 29, 30, 42, 50, 62, 71, 86, 90, 94, 118, 124, 127, 129, 144, 154, 186, 192, 214, 271, 354, 360, 411, 480, 509, 558, 575, 663, 764, 814, 825, 874, 1028, 1049, 1050, 1102, 1113, 1131, 1158, 1376, 1464, 1468, 1535, 1622, 1782, 1834, 1924, 2096, 2176, 2409, 2464, 2816, 3013, 3438, 3453, 3663, ...
7 3, 5, 6, 8, 13, 18, 21, 28, 30, 34, 36, 46, 48, 50, 54, 55, 58, 63, 76, 84, 94, 105, 122, 131, 148, 149, 224, 280, 288, 296, 332, 352, 456, 528, 531, 581, 650, 654, 730, 740, 759, 1026, 1047, 1065, 1460, 1660, 1699, 1959, 2067, 2260, 2380, 2665, 2890, 3238, 4020, ...
8 1, 2, 3, 6, 9, 18, 30, 42, 78, 87, 114, 138, 189, 303, 318, 330, 408, 462, 504, 561, 1002, 1389, 1746, 1794, 2040, 2418, 2790, 3894, 4077, ...
9 1, 2, 4, 6, 10, 12, 16, 18, 20, 30, 32, 36, 54, 64, 66, 118, 138, 152, 182, 232, 264, 336, 340, 380, 414, 446, 492, 540, 624, 720, 762, 1066, 1094, 1098, 1170, 1230, 1254, 1320, 1428, 1546, 2018, 2574, 2724, 2804, 2920, 3074, 3316, 3646, ...
10 1, 2, 3, 4, 9, 10, 12, 14, 19, 23, 24, 36, 38, 39, 48, 62, 93, 106, 120, 134, 150, 196, 294, 317, 320, 385, 586, 597, 654, 738, 945, 1031, 1172, 1282, 1404, 1426, 1452, 1521, 1752, 1812, 1836, 1844, 1862, 2134, 2232, 2264, 2667, 3750, 3903, 3927, ...
11 2, 4, 5, 6, 8, 9, 10, 14, 15, 17, 18, 19, 20, 27, 36, 42, 45, 52, 60, 73, 91, 104, 139, 205, 234, 246, 318, 358, 388, 403, 458, 552, 810, 855, 878, 907, 1114, 1131, 1220, 1272, 1431, 1470, 1568, 1614, 1688, 1696, 1907, 2029, 2136, 2288, 2535, 2577, ...
12 1, 2, 3, 5, 10, 12, 19, 20, 21, 22, 56, 60, 63, 70, 80, 84, 92, 97, 109, 111, 123, 164, 189, 218, 276, 317, 353, 364, 386, 405, 456, 511, 636, 675, 701, 793, 945, 1090, 1268, 1272, 1971, 2088, 2368, 2482, 2893, 2966, 3290, ...
13 2, 3, 5, 6, 7, 8, 9, 12, 16, 22, 24, 28, 33, 34, 38, 78, 80, 102, 137, 140, 147, 224, 230, 283, 304, 341, 360, 372, 384, 418, 420, 436, 483, 568, 570, 594, 737, 744, 855, 883, 991, 1021, 1193, 1222, 1615, 1628, 1838, 2032, 2146, 2302, 2530, 2830, 2958, 3030, 3528, 3671, 3885, ...
14 1, 3, 4, 6, 7, 14, 19, 24, 31, 33, 35, 36, 41, 55, 60, 106, 114, 129, 152, 153, 172, 222, 265, 286, 400, 448, 560, 584, 864, 1006, 1335, 1363, 1520, 1536, 1659, 1862, 1925, 2332, 2458, 2687, 3381, 3512, 3870, 3976, ...
15 3, 4, 6, 7, 14, 24, 43, 54, 58, 73, 85, 93, 102, 184, 220, 221, 228, 232, 247, 291, 305, 486, 487, 505, 551, 552, 590, 1029, 1194, 1274, 1406, 1444, 1532, 1548, 1748, 1986, 2093, 2182, 2202, 2579, 2781, 3054, 3239, 3696, ...
16 2, 4, 6, 8, 10, 14, 20, 30, 46, 48, 52, 70, 74, 78, 150, 178, 204, 298, 306, 346, 366, 378, 400, 476, 498, 502, 614, 634, 1120, 1266, 1530, 1898, 1912, 1972, 2548, 2770, 3738, 3850, ...
17 1, 2, 3, 5, 7, 8, 11, 12, 14, 15, 34, 42, 46, 47, 48, 50, 71, 77, 94, 110, 114, 147, 154, 176, 228, 235, 258, 275, 338, 350, 419, 450, 480, 515, 589, 624, 666, 716, 724, 810, 815, 1232, 1490, 1934, 2106, 2391, 2732, 2904, 3462, 3912, 4053, ...
18 1, 2, 3, 6, 14, 17, 21, 24, 30, 33, 38, 45, 46, 72, 78, 114, 146, 168, 288, 414, 440, 448, 665, 792, 801, 816, 975, 1165, 1176, 1267, 1466, 1513, 1882, 1920, 1998, 2194, 2272, 2643, 2800, 2946, 3434, 3504, 3813, 3866, 3957, ...
19 2, 3, 4, 6, 19, 20, 31, 34, 47, 56, 59, 61, 70, 74, 91, 92, 96, 98, 107, 120, 145, 156, 168, 242, 276, 314, 326, 337, 387, 565, 602, 612, 892, 984, 1061, 1067, 1079, 1262, 1328, 2356, 3033, 3419, 3501, 3963, ...
20 1, 3, 4, 6, 8, 9, 10, 11, 17, 30, 98, 100, 110, 126, 154, 158, 160, 168, 178, 182, 228, 266, 270, 280, 340, 416, 480, 574, 774, 980, 1052, 1139, 1338, 1418, 1474, 1487, 1594, 1902, 2326, 3112, 3520, 3808, 3830, ...
21 2, 3, 5, 6, 8, 9, 10, 11, 14, 17, 26, 43, 64, 74, 81, 104, 192, 271, 321, 335, 348, 404, 437, 445, 516, 671, 694, 788, 1788, 1943, 2343, 2742, 3031, 3135, ...
22 2, 5, 6, 7, 10, 21, 25, 26, 69, 79, 86, 93, 100, 101, 154, 158, 161, 171, 202, 214, 294, 354, 359, 424, 454, 602, 687, 706, 744, 857, 1028, 1074, 1136, 1150, 1345, 1408, 1525, 1572, 1578, 1988, 2142, 2665, ...
23 2, 5, 8, 11, 15, 22, 26, 39, 42, 45, 54, 56, 132, 134, 145, 147, 196, 212, 218, 252, 343, 580, 662, 816, 820, 846, 1078, 1092, 1174, 1189, 1548, 1632, 2040, 2180, 2348, 2732, 3100, 3181, 4010, ...
24 1, 2, 3, 4, 5, 8, 14, 19, 22, 38, 45, 53, 54, 70, 71, 117, 140, 144, 169, 186, 192, 195, 196, 430, 653, 661, 744, 834, 855, 870, 927, 1128, 1158, 1390, 1516, 1555, 1617, 1844, 2022, 2060, 2208, 2812, 3153, 3952, ...
25 2, 4, 6, 12, 14, 24, 28, 44, 46, 54, 58, 60, 118, 124, 144, 192, 210, 250, 268, 310, 496, 532, 1258, 1494, 1944, 2050, 2498, 2728, 3324, 3418, 3646, 3862, 4014, ...
26 1, 2, 4, 7, 9, 18, 20, 22, 24, 30, 43, 69, 132, 140, 186, 200, 210, 218, 267, 347, 454, 495, 554, 585, 645, 694, 980, 1028, 1060, 1098, 1432, 1714, 1828, 3513, 3786, ...
27 2, 3, 12, 21, 24, 36, 87, 93, 171, 249, 276, 360, 480, 621, 732, 780, 1716, 3843, ...
28 1, 2, 3, 5, 6, 8, 17, 21, 38, 81, 91, 96, 102, 132, 148, 156, 240, 258, 260, 276, 457, 464, 465, 500, 506, 535, 684, 746, 838, 930, 982, 1015, 1189, 1296, 1335, 1345, 1390, 1423, 2062, 2723, 2893, 3078, ...
29 4, 5, 6, 7, 8, 14, 30, 32, 39, 45, 50, 76, 116, 151, 222, 357, 402, 462, 570, 588, 636, 671, 695, 844, 1498, 1650, 1770, 3175, 3195, 3312, 3538, 3719, ...
30 1, 2, 5, 9, 11, 12, 21, 36, 51, 64, 91, 163, 174, 195, 230, 278, 318, 342, 346, 424, 530, 569, 578, 795, 984, 1094, 1167, 1335, 1564, 1605, 1658, 1789, 2159, 2204, 2225, 3366, 3458, 3615, ...
31 3, 7, 12, 17, 24, 30, 31, 33, 40, 176, 218, 308, 404, 420, 630, 693, 890, 915, 922, 1475, 2122, 2185, 2487, 2541, 2907, 3387, 4055, ...
32 1, 6, 30, 85, 110, 120, 320, 1050, 1065, 1385, 2490, 3080, 3920, ...
33 1, 2, 3, 10, 16, 25, 28, 30, 35, 36, 45, 56, 76, 87, 110, 134, 135, 197, 200, 220, 228, 314, 324, 330, 396, 498, 583, 624, 725, 806, 940, 1145, 1240, 1644, 1750, 2171, 2268, 2675, 2781, 2790, 2808, 3581, ...
34 3, 6, 8, 10, 13, 20, 24, 56, 87, 154, 164, 196, 282, 363, 428, 652, 744, 780, 860, 902, 952, 1178, 1493, 1540, 1643, 1904, 2184, 2277, 2468, 2943, ...
35 2, 4, 6, 8, 18, 21, 22, 26, 42, 128, 154, 158, 170, 180, 184, 192, 254, 313, 450, 624, 737, 762, 798, 874, 912, 1002, 1006, 1098, 1234, 1297, 1418, 1714, 1926, 2325, 2343, 2368, 2998, 3567, 4064, ...
36 2, 4, 12, 62, 72, 96, 180, 240, 382, 514, 688, 732, 734, 962, 1048, 1088, 1232, 1408, 2088, 2176, 2248, 2724, 3180, ...

Last fiddled with by sweety439 on 2020-11-04 at 12:33
sweety439 is offline   Reply With Quote
Old 2020-11-08, 11:31   #4
 
sweety439's Avatar
 
"99(4^34019)99 palind"
Nov 2016
(P^81993)SZ base 36

25×5×23 Posts
Default

OEIS sequences:

#1 = Permutable prime (repunit prime excluded, since if repunit prime incuded, then there will be infinitely many permutable primes)
#2 = Circular prime (repunit prime excluded, since if repunit prime incuded, then there will be infinitely many circular primes)
#3 = Left-truncatable prime
#4 = Right-truncatable prime
#5 = Minimal prime
#6 = Two-sided prime

(there is conjectured to be infinitely repunit primes (weakly primes, full-reptend primes, unique primes) in any given base)

A = Largest such prime in base n (written in base 10)
B = Length of largest such prime in base n
C = Number of such primes in base n


Last fiddled with by sweety439 on 2020-11-08 at 11:31
sweety439 is offline   Reply With Quote
Old 2020-11-08, 11:52   #5
 
sweety439's Avatar
 
"99(4^34019)99 palind"
Nov 2016
(P^81993)SZ base 36

25×5×23 Posts
Default

Data for the minimal primes, the left-truncatable primes, and the right-truncatable primes in bases 2 to 128: https://github.com/xayahrainie4793/primes/tree/master

Data is currently not complete

"kernel n": data for minimal primes base n
"left n" data for unsolved families for the "minimal prime problem" (like Sierpinski problem and Riesel problem) base n
"ltp n" data for left-truncatable primes base n
"rtp n" data for right-truncatable primes base n
sweety439 is offline   Reply With Quote
Old 2020-11-08, 12:11   #7
 
sweety439's Avatar
 
"99(4^34019)99 palind"
Nov 2016
(P^81993)SZ base 36

25·5·23 Posts
Default

Wikipedia pages:

repunit

permutable prime

circular prime

minimal prime

truncatable prime

weakly prime

Last fiddled with by sweety439 on 2020-11-09 at 16:29
sweety439 is offline   Reply With Quote
Old 2020-11-08, 12:14   #8
 
sweety439's Avatar
 
"99(4^34019)99 palind"
Nov 2016
(P^81993)SZ base 36

25·5·23 Posts
Default

Prime glossary pages:

repunit

minimal prime

left-truncatable prime

right-truncatable prime

deletable prime

permutable prime

circular prime
sweety439 is offline   Reply With Quote
Old 2020-11-08, 12:21   #9
 
sweety439's Avatar
 
"99(4^34019)99 palind"
Nov 2016
(P^81993)SZ base 36

25×5×23 Posts
Default

#1 = Permutable prime (repunit prime excluded, since if repunit prime incuded, then there will be infinitely many permutable primes)
#2 = Circular prime (repunit prime excluded, since if repunit prime incuded, then there will be infinitely many circular primes)
#3 = Left-truncatable prime
#4 = Right-truncatable prime
#5 = Minimal prime
#6 = Two-sided prime

(there is conjectured to be infinitely repunit primes (weakly primes, full-reptend primes, unique primes) in any given base)

A = Largest such prime in base n (written in base 10)
B = Length of largest such prime in base n
C = Number of such primes in base n

1A bases 3 to 20

2A bases 3 to 6

3A bases 3 to 53 (with missing terms)

3B bases 2 to 53 (with missing terms)

3C bases 2 to 53 (with missing terms)

4A bases 3 to 100

4B bases 2 to 53

4C bases 2 to 100

5A bases 2 to 42 (with missing terms)

5B bases 2 to 16

5C bases 2 to 16

6A bases 3 to 64

6C bases 2 to 64
sweety439 is offline   Reply With Quote
Old 2020-11-23, 01:10   #10
 
sweety439's Avatar
 
"99(4^34019)99 palind"
Nov 2016
(P^81993)SZ base 36

368010 Posts
Default

The bases such that all minimal primes are known are 2-16, 18, 20, 22-24, 30, 42 and possible 60

The bases such that all left truncatable primes are known are 2-29, 31-35, 37-39, 41, 43, 47, 49, 51, 53, 55, 59, 61, 65, 67, 71, 73, 79, 83, 89

The bases such that all right truncatable primes are known are 2-100 and possible higher bases
sweety439 is offline   Reply With Quote
Old 2020-11-23, 01:17   #11
 
sweety439's Avatar
 
"99(4^34019)99 palind"
Nov 2016
(P^81993)SZ base 36

25×5×23 Posts
Default

Puzzles:

* Found all left truncatable primes in base b, for 2<=b<=256
* Found all right truncatable primes in base b, for 2<=b<=256
* Found all minimal primes in base b, for 2<=b<=256

(we allow strong probable primes >2^(2^16) to all prime bases 2<=p<=256 in place of proven primes, if the probable prime is <2^(2^16), then we need to prove its primality)
sweety439 is offline   Reply With Quote
Reply



Similar Threads
Thread Thread Starter Forum Replies Last Post
Bases 251-500 reservations/statuses/primes gd_barnes Conjectures 'R Us 2492 2023-01-02 09:27
Bases 33-100 reservations/statuses/primes Siemelink Conjectures 'R Us 1745 2023-01-01 11:05
Bases 6-32 reservations/statuses/primes gd_barnes Conjectures 'R Us 1420 2022-12-30 17:20
Bases 101-250 reservations/statuses/primes gd_barnes Conjectures 'R Us 1007 2022-12-29 22:56
Primes for proven bases CGKIII Conjectures 'R Us 46 2017-01-03 17:31

All times are UTC. The time now is 10:09.


Tue Jan 3 10:09:14 UTC 2023 up 138 days, 7:37, 0 users, load averages: 0.82, 0.83, 0.81

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2023, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.

≠ ± ∓ ÷ × · − √ ‰ ⊗ ⊕ ⊖ ⊘ ⊙ ≤ ≥ ≦ ≧ ≨ ≩ ≺ ≻ ≼ ≽ ⊏ ⊐ ⊑ ⊒ ² ³ °
∠ ∟ ° ≅ ~ ‖ ⟂ ⫛
≡ ≜ ≈ ∝ ∞ ≪ ≫ ⌊⌋ ⌈⌉ ∘ ∏ ∐ ∑ ∧ ∨ ∩ ∪ ⨀ ⊕ ⊗ 𝖕 𝖖 𝖗 ⊲ ⊳
∅ ∖ ∁ ↦ ↣ ∩ ∪ ⊆ ⊂ ⊄ ⊊ ⊇ ⊃ ⊅ ⊋ ⊖ ∈ ∉ ∋ ∌ ℕ ℤ ℚ ℝ ℂ ℵ ℶ ℷ ℸ 𝓟
¬ ∨ ∧ ⊕ → ← ⇒ ⇐ ⇔ ∀ ∃ ∄ ∴ ∵ ⊤ ⊥ ⊢ ⊨ ⫤ ⊣ … ⋯ ⋮ ⋰ ⋱
∫ ∬ ∭ ∮ ∯ ∰ ∇ ∆ δ ∂ ℱ ℒ ℓ
𝛢𝛼 𝛣𝛽 𝛤𝛾 𝛥𝛿 𝛦𝜀𝜖 𝛧𝜁 𝛨𝜂 𝛩𝜃𝜗 𝛪𝜄 𝛫𝜅 𝛬𝜆 𝛭𝜇 𝛮𝜈 𝛯𝜉 𝛰𝜊 𝛱𝜋 𝛲𝜌 𝛴𝜎𝜍 𝛵𝜏 𝛶𝜐 𝛷𝜙𝜑 𝛸𝜒 𝛹𝜓 𝛺𝜔