login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A085398 Let Cn(x) be the n-th cyclotomic polynomial; a(n) is the least k>1 such that Cn(k) is prime. 25
3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 6, 2, 4, 3, 2, 10, 2, 22, 2, 2, 4, 6, 2, 2, 2, 2, 2, 14, 3, 61, 2, 10, 2, 14, 2, 15, 25, 11, 2, 5, 5, 2, 6, 30, 11, 24, 7, 7, 2, 5, 7, 19, 3, 2, 2, 3, 30, 2, 9, 46, 85, 2, 3, 3, 3, 11, 16, 59, 7, 2, 2, 22, 2, 21, 61, 41, 7, 2, 2, 8, 5, 2, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Conjecture: a(n) is defined for all n. - Eric Chen, Nov 14 2014

Existence of a(n) is implied by Bunyakovsky's conjecture. - Robert Israel, Nov 13 2014

LINKS

Jinyuan Wang, Table of n, a(n) for n = 1..5000 (terms 1..1500 from Eric Chen)

Wikipedia, Bunyakowsky conjecture

FORMULA

a(A072226(n)) = 2. - Eric Chen, Nov 14 2014

a(n) = A117544(n) except when n is a prime power, since if n is a prime power, then A117544(n) = 1. - Eric Chen, Nov 14 2014

a(prime(n)) = A066180(n), a(2*prime(n)) = A103795(n), a(2^n) = A056993(n-1), a(3^n) = A153438(n-1), a(2*3^n) = A246120(n-1), a(3*2^n) = A246119(n-1), a(6^n) = A246121(n-1), a(5^n) = A206418(n-1), a(6*A003586(n)) = A205506(n), a(10*A003592(n)) = A181980(n).

EXAMPLE

a(11) = 5 because C11(k) is composite for k = 2, 3, 4 and prime for k = 5.

a(37) = 61 because C37(k) is composite for k = 2, 3, 4, ..., 60 and prime for k = 61.

MAPLE

f:= proc(n) local k;

for k from 2 do if isprime(numtheory:-cyclotomic(n, k)) then return k fi od

end proc:

seq(f(n), n = 1 .. 100); # Robert Israel, Nov 13 2014

MATHEMATICA

Table[k = 2; While[!PrimeQ[Cyclotomic[n, k]], k++]; k, {n, 300}] (* Eric Chen, Nov 14 2014 *)

PROG

(PARI) a(n) = k=2; while(!isprime(polcyclo(n, k)), k++); k; \\ Michel Marcus, Nov 13 2014

CROSSREFS

Cf. A117544, A066180, A085399, A103795, A056993, A153438, A246119, A246120, A246121, A206418, A205506, A181980.

Cf. A008864, A006093, A002384, A005574, A049409, A055494, A100330, A000068, A153439, A246392, A162862, A246397, A217070, A006314, A217071, A164989, A217072, A217073, A153440, A217074, A217075, A006313, A097475.

Sequence in context: A104435 A178815 A248743 * A252503 A270003 A067438

Adjacent sequences: A085395 A085396 A085397 * A085399 A085400 A085401

KEYWORD

nonn,changed

AUTHOR

Don Reble, Jun 28 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 2 19:13 EST 2023. Contains 359212 sequences. (Running on oeis4.)