|
|
A040076
|
|
Smallest m >= 0 such that n*2^m + 1 is prime, or -1 if no such m exists.
|
|
21
|
|
|
0, 0, 1, 0, 1, 0, 2, 1, 1, 0, 1, 0, 2, 1, 1, 0, 3, 0, 6, 1, 1, 0, 1, 2, 2, 1, 2, 0, 1, 0, 8, 3, 1, 2, 1, 0, 2, 5, 1, 0, 1, 0, 2, 1, 2, 0, 583, 1, 2, 1, 1, 0, 1, 1, 4, 1, 2, 0, 5, 0, 4, 7, 1, 2, 1, 0, 2, 1, 1, 0, 3, 0, 2, 1, 1, 4, 3, 0, 2, 3, 1, 0, 1, 2, 4, 1, 2, 0, 1, 1, 8, 7, 2, 582, 1, 0, 2, 1, 1, 0, 3, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,7
|
|
COMMENTS
|
Sierpiński showed that a(n) = -1 infinitely often. John Selfridge showed that a(78557) = -1 and it is conjectured that a(n) >= 0 for all n < 78557.
Determining a(131072) = a(2^17) is equivalent to finding the next Fermat prime after F_4 = 2^16 + 1. - Jeppe Stig Nielsen, Jul 27 2019
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n = 1..10000 (with help from the Sierpiński problem website)
Ray Ballinger and Wilfrid Keller, The Sierpiński Problem: Definition and Status
Seventeen or Bust, A Distributed Attack on the Sierpiński problem
|
|
EXAMPLE
|
1*(2^0)+1=2 is prime, so a(1)=0;
3*(2^1)+1=5 is prime, so a(3)=1;
For n=7, 7+1 and 7*2+1 are composite, but 7*2^2+1=29 is prime, so a(7)=2.
|
|
MATHEMATICA
|
Do[m = 0; While[ !PrimeQ[n*2^m + 1], m++ ]; Print[m], {n, 1, 110} ]
sm[n_]:=Module[{k=0}, While[!PrimeQ[n 2^k+1], k++]; k]; Array[sm, 120] (* Harvey P. Dale, Feb 05 2020 *)
|
|
CROSSREFS
|
For the corresponding primes see A050921.
Cf. A103964, A040081.
Cf. A033809, A046067 (odd n), A057192 (prime n).
Sequence in context: A257510 A305445 A225721 * A019269 A204459 A035155
Adjacent sequences: A040073 A040074 A040075 * A040077 A040078 A040079
|
|
KEYWORD
|
easy,nice,sign
|
|
AUTHOR
|
David W. Wilson
|
|
STATUS
|
approved
|
|
|
|