|
|
A182331
|
|
Primes of the form 6^k + 1.
|
|
9
|
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
No other terms for k < 3000. - T. D. Noe, Apr 25 2012
Apart from the first term, the exponents must be powers of two. Like Fermat primes, there are probably only finitely many terms. No more terms for k < 2^28 = 268435456. - Charles R Greathouse IV, Jul 16 2012
|
|
LINKS
|
Table of n, a(n) for n=1..4.
Wilfrid Keller, Prime factors of generalized Fermat numbers F_m(6) and complete factoring status
|
|
MATHEMATICA
|
Select[Table[6^n + 1, {n, 0, 100}], PrimeQ] (* T. D. Noe, Apr 25 2012 *)
|
|
PROG
|
(PFGW) ABC2 6^(2^$a)+1
a: from 0 to 18
// Charles R Greathouse IV, Jul 16 2012
|
|
CROSSREFS
|
Cf. A057735, A182330.
Sequence in context: A195068 A342412 A196916 * A173762 A180269 A036432
Adjacent sequences: A182328 A182329 A182330 * A182332 A182333 A182334
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Alex Ratushnyak, Apr 25 2012
|
|
STATUS
|
approved
|
|
|
|