|
|
A072276
|
|
Strong pseudoprimes to bases 2 and 3.
|
|
7
|
|
|
1373653, 1530787, 1987021, 2284453, 3116107, 5173601, 6787327, 11541307, 13694761, 15978007, 16070429, 16879501, 25326001, 27509653, 27664033, 28527049, 54029741, 61832377, 66096253, 74927161, 80375707, 101649241
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Composites that pass the Miller-Rabin test for bases 2 and 3. The intersection of A001262 (strong pseudoprimes to base 2) and A020229 (strong pseudoprimes to base 3).
The Washington Bomfim link references a table with all terms up to 2^64. Data from Jan Feitsma and William Galway, see link below, permitted an easy determination of these terms. I tested the Mathematica function PrimeQ[n] with those numbers to verify that it is correct for all n < 2^64. - Washington Bomfim, May 13 2012
|
|
LINKS
|
Don Reble, Table of n, a(n) for n = 1..10000
Joerg Arndt, Matters Computational (The Fxtbook), section 39.10, pp. 786-792
D. Bleichenbacher, Thesis and strong pseudoprimes to 2 and 3 up to 10^16
Washington Bomfim, Table of n, a(n) for n=1..1499371 [a large file]
Jan Feitsma and William Galway, Tables of pseudoprimes and related data
A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of Applied Cryptography, section 4.2.3, Miller-Rabin test.
Eric Weisstein's World of Mathematics, Rabin-Miller test
Index entries for sequences related to pseudoprimes
|
|
MATHEMATICA
|
nmax = 10^8; sppQ[n_?EvenQ, _] := False; sppQ[n_?PrimeQ, _] := False; sppQ[n_, b_] := (s = IntegerExponent[n - 1, 2]; d = (n - 1)/2^s; If[ PowerMod[b, d, n] == 1, Return[True], Do[ If[ PowerMod[b, d*2^r, n] == n-1, Return[True]], {r, 0, s-1}]]); A072276 = {}; n = 1; While[n < nmax, n = n+2; If[sppQ[n, 2] && sppQ[n, 3] , Print[n]; AppendTo[ A072276, n]]]; A072276 (* Jean-François Alcover, Oct 20 2011, after R. J. Mathar *)
|
|
CROSSREFS
|
Cf. A001262, A006945, A014233, A020229.
Sequence in context: A191820 A074999 A347279 * A114657 A250058 A205205
Adjacent sequences: A072273 A072274 A072275 * A072277 A072278 A072279
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Francois R. Grieu, Jul 09 2002
|
|
STATUS
|
approved
|
|
|
|