|
|
A046067
|
|
Smallest m such that (2n-1)2^m+1 is prime, or -1 if no such value exists.
|
|
15
|
|
|
0, 1, 1, 2, 1, 1, 2, 1, 3, 6, 1, 1, 2, 2, 1, 8, 1, 1, 2, 1, 1, 2, 2, 583, 2, 1, 1, 4, 2, 5, 4, 1, 1, 2, 1, 3, 2, 1, 3, 2, 1, 1, 4, 2, 1, 8, 2, 1, 2, 1, 3, 16, 1, 3, 6, 1, 1, 2, 3, 1, 8, 6, 1, 2, 3, 1, 4, 1, 3, 2, 1, 53, 6, 8, 3, 4, 1, 1, 8, 6, 3, 2, 1, 7, 2, 8, 1, 2, 2, 1, 4, 1, 3, 6, 1, 1, 2, 4, 15, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,4
|
|
COMMENTS
|
There exist odd integers 2k-1 such that (2k-1)2^n+1 is always composite.
The smallest known example is 78557. Therefore a(39279) = -1.
For the corresponding primes see A057025(n-1), n >= 1, where a 0 will show up if a(n) = -1. - Wolfdieter Lang, Feb 07 2013.
Jaeschke shows that every positive integer appears infinitely often. - Jeppe Stig Nielsen, Jul 06 2020
|
|
REFERENCES
|
Ribenboim, P. The New Book of Prime Number Records. New York: Springer-Verlag, pp. 357-359, 1996.
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n = 1..5000 (with help from the Sierpiński problem website; typo in a(3707)=1 corrected by Jeppe Stig Nielsen)
Ray Ballinger and Wilfrid Keller, Sierpiński Problem
John R. Cowles and Ruben Gamboa, Verifying Sierpiński and Riesel Numbers in ACL2, arXiv preprint arXiv:1110.4671 [cs.DM], 2011.
G. Jaeschke, On the Smallest k Such that All k*2^N + 1 are Composite, Mathematics of Computation, Vol. 40, No. 161 (Jan., 1983), pp. 381-384.
Seventeen or Bust, A Distributed Attack on the Sierpiński Problem
W. Sierpiński, Sur un problème concernant les nombres k*2^n+1, Elem. d. Math. 15, pp. 73-74, 1960.
Eric Weisstein's World of Mathematics, Riesel Number.
Eric Weisstein's World of Mathematics, Sierpiński Number of the Second Kind.
|
|
MATHEMATICA
|
max = 10000 (* this maximum value of m is sufficient up to n = 1000 *); a[n_] := For[m = 1, m <= max, m++, If[PrimeQ[(2n - 1)*2^m + 1], Return[m]]] /. Null -> -1; a[1] = 0; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jun 08 2012 *)
|
|
CROSSREFS
|
Cf. A046068.
Bisection of A040076. Cf. A033809.
Cf. A057192, A057025.
Sequence in context: A309035 A071628 A033809 * A342416 A305531 A132066
Adjacent sequences: A046064 A046065 A046066 * A046068 A046069 A046070
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
Eric W. Weisstein
|
|
STATUS
|
approved
|
|
|
|