mersenneforum.org  

Go Back   mersenneforum.org > Extra Stuff > Blogorrhea > sweety439

Reply
 
Thread Tools
Old 2022-04-23, 13:46   #1
 
sweety439's Avatar
 
"99(4^34019)99 palind"
Nov 2016
(P^81993)SZ base 36

25·5·23 Posts
Default A question about twin primes and twin practical numbers

Are there finitely many or infinitely many odd numbers which cannot be written as x+y, where x is in A210479 and y is in A258838?

If finitely many, this will prove all these four conjectures:

* Goldbach's conjecture (the weaker conjecture that every enough large even numbers can be written as the sum of two primes) (for the original conjecture, it only need to check the even numbers n such that both n+1 and n-1 are these odd numbers)
* Twin prime conjecture
* The Goldbach conjecture for practical numbers (the weaker conjecture that every enough large even numbers can be written as the sum of practical numbers) (for the original conjecture, it only need to check the even numbers n such that both n+1 and n-1 are these odd numbers)
* There are infinitely many "twin practical numbers"

However, it seems to be infinitely many, these are such n's:

Code:
1
3
5
27
39
51
55
57
69
81
87
99
105
117
123
129
135
141
143
147
159
163
165
171
173
175
177
189
193
207
213
219
225
237
249
251
253
255
261
263
265
267
279
285
291
293
295
297
303
309
321
323
327
333
335
339
345
357
361
363
369
371
373
375
381
387
393
399
403
405
407
411
413
417
419
429
431
433
441
443
445
447
459
471
477
483
485
489
495
497
501
507
513
515
517
519
531
537
543
549
555
561
565
567
579
585
591
595
597
609
615
621
623
625
627
633
635
637
639
645
651
657
669
673
675
681
683
685
687
693
695
699
709
711
715
717
723
725
729
735
737
741
747
751
753
755
759
763
765
771
777
779
781
783
785
789
795
801
803
805
807
819
821
825
837
843
849
855
867
873
879
891
897
903
905
909
915
921
927
939
943
945
951
957
963
965
969
975
977
981
987
993
999
1005
1011
1015
1017
1029
1041
1045
1047
1059
1065
1071
1077
1083
1085
1089
1093
1101
1103
1105
1107
1113
1115
1119
1125
1131
1137
1143
1145
1149
1161
1167
1173
1175
1179
1185
1187
1191
1197
1201
1203
1205
1209
1211
1213
1215
1225
1227
1239
1245
1251
1253
1255
1257
1263
1265
1269
1275
1281
1283
1285
1287
1299
1311
1317
1329
1335
1341
1347
1353
1355
1359
1365
1371
1375
1377
1383
1385
1389
1393
1395
1401
1405
1407
1419
1425
1437
1443
1449
1461
1463
1465
1467
1473
1479
1497
1503
1509
1515
1521
1527
1533
1535
1539
1545
1547
1549
1551
1557
1563
1569
1575
1581
1587
1593
1595
1599
1603
1605
1611
1617
1619
1629
1635
1641
1643
1645
1647
1653
1655
1657
1659
1665
1667
1671
1677
1683
1689
1695
1697
1701
1703
1705
1707
1713
1715
1719
1731
1737
1743
1745
1749
1755
1761
1767
1771
1773
1775
1779
1785
1791
1797
1799
1803
1805
1809
1813
1815
1821
1827
1833
1835
1839
1845
1847
1851
1855
1857
1863
1865
1869
1881
1883
1885
1887
1897
1899
1905
1911
1917
1923
1925
1929
1941
1947
1959
1965
1971
1975
1977
1983
1985
1989
1995
2007
2013
2019
2025
2037
2043
2049
2055
2061
2063
2065
2067
2073
2079
2085
2097
2103
2109
2121
2123
2127
2139
2151
2157
2163
2165
2169
2175
2181
2187
2193
2199
2205
2207
2211
2213
2217
2223
2229
2233
2235
2241
2245
2247
2253
2255
2259
2261
2265
2277
2283
2289
2295
2301
2303
2307
2319
2325
2331
2337
2349
2355
2361
2367
2373
2375
2379
2385
2387
2391
2403
2409
2415
2421
2427
2433
2439
2451
2457
2463
2469
2475
2481
2485
2487
2493
2495
2497
2499
2505
2511
2517
2523
2525
2527
2529
2535
2541
2545
2547
2559
2565
2571
2577
2583
2589
2601
2607
2613
2615
2619
2625
2627
2631
2637
2643
2649
2653
2655
2661
2665
2667
2673
2675
2679
2685
2687
2697
2703
2709
2715
2721
2723
2727
2739
2745
2751
2763
2769
2775
2781
2787
2799
2805
2811
2817
2823
2829
2835
2841
2845
2847
2849
2853
2859
2871
2875
2877
2883
2889
2893
2895
2901
2905
2907
2913
2919
2925
2931
2937
2943
2949
2955
2961
2967
2979
2985
2991
2997
3009
3015
3021
3025
3027
3033
3035
3039
3051
3057
3063
3069
3075
3081
3087
3093
3095
3099
3105
3107
3111
3115
3117
3129
3135
3141
3143
3145
3147
3153
3155
3157
3159
3165
3177
3183
3189
3195
3201
3207
3213
3217
3219
3223
3225
3227
3231
3237
3243
3249
3255
3261
3263
3265
3267
3273
3279
3283
3285
3291
3297
3309
3313
3315
3321
3327
3339
3345
3351
3357
3369
3375
3381
3385
3387
3393
3395
3397
3399
3405
3411
3417
3423
3429
3435
3441
3445
3447
3453
3455
3459
3465
3467
3477
3483
3489
3493
3495
3501
3507
3513
3515
3519
3525
3537
3549
3553
3555
3561
3567
3573
3575
3577
3579
3585
3591
3597
3603
3605
3609
3615
3621
3627
3633
3639
3645
3647
3651
3657
3661
3663
3669
3681
3685
3687
3693
3699
3705
3707
3711
3715
3717
3723
3729
3733
3735
3741
3747
3753
3755
3759
3771
3777
3783
3787
3789
3795
3801
3805
3807
3813
3815
3817
3819
3831
3837
3843
3849
3855
3857
3861
3865
3867
3873
3879
3885
3891
3897
3903
3909
3913
3915
3921
3925
3927
3933
3935
3939
3945
3951
3955
3957
3963
3965
3969
3971
3973
3975
3981
3985
3987
3993
3995
3999
4005
4011
4015
4017
4029
4035
4041
4045
4047
4059
4065
4071
4077
4083
4085
4089
4101
4103
4105
4107
4113
4119
4125
4137
4143
4149
4153
4155
4167
4173
4179
4183
4185
4191
4197
4203
4209
4215
4221
4225
4227
4239
4243
4245
4251
4253
4257
4269
4281
4287
4299
4305
4311
4315
4317
4323
4329
4333
4335
4341
4345
4347
4353
4359
4365
4367
4371
4375
4377
4383
4389
4393
4395
4401
4403
4405
4407
4413
4415
4417
4419
4431
4437
4443
4445
4449
4455
4461
4467
4473
4477
4479
4491
4497
4503
4509
4515
4521
4525
4527
4533
4539
4545
4551
4557
4563
4565
4569
4575
4581
4585
4587
4593
4599
4605
4611
4617
4623
4627
4629
4635
4641
4645
4647
4659
4665
4671
4677
4683
4689
4695
4697
4701
4707
4711
4713
4715
4717
4719
4725
4731
4737
4743
4749
4755
4761
4767
4773
4775
4779
4785
4787
4797
4809
4815
4825
4827
4833
4837
4839
4845
4851
4857
4863
4869
4873
4875
4881
4887
4893
4899
4905
4911
4917
4923
4929
4935
4941
4947
4953
4955
4959
4963
4965
4977
4983
4989
4995
5001
5007
5013
5019
5031
5037
5043
5049
5055
5061
5065
5067
5073
5075
5079
5085
5091
5097
5109
5115
5121
5127
5133
5135
5137
5139
5145
5151
5157
5163
5169
5175
5177
5181
5187
5193
5195
5199
5205
5207
5211
5215
5217
5223
5225
5229
5245
5247
5253
5257
5259
5265
5271
5277
5289
5295
5301
5307
5313
5315
5319
5325
5331
5333
5335
5337
5343
5349
5353
5355
5361
5367
5373
5379
5383
5385
5391
5397
5399
5403
5405
5409
5415
5427
5433
5439
5445
5451
5457
5463
5469
5475
5487
5493
5499
5505
5511
5517
5529
5535
5541
5547
5553
5555
5559
5565
5571
5577
5581
5583
5589
5593
5595
5601
5603
5607
5613
5619
5625
5631
5635
5637
5649
5655
5661
5663
5665
5667
5673
5679
5685
5687
5691
5697
5703
5705
5709
5715
5721
5727
5733
5735
5739
5751
5757
5763
5765
5769
5775
5781
5787
5793
5795
5799
5803
5805
5811
5817
5819
5823
5825
5829
5835
5841
5843
5845
5847
5859
5865
5871
5877
5889
5895
5901
5907
5913
5915
5917
5919
5925
5931
5937
5943
5945
5949
5955
5957
5961
5967
5973
5975
5979
5985
5987
5991
5997
6003
6009
6015
6021
6023
6027
6033
6035
6037
6039
6045
6051
6055
6057
6063
6069
6075
6081
6085
6087
6099
6111
6117
6123
6125
6129
6141
6147
6153
6155
6159
6165
6167
6171
6175
6177
6183
6189
6193
6195
6201
6207
6213
6219
6225
6227
6231
6233
6235
6237
6243
6249
6255
6261
6265
6267
6279
6285
6291
6297
6309
6315
6321
6325
6327
6333
6335
6339
6345
6351
6357
6369
6375
6381
6383
6387
6393
6395
6399
6405
6411
6415
6417
6423
6429
6435
6441
6447
6459
6465
6471
6473
6475
6477
6483
6489
6495
6501
6507
6513
6515
6517
6519
6525
6531
6537
6543
6545
6549
6561
6567
6579
6585
6591
6597
6603
6605
6609
6615
6617
6621
6625
6627
6633
6639
6645
6651
6657
6669
6673
6675
6681
6685
6687
6693
6699
6705
6711
6717
6723
6727
6729
6735
6741
6745
6747
6753
6755
6759
6771
6777
6789
6795
6801
6807
6813
6819
6825
6831
6835
6837
6843
6849
6853
6855
6861
6865
6867
6873
6879
6885
6891
6895
6897
6903
6909
6915
6921
6925
6927
6933
6935
6937
6939
6945
6951
6955
6957
6969
6975
6981
6987
6993
6995
6999
7005
7007
7011
7017
7023
7029
7035
7037
7041
7047
7053
7055
7059
7063
7065
7071
7077
7083
7089
7093
7095
7101
7103
7105
7107
7113
7115
7119
7125
7137
7143
7149
7155
7161
7163
7167
7173
7179
7185
7191
7197
7203
7205
7209
7215
7221
7227
7233
7239
7245
7247
7249
7251
7263
7269
7273
7275
7281
7285
7287
7293
7299
7305
7317
7319
7323
7329
7341
7345
7347
7359
7365
7371
7375
7377
7383
7385
7389
7395
7401
7405
7407
7413
7419
7425
7427
7431
7437
7443
7449
7455
7467
7473
7479
7483
7485
7497
7503
7509
7513
7515
7521
7525
7527
7533
7535
7539
7545
7557
7569
7575
7581
7587
7599
7605
7611
7617
7623
7629
7635
7641
7645
7647
7653
7659
7665
7671
7677
7683
7689
7695
7701
7703
7705
7707
7713
7719
7725
7727
7731
7733
7735
7737
7743
7749
7755
7761
7763
7767
7773
7779
7785
7791
7797
7803
7805
7809
7815
7821
7827
7833
7835
7839
7845
7847
7851
7857
7863
7865
7869
7873
7875
7887
7893
7899
7905
7911
7915
7917
7923
7929
7935
7945
7947
7959
7965
7971
7975
7977
7983
7989
7995
8001
8003
8007
8019
8025
8031
8037
8043
8049
8055
8061
8065
8067
8073
8079
8085
8091
8097
8103
8105
8109
8115
8121
8123
8125
8127
8133
8139
8145
8151
8155
8157
8163
8169
8173
8175
8181
8187
8193
8199
8205
8211
8217
8229
8241
8247
8253
8255
8259
8265
8267
8271
8277
8283
8289
8295
8301
8305
8307
8313
8315
8319
8325
8331
8337
8343
8349
8355
8361
8363
8365
8367
8373
8375
8379
8385
8391
8397
8403
8409
8415
8421
8423
8427
8433
8435
8437
8439
8445
8451
8453
8457
8463
8465
8469
8475
8481
8487
8493
8499
8511
8523
8529
8535
8541
8547
8553
8559
8565
8571
8575
8577
8583
8589
8593
8595
8601
8607
8613
8615
8617
8619
8625
8627
8629
8631
8637
8643
8645
8647
8649
8655
8657
8661
8665
8667
8673
8679
8685
8687
8691
8697
8701
8703
8709
8715
8721
8723
8727
8733
8739
8745
8751
8757
8763
8769
8773
8775
8781
8785
8787
8793
8799
8805
8811
8817
8829
8835
8841
8847
8857
8859
8865
8871
8877
8883
8889
8895
8901
8907
8913
8915
8919
8925
8927
8931
8937
8943
8949
8953
8955
8961
8967
8979
8981
8985
8991
8997
9009
9015
9021
9027
9033
9039
9051
9057
9063
9065
9069
9075
9081
9087
9093
9099
9105
9107
9111
9117
9123
9129
9133
9135
9141
9143
9147
9153
9159
9165
9171
9175
9177
9183
9189
9195
9201
9207
9213
9215
9219
9225
9231
9237
9249
9255
9261
9263
9265
9267
9273
9275
9279
9291
9297
9303
9309
9315
9317
9321
9327
9333
9335
9339
9345
9351
9357
9363
9369
9373
9375
9381
9387
9393
9399
9405
9407
9411
9415
9417
9429
9447
9453
9459
9465
9471
9477
9483
9485
9489
9495
9501
9507
9513
9519
9531
9535
9537
9543
9549
9555
9561
9567
9573
9575
9579
9585
9591
9595
9597
9603
9607
9609
9615
9621
9625
9627
9639
9645
9651
9657
9663
9669
9675
9681
9683
9687
9693
9695
9699
9705
9711
9717
9729
9735
9741
9747
9753
9755
9759
9765
9777
9783
9789
9793
9795
9801
9805
9807
9813
9819
9825
9831
9835
9837
9843
9849
9855
9861
9863
9865
9867
9873
9875
9879
9885
9891
9897
9903
9905
9909
9911
9915
9921
9927
9933
9939
9945
9947
9951
9957
9963
9969
9973
9975
9981
9985
9987
9993
9997
9999
10003
10005
10017
10019
10023
10029
10035
10041
10045
10047
10053
10055
10059
10065
10071
10077
10083
10089
10101
10107
10113
10115
10119
10125
10131
10137
10149
10155
10161
10167
10173
10175
10179
10185
10191
10197
10199
10203
10209
10213
10215
10221
10225
10227
10233
10239
10245
10251
10255
10257
10263
10265
10269
10281
10283
10285
10287
10293
10299
10305
10307
10311
10317
10323
10325
10329
10341
10347
10353
10355
10359
10365
10371
10375
10377
10383
10389
10393
10395
10397
10401
10407
10413
10415
10419
10425
10437
10439
10443
10449
10455
10467
10473
10479
10485
10491
10497
10509
10515
10521
10527
10539
10545
10551
10557
10563
10565
10569
10573
10575
10581
10587
10593
10595
10599
10611
10617
10623
10629
10635
10641
10647
10653
10659
10665
10671
10675
10677
10683
10685
10689
10695
10701
10705
10707
10719
10725
10731
10737
10743
10745
10749
10755
10761
10767
10773
10775
10779
10785
10791
10797
10803
10805
10809
10813
10815
10821
10825
10827
10833
10835
10839
10843
10845
10851
10855
10857
10863
10865
10869
10875
10881
10883
10885
10887
10899
10905
10911
10917
10923
10929
10935
10941
10943
10945
10947
10959
10965
10971
10977
10983
10989
10995
10997
11001
11007
11013
11015
11019
11025
11027
11031
11035
11037
11043
11045
11049
11053
11055
11061
11065
11067
11079
11085
11091
11097
11103
11109
11115
11121
11127
11133
11135
11137
11139
11145
11151
11157
11169
11187
11193
11199
11205
11211
11217
11221
11223
11229
11235
11241
11245
11247
11253
11255
11259
11265
11271
11275
11277
11283
11289
11295
11301
11305
11307
11313
11319
11325
11331
11337
11343
11349
11361
11365
11367
11373
11379
11385
11391
11397
11403
11407
11409
11415
11421
11427
11433
11439
11445
11451
11455
11457
11463
11469
11473
11475
11481
11485
11487
11493
11495
11499
11505
11511
11515
11517
11523
11529
11535
11541
11543
11545
11547
11559
11565
11571
11577
11583
11585
11589
11595
11599
11601
11603
11605
11607
11613
11615
11619
11631
11637
11643
11649
11653
11655
11661
11665
11667
11673
11679
11691
11697
11709
11713
11715
11727
11733
11739
11745
11751
11757
11763
11765
11769
11775
11787
11793
11799
11805
11811
11817
11823
11829
11841
11847
11853
11855
11859
11865
11871
11875
11877
11883
11889
11893
11895
11901
11907
11913
11919
11925
11931
11937
11943
11949
11953
11955
11961
11963
11965
11967
11979
11985
11991
11997
12003
12009
12015
12021
12027
12033
12039
12045
12051
12057
12063
12069
12075
12081
12087
12093
12099
12105
12111
12115
12117
12123
12129
12131
12133
12135
12141
12145
12147
12153
12155
12159
12165
12171
12175
12177
12183
12189
12195
12201
12205
12207
12213
12215
12219
12225
12231
12235
12237
...
However, due to the Schinzel's hypothesis H and the fact that the sequence of practical numbers is very like the sequences of primes, there should be finitely many (e.g. the Dubner's conjecture and the conjectures in https://oeis.org/A210444 and https://oeis.org/A210452)
sweety439 is offline   Reply With Quote
Old 2022-04-23, 14:32   #2
 
sweety439's Avatar
 
"99(4^34019)99 palind"
Nov 2016
(P^81993)SZ base 36

E6016 Posts
Default

Well, there are infinitely many, since all numbers in A258838, except 4, are divisible by 3, but of course 3 is the only number in A210479 which is divisible by 3, thus if an odd n is divisible by 3, and n-4 is not in A210479, and n-3 is not in A258838, then this n is such n

Thus, we consider the odd n not divisible by 3:

Code:
1
5
55
143
163
173
175
193
251
253
263
265
293
295
323
335
361
371
373
403
407
413
419
431
433
443
445
485
497
515
517
565
595
623
625
635
637
673
683
685
695
709
715
725
737
751
755
763
779
781
785
803
805
821
905
943
965
977
1015
1045
1085
1093
1103
1105
1115
1145
1175
1187
1201
1205
1211
1213
1225
1253
1255
1265
1283
1285
1355
1375
1385
1393
1405
1463
1465
1535
1547
1549
1595
1603
1619
1643
1645
1655
1657
1667
1697
1703
1705
1715
1745
1771
1775
1799
1805
1813
1835
1847
1855
1865
1883
1885
1897
1925
1975
1985
2063
2065
2123
2165
2207
2213
2233
2245
2255
2261
2303
2375
2387
2485
2495
2497
2525
2527
2545
2615
2627
2653
2665
2675
2687
2723
2845
2849
2875
2893
2905
3025
3035
3095
3107
3115
3143
3145
3155
3157
3217
3223
3227
3263
3265
3283
3313
3385
3395
3397
3445
3455
3467
3493
3515
3553
3575
3577
3605
3647
3661
3685
3707
3715
3733
3755
3787
3805
3815
3817
3857
3865
3913
3925
3935
3955
3965
3971
3973
3985
3995
4015
4045
4085
4103
4105
4153
4183
4225
4243
4253
4315
4333
4345
4367
4375
4393
4403
4405
4415
4417
4445
4477
4525
4565
4585
4627
4645
4697
4711
4715
4717
4775
4787
4825
4837
4873
4955
4963
5065
5075
5135
5137
5177
5195
5207
5215
5225
5245
5257
5315
5333
5335
5353
5383
5399
5405
5555
5581
5593
5603
5635
5663
5665
5687
5705
5735
5765
5795
5803
5819
5825
5843
5845
5915
5917
5945
5957
5975
5987
6023
6035
6037
6055
6085
6125
6155
6167
6175
6193
6227
6233
6235
6265
6325
6335
6383
6395
6415
6473
6475
6515
6517
6545
6605
6617
6625
6673
6685
6727
6745
6755
6835
6853
6865
6895
6925
6935
6937
6955
6995
7007
7037
7055
7063
7093
7103
7105
7115
7163
7205
7247
7249
7273
7285
7319
7345
7375
7385
7405
7427
7483
7513
7525
7535
7645
7703
7705
7727
7733
7735
7763
7805
7835
7847
7865
7873
7915
7945
7975
8003
8065
8105
8123
8125
8155
8173
8255
8267
8305
8315
8363
8365
8375
8423
8435
8437
8453
8465
8575
8593
8615
8617
8627
8629
8645
8647
8657
8665
8687
8701
8723
8773
8785
8857
8915
8927
8953
8981
9065
9107
9133
9143
9175
9215
9263
9265
9275
9317
9335
9373
9407
9415
9485
9535
9575
9595
9607
9625
9683
9695
9755
9793
9805
9835
9863
9865
9875
9905
9911
9947
9973
9985
9997
10003
10019
10045
10055
10115
10175
10199
10213
10225
10255
10265
10283
10285
10307
10325
10355
10375
10393
10397
10415
10439
10565
10573
10595
10675
10685
10705
10745
10775
10805
10813
10825
10835
10843
10855
10865
10883
10885
10943
10945
10997
11015
11027
11035
11045
11053
11065
11135
11137
11221
11245
11255
11275
11305
11365
11407
11455
11473
11485
11495
11515
11543
11545
11585
11599
11603
11605
11615
11653
11665
11713
11765
11855
11875
11893
11953
11963
11965
12115
12131
12133
12145
12155
12175
12205
12215
12235
12263
12265
12313
12325
12337
12355
12395
12397
12415
12425
12455
12493
12535
12565
12575
12595
12623
12677
12733
12755
12775
12815
12857
12875
12901
12913
12925
12955
12965
13013
13015
13055
13075
13105
13141
13145
13153
13223
13235
13277
13295
13297
13325
13435
13475
13505
13513
13555
13625
13655
13715
13735
13825
13835
13885
13895
13897
13955
13975
13981
13985
14035
14075
14077
14135
14165
14183
14185
14195
14245
14263
14285
14315
14375
14483
14495
14525
14545
14663
14725
14735
14737
14765
14773
14795
14815
14833
14855
14903
14915
14927
14975
14987
15017
15025
15035
15043
15073
15085
15095
15125
15127
15185
15205
...
Do there still infinitely many such n?
sweety439 is offline   Reply With Quote
Reply



Similar Threads
Thread Thread Starter Forum Replies Last Post
find very easy twin prime in the infamy twin primes hal1se Miscellaneous Math 13 2018-11-05 16:34
Twin Primes Computer Science & Computational Number Theory 171 2013-05-14 02:57
Twin Primes Hugh Math 64 2011-01-26 08:45
OT: Twin Primes R.D. Silverman Math 8 2005-07-15 21:56
Twin primes again Chris Card Math 1 2005-05-26 14:18

All times are UTC. The time now is 09:57.


Tue Jan 3 09:57:15 UTC 2023 up 138 days, 7:25, 0 users, load averages: 0.79, 0.80, 0.80

Powered by vBulletin® Version 3.8.11
Copyright ©2000 - 2023, Jelsoft Enterprises Ltd.

This forum has received and complied with 0 (zero) government requests for information.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation.
A copy of the license is included in the FAQ.

≠ ± ∓ ÷ × · − √ ‰ ⊗ ⊕ ⊖ ⊘ ⊙ ≤ ≥ ≦ ≧ ≨ ≩ ≺ ≻ ≼ ≽ ⊏ ⊐ ⊑ ⊒ ² ³ °
∠ ∟ ° ≅ ~ ‖ ⟂ ⫛
≡ ≜ ≈ ∝ ∞ ≪ ≫ ⌊⌋ ⌈⌉ ∘ ∏ ∐ ∑ ∧ ∨ ∩ ∪ ⨀ ⊕ ⊗ 𝖕 𝖖 𝖗 ⊲ ⊳
∅ ∖ ∁ ↦ ↣ ∩ ∪ ⊆ ⊂ ⊄ ⊊ ⊇ ⊃ ⊅ ⊋ ⊖ ∈ ∉ ∋ ∌ ℕ ℤ ℚ ℝ ℂ ℵ ℶ ℷ ℸ 𝓟
¬ ∨ ∧ ⊕ → ← ⇒ ⇐ ⇔ ∀ ∃ ∄ ∴ ∵ ⊤ ⊥ ⊢ ⊨ ⫤ ⊣ … ⋯ ⋮ ⋰ ⋱
∫ ∬ ∭ ∮ ∯ ∰ ∇ ∆ δ ∂ ℱ ℒ ℓ
𝛢𝛼 𝛣𝛽 𝛤𝛾 𝛥𝛿 𝛦𝜀𝜖 𝛧𝜁 𝛨𝜂 𝛩𝜃𝜗 𝛪𝜄 𝛫𝜅 𝛬𝜆 𝛭𝜇 𝛮𝜈 𝛯𝜉 𝛰𝜊 𝛱𝜋 𝛲𝜌 𝛴𝜎𝜍 𝛵𝜏 𝛶𝜐 𝛷𝜙𝜑 𝛸𝜒 𝛹𝜓 𝛺𝜔