|
|
A056993
|
|
a(n) is the smallest k >= 2 such that k^(2^n)+1 is prime, or -1 if no such k exists.
|
|
36
|
|
|
2, 2, 2, 2, 2, 30, 102, 120, 278, 46, 824, 150, 1534, 30406, 67234, 70906, 48594, 62722, 24518, 75898, 919444
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Smallest base value yielding generalized Fermat primes. - Hugo Pfoertner, Jul 01 2003
The first 5 terms correspond with the known (ordinary) Fermat primes. A probable candidate for the next entry is 62722^131072+1, discovered by Michael Angel in 2003. It has 628808 decimal digits. - Hugo Pfoertner, Jul 01 2003
For any n, a(n+1) >= sqrt(a(n)), because k^(2^(n+1))+1 = (k^2)^(2^n)+1. - Jeppe Stig Nielsen, Sep 16 2015
Does the sequence contain any perfect squares? If a(n) is a perfect square, then a(n+1) = sqrt(a(n)). - Jeppe Stig Nielsen, Sep 16 2015
If for a particular n, a(n) exists, then a(i) exist for all i=0,1,2,...,n. No proof is known that this sequence is infinite. Such a result would clearly imply the infinitude of A002496. - Jeppe Stig Nielsen, Sep 18 2015
919444 is a candidate for a(20). See Zimmermann link. - Serge Batalov, Sep 02 2017
Now PrimeGrid has tested and double checked all b^(2^20) + 1 with b < 919444, so we have proof that a(20) = 919444. - Jeppe Stig Nielsen, Dec 30 2017
|
|
LINKS
|
Table of n, a(n) for n=0..20.
Yves Gallot, Generalized Fermat Prime Search
Lucile and Yves Gallot, Generalized Fermat Prime Search
Michael Goetz, id=103235 of Top 5000 Primes
Stephen Scott, id=84401 of Top 5000 Primes
Sylvanus A. Zimmerman, PrimeGrid’s Generalized Fermat Prime Search
|
|
FORMULA
|
a(n) = A085398(2^(n+1)). - Jianing Song, Jun 13 2022
|
|
EXAMPLE
|
The primes are 2^(2^0) + 1 = 3, 2^(2^1) + 1 = 5, 2^(2^2) + 1 = 17, 2^(2^3) + 1 = 257, 2^(2^4) + 1 = 65537, 30^(2^5) + 1, 102^(2^6) + 1, ....
|
|
MATHEMATICA
|
f[n_] := (p = 2^n; k = 2; While[cp = k^p + 1; !PrimeQ@cp, k++ ]; k); Do[ Print[{n, f@n}], {n, 0, 17}] (* Lei Zhou, Feb 21 2005 *)
|
|
PROG
|
(PARI) a(n)=my(k=2); while(!isprime(k^(2^n)+1), k++); k \\ Anders Hellström, Sep 16 2015
|
|
CROSSREFS
|
Cf. A006093, A005574, A000068, A006314, A006313, A006315, A006316, A056994, A056995, A057465, A057002, A088361, A088362, A226528, A226529, A226530, A251597, A253854, A244150, A243959, A321323.
Cf. A019434 (Fermat primes).
Sequence in context: A060359 A029665 A256223 * A338931 A057331 A334053
Adjacent sequences: A056990 A056991 A056992 * A056994 A056995 A056996
|
|
KEYWORD
|
hard,more,nonn
|
|
AUTHOR
|
Robert G. Wilson v, Sep 06 2000
|
|
EXTENSIONS
|
1534 from Robert G. Wilson v, Oct 30 2000
62722 from Jeppe Stig Nielsen, Aug 07 2005
24518 and 75898 from Lei Zhou, Feb 01 2012
919444 from Jeppe Stig Nielsen, Dec 30 2017
|
|
STATUS
|
approved
|
|
|
|