|
|
A085398
|
|
Let Cn(x) be the n-th cyclotomic polynomial; a(n) is the least k>1 such that Cn(k) is prime.
|
|
25
|
|
|
3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 6, 2, 4, 3, 2, 10, 2, 22, 2, 2, 4, 6, 2, 2, 2, 2, 2, 14, 3, 61, 2, 10, 2, 14, 2, 15, 25, 11, 2, 5, 5, 2, 6, 30, 11, 24, 7, 7, 2, 5, 7, 19, 3, 2, 2, 3, 30, 2, 9, 46, 85, 2, 3, 3, 3, 11, 16, 59, 7, 2, 2, 22, 2, 21, 61, 41, 7, 2, 2, 8, 5, 2, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Conjecture: a(n) is defined for all n. - Eric Chen, Nov 14 2014
Existence of a(n) is implied by Bunyakovsky's conjecture. - Robert Israel, Nov 13 2014
|
|
LINKS
|
Jinyuan Wang, Table of n, a(n) for n = 1..5000 (terms 1..1500 from Eric Chen)
Wikipedia, Bunyakowsky conjecture
|
|
FORMULA
|
a(A072226(n)) = 2. - Eric Chen, Nov 14 2014
a(n) = A117544(n) except when n is a prime power, since if n is a prime power, then A117544(n) = 1. - Eric Chen, Nov 14 2014
a(prime(n)) = A066180(n), a(2*prime(n)) = A103795(n), a(2^n) = A056993(n-1), a(3^n) = A153438(n-1), a(2*3^n) = A246120(n-1), a(3*2^n) = A246119(n-1), a(6^n) = A246121(n-1), a(5^n) = A206418(n-1), a(6*A003586(n)) = A205506(n), a(10*A003592(n)) = A181980(n).
|
|
EXAMPLE
|
a(11) = 5 because C11(k) is composite for k = 2, 3, 4 and prime for k = 5.
a(37) = 61 because C37(k) is composite for k = 2, 3, 4, ..., 60 and prime for k = 61.
|
|
MAPLE
|
f:= proc(n) local k;
for k from 2 do if isprime(numtheory:-cyclotomic(n, k)) then return k fi od
end proc:
seq(f(n), n = 1 .. 100); # Robert Israel, Nov 13 2014
|
|
MATHEMATICA
|
Table[k = 2; While[!PrimeQ[Cyclotomic[n, k]], k++]; k, {n, 300}] (* Eric Chen, Nov 14 2014 *)
|
|
PROG
|
(PARI) a(n) = k=2; while(!isprime(polcyclo(n, k)), k++); k; \\ Michel Marcus, Nov 13 2014
|
|
CROSSREFS
|
Cf. A117544, A066180, A085399, A103795, A056993, A153438, A246119, A246120, A246121, A206418, A205506, A181980.
Cf. A008864, A006093, A002384, A005574, A049409, A055494, A100330, A000068, A153439, A246392, A162862, A246397, A217070, A006314, A217071, A164989, A217072, A217073, A153440, A217074, A217075, A006313, A097475.
Sequence in context: A104435 A178815 A248743 * A252503 A270003 A067438
Adjacent sequences: A085395 A085396 A085397 * A085399 A085400 A085401
|
|
KEYWORD
|
nonn,changed
|
|
AUTHOR
|
Don Reble, Jun 28 2003
|
|
STATUS
|
approved
|
|
|
|