|
|
A205506
|
|
Least positive integer m > 1 such that 1 - m^k + m^(2*k) is prime, where k=A003586(n).
|
|
6
|
|
|
2, 2, 6, 2, 3, 5, 7, 3, 4, 3, 6, 93, 2, 88, 5, 33, 5, 196, 15, 106, 174, 196, 14, 342, 207, 28, 372, 14, 47, 25, 569, 646, 141, 129, 278, 5, 421, 224, 629, 26, 424, 1081, 688, 246, 736, 4392, 124, 484, 759, 791, 4401, 863, 2854, 410, 1044, 22, 848, 1402, 2006
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
1 - m^k + m^(2*k) equals Phi(6*k,m) when k=2^p*3^q, p>=0, q>=0, which may be prime numbers for certain positive integer m>1.
The Mathematica program given here generates the first 33 terms. Further terms were generated by OpenPFGW.
a(62)=7426, while A003586(62)=3^8=6561.
|
|
LINKS
|
Table of n, a(n) for n=1..59.
|
|
FORMULA
|
a(n) = A085398(6*A003586(n)). - Jinyuan Wang, Jan 01 2023
|
|
EXAMPLE
|
n=1, A003586(1)=1, when m=2, 1-2^1+2^2=3 is prime, so a(1)=2;
n=2, A003586(2)=2, when m=2, 1-2^2+2^4=13 is prime, so a(2)=2;
...
n=7, A003586(7)=9, when m=7, 1-7^9+7^18=1628413557556843 is prime, so a(7)=7.
|
|
MATHEMATICA
|
fQ[n_] := n == 3 EulerPhi@n; a = Select[6 Range@500, fQ]/6; l =
Length[a]; Table[m = a[[j]]; i = 1;
While[i++; cp = 1 - i^m + i^(2*m); ! PrimeQ[cp]]; i, {j, 1, l}]
|
|
CROSSREFS
|
Cf. A003586, A056993, A085398, A153438.
Sequence in context: A134339 A162299 A281552 * A110141 A339489 A293443
Adjacent sequences: A205503 A205504 A205505 * A205507 A205508 A205509
|
|
KEYWORD
|
nonn,hard,changed
|
|
AUTHOR
|
Lei Zhou, Feb 01 2012
|
|
STATUS
|
approved
|
|
|
|